强夯地基处理检测探讨
- 格式:doc
- 大小:30.00 KB
- 文档页数:4
强夯地基检测方法强夯地基的质量检验方法,根据土的性质通常有两种:一种是原位测试方法,另一种为室内土工试验方法。
1.原位测试法原位测试可以直接明了地了解地基土的特性,常用的用于检测强夯效果的原位测试方法有以下几种:2.室内试验室内试验是在室内对从现场所取的土样开展测试与分析,从而获得所需土工参数。
强夯效果检测分析3.工程概况对沈北经济开发区某工厂机械加工车间回填砂土地基开展夯后检测,分别采用载荷试验、轻型动力触探、变形模量EV2三种原位测试方法检测。
4.工程原位测试检测方法(1)载荷试验试验采用慢速维持载荷法。
用一台IOOOkN千斤顶加荷,一台自重35吨挖掘机作为反力构架,由油压千斤顶通过直径为0.8m 的圆形刚性承压板施加压力,油压表显示载荷值,竖向位移由4块Ioomm百分表测读。
初级加荷37.5kN,以后每级加荷37∙5kN,加荷等级最大取至8级完毕试验。
并记录各级荷载下承压板的沉降量。
由于本工程试验点加最大荷载时,变形较小(沉降量均小于板直径的0.06,即48mm),地基土均没有破坏,计算地基士承载力特征值综合考虑比照沉降量与承压板直径之比等于0.01时所对应载荷和按最大加载量的1/2对应载荷值得出三个试验点承载力均为300kPa o由于3个试验点承载力特征值实测值的极差小于平均值的30%,最终承载力特征值取其平均值fak=300kPa0由于3个试验点承载力特征值实测值的极差小于平均值的30%,最终承载力特征值取其平均值300kPa o(2)轻型动力触探在强夯施工场地布置12个动力触探点,采用轻型圆锥动力触探仪,检测深度为0.8m。
采用自动落锤装置,连续开展锤击贯入,防止锤击偏心、探杆倾斜和侧向晃动,保持探杆垂直度;锤击速率每分钟宜为15击;每贯入IOonInl记录其相应击数。
通过对检测结果分析可知强夯后,强夯处理效果较好,经综合判断地基承载力特征值大于270KPa,检测结果满足设计要求。
动力触探可以直观的了解到土层从上到下的变化情况,很快地分析出强夯地基的处理效果,但是动力触探的结果受很多因素的影响,其取值的可靠性必须通过静力载荷试验来验证。
浅析强夯法处理软土地基的方法强夯法是一种处理软土地基的有效方法,它通过利用重锤撞击软土地基的方式,将土壤颗粒间的空隙压实,增加土壤的密度和强度,提高地基的承载能力。
下面将从四个方面简要分析强夯法处理软土地基的方法。
一、前期准备工作在使用强夯法处理软土地基前,需要进行一系列前期准备工作。
首先需要对软土地基进行现场勘测和试验,以确定软土地基的性质和特点,以及其承载能力的大小。
同时还需要进行地基平整和排水处理,以确保强夯作业的顺利进行。
在强夯前,还需要清理地面上的障碍物和杂草,保证强夯机能够正常工作并且不会受到影响。
二、选择合适的强夯机和工艺选择合适的强夯机和工艺是强夯法处理软土地基的关键。
根据地基的类型、土层的深度和现场的情况来进行选择。
通常采用的强夯机有手动强夯机和自动强夯机两种。
手动强夯机适用于浅层土层,自动强夯机适用于深层土层。
同时根据土层的情况选择不同重量的锤头和强夯次数,反复进行强夯,直至达到期望的强度和承载能力。
三、控制强夯次数和频率在实际的强夯作业中,需要根据地基的类型和土层的深度,适当控制强夯次数和频率。
过强的强夯力度和频率会损伤土壤的结构,增加土壤的压缩性和变形性,从而影响地基的承载力。
因此要根据实际情况,合理地控制强夯次数和频率,确保达到预期的处理效果。
四、强夯后保护和监测在强夯作业结束后,需要对地基进行保护和监测。
通常在强夯后需要进行一定时间的养护期,以使处理后的地基充分固结并达到稳定状态。
在养护期间,需要对地基周围的建筑物和道路进行保护,并进行加固和修复。
同时还需要进行地基的监测,以确保其达到设计要求的承载能力和稳定性。
综上所述,强夯法是一种有效的处理软土地基的方法,其关键在于前期的准备工作、选择合适的强夯机和工艺、合理控制强夯次数和频率以及强夯后的保护和监测。
通过科学的实践和不断的改进,强夯法可以成为处理软土地基的一种常用、实用且有效的技术。
一、强夯地基处理后的检测项目1.1 强夯地基处理后的垂直度检测在强夯地基处理完成后,首先需要对地基的垂直度进行检测。
这是因为强夯地基处理过程会产生振动,可能造成地基的不均匀沉降,进而影响建筑物的稳定性。
对强夯地基处理后的垂直度进行检测至关重要。
检测方法可以采用水准仪或全站仪进行测量,测量结果需要符合相关标准要求。
1.2 强夯地基处理后的水平度检测除了垂直度检测之外,对强夯地基处理后的水平度也需要进行检测。
地基的水平度不仅关系到建筑物的稳定性,还关系到地面的平整度和使用功能。
检测方法可以采用水准仪或全站仪进行测量,同样需要符合相关标准要求。
1.3 强夯地基处理后的承载力检测强夯地基处理后,地基的承载能力往往有所提高。
为了确保地基符合建筑物承载的要求,需要对其承载力进行检测。
一般可以采用静载荷试验或动载荷试验来检测地基的承载能力,测量结果需要符合相关标准要求。
1.4 强夯地基处理后的固结性检测强夯地基处理后,地基的固结性也需要进行检测。
固结性的检测可以采用标准贯入试验或静力观测方法进行,以确保地基的固结性符合要求。
1.5 强夯地基处理后的密实度检测地基的密实度直接影响到其承载能力和稳定性。
强夯地基处理后也需要对其密实度进行检测。
一般可以采用土壤密度计或动力触变仪进行检测,确保地基的密实度符合要求。
1.6 强夯地基处理后的质量控制检测除了以上几项主要的检测项目外,强夯地基处理后还需要进行质量控制检测。
这包括对处理过程的质量进行抽样检测,确保处理工艺符合相关标准要求。
二、强夯地基处理后的检测要求2.1 检测设备的要求对于强夯地基处理后的检测项目,需要使用精密的测量设备进行检测。
如全站仪、水准仪、静载荷试验仪等。
这些设备需要经过校准,并且使用过程中需要按照相关操作规程进行操作,确保测量结果的准确性和可靠性。
2.2 检测人员的要求进行强夯地基处理后的检测需要具备专业的技术水平和丰富的实践经验。
检测人员需具备相关专业背景和资质认证,能够熟练操作检测设备,并准确解读检测结果。
浅析强夯地基处理检测中的地基检测方法强夯地基处理是一种经济、可靠的地基改良技术,已广泛应用于工程实践中。
在强夯地基处理的过程中,地基检测对于判断强夯处理效果、保障工程质量具有重要的作用。
本文主要对强夯地基处理检测中的地基检测方法进行分析。
一、地基检测方法的分类地基检测方法可以分为原位试验和室内试验两种。
原位试验是指使用现场仪器对地基进行测试和监测,根据测试数据判断地基的稳定性、强度、变形等性能指标。
原位试验方法包括钻探、静力触探、动力触探、地面位移仪等。
室内试验是指将采集到的现场样品带回实验室,进一步进行测试分析,以评估地基性能。
室内试验方法包括室内压缩试验、三轴试验、直剪试验等。
在强夯地基处理中,需要根据不同的检测目的选择合适的检测方法。
主要的检测方法有以下几种:1.钻探方法钻探常用于探求地基的某一深度处的地层及土质情况。
通过钻探获得的土样,可进行室内试验和物理性质的分析,以及受力性能的预估。
在强夯处理中,钻探方法有一定局限性,因为夯锤击实的影响只能在距凿头不远的地方得到体现。
2.静力触探法静力触探法是用机械力推压圆柱型探针,记录探针下入深度和进入阻力来推测地基力学性质以及构造特征。
对于强夯处理的检测,静力触探法效果较为可靠。
动力触探方法采用了弹性脉动法和振荡法两种方法,建立通过反弹波反演得到地基性质和行为特征的方法。
受到夯锤冲击振动的地基,会产生反弹波,这种反弹波能传播到地表,通过不同的方法记录下来,就能够推算出地基的物理性质。
但是动力触探法受到岩石层、大块砾石等条件的限制,效果有限。
4.地面位移仪地面位移仪是一种衡量地表位移的仪器。
它通过在地表上安装传感器来监测土体变形、沉降等情况,以评估地基的稳定性。
在强夯处理中,地面位移仪可以跟踪地基变形情况,在检测强夯处理效果时发挥了重要作用。
5.室内试验方法室内试验方法是通过采集现场样品后带回实验室进行分析和测试,以评估地基性质。
对于强夯处理检测,室内试验方法可以通过压缩试验、三轴试验等来分析强夯处理后的土体性质和力学参数。
谈强夯处理地基的检测技术发表时间:2016-12-01T10:14:51.337Z 来源:《基层建设》2016年18期作者:唐卓[导读] 摘要:随着我国经济建设的发展与对外开发的需要,不仅事先要选择在地质条件良好的场地从事建设,而且有时不得不在地质条件不好的地方修建,因此就需要对天然的软弱地基进行处理强夯法是一种地基处理的新方法_就作用机理来说,它属于深层密实法的一种。
中太基础工程有限公司珠海分公司 519000 摘要:随着我国经济建设的发展与对外开发的需要,不仅事先要选择在地质条件良好的场地从事建设,而且有时不得不在地质条件不好的地方修建,因此就需要对天然的软弱地基进行处理强夯法是一种地基处理的新方法_就作用机理来说,它属于深层密实法的一种。
本文主要探讨的就是关于强夯处理地基的检测技术。
关键词:强夯;地基;检测技术;地质条件引言:强夯法又称动力固结法或动力压密法,是由法国人梅那于1969年首创。
这是基于对强夯地基处理方法的发展。
通过使用这种方法通常是由重量8吨~30吨,并与地面产生8米至20米的间隙距离,并产生了巨大的影响。
这种方法和动态力产生的冲击波不仅可以大大提高地基土的强度,而且可以减小土体的压缩性。
1.强夯处理地基的检测方法通常表层地基的检测方法与技术都经过了多次实验,是已经成熟的技术。
这些技术主要用载荷试验检测地基承载力,但是对于承载力的测试和计算地基的密度时,需要更深层度的探讨和摸索。
2.1载荷试验载荷试验是一种通常用于测试承压板应力的地基原位检测方法,主要检测地基岩土承载力和变形状况。
其主要分为三种:1)浅层平板载荷试验:用于不超过3m的地下水位地基土;2)深层板载荷试验:用于超过3m的地下水位地基土:3)螺旋板载荷试验:用于地下水位以下及深层地基土。
载荷试验是一种非常有效的检测方法,此方法的实施需参照我国对于强夯处理地基的规范。
在我国一些较为重要的建筑场地一般都会采用载荷试验检测地基承载能力。
强夯地基试验检测方案强夯地基试验是一种常用于建筑工程中的地基处理方法,通过利用夯击能量促进土体颗粒的重排,提高土壤密实度,增加地基承载力和稳定性。
为了确保强夯地基处理效果符合设计要求,需要进行相应的试验检测。
下面是一份针对强夯地基试验的检测方案。
1. 试验目的强夯地基试验的主要目的是评估地基的夯击效果,并确定地基的承载力和稳定性是否符合设计要求。
通过试验结果的分析和评估,可以对后续的工程施工和地基处理方案进行调整和优化。
2. 试验前准备工作2.1试验设备和工具的准备:包括强夯设备、振击器、监测仪器等。
2.2试验区域的准备:清理试验区域,移除杂物和表层土,确保试验区域平整,并进行充分的固结处理。
2.3试验方案和要求的准备:根据具体工程要求制定试验方案和试验要求。
3. 试验方法和步骤3.1安装监测仪器:在试验区域设置监测点,安装应变计、位移传感器等监测仪器,用于监测土体变形和变化情况。
3.2进行夯击试验:使用强夯设备对试验区域进行夯击处理,根据设计要求进行夯击次数和夯击能量的控制。
3.3实时监测数据采集:在夯击过程中,监测仪器实时采集并记录土体的应变和位移数据。
3.4对试验结果进行分析和评估:根据采集到的监测数据,分析和评估试验区域的夯击效果和地基的承载力。
4. 试验数据处理和报告编写4.1试验数据的处理:对采集到的监测数据进行整理和统计,计算出不同监测仪器之间的位移差、土体的应变变化等指标。
4.2试验结果的评估:根据试验数据的分析结果,评估地基的承载力和稳定性,并判断强夯地基处理效果是否符合设计要求。
4.3编写试验报告:根据试验结果和评估,撰写试验报告,包括试验目的、试验过程、数据分析结果和评估结论等,以便后续工程施工参考。
以上是一份针对强夯地基试验的检测方案,通过对试验前准备工作、试验方法和步骤的详细介绍,以及试验数据处理和报告编写的说明,可以确保对强夯地基试验进行全面、准确的检测。
这样可以确保地基处理效果符合设计要求,并为后续工程施工提供有力的支持。
浅析强夯法在建筑工程地基处理中的应用强夯法是一种常见的地基处理方法,它是在地面上使用锤击钻机或重锤等设备,将钢制板件或者钢管不断地打入地下,以改善地基土的力学性质,提高承载力和稳定性。
在建筑工程中,强夯法广泛应用于各种不同类型的地基处理工程中,例如建筑物的地基处理、道路工程的地基处理等等。
一般来说,强夯法在地基处理中的应用有以下几个方面:1. 提升地基承载力和抗沉降能力在进行建筑工程时,地基的承载力和抗沉降能力是至关重要的。
如果地基不够稳固,不仅会影响工程的安全性和稳定性,还会导致建筑物的变形和沉降等问题。
强夯法通过在地下不断打击老旧的土壤,可以改善土壤的物理结构,加密土壤颗粒,从而提高地基的承载力和稳定性。
2. 处理坚硬难以处理的地质环境在一些坚硬的地质环境中,如黏土、沙岩、石灰岩等,传统的地基处理方法可能无法达到预期的效果。
强夯法可以利用锤击钻机或重锤的强大动力,将锥形钢筒或钢管不断地打入土层中,从而有效地改善地基的物理性质。
3. 缩短施工周期、减少成本相比于传统的地基处理方法,如灌注桩、板桩等,强夯法不仅施工速度快,而且施工成本低,因为它不需要使用大型机械或设备,只需使用简单的工具就可以完成处理。
另外,强夯法也可以在较短的时间内完成地基处理,从而缩短施工周期,提高工程效率。
4. 减小对周围环境的影响强夯法不同于其他的地基处理方法,它不需要挖掘大量的土方,也不会对周围环境产生明显的噪音和震动。
因此,强夯法在一些城市建筑工程中被广泛应用,以减小对周围环境的影响。
综上所述,强夯法是一种功能强大、应用广泛的地基处理方法,通过不断锤击土壤,可以有效地提高地基的承载力和稳定性,缩短施工周期,减小影响,改善建筑物的安全性和稳定性。
然而,在使用强夯法的同时,需要注意选择合适的设备和技术,切勿在不适合使用强夯法的地质情况下强行使用。
强夯地基处理检测探讨
前言
强夯加固效果的检验是强夯工程施工的一项很重要的工作,它包括施工过程中的质量检测和夯后地基的质量检验。
常规检测手段主要有载荷试验、标准贯入试验、静力触探、动力触探、十字板剪切试验、旁压试验、现场剪切试验、波速试验等。
随着物探技术的不断发展,物探方法在强夯地基检测中也得到推广应用。
1 常规检测方法的适用条件
强夯加固效果的检验方法,根据不同工程其要求也不一样。
《建筑地基处理技术规范》(JGJ79-2002)中明确规定:强夯处理后的地基竣工验收时,承载力检验应采用原位测试和室内土工试验。
强夯置换后的地基竣工验收时,承载力检验除应采用单墩载荷试验检验外,尚应采用动力触探等有效手段查明置换墩底情况及承载力与密度随深度的变化,对饱和粉土地基允许采用单墩复合地基载荷试验代替单墩载荷试验。
规范中所指的原位测试手段主要有:载荷试验、标准贯入试验、静力触探、动力触探、十字板剪切试验、旁压试验、现场剪切试验、波速试验等。
检验方法不同其作用和目的也不一样。
1.1 载荷试验
载荷试验重要适用于确定强夯后地基承载力和变形模量。
1.2 标准贯入试验
标准贯入试验适用于砂土、粉土和一般粘性土,可用于评价砂土的密实度、粉土和粘性土的强度和变形参数。
还用于辅助载荷试验判断夯后地基承载力并确定有效加固深度,评价消除液化地基的效果。
1.3 静力触探试验
静力触探试验适用于粘性土、粉土、砂土及含少量碎石的土层。
用以测定比贯入度、锥尖阻力、侧壁摩阻力和孔隙水压力。
1.4 动力触探试验
动力触探试验适用于强风化、全风化的硬质岩石、各种软质岩石、砂土、碎石土。
用于确定砂土的孔隙比、碎石密实度,粉土、粘性土的状态、强度与变形参数,评价场地的均匀性和进行力学分层,检验加固和改良效果。
1.5 十字板剪切试验
十字板剪切试验适用于测定饱和软粘土的不排水抗剪强度和灵敏度。
1.6 现场剪切试验
现场剪切试验用于绘制应力与强度、应力与位移、应力与应变曲线,确定岩土的抗剪强度和弹性模量与泊松比等。
1.7 波速试验
波速试验适用于确定与波速有关的岩土参数,如压缩波和剪切波的波速、剪切模量、弹性模量、泊松比等,从而检验岩土加固和改良的效果。
1.8 土工试验
土工试验主要用于测定土的基本工程特性,如土的比重、粒度、密度、含水量、孔隙比、塑性指数、液性指数、透水性、压缩性、抗剪和抗压强度以及固结强度等。
通过以上方法检验对强夯前、后的地基土性能进行分析对比,来判断强夯的加固和改良效果,从而为建筑工程设计提供依据。
以上的检测方法,在实际工程中往往是相互结合,根据具体工程的要求部分或同时采用。
2 物探方法在强夯检测中的应用
近年来随着工程物探技术的日臻成熟,在岩土工程中的应用也越来越多,在强夯检测中也逐步得到应用。
面波法、电阻率法、重力法、磁法、地质雷达技术等物探方法的应用显现出了其方便、快捷的特点,同时也解决了大面积检测难的问题。
因此在具体的工程检测中将原位测试、土工试验及工程物探结合起来使用将会得到更好的效果。
下面以瑞雷波为例介绍物探方法在强夯检测中的应用。
瑞雷波法强夯检测是一种利用瑞雷波的运动学特征和动力学特征来进行强夯处理效果检测的地球物理方法。
2.1 瑞雷波检测原理
在自由界面(如地面)上进行竖向激振时,均会在其表面附近产生瑞雷波,而瑞雷波有几个与工程质量检测有关的主要特征:在分层介质中,瑞雷波具有频散特征;瑞雷波的波长不同,穿过的深度也不同;瑞雷波的传播速度与介质的物理力学性质密切相关;研究证明,瑞雷波的能量约占整个地震波能量的67%,而且主要集中在地表下一个波长的范围内,而传播速度代表着半个波长(£r/2)范围内介质震动的平均传播速度。
因此,一般认为瑞雷波的测试深度为半个波长,而波长与速度及频度有如下的关系:
设瑞雷波的传播速度为Vr,频率为fr,则波长为:£r =Vr/fr。
当速度不变时,频率越低,则测试深度就越大。
瑞雷波检测方法分为瞬态法和稳态法两种。
这两种方法的区别在于震源不同。
瞬态法是在激振时产生一定频率范围的瑞雷波,并以复频波的形式传播;而稳态法是在激振时产生相对单一频率的瑞雷波,并以单一频率波的形式传播。
通常在强夯检测中采用瞬态瑞雷波。
瑞雷波的测试原理如图1。
现场数据采集通常采用纵排列接收瑞雷波。
首先做现场试验,并结合现场情况选择合适的工作参数,如偏移距、道间距、记录长度、采磁间距等。
2.2 瑞雷波法强夯检测的数据处理
(1)对道间波进行互相关,求出r21(τ)=∫u2(t+τ)u1(t)dt;
(2)对r21(t)进行傅利叶变换,求出R21(f)=∣R21(f)∣ei△φ(t);
(3)由R21(f)求得△φ(f)
(4)用Vr=2лf△X/△φ,计算不同频率的瑞雷波速;
(5)绘制瑞雷波频散曲线;
(6)根据频散曲线计算分层速度,从而得出深度。
2.3 瑞雷波法检测结果的应用
瑞雷波频散曲线可以直接反映强夯加固地基的影响深度和加固深度,并且可以与现场的其他检测手段相结合来完成检测任务,可以起到相互验证的目的。
通常是先进行瑞雷波法,通过大范围的快速测试,初步掌握强夯效果的情况、均匀性及强夯加固的深度、影响深度范围。
然后在此基础上,寻找其相对薄弱部位,利用两种以上的方法进行验证。
图2是某工程的瑞雷波测试的原始记录,图3是该原始记录的频散曲线。
从图3可以看出,瑞雷波频散曲线规则,拐点清楚。
0~2米深度范围内,波速为2 60m/s, 3~6米深度范围内,波速为220m/s, 6~9米深度范围内,波速为200m /s, 9~16米深度范围内,波速为190~205m/s。
频散曲线解释的结果为加固深度为9米,影响深度为16米。
同时在该处所做的标贯曲线如图4所示,静载荷试验曲线如图5所示。
从标贯曲线(见图4)和静载荷曲线(见图5)可以看出,强夯处理的加固深度和影响深度与瑞雷波的频散曲线的解释结果非常吻合。
针对具体的工程项目,通过大量的统计对比可以,利用回归分析的手段可以建立标贯击数与瑞雷波速的经验公式、承载力与瑞雷波速的经验公式等,从而可以采用瑞雷波法进行大规模的强夯检测。
以下是某工程项目的标贯击数与瑞雷波速的回归经验公式:
N36.5=1.779*10-3Vr1.079
其回归分析曲线见图6。
该工程项目的承载力与瑞雷波速的回归经验公式为:
fk =2.777Vr0.796
其回归分析曲线见图7。
由图6可见,瑞雷波速与标贯试验有较好的相关性。
从理论上分析,当地基土较密实,较硬时,标贯击数值较高,波速Vr也较高。
反之,N值较低,Vr也较低。
由图7可以看出,瑞雷波速与地基承载力有较好的相关性。
波速的高低反映了其介质的致密程度或固结程度,大范围的固结效果与承载力也有直接关系。
3 结语
常规检测手段受检测点数量、工期限制,检测范围受到一定限制。
采用物探检测方法,通过与常规手段的相关性分析,建立其回归经验公式,可以起到更加快速、廉价、范围广、代表性强的作用,因此应积极推广物探方法在强夯检测中的应用。