人教版数学教材 排列组合
- 格式:docx
- 大小:37.50 KB
- 文档页数:4
人教版新课标二年级上册数学《3排列组合的练习课》说课稿一. 教材分析《3排列组合的练习课》是人教版新课标二年级上册数学的一节课。
本节课是在学生学习了排列组合的基本知识之后,进行实践练习的一节课。
教材通过具体的实例,让学生进一步理解排列组合的概念,提高学生的逻辑思维能力。
二. 学情分析二年级的学生已经具备了一定的逻辑思维能力,对于排列组合的基本概念已经有了一定的了解。
但是在实际操作中,可能还存在一定的困难。
因此,在教学过程中,需要结合学生的实际情况,引导学生逐步理解和掌握排列组合的运用。
三. 说教学目标1.知识与技能目标:通过本节课的学习,使学生能够理解和掌握排列组合的概念,能够运用排列组合的知识解决实际问题。
2.过程与方法目标:通过练习,培养学生的逻辑思维能力,提高学生解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 说教学重难点1.教学重点:理解和掌握排列组合的概念,能够运用排列组合的知识解决实际问题。
2.教学难点:在实际操作中,如何引导学生理解和运用排列组合的知识。
五. 说教学方法与手段在本节课的教学过程中,我将采用讲解法、实践法、讨论法等教学方法,结合多媒体教学手段,引导学生积极参与,提高学生的学习兴趣。
六. 说教学过程1.导入:通过一个简单的实例,引导学生复习排列组合的基本知识,激发学生的学习兴趣。
2.讲解:详细讲解排列组合的概念,并通过具体的例子,使学生进一步理解和掌握。
3.实践:让学生进行实际的排列组合练习,引导学生运用所学的知识解决实际问题。
4.讨论:让学生分组讨论,总结排列组合的运用方法,培养学生的团队合作精神。
5.总结:对所学知识进行总结,使学生能够系统地掌握排列组合的知识。
6.练习:布置适量的练习题,巩固所学知识,提高学生解决问题的能力。
七. 说板书设计板书设计要简洁明了,能够突出本节课的重点。
可以设计一个简单的流程图,展示排列组合的运用过程。
人教版高数选修2-3第一章1.2排列组合(教师版)排列组合_________________________________________ _________________________________________ _________________________________________ _________________________________________1.理解排列组合的概念.2.能利用计数原理推导排列公式、组合公式.3.熟练掌握排列、组合的性质.4.能解决简单的实际问题.1.排列与组合的概念:(1)排列:一般地,从n个不同的元素中取出m(m ≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m个元素的一个排列.注意:○1如无特别说明,取出的m个元素都是不重复的.○2排列的定义中包括两个基本内容,一是“取出元素”,二是“按照一定的顺序排列”.○3从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列.○4在定义中规定m≤n,如果m=n,称作全排列.○5在定义中“一定顺序”就是说与位置有关.(2)组合数的定义:从n 个不同元素中取出m (m ≤n )个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用符号m nC 表示.3.排列数公式与组合数公式: (1)排列数公式:(1)(2)(1),m n A n n n n m =--⋅⋅⋅-+其中m ,n *∈N ,且m ≤n .(2)全排列、阶乘、排列数公式的阶乘表示. ○1全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列.○2阶乘:自然数1到n 的连乘积,叫做n 的阶乘,用n !表示,即!.nnAn =○3由此排列数公式(1)(2)(1)m nA n n n n m =---+所以!.()!m nn An m =-(3)组合数公式:!.!()!m nn Cm n m =-(4)组合数的两个性质: 性质1:.m n m nn CC -= 性质2:11.m m m n n n CC C -+=+类型一.排列的定义例1:判断下列问题是不是排列,为什么? (1)从甲、乙、丙三名同学中选出两名参加一项活动,其中一名同学参加上午的活动,另一名同学参加下午的活动.(2)从甲、乙、丙三名同学中选出两名同学参加一项活动.[解析] (1)是排列问题,因为选出的两名同学参加的活动与顺序有关.(2)不是排列问题,因为选出的两名同学参加的活动与顺序无关.练习1:判断下列问题是不是排列,为什么? (1)从2、3、4这三个数字中取出两个,一个为幂底数,一个为幂指数.(2)集合M ={1,2,…,9}中,任取相异的两个元素作为a ,b ,可以得到多少个焦点在x 轴上的椭圆方程22221x y a b +=和多少个焦点在x 轴上的双曲线方程2222 1.x y a b-=[解析] (1)是排列问题,一个为幂底数,一个为幂指数,两个数字一旦交换顺序,产生的结果不同,即与顺序有关.(2)第一问不是第二问是.若方程22221x y a b+=表示焦点在x 轴上的椭圆,则必有a >b ,a ,b 的大小一定;在双曲线22221x y a b-=中,不管a >b 还是a <b ,方程22221x y a b-=均表示焦点在x 轴上的双曲线,且是不同的双曲线,故这是排列.类型二.组合的定义例2:判断下列问题是组合问题还是排列问题.(1)设集合A={a,b,c,d,e},则集合A的子集中含有3个元素的有多少个?(2)某铁路线上有5个车站,则这条线上共需准备多少种车票?多少种票价?[解析] (1)因为本问题与元素顺序无关,故是组合问题.(2)因为甲站到乙站,与乙站到甲站车票是不同的,故是排列问题,但票价与顺序无关,甲站到乙站,与乙站到甲站是同一种票价,故是组合问题.练习1:判断下列问题是组合问题还是排列问题.(1)3人去干5种不同的工作,每人干一种,有多少种分工方法?(2)把3本相同的书分给5个学生,每人最多得1本,有几种分配方法?[解析] (1)因为分工方法是从5种不同的工作中取出3种,按一定次序分给3个人去干,故是排列问题.(2)因为3本书是相同的,无论把3本书分给哪三人,都不需考虑他们的顺序,故是组合问题.类型三.排列数与组合数例3:计算下列各式. (1)57;A(2)212;A(3)77.A[解析] [答案] (1)57A =7×6×5×4×3=2520; (2)213A =13×12=156;(3)77A =7×6×5×4×3×2×1=5040.练习1:乘积m (m +1)(m +2)…(m +20)可表示为( ) A.2mAB.21m AC.2020m A +D.2120m A +[答案] D[解析] 排列的顺序为由小到大,故n =m +20,而项数是21故可表示为2120.m A+例4:计算98100C[答案]98100982100100100100994950.21C C C -⨯====⨯练习2:计算972959898982C C C ++ [答案]原式1231223298989898989898992()()C C C C C C C C =++=+++=3399100161700.C C +== 类型四.排列问题例5:3个女生和5个男生排成一排. (1)如果女生必须全排在一起,可有多少种不同的排法?(2)如果女生必须全分开,可有多少种不同的排法?[解析] (1)(捆绑法)因为3个女生必须排在一起,所以可以先把她们看成一个整体,这样同5个男生合在一起共有6个元素,排成一排有66A 种不同排法.对于其中的每一种排法,3个女生之间又都有33A 种不同的排法,因此共有63634320A A⋅=种不同的排法.(2)(插空法)要保证女生全分开,可先把5个男生排好,每两个相邻的男生之间留出一个空档,这样共有4个空档,加上两边两个男生外侧的两个位置,共有六个位置,再把3个女生插入这六个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于5个男生排成一排有55A 种不同排法,对于其中任意一种排法,从上述六个位置中选出三个来让3个女生插入都有36A 种不同排法,因此共有535614400A A⋅=种不同的排法.练习1:3个女生和5个男生排成一排. (1)如果两端都不能排女生,可有多少种不同的排法?(2)如果两端不能都排女生,可有多少种不同的排法?[解析] (1)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有25A 种不同排法,对于其中的任意一种排法,其余六位都有66A 种排法,所以共有2656A A ⋅=14400种不同的排法.(2)3个女生和5个男生排成一排有88A 种排法,从中减去两端都是女生的排法2636A A ⋅种,就能得到两端不都是女生的排法种数,因此共有82683636000A A A-⋅=种不同的排法.类型五.组合问题例6:高中一年级8个班协商组成年级篮球队,共需10名队员,每个班至少要出1名,不同的组队方式有多少种?[解析] 本题实质上可以看作把2件相同的礼品分到8个小组去,共有1288C C+36=种方案.练习1:有、甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这,三项任务,不同的选法共有多少种?[解析] 共分三步完成,第一步满足甲任务,有210C 种选法,第二步满足乙任务有18C 种选法,第三步满足丙任务,有17C 种选法,故共有21110872520C C C =种不同选法.类型六.排列与组合综合问题例7:某校乒乓球队有男运动员10人和女运动员9人,选出男女运动员各3名参加三场混合双打比赛(每名运动员只限参加一场比赛),共有多少种不同参赛方法?[答案] 362880[解析] 从10名男运动员中选3名有310C 种,从9名女运动员中选3名有39C 种;选出的6名运动员去配对,这里不妨设选出的男运动员为A ,B ,C ;先让A 选择女运动员,有3种不同选法;B 选择女运动员的方法有2种;C 只有1种选法了,共有选法3×2×1=6种;最后这3对男女混合选手的出场顺序为33A ,根据分步计数原理,共有33310936362880CC A ⨯⨯=种不同参赛方法.练习1:在1,2,3,4,5这五个数字组成的没有重复数字的三位数中,各位数字之和为偶数的共有( )A.36个B.24个C.18个D.6个 [答案] A[解析] 由各位数字之和为偶数,可知所求三位数由2个奇数和1个偶数组成,由乘法原理,各位数字之和为偶数的数共有21332336CC A ⋅⋅=个.1.89×90×91×…×100可表示为( )A.10100A B.11100AC.12100AD.13100A[答案] C 2.已知123934,n n A A --=则n 等于( ) A.5B.6C.7D.8[答案] C3.将6名学生排成两排,每排3人,则不同的排法种数有( )A.36B.120C.720D.140[答案] C4.6名同学排成一排,其中甲、乙两人排在一起的不同排法有( )A.720种B.360种C.240种D.120种 [答案] C 5.若266,x C C =则x 的值是( )A.2B.4C.4或2D.0[答案] C6.1171010r r CC +-+可能的值的个数为( )A.1个B.2个C.3个D.无数个 [答案] B7.某校一年级有5个班,二年级有7个班,三年级有4个班,分年级举行班与班之间的篮球单循环赛,共需进行比赛的场数是( ) A.222574CC C ++ B.222574C C CC.222574AA A ++D.216C[答案] A8.有3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法有( )A.90种 B .180种 C.270种 D.540种 [答案] D_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.某乒乓球队共有男女队员18人,现从中选出男、女队员各1人组成一对双打组合,由于在男队员中有2人主攻单打项目,不参与双打组合,这样一共有64种组合方式,则乒乓球队中男队员的人数为( )A.10人B.8人C.6人D.12人 [答案] A2.将4个不同的小球随意放入3个不同的盒子,使每个盒子都不空的放法种数是( ) A.1334A AB.2343C AC.3242C AD.132442C C C[答案] B3.有3名男生和5名女生照相,如果男生不排在是左边且不相邻,则不同的排法种数为( ) A.3538A AB.5354A AC.5355A AD.5356A A[答案] C4.8位同学,每位相互赠照片一张,则总共要赠________张照片. [答案] 565.5名学生和5名老师站一排,其中学生不相邻的站法有________种.[答案]864006.由0,1,2,3,4,5组成无重复数字的六位数,其中个位数字小于百位数字的数共有________个.[答案]3007.有10个三好学生的名额,分配给高三年级6个班,每班至少一个名额,共有________种不同的分配方案.[答案]1268.从10名学生中选出5人参加一个会议,其中甲、乙两人有且仅有1人参加,则选法种数为________.[答案]140能力提升1.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40000大的偶数共有()A.144个B.120个C.96个D.72个[答案]B2.方程22a b c∈--,且,,a b c互不相ay b x c=+中的,,{3,2,0,1,2,3}同,在所有这些方程所表示的曲线中,不同的抛物线共有()A.60条B.62条C.71条D.80条[答案]B3. 6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.24[答案] D4.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( )A.56个B.57个C.58个D.60个[答案]C5.某地奥运火炬接力传递路线共分6段,传递活动分别由6名火炬手完成.如果第一棒火炬手只能从甲、乙、丙三人中产生,最后一棒火炬手只能从甲、乙两人中产生,则不同的传递方案共有________种.(用数字作答)【答案】966. 把5件不同产品摆成一排,若产品A与产品B相邻,且产品A与产品C不相邻,则不同的摆法有__________种.[答案]367. 在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为_________(结果用数值表示).[答案] 1208.从数字0,1,3,5,7中取出不同的三个数作系数,可以组成多少个不同的一元二次方程ax 2+bx +c =0?其中有实根的方程有多少个?[答案] 先考虑组成一元二次方程的问题:首先确定a ,只能从1,3,5,7中选一个,有14A 种,然后从余下的4个数中任选两个作b 、c ,有24A 种.所以由分步计数原理,共组成一元二次方程:124448A A⋅=个.方程更有实根,必须满足240.bac -≥分类讨论如下:当c =0时,a ,b 可在1,3,5,7中任取两个排列,有24A 个;当c ≠0时,分析判别式知b 只能取5,7.当b 取5时,a ,c 只能取1,3这两个数,有22A 个;当b 取7时a ,c 可取1,3或1,5这两组数,有222A 个,此时共有22222AA +个.由分类计数原理知,有实根的一元二次方程共有:2224222AA A ++=18个.。
高中数学排列组合和概率人教版教案(一)【教学目标】知识与技能:理解排列组合的基本概念,掌握排列数公式和组合数公式,能够应用排列组合知识解决实际问题。
过程与方法:通过探究排列组合问题,培养学生的逻辑思维能力和解决问题的能力。
情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
【教学重点】排列数公式和组合数公式的理解与应用。
【教学难点】排列组合问题的解决方法。
【教学过程】一、导入教师通过引入生活中的实际问题,如“如何安排一场比赛的活动顺序?”、“如何从若干个人中选取一部分人组成一个小组?”等,引导学生思考排列组合的问题。
二、新课导入1. 排列的概念:教师介绍排列的定义,即从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列的过程。
2. 排列数公式:教师引导学生探究排列数公式的推导过程,得出排列数公式:$A_n^m = \frac{n!}{(n-m)!}$。
3. 组合的概念:教师介绍组合的定义,即从n个不同元素中取出m(m≤n)个元素,但不考虑元素的顺序。
4. 组合数公式:教师引导学生探究组合数公式的推导过程,得出组合数公式:$C_n^m = \frac{n!}{m!(n-m)!}$。
三、案例分析教师给出几个排列组合的案例,引导学生运用所学的排列组合知识解决问题。
四、课堂练习教师布置一些排列组合的练习题,让学生独立完成,巩固所学知识。
【教学评价】通过课堂表现、练习题和课后作业等方式评价学生在排列组合知识方面的掌握情况。
高中数学排列组合和概率人教版教案(二)【教学目标】知识与技能:理解排列组合的实际应用,能够运用排列组合知识解决生活中的问题。
过程与方法:通过探究生活中的排列组合问题,培养学生的实践能力和解决问题的能力。
情感态度价值观:激发学生对数学的兴趣,培养学生的团队合作精神。
【教学重点】排列组合在实际生活中的应用。
【教学难点】如何将实际问题转化为排列组合问题。
【教学过程】一、导入教师通过引入生活中的实际问题,如“如何安排一场比赛的活动顺序?”、“如何从若干个人中选取一部分人组成一个小组?”等,引导学生思考排列组合的问题。
人教版四年级数学上册教案第六单元《数学排列组合》一、教学目标1. 能够明确理解排列和组合的概念。
2. 能够应用排列和组合的方法解决问题。
3. 能够培养学生的逻辑思维和计算能力。
二、教学重点和难点1. 教学重点:学生能够正确理解并应用排列和组合的方法。
2. 教学难点:引导学生分辨排列和组合在实际问题中的应用场景。
三、教学过程1. 导入新知通过简单的游戏引入排列和组合的概念,引起学生的兴趣和注意。
2. 研究排列的概念和应用2.1 理论讲解通过示意图和简单的例子,向学生详细解释排列的概念和应用方法。
2.2 练演算让学生进行一些简单的排列练,巩固理论知识的掌握情况。
3. 研究组合的概念和应用3.1 理论讲解通过示意图和简单的例子,向学生详细解释组合的概念和应用方法。
3.2 练演算让学生进行一些简单的组合练,巩固理论知识的掌握情况。
4. 综合应用让学生通过实际问题的演算,综合运用排列和组合的方法解决问题。
5. 总结和小结学生对排列和组合的概念和应用进行总结和归纳,强化记忆。
四、教学资源1. 教材《数学》上册。
2. 教学课件和示意图。
3. 排列和组合的练题。
五、教学评估通过课堂练和小组讨论,检查学生对排列和组合的掌握情况,及时发现并解决问题。
六、教学延伸推荐学生在课下继续练排列和组合的题目,提高运算速度和准确性。
以上是人教版四年级数学上册教案第六单元《数学排列组合》的简要内容。
建议教师根据实际情况进行详细的教案设计和教学安排。
高中数学排列组合和概率人教版教案(一)教学内容:排列的概念及排列数的计算公式。
教学目标:1. 理解排列的概念,掌握排列数的计算公式。
2. 能够运用排列数公式解决实际问题。
教学重点:1. 排列的概念。
2. 排列数的计算公式。
教学难点:1. 排列数的计算公式的应用。
教学过程:一、导入(5分钟)1. 引入排列的概念,引导学生思考在日常生活中遇到的排列问题。
2. 引导学生总结排列的特点和意义。
二、新课讲解(15分钟)1. 讲解排列数的计算公式。
2. 通过例题讲解排列数的计算过程。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固排列数的计算方法。
2. 讲解练习题的解题思路和技巧。
四、拓展与应用(10分钟)1. 引导学生思考如何运用排列数公式解决实际问题。
2. 举例讲解排列数在实际问题中的应用。
五、课堂小结(5分钟)1. 回顾本节课所学内容,总结排列的概念和排列数的计算公式。
2. 强调排列数的计算公式的应用。
教学评价:1. 课后作业:布置有关排列数的计算和应用的题目,检验学生掌握情况。
2. 课堂练习:观察学生在课堂练习中的表现,了解学生对排列数的计算公式的掌握程度。
高中数学排列组合和概率人教版教案(二)教学内容:组合的概念及组合数的计算公式。
教学目标:1. 理解组合的概念,掌握组合数的计算公式。
2. 能够运用组合数公式解决实际问题。
教学重点:1. 组合的概念。
2. 组合数的计算公式。
教学难点:1. 组合数的计算公式的应用。
教学过程:一、导入(5分钟)1. 引入组合的概念,引导学生思考在日常生活中遇到的组合问题。
2. 引导学生总结组合的特点和意义。
二、新课讲解(15分钟)1. 讲解组合数的计算公式。
2. 通过例题讲解组合数的计算过程。
三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固组合数的计算方法。
2. 讲解练习题的解题思路和技巧。
四、拓展与应用(10分钟)1. 引导学生思考如何运用组合数公式解决实际问题。
人教版数学教材排列组合
排列组合是概率与统计中的一项重要内容,在人教版数学教材中也
占据了重要的位置。
通过学习排列组合,我们可以更好地理解数学中
的概率问题,解决实际生活中的排列组合应用题。
下面将从基本概念、公式与定理、例题分析等方面对排列组合的相关内容进行探讨。
一、基本概念
排列组合是数学中的一种计数方法,它们分别用来求不同情况下的
可能性个数。
排列:从n个不同的元素中,按照一定的顺序选择r个元素进行排列,称为从n个元素中取r(r≤n)个进行排列,用P(n,r)表示。
其中,P(n,r)的计算公式为:
P(n,r) = n! / (n-r)!
组合:从n个不同的元素中,按照一定的顺序选择r个元素进行排列,称为从n个元素中取r(r≤n)个进行组合,用C(n,r)表示。
其中,C(n,r)的计算公式为:
C(n,r) = n! / (r! * (n-r)!)
在排列组合的概念中,需要注意的是,元素的选取过程中不考虑其
顺序。
二、公式与定理
1. 互补原理
互补原理指的是,设集合A和B是互不相交的有穷集合,则A和
B的并集A∪B的基数等于A的基数与B的基数之和。
即|A∪B| = |A| + |B|。
2. 分类计数原理
分类计数原理指的是,将问题分成若干个互不相交的部分,分别计
算每个部分的情况数,再将各部分的情况数相加,就得到了原问题的
情况数。
3. 乘法原理
乘法原理指的是,如果一个过程由若干个步骤构成,每个步骤有若
干个选择,则整个过程的选择数等于各个步骤选择数的乘积。
4. 排列公式
排列公式可以用来计算不同情况下的排列个数,如全排列、重排列等。
常见的排列公式有:
- "n个元素全排列"的个数是n的阶乘,即P(n,n) = n!
- "从n个元素中取r个元素进行排列"的个数是n个元素中取r个元
素的排列数,即P(n,r) = n! / (n-r)!
5. 组合公式
组合公式可以用来计算不同情况下的组合个数。
常见的组合公式有:- "从n个元素中取r个元素进行组合"的个数是n个元素中取r个元
素的组合数,即C(n,r) = n! / (r! * (n-r)!)
三、例题分析
例题一:某班上有10名学生,其中4名男生和6名女生。
请问从
这10名学生中任选3名学生组成一支代表团,其中有男生和女生各1
名的代表团有多少种?
解析:对于这个问题,我们可以采用分类计数原理来解答。
将问题
分成两个部分:选择1名男生和2名女生的情况数,以及选择2名男生和1名女生的情况数。
分别计算出两个部分的情况数,再将其相加即
可得到结果。
选择1名男生和2名女生的情况数为C(4, 1) * C(6, 2) = 4 * (6! / (2! * 4!)) = 4 * 15 = 60。
选择2名男生和1名女生的情况数为C(4, 2) * C(6, 1) = (4! / (2! * 2!)) * 6 = 6 * 6 = 36。
将两个部分的情况数相加,得到总的情况数为60 + 36 = 96。
因此,有96种代表团的选择方式。
例题二:某班老师要从30名学生中任选5名学生组成一个讨论小组,请问有多少种组合方式?
解析:对于这个问题,我们需要计算从30名学生中取5名学生的
组合数。
即C(30, 5) = 30! / (5! * (30-5)!) = 142506。
因此,有142506种
组合方式。
通过以上例题分析可以看出,排列组合在数学中有着广泛的应用。
掌握排列组合的概念、公式与定理,并通过例题加深理解,可以提高
解决实际问题的能力。
希望同学们能够认真学习排列组合这一部分内容,为今后的数学学习打下坚实的基础。