类比探究问题(习题及答案)
- 格式:docx
- 大小:131.11 KB
- 文档页数:9
➢例题示范类比探究(习题)例1:如图1,在□ABCD 中,点E 是BC 边的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G.(1)尝试探究:如图1,若AF= 3 ,则CD的值是.EF CG(2)类比延伸:如图2,在原题的条件下,若AF=m (m>EF0),则CD的值是CG解答过程.(用含m 的代数式表示),试写出(3)拓展迁移:如图3,在梯形ABCD 中,DC∥AB,点E是BC 延长线上一点,AE 和BD 相交于点F.若AB=a ,CDBC=b(a>0,b>0),则AF的值是(用含a,b 的代BE EF 数式表示).1【思路分析】根据特征确定问题结构,设计方案解决第一问.问题背景是平行四边形,且已知线段比例关系,考虑通过相似传递比例关系,进而求 CD的值.CG构造相似利用作平行线的方法,即过中点 E 作 EH ∥AB 交 BG于点 H ,可得“A ”字型相似△BEH ∽△BCG ,“X ”型相似△EFH ∽△AFB ,结合 AF= 3 ,可得 CG =2EH ,AB =3EH ,故EFCD = 3 .CG 2类比第一问思路,解决第二问.分析不变特征,此时平行四边形、中点特征均不变,变化的是 AF ,EF 的比例,照搬第一问思路,过点 E 作 EH ∥AB 交BG 于点 H ,同样可得△BEH ∽△BCG ,△EFH ∽△AFB ,此时 CG =2EH ,AB =mEH ,故 CD = m.CG 2照搬思路解决第三问.虽然此问中图形、中点 E 、比例关系均发生变化,但 DC ∥AB 不变,依然可利用相似来整合条件,可照搬前面思路处理, 依然构造平行.过点 E 作 EH ∥AB 交 BD 的延长线于点 H ,可得△BCD ∽△BEH ,△AFB ∽△EFH ,可得 BC = CD,BE EHAF = AB ,结合 AB = a , BC = b ,可知 EF EH CD BE AF = AB = a ⋅CD = ab . EF EH EH212 3➢巩固练习1.如图1,一副直角三角板满足AB=BC,AC=DE,∠ABC=∠DEF=90°,∠EDF=30°.【操作】将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P,边EF 与边BC 交于点Q.【探究】在旋转过程中,(1)如图2,当CE=1时,EP 与EQ 满足怎样的数量关系?EA并给出证明.(2)如图3,当CE= 2 时,EP 与EQ 满足怎样的数量关系?EA并给出证明.(3)根据你对(1),(2)的探究结果,试写出当CE=m时,EAEP 与EQ 满足的数量关系式为.3,=2.如图1,在等边三角形ABC 中,线段AD 为其内角角平分线,过点D 的直线B1C1⊥AC 于C1,交AB 的延长线于B1.(1)请你探究:AC =CD AC1 C1D 是否都成立?AB BD AB1DB1(2)请你继续探究:如图2,若△ABC 为任意三角形,线段AD 为其内角角平分线,请问AC=CD一定成立吗?并证明AB BD你的判断.(3)如图3,在Rt△ABC 中,∠ACB=90°,AC=8,AB=40,3E 为AB 上一点且AE=5,CE 交其内角角平分线AD 于F.试求DF的值.FA43.如图1,将两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C =90°,∠B =∠E =30°.(1) 操作发现如图 2,固定△ABC ,使△DEC 绕点 C 旋转,当点 D 恰好落在 AB 边上时,填空:①线段 DE 与 AC 的位置关系是 ;②设△BDC 的面积为 S 1,△AEC 的面积为 S 2,则 S 1 与 S 2 的数量关系是.图 1图 2(2) 猜想论证当△DEC 绕点 C 旋转到图 3 所示的位置时,小明猜想(1) 中 S 1 与 S 2 的数量关系仍然成立,并尝试分别作出了△BDC 和△AEC 中 BC ,CE 边上的高,请你证明小明的猜想.(3) 拓展探究如图 4 , 已知∠ ABC =60°, 点 D 是其角平分线上一点, BD =CD =4,DE ∥AB 交 BC 于点 E .若在射线 BA 上存在点 F , 使 S △DCF =S △BDE ,请直.接.写.出.相应的 BF 的长.5➢思考小结总结类比探究问题中的常见结构①旋转结构始终含有等腰结构(正方形、等腰直角三角形等),并且经过旋转后,能将各条件重新组合应用.②中点结构平行夹中点(类)倍长中线中位线始终含有中点,常考虑利用中点结构补全图形,然后将所证目标放在一个较大的背景下(等腰三角形、直角三角形、等腰直角三角形等)研究.③直角结构始终含有直角,常构造直角与斜直角配合,得到同角的余角相等;再配合构造的其他直角证明相似,所求目标往往和比例关系相关.6④平行结构所求目标为线段间的比例关系,题目中没有相似三角形,往往考虑利用平行线构造相似求解.78 3 3 【参考答案】 ➢ 巩固练习1. (1)EP =EQ ,证明略;(2) EP = 1EQ ,证明略;2 (3) EP = 1EQ .m2. (1)都成立,证明略; (2)一定成立,证明略;(3) DF = 5 .FA 83. (1)①DE ∥AC ;②S 1=S 2.(2) 证明略; (3) BF 的长为4 3或 .38。
学生做题前请先回答以下问题问题1:想一想河南中考数学第22题常考类型有哪些?问题2:想一想河南中考数学第22题答题标准动作有哪些?问题3:想一想类比探究问题常见的不变结构有哪些,处理方式是什么?类比探究与动点问题专项训练(二)一、单选题(共6道,每道16分)1.通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.原题:如图1,点E,F分别在正方形ABCD的边BC,CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)思路梳理∵AB=AD,∴把△ADF绕点A顺时针旋转90°至△ABG,可使AD与AB重合.∵∠ABC=∠ABG=90°,∴∠EBG=180°,点E,B,G共线.根据___________,易证△AEF≌__________,得EF=BE+DF.(2)类比联想如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E,F分别在BC,CD边上,且∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足等量关系___________时,仍有EF=BE+DF.(3)引申拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在BC边上,且∠DAE=45°.猜想BD,DE,EC之间满足的数量关系,并写出推理过程.(建议学生打印做题,并在做完之后对比解题思路中的示范照片)(1)思路梳理∵AB=AD,∴把△ADF绕点A顺时针旋转90°至△ABG,可使AD与AB重合.∵∠ABC=∠ABG=90°,∴∠EBG=180°,点E,B,G共线.根据___________,易证△AEF≌__________,得EF=BE+DF.A.AAS,△AGEB.SAS,△AGEC.SAS,△AEGD.SSS,△AGE答案:C解题思路:见第3题中解析试题难度:三颗星知识点:中考数学几何中的类比探究2.(上接第1题)(2)类比联想如图2,在四边形ABCD中,AB=AD,∠BAD=90°,点E,F分别在BC,CD边上,且∠EAF=45°.若∠B,∠D都不是直角,则当∠B与∠D满足等量关系_________时,仍有EF=BE+DF.( )A.∠B=∠DB.∠B+∠D=180°C.∠B-∠D=90°D.∠B=2∠D答案:B解题思路:见第3题中解析试题难度:三颗星知识点:中考数学几何中的类比探究3.(上接第1,2题)(3)引申拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D,E均在BC边上,且∠DAE=45°,则BD,DE,EC之间满足的数量关系为( )A.DE=BD+ECB.C. D.答案:C解题思路:试题难度:三颗星知识点:中考数学几何中的类比探究4.如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于点E,设.(1)当时,求CE的长;(2)当时,①设,能够得到,求k的值;②连接CF,当的值最大时,求BE的长.(建议学生打印做题,并在做完之后对比解题思路中的示范照片)(1)当α=60°时,EF的长为( )A.5B.C. D.答案:A解题思路:见第6题中解析试题难度:三颗星知识点:中点结构5.(上接第4题)(2)①当时,设,能够得到,则k的值为( )A. B.C. D.3答案:D解题思路:见第6题中解析试题难度:三颗星知识点:中点结构6.(上接第4,5题)(2)②连接CF,当的值最大时,BE的长为( )A. B.C. D.5答案:B解题思路:试题难度:三颗星知识点:直角三角形斜边中线等于斜边一半。
实用文档类比推理题库及标准答案(类比推理部分)1、作家:读者A.售货员:顾客B.主持人:广告C.官员:腐败D.经理:秘书【解答】此题属于专业人员与其面对的对象之间的类比推理题,故正确答案为A。
2、水果:苹果A.香梨:黄梨B.树木:树枝C.经济适用房:奔驰D.山:高山【解答】该题题干中水果与苹果两个词之间是一般和特殊的关系,所以答案为选项D。
选项B的两个词之间的关系是整体与部分的关系。
3、努力:成功A.原告:被告B.耕耘:收获C.城市:福利D.扩招:失业【解答】努力与成功两个词具有因果关系,即只有努力才能成功或者说努力是成功必不可少的原因之一,故正确答案为B。
4、书籍:纸张A.毛笔:宣纸B.橡皮:文具盒C.菜肴:萝卜D.飞机:宇宙飞船【解答】此题属于物品与制作材料的推理关系,故正确答案为C。
5、馒头:食物A.食品:巧克力B.头:身体C.手:食指D.钢铁:金属【解答】此题属于特殊与一般的推理关系,故正确答案为D。
实用文档6、稻谷:大米A.核桃:桃酥B.棉花:棉子C.西瓜:瓜子D.枪:子弹【解答】因为稻谷是大米的惟一来源,而棉花是棉子的惟一来源,故正确答案为B。
7、轮船:海洋A.河流:芦苇B.海洋:鲸鱼C.海鸥:天空D.飞机:海洋【解答】此题属于物体与其运动空间的类比推理题,故正确答案为C。
8、芙蕖:荷花A.兔子:嫦娥B.窑洞:官邸C.伽蓝:寺庙D.映山红:蒲公英【解答】因为芙蕖是荷花的书面别称,而伽蓝是寺庙的书面别称,故正确答案为C。
9、绿豆:豌豆A.家具:灯具B.猴子:树木C.鲨鱼:鲸鱼D.香瓜:西瓜【解答】选项C中的鲸鱼其实不是鱼,而是哺乳动物,故正确答案为D。
10、汽车:运输A.捕鱼:鱼网B.编织:鱼网C.鱼网:编织D.鱼网:捕鱼【解答】此题属于工具与作用的类比推理题,故正确答案为D。
11、医生:患者A.工人:机器B.啄木鸟:病树C.警察:罪犯D.法官:律师答案:B12、紫竹:植物学家A.金属:铸工B.铁锤:石头C.动物:植物D.蝴蝶:昆虫学家答案:D13、老师:学生A.教师:职工B.编辑:读者C.师傅:学徒D.演员:经济人答案:C14、书法:艺术A.抢劫:犯罪B.鲁迅:周树人C.历史:世界史D.权力:金钱答案:A15、森林:树木A.头:身体B.花:菊花C.山脉:山D.身体:身躯答案:C16、工人:机器A.赌球:球员B.无产者:资本家C.农民:土地D.商人:商品答案:C17、教师:教室A.士兵:子弹B.士兵:战斗C.战场:战士D.士兵:军营答案:D18、发奋:成功A.点灯:**B.饮料:可乐C.扶贫:账户D.自满:失败答案:D19、中国:国家A.秦国:战国B.人:动物C.昆仑山:武夷山脉D.生物:植物答案:B20、资本家:工人A.地主:佃户B.教师:学生C.店员:客户D.父亲:儿子答案:A21、跳跃:动作A.男人:女人B.湖南省:长沙市C.青年:妇女D.风俗:习惯答案:D22、周瑜:曹操A.南京:北京B.动作:食物C.汽车:吊车D.官员:群众答案:A23、水壶:开水A.桌子:游戏B.邮箱:信件C.黄梅戏:歌曲D.青蛙:池塘答案:B24、导演:电影A.售货员:货物B.作家:小说C.农民:庄稼D.工人:机器答案:B25、逗号:中止A.拂晓:黎明B.节省:吝啬C.回车:换行D.明星:绯闻答案:C26、射击:手枪A.投掷:石头B.月光:流水C.性格:坚强D.拳击手:攻击答案:A27、鸟:蛋A.老虎:虎仔B.步枪:子弹C.师傅:徒弟D.鱼:卵答案:D28、温度计:气温A.高兴:哀愁B.磅秤:重量C.天才:音乐家D.游泳:运动答案:B29、窑:陶瓷A.蛇:山洞B.商人:金钱C.战争:难民D.烤箱:面包答案:D30、美国:旧金山A.地球:恒星B.黄河:中国C.香港:世贸组织D.中国:淮河答案:D31、南京∶江苏A. 石家庄∶河北B. 渤海∶中国C. 泰州∶江苏D. 秦岭∶淮河答:A题干是省会城市与所属省份关系,选项中符合条件的是A。
天天家教中心数学内部讲义
探究类比归纳(2012/5/26)
27. (2011年青海,27,10分)认真阅读下面关于三角形内外角平分线所夹的探究片段,完成所提出的问题.
A AA
O
B CO
CDB图11-2 CBDE图11-1O
图11-3
探究1:如图11-1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,∠BOC与∠A 的关系为
探究2:如图11-2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A 有怎样的关系?请说明理由.
探究3:如图11-3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)
结论: .
25.(11·南平)(12分)
(1)操作发现:如图1,在矩形ABCD中,E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在矩形ABCD内部,延长AF交CD于点G.猜想线段GF与GC有何数量关系?并证明你的结论.
(2)类比探究:
如图2,将(1)中的矩形ABCD改为平行四边形,其它条件不变,(1)中的结论是否仍然成立?请说明理由.
E E
(11·辽阜新)如图,点P是正方形ABCD对角线AC上一动点,点E在射线BC上,且PE=EB,连接PD,O为AC中点.
(1)如图1,当点P在线段AO上时,试猜想PE与PD的数量关系和位置关系,不用说明理寒假班暑假班周末班作业班 VIP一对一。
四边形之类比探究(一)(习题)例题示范例1:已知等腰三角形ABC 中,∠ACB =90°,点E 在AC 的延长线上,且∠DEC =45°,M ,N 分别是DE ,AE 的中点,连接MN ,交直线BE 于点F .当点D 在CB 的延长线上时,如图1所示,易证MF +FN =1BE .2(1)如图2,当点D 在CB 边上时,上述结论是否成立?若成立,请给出证明;若不成立,请写出你的猜想,并说明理由.(2)当点D 在BC 的延长线上时,如图3所示,请直接写出线段MF ,FN ,BE 之间的数量关系(不需要证明).1【思路分析】1.里面有多个中点,考虑中位线,先证明易证的思路.连接AD ,由中位线定理可知MN =1AD ,2由题意可证△ACD ≌△BCE ,得到AD =BE ,即MN =1BE ,2所以MF +FN =1BE .22.照搬易证的思路解决第一问.连接AD ,由中位线定理可知MN =1AD ,2由题意可证△ACD ≌△BCE ,得到AD =BE ,即MN =1BE ,2所以NF -MF =1BE .23.照搬易证的思路解决第二问.连接AD ,由中位线定理可知MN =1AD ,2由题意可证△ACD ≌△BCE ,得到AD =BE ,即MN =1BE ,2所以MF -NF =1BE .2【过程书写】证明:(1)不成立,理由如下:连接AD ,在△AED 中,M 是DE 的中点,N 是AE 的中点,∴MN 是中位线∴MN =1AD2在等腰三角形ABC 中,∠ACB =90°∴AC =CB ,∵∠ACB =90°,∠DEC =45°∴CD =CE∴△ACD ≌△BCE (SAS )∴AD =BE∴MN=1BE 2∴FN-MF=1BE 2(2)MF-FN=1BE 2巩固练习1.已知△ABC是等边三角形,D是直线BC上一动点(不与点B,C重合),以AD为边作菱形ADEF(A,D,E,F按逆时针排列),使∠DAF=60°,连接CF.(1)如图1,当点D在BC边上时,求证:①BD=CF;②AC=CD+CF.(2)如图2,当点D在BC的延长线上时,其他条件不变,结论AC=CD+CF是否仍成立?若成立,请证明;若不成立,请写出AC,CD,CF之间的数量关系,并说明理由.(3)如图3,当点D在CB的延长线上时,其他条件不变,探究AC,CD,CF之间的数量关系.图1图2图32.如图1,C是线段BG上一点,分别以BC,CG为边,向外作正方形BCDA和正方形CGEF,使点D落在线段CF上,M是AE的中点,连接DM,FM.(1)求证:DM=FM,DM⊥FM.(2)如图2,将正方形CGEF绕点C顺时针旋转45°,其他条件不变,探究线段DM,FM之间的关系,并加以证明.(3)如图3,将正方形CGEF绕点C旋转任意角度,其他条件不变,探究线段DM,FM之间的关系,并加以证明.图1图2图33.(1)如图1,△ABC和△BDE都是等腰直角三角形,AB⊥AC,BD⊥DE,点D在AB边上.取CE的中点F,连接AF,DF,猜想AF,DF之间的数量关系和位置关系,并加以证明.(2)将△BDE旋转至如图2所示的位置,使点E在AB的延长线上,点D在CB的延长线上,其他条件不变,判断(1)中AF,DF之间的数量关系和位置关系是否发生变化,并加以证明.图1图2【参考答案】巩固练习1.(1)证明略.提示:证明△ABD≌△ACF,得到BD=CF,进而得到AC=CD+CF.(2)AC=CF-CD,理由略.(3)AC=CD-CF.2.(1)证明略.提示:延长DM,交EF于点H.证明△ADM≌△EHM(ASA),得到AD=EH,DM=HM,进而得到△DFH是等腰直角三角形,所以DM=FM,DM⊥FM.(2)DM=FM,DM⊥FM,证明略.提示:延长DM,交CE于点H,连接DF,HF.证明△ADM≌△EHM(ASA),得到AD=EH,DM=HM,再证明△CDF≌△EHF(SAS),得到DF=HF,∠CFD=∠EFH,进而得到△DFH是等腰直角三角形,则可得证.(3)DM=FM,DM⊥FM,证明略.提示:过点E作EH∥AD,交DM的延长线于点H,连接DF,HF.3.(1)AF=DF,AF⊥DF,证明略.提示:延长DF,交AC于点H.证明△DEF≌△HCF,得到DE=HC,DF=HF,进而得到△ADH是等腰直角三角形,所以AF=DF,AF⊥DF.(2)(1)中AF,DF之间的数量关系和位置关系不发生变化,证明略.提示:过点C作CH∥DE,交DF的延长线于点H,连接AD,AH.。
类比探究(讲义)➢ 知识点睛1. 类比探究是一类共性条件与特殊条件相结合,由特殊情形到一般情形(或由简单到复杂)逐步深入,解决思想方法一脉相承的综合性题目,常以几何综合题为主——“条件类似、图形结构类似、问法类似”.2. 类比探究问题的处理思路(1)根据题干条件,结合分支条件先解决第一问; (2)整体类比上一问,迁移解决下一问.①类比是解决类比探究问题的第一原则,如类比字母、类比辅助线、类比思路;②对比前后条件变化,寻找并利用不变特征,考虑相关几何结构解决问题.类比探究问题中常见几何结构举例旋转结构(手拉手模型):等线段共端点,考虑旋转,借助全等整合条件.EDC B AEDC B A如图,△ABC 和△ADE 均为等边三角形,则出现了AB =AC ,AD =AE 等线段共端点的结构.连接BD ,CE ,可以证明△ABD ≌△ACE ,△ACE 可看作是由△ABD 绕点A 逆时针旋转60°得到的.➢ 精讲精练1. 如图,在△ABC ,△CDE 中,∠ACB =∠ECD =90°,CA =CB ,CD =CE ,点D在AB 边上.若AD =5,BD =12,则AE =______,DE =_______.EDCA2.如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E在同一条直线上,连接BD,BE.以下五个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=ED2+EC2;⑤BE2=2(AD2+AB2),其中正确结论的个数是()A.2 B.3 C.4 D.5A BD E3.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC上一动点,连接AD,过点A作AE⊥AD,并且始终保持AE=AD,连接CE,AF平分∠DAE交BC 于F.(1)求证:△ABD≌△ACE;(2)若BD=3,CF=4,则DF=_________.EFDBA4.(1)如图1,已知△ABC,以AB,AC为边分别向△ABC外作等边△ABD和等边△ACE,连接BE,CD,求证:BE=CD.(2)如图2,已知△ABC,以AB,AC为边分别向外作正方形ABFD和正方形ACGE,连接BE,CD,猜想BE与CD有什么数量关系?请说明理由.(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,则BE的长为___________.图1DBACE图2CBEADGF图35. 已知△ABC 和△CDE 均为等腰直角三角形,∠ACB =∠DCE =90°,点D 是等腰直角三角形ABC 斜边AB 所在直线上一点(不与点B 重合).(1)如图1,当点D 在线段AB 上时,直接写出DA 2,DB 2,DE 2三者之间的数量关系:_______________.(2)如图2,当点D 在线段AB 的延长线上时,(1)中的结论仍然成立,请你利用图2给出证明过程. (3)若点D 满足14AD AB ,直接写出DEDB的值:___________.图1EDCB A图2ECAABC备用图6. 在Rt △ABC 中,∠BAC =90°,AB =AC ,在BC 的同侧作任意Rt △DBC ,∠BDC =90°.(1)若CD =2BD ,M 是CD 中点(如图1), 求证:△ADB ≌△AMC .(2)若CD <BD (如图2),在BD 边上是否存在一点N ,使得△ADN 是以DN 为斜边的等腰直角三角形?若存在,请在图2中确定点N 的位置,并加以证明;若不存在,请说明理由.小明在解决此题时,是在BD 上截取BN =CD ,连接AN .你知道小明是怎么解决的吗?请写出过程.(3)当CD =1,BD =4时,则AD 的长为__________.MOD C BA图1ODBA图27.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF.(2)如图2,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB AN+=.小聪在解决此题时,过点M作AM的垂线,交AB的延长线于点P.你知道小聪是怎么解决的吗?请写出过程.AEB D FC图1ANDB CM图2【参考答案】➢精讲精练1.12,132. C3.(1)略;(2)5,证明略;(3)4.(1)略;(2)BE CD5.(1)222DA DB DE;(2)成立,证明略;(3+=6.(1)略;(2)略;(3)27.(1)略;(2)略。
类比探究综合测试(通用版)试卷简介:测试学生在处理类比探究问题过程中,有没有类比照搬的意识,能否根据题干或者问与问之间的联系,照搬辅助线,照搬思路来解决问题,同时考查学生对于类比探究中中点结构、旋转结构、平行结构这三种特殊结构的处理思路。
一、单选题(共6道,每道16分)1.如图1,△ABC和△BDE均为等腰直角三角形,BA⊥AC,ED⊥BD,点D在AB边上.连接EC,取EC的中点F,连接AF,DF.为了证明AF⊥DF,AF=DF,我们只需要延长DF交线段AC于点G,说明AF是等腰直角三角形ADG的中线即可.现将△BDE旋转至如图2所示的位置,使点E在AB的延长线上,点D在CB的延长线上,其他条件不变,类比上面的做法,为了证明AF⊥DF,AF=DF,我们需要作的辅助线是( )A.连接ADB.过点C作CG⊥DF,交DF的延长线于点GC.延长DF交AC的延长于点G,连接ADD.延长DF到G,使DF=FG,连接CG,AD,AG答案:D解题思路:在图1中,给出的辅助线达到的一个效果就是保证F是等腰直角三角形ADG斜边的中点,满足DF=FG.若在图2中达到同样的效果,需要延长DF到G,使DF=FG,这样再连接AD,AG之后才能保证F是等腰直角三角形ADG斜边的中点.试题难度:三颗星知识点:中考数学几何中的类比探究2.(上接第1题)在试题1图2的证明中,说明△ADG是等腰直角三角形之前,证明AD=AG 需要直接使用到某对三角形全等,则判定这对三角形全等的条件是( )A.AASB.ASAC.SSSD.SAS答案:D解题思路:要证明AD=AG,我们需要证明△ABD≌△ACG.根据上一题的分析,如图,延长DF到G,使DF=FG,连接CG,AD,AG,容易证明△DEF≌△GCF,∴CG=ED=BD,∠DEF=∠GCF,∴DE∥CG,∴∠GCD=∠BDE=90°,∴∠GCA=∠DBA=135°.又∵AC=AB,∴△ABD≌△ACG(SAS).(为了证明AF⊥DF,AF=DF,接下来需要根据得出的条件,说明∠DAG=90°,进而说明AF是等腰直角三角形ADG斜边上的中线)试题难度:三颗星知识点:中考数学几何中的类比探究3.如图1,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF.利用旋转的思想很容易证明DE+BF=EF;如图2,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且.则DE,BF,EF之间的数量关系为( )A. B.C.DE+2BF=EFD.DE+BF=EF答案:D解题思路:在图1中,旋转思想考虑了两个方面,一个是AB=AD,能够实现旋转,一个是,能够将角度放在一起,所以图1中的证明是将△DAE旋转,使得AD 与AB重合,这是一种思想,作辅助线的时候是延长CB到点G,使得BG=DE,最后证明GF=EF.图2中有同样的两个结构:AB=AD,,所以照搬分析图1的思路来研究数量关系.如图,延长CB到点G,使得BG=DE,连接AG.易证△ADE≌△ABG,∴AE=AG,BG=DE,∠DAE=∠BAG,∴∠DAE+∠BAF=∠BAG+∠BAF=∠GAF.∵,∴∠GAF=∠EAF.又∵AF=AF,∴△GAF≌△EAF,∴GF=EF,∴EF=GB+BF=DE+BF,即DE,BF,EF满足的数量关系是DE+BF=EF.试题难度:三颗星知识点:类比探究问题4.(上接第3题)如图3,在四边形ABCD中,AB=AD,E,F分别为DC,BC边上的点,且满足,当∠ABC与∠ADC满足( )时,可使得DE+BF=EF.A.∠ABC=∠ADCB.∠ABC+∠ADC=180°C.∠ABC=2∠ADC-180°D.∠ABC+2∠ADC=270°答案:B解题思路:试题3中图1和图2的证明,都是利用旋转的思想来证明DE+BF=EF,从作辅助线开始到结束,整个分析有以下几点:延长CB到点G,使得BG=DE,证明△ABG≌△ADE(SAS),导出∠GAF=∠EAF,进而证明△GAF≌△EAF(SAS),之后导出线段关系.若在图3中用此方法证明,首先延长CB到点G,使得BG=DE,要证明△ABG和△ADE全等,需要保证∠ABG=∠ADE,也就是需要∠ABC+∠ADC=180°,所以需要添加的条件是∠ABC+∠ADC=180°.添加条件之后的证明如下:如图,延长CB到点G,使得BG=DE,连接AG.∵∠ABC+∠ADC=180°,∠ABC+∠ABG=180°,∴∠ABG=∠ADE.又∵AB=AD,BG=DE,∴△ADE≌△ABG,∴AE=AG,BG=DE,∠DAE=∠BAG,∴∠DAE+∠BAF=∠BAG+∠BAF=∠GAF.∵,∴∠GAF=∠EAF.又∵AF=AF,∴GF=EF,∴EF=GB+BF=DE+BF.试题难度:三颗星知识点:类比探究问题5.如图,D是△ABC的边BC上一点,过点D的一条直线交AC于点F,交BA的延长线于点E.若BD=2CD,CF=mAF,则的值是( )A. B.C. D.答案:B解题思路:如图,过点D作DG∥AC,交AB于点G.设CD=a,BD=2a,AF=b,CF=mb.∵△BDG∽△BCA,∴∴,BG=2AG.设AG=c,BG=2c,∴,即∴∴试题难度:三颗星知识点:中考数学几何中的类比探究6.如图,D是△ABC的边BC上一点,过点D的一条直线交AC的延长线于点F,交AB于点E.若BD=aCD,CF=bAF,则的值是( )A. B.C. D.答案:D解题思路:如图,过点D作DG∥AC,交AB于点G.设CD=m,BD=am,AF=n,CF=bn.∵△BDG∽△BCA,∴∴,BG=aAG.设AG=c,BG=ac,∵△EAF∽△EGD,∴,即∴∴.试题难度:三颗星知识点:中考数学几何中的类比探究。
1.A题干是省会城市与所属省份关系,选项中符合条件的是A。
2.A题干是种属关系,锅是种灶具,铜铁是种金属,故答案选A。
3.C题干是作家与其作品的关系,C符合要求。
ABD是作家作品中的人物与作家的关系,与题干不符。
4.B题干是同物异名之间的关系,B符合要求。
AD不具有此性,C是种属关系。
5.D题干中的词成功与失败相对,选项中简单与复杂相对,故答案选D。
6.D题干香蕉是种水果,选项中桌子是种家具,考查的是种属关系,正确答案是D。
7.D 题干是正式称谓与别称的关系,答案选D,A与题干要求相反,B不具有可比性。
8.C题干是文学作品与作品中人物的关系,A与题干要求相反,B是作者与作品关系,D是作品与作者关系,答案选C。
9.A本题考查种属关系,B是部分与整体关系,CD是属种关系,但与题干要求相反。
10. D赫拉克勒斯是古希腊神话中的英雄,阿瑞斯是古希腊神话中的战神,李舜臣是韩鲜民族英雄,李尔王是莎士比亚戏剧中的角色,猪八戒是中国神话中的神,所以应选D。
11. D英国、日本、葡萄牙、西班牙的共同特点是都是君主立宪制国家,都有国王或天皇。
所以选D。
12. A勤奋与成功,生病与住院其中包含直接的因果关系,故答案选A,B 项中革命能引发战争,却不是战争爆发的直接根源,C项鱼网用以捕鱼,D项成绩产生于考试。
13. C题干中稻谷与大米,C项中棉花与棉籽属整体与部分关系,答案选C,ABD与题干内容没有类比性。
14. B本题题干所给两个词语之间是工具和作用的关系。
15. B题干所给出的两个词语之间属于事物和事物的出处关系。
16. D题干所给出的两个词语之间属于事物和事物的出处关系。
17. A本题所给出的两个词语之间属于原因与结果的关系。
18. D本题所给出的两个词语之间属于工具和作用的关系。
19. C本题题干所给出的两个词语之间属于物体与其运动空间的关系。
20. B本题所给出的两个词语之间属于特定环境与专门人员的关系。
21. D题干给出的人物是截然相反的,只有D项符合此条件。
类比探究(讲义)➢知识点睛1.类比探究是一类共性条件与特殊条件相结合,由特殊情形到一般情形(或由简单到复杂)逐步深入,解决思想方法一脉相承的综合性题目,常以几何综合题为主——“条件类似、图形结构类似、问法类似”.2.类比探究问题的处理思路(1)根据题干条件,结合分支条件先解决第一问;(2)整体类比第一问,迁移解决下一问.①类比是解决类比探究问题的第一原则,如类比字母、类比辅助线、类比思路;②对比前后条件变化,寻找并利用不变特征,考虑相关几何结构解决问题.3.类比探究问题中的常见特征举例手拉手模型:两个共顶点且顶角相等的等腰三角形构成,在相对位置变化的过程中,始终存在一对全等三角形.EDAB C条件:AB=AC,AD=AE,∠BAC=∠DAE结论:△ABD≌△ACE➢精讲精练1.如图,在△ABC,△CDE中,∠ACB=∠ECD=90°,CA=CB,CD=CE,点D在AB边上.若AD=5,BD=12,则AE=______,DE=_______.ADEB2. 如图,点D 为等边三角形ABC 内一点,AD =4,BD =3,CD =5.以BD 为一边作等边三角形BDE ,连接CE . (1)判断△DEC 的形状,并说明理由; (2)求∠ADB 的度数.EDCBA3. 如图,在△ABC ,△ADE 中,∠BAC =∠DAE =90°,AB =AC ,AD =AE ,点C ,D ,E 在同一条直线上,连接BD ,BE .以下五个结论:①BD =CE ;②BD ⊥CE ;③∠ACE +∠DBC =45°;④BE 2=ED 2+EC 2;⑤BE 2=2(AD 2+AB 2),其中正确结论的个数是( ) A .2B .3C .4D .5ABC DE4. 如图,在△ABC 中,∠BAC =90°,AB =AC ,点D 是BC 上一动点,连接AD ,过点A 作AE ⊥AD ,并且始终保持AE =AD ,连接CE ,AF 平分∠DAE 交BC 于F . (1)求证:△ABD ≌△ACE ;(2)若BD =3,CF =4,则DF =_________.ECFDBA5. 已知△ABC 和△CDE 均为等腰直角三角形,∠ACB =∠DCE =90°,点D 是等腰直角三角形ABC 斜边AB 所在直线上一点(不与点B 重合).(1)如图1,当点D在线段AB上时,直接写出DA2,DB2,DE2三者之间的数量关系:_______________.(2)如图2,当点D在线段AB的延长线上时,(1)中的结论仍然成立,请你利用图2给出证明过程.(3)若点D满足14ADAB,直接写出DEDB的值:_________.图1ECBA图2ECAA BC备用图6. 在Rt △ABC 中,∠BAC =90°,AB =AC ,在BC 的同侧作任意Rt △DBC ,∠BDC =90°.(1)若CD =2BD ,M 是CD 中点(如图1), 求证:△ADB ≌△AMC .(2)若CD <BD (如图2),在BD 边上是否存在一点N ,使得△ADN 是以DN 为斜边的等腰直角三角形?若存在,请在图2中确定点N 的位置,并加以证明;若不存在,请说明理由.(提示:在BD 上截取BN =CD ,连接AN ) (3)当CD =1,BD =4时,则AD 的长为__________.MOD CBA图1OD BA图27.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.(1)如图1,点E,F分别在AB,AC上,且∠EDF=90°,求证:BE=AF.(2)如图2,点M在AD的延长线上,点N在AC上,且∠BMN=90°,求证:AB+ANAM.(提示:过点M作AM的垂线,交AB的延长线于点P)AEB D FC图1ADNMB C图2【参考答案】➢精讲精练1.12,132.(1)△DEC是直角三角形,理由略;(2)∠ADB=150°3. C4.(1)略;(2)55.(1)222DA DB DE;(2)略;(3+=6.(1)略;(2)存在,证明略;(3)27.(1)略;(2)略。
中招考试几何类比探究题集锦(附参考答案)参考答案与试题解析一.解答题(共11小题)1.在△ABC中,AB=AC,∠BAC=2∠DAE=2α.(1)如图1,若点D关于直线AE的对称点为F,求证:△ABD≌△ACF;(2)如图2,在(1)的条件下,若α=45°,求证:DE2=BD2+CE2;(3)如图3,若α=45°,点E在BC的延长线上,请直接写出DE2,BD2,CE2三者之间的等量关系.【解答】解:(1)∵点D关于直线AE的对称点为F,∴EF=DE,AF=AD,∠DAE=∠EAF=α∴∠CAE+∠CAF=α∵∠BAC=2∠DAE=2α.∴∠BAD+∠CAE=∠BAC﹣∠DAE=α,∴∠BAD=∠CAF,在△ABD和△ACF中,第1页(共33页)第2页(共33页)∴△ABD ≌△ACF (SAS ),(2)由(1)知,△ABD ≌△ACF (SAS ),∴CF=BD ,∠ACF=∠B ,∵AB=AC ,∠BAC=2α,α=45°,∴△ABC 是等腰直角三角形,∴∠B=∠ACB=45°,∴∠ECF=∠ACB +∠ACF=45°+45°=90°,在Rt △CEF 中,由勾股定理得,EF 2=CF 2+CE 2,∴DE 2=BD 2+CE 2,(3)DE 2=BD 2+CE 2;理由:如图,∵∠BAC=2∠DAE=2α.∴∠DAE=α,∵点D 关于直线AE 的对称点为F ,∴EF=DE ,AF=AD ,∠DAE=∠EAF=α∴∠CAF=∠EAF +∠CAE=α+∠CAE∴∠BAD=∠BAC ﹣∠DAC=2α﹣∠DAC=2α﹣(∠DAE ﹣∠CAE )=2α﹣(α﹣∠CAE)=α+∠CAE∴∠BAD=∠CAF,在△ABD和△ACF中,∴△ABD≌△ACF(SAS),∴CF=BD,∠ACF=∠B,∵AB=AC,∠BAC=2α,α=45°,∴△ABC是等腰直角三角形,∴∠B=∠ACB=45°,∴∠ECF=∠ACB+∠ACF=45°+45°=90°,在Rt△CEF中,由勾股定理得,EF2=CF2+CE2,∴DE2=BD2+CE2,2.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.猜测DE、BD、CE三条线段之间的数量关系(直接写出结果即可).(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问第(1)题中DE、BD、CE之间的关系是否仍然成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF 均为等第3页(共33页)边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断线段DF、EF的数量关系,并说明理由.【解答】解:(1)DE=BD+CE.理由如下:如图1,∵BD⊥l,CE⊥l,∴∠BDA=∠AEC=90°又∵∠BAC=90°,∴∠BAD+∠CAE=90°,∠BAD+∠ABD=90°,∴∠CAE=∠ABD在△ABD和△CAE中,,∴△ABD≌△CAE(AAS)∴BD=AE,AD=CE,∵DE=AD+AE,∴DE=CE+BD;(2)如图2,∵∠BDA=∠AEC=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,第4页(共33页)∴∠CAE=∠ABD,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴BD+CE=AE+AD=DE;(3)DF=EF.理由如下:由(2)知,△ADB≌△CAE,BD=EA,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠FAE,∵BF=AF在△DBF和△EAF中,,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,第5页(共33页)∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DEF为等边三角形.∴DF=EF.3.(1)问题发现如图1,△ABC和△ADE均为等边三角形,点D在边BC上,连接CE.请填空:①∠ACE的度数为60°;②线段AC、CD、CE之间的数量关系为AC=CD+CE.(2)拓展探究如图2,△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,点D在边BC 上,连接CE.请判断∠ACE的度数及线段AC、CD、CE之间的数量关系,并说明理由.(3)解决问题如图3,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD=2,CD=1,AC与BD交于点E,请直接写出线段AC的长度.第6页(共33页)【解答】解:(1)①∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=∠B=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠B=60°,故答案为:60°;②线段AC、CD、CE之间的数量关系为:AC=CD+CE;理由是:由①得:△BAD≌△CAE,∴BD=CE,∵AC=BC=BD+CD,∴AC=CD+CE;故答案为:AC=CD+CE;(2)∠ACE=45°,AC=CD+CE,理由是:如图2,∵△ABC和△ADE均为等腰直角三角形,且∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,第7页(共33页)∴△ABD≌△ACE,∴BD=CE,∠ACE=∠B=45°,∵BC=CD+BD,∴BC=CD+CE,∵在等腰直角三角形ABC中,BC=AC,∴AC=CD+CE;(3)如图3,过A作AC的垂线,交CB的延长线于点F,∵∠BAD=∠BCD=90°,AB=AD=2,CD=1,∴BD=2,BC=,∵∠BAD=∠BCD=90°,∴∠BAD+∠BCD=180°,∴A、B、C、D四点共圆,∴∠ADB=∠ACB=45°,∴△ACF是等腰直角三角形,由(2)得:AC=BC+CD,∴AC===.第8页(共33页)4.【探究发现】如图1,△ABC是等边三角形,∠AEF=60°,EF交等边三角形外角平分线CF所在的直线于点F,当点E是BC的中点时,有AE=EF成立;【数学思考】某数学兴趣小组在探究AE、EF的关系时,运用“从特殊到一般”的数学思想,通过验证得出如下结论:当点E是直线BC上(B,C除外)任意一点时(其它条件不变),结论AE=EF仍然成立.假如你是该兴趣小组中的一员,请你从“点E是线段BC上的任意一点”;“点E是线段BC延长线上的任意一点”;“点E是线段BC反向延长线上的任意一点”三种情况中,任选一种情况,在备用图1中画出图形,并证明AE=EF.【拓展应用】当点E在线段BC的延长线上时,若CE=BC,在备用图2中画出图形,并运用上述结论求出S△ABC :S△AEF的值.【解答】证明:第一种情况:点E是线段BC上的任意一点,可作三种辅助线:方法一:如图1,在AB上截取AG,使AG=EC,连接EG,第9页(共33页)∵△ABC是等边三角形,∴AB=BC,∠B=∠ACB=60°.∵AG=EC,∴BG=BE,∴△BEG是等边三角形,∠BGE=60°,∴∠AGE=120°.∵FC是外角的平分线,∠ECF=120°=∠AGE.∵∠AEC是△ABE的外角,∴∠AEC=∠B+∠GAE=60°+∠GAE.∵∠AEC=∠AEF+∠FEC=60°+∠FEC,∴∠GAE=∠FEC.在△AGE和△ECF中,∴△AGE≌△ECF(ASA),∴AE=EF;方法二:在CA上截取CG=CE,连结GE,证明类似方法一;方法三:延长FC到G,使CG=CE,连结EG,易证△CEG是等边三角形,第10页(共33页)∴CE=EG,∠G=∠ACB=60°,∠CEG=∠AEF=60°,∴∠CEG+∠CEF=∠AEF+∠CEF,即∠GEF=∠AEC,∴△GEF≌△CEA,∴AE=EF.第二种情况:点E是线段BC延长线上的任意一点如图2,可作三种辅助线:①在CF上截取CG=CE,连接GE②延长AC到G,使CG=CE,连结EG;③或延长BA到G,使BG=BE,连结EG.第②种添加辅助线的方法证明如下:证明:延长AC到G,使CG=CE,连结EG,易证△CEG为等边三角形,∴∠G=∠ECF=60°,EG=CE,又∠AEG=∠CEG+∠AEC=60°+∠AEC,∠CEF=∠AEF+∠AEC=60°+∠AEC,第11页(共33页)∴∠AEG=∠CEF,∴△AEG≌△FEC,∴AE=EF.第三种情况:点E是线段BC反向延长线上的任意一点如图3,可作三种辅助线:①延长AB到G,使BG=BE,连结EG;②延长CF到G,使CG=CE,连结EG;③在CE上截取CG=CF,连结GF现就第①种添加辅助线的方法证明如下:证明:延长AB到G,使BG=BE,连结EG,易证△BEG为等边三角形,∴∠G=∠ECF=60°,第12页(共33页)∵∠AEB+∠BAE=∠ABC=60°,∠AEB+∠CEF=∠AEF=60°,∴∠BAE=∠CEF,∵AB=BC,BG=BE,∴AB+BG=BC+BE,即AG=CE,∴△AEG≌△EFC,∴AE=EF.拓展应用:如图4:作CH⊥AE于H点,∴∠AHC=90°.由数学思考得AE=EF,又∵∠AEF=60°,∴△AEF是等边三角形,∴△ABC∽△AEF.第13页(共33页)∵CE=BC=AC,△ABC是等边三角形,∴∠CAH=30°,AH=EH.∴CH=AC,AH=AC,AE=AC,∴.∴==.5.问题情境:在Rt△ABC中,AB=BC,∠B=90°,将一块等腰直角三角板的直角顶点O放在斜边AC上,将三角板绕点O旋转.(1)操作发现:当点O为AC中点时:①如图1,三角板的两直角边分别交AB,BC于E、F两点,连接EF,猜想线段AE、CF与EF之间存在的等量关系:AE2+CF2=EF2(无需证明);②如图2,三角板的两直角边分别交AB,BC延长线于E、F两点,连接EF,判断①中的结论是否成立.若成立,请证明;若不成立,请说明理由;第14页(共33页)(2)类比延伸:当点O不是AC中点时,如图3,三角板的两直角边分别交AB,BC于E、F两点,若=,请直接写出=.【解答】解:(1)①猜想:AE2+CF2=EF2,连接OB,如图1,∵AB=BC,∠ABC=90°,O点为AC的中点,∴OB=AC=OC,∠BOC=90°,∠ABO=∠BCO=45°.∵∠EOF=90°,∴∠EOB+∠BOF=∠FOC+∠BOF.∴∠EOB=∠FOC,在△OEB和△OFC中,,∴△OEB≌△OFC(ASA).∴BE=CF,又∵BA=BC,∴AE=BF.在Rt△EBF中,∵∠EBF=90°,∴BF2+BE2=EF2,∴AE2+CF2=EF2;故答案为:AE2+CF2=EF2;第15页(共33页)②成立.证明:连结OB.如图2,∵AB=BC,∠ABC=90°,O点为AC的中点,∴OB=AC=OC,∠BOC=90°,∠ABO=∠BCO=45°.∵∠EOF=90°,∴∠EOB=∠FOC.在△OEB和△OFC中,,∴△OEB≌△OFC(ASA).∴BE=CF,又∵BA=BC,∴AE=BF.在Rt△EBF中,∵∠EBF=90°,∴BF2+BE2=EF2,∴AE2+CF2=EF2;(2)=,如图3,过点O作OM⊥AB于M,ON⊥BC于N.∵∠B=90°,第16页(共33页)∴∠MON=90°,∵∠EOF=90°,∴∠EOM=∠FON.∵∠EMO=∠FNO=90°,∴△OME∽△ONF,∴=,∵△AOM和△OCN为等腰直角三角形,∴△AOM∽△OCN,∴=,∵=,∴=,故答案为.第17页(共33页)第18页(共33页)6.阅读发现:(1)如图①,在Rt △ABC 和Rt △DBE 中,∠ABC=∠DBE=90°,AB=BC=3,BD=BE=1,连结CD ,AE .易证:△BCD ≌△BAE .(不需要证明) 提出问题:(2)在(1)的条件下,当BD ∥AE 时,延长CD 交AE 于点F ,如图②,求AF 的长.解决问题:(3)如图③,在Rt △ABC 和Rt △DBE 中,∠ABC=∠DBE=90°,∠BAC=∠DEB=30°,连结CD ,AE .当∠BAE=45°时,点E 到AB 的距离EF 的长为2,求线段CD的长为 .【解答】(2)解:如图②中,AB与CF交于点O.由(1)可知:△BCD≌△BAE,∴∠OAF=∠OCB,CD=AE,∵∠AOF=∠COB,∴∠AFO=∠CBO=90°,∴CF⊥AE,∵BD∥AE,∴BD⊥CF,在RT△CDB中,∵∠CDB=90°,BC=3,BD=1,∴CD=AE==2,∵∠BDF=∠DFE=∠DBE=90°,∴四边形EFDB是矩形,∴EF=BD=1,∴AF=AE﹣EF=2﹣1.(3)解:在RT△ABC,RT△EBD中,∵∠ABC=∠DBE=90°,∠BAC=∠DEB=30°,∴AB=BC,BE=BD,∴==,∵∠ABC=∠EBD=90°,∴∠ABE=∠DBC,∴△ABE∽△CBD,∴==,第19页(共33页)第20页(共33页)在RT △AEF 中,∵∠AFE=90°,∠EAF=45°,EF=2,∴AF=EF=2,AE=2,∴=,∴CD=.故答案为.7.如图1,两个完全相同的三角形纸片ABC 和DEC 重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是DE∥AC;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2.(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,请猜想(1)中S1与S2的数量关系是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)拓展探究已知∠ABC=60°,BD平分∠ABC,BD=CD,BC=9,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使S△DCF=S△BDE,请求相应的BF的长.【解答】解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,∴AC=CD,∵∠BAC=90°﹣∠B=90°﹣30°=60°,第21页(共33页)∴△ACD是等边三角形,∴∠ACD=60°,又∵∠CDE=∠BAC=60°,∴∠ACD=∠CDE,∴DE∥AC;故答案为:DE∥AC;②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2=×2×2=2;故答案为:S1=S2;(2)如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,,第22页(共33页)∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2;(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD=∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=×60°=30°,∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,第23页(共33页)∵在△CDF1和△CDF2中,,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,又∵BD=4,∴BE=×6÷cos30°=3÷=2,∴BF1=2,BF2=BF1+F1F2=2+2=4,故BF的长为2或4.8.问题解决:如图(1),将正方形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D 重合),压平后得到折痕MN.当时,求的值.类比归纳:第24页(共33页)在图(1)中,若,则的值等于;若,则的值等于;若(n 为整数),则的值等于.(用含n的式子表示)联系拓广:如图(2),将矩形纸片ABCD折叠,使点B落在CD边上一点E(不与点C,D 重合),压平后得到折痕MN,设,则的值等于.(用含m,n的式子表示)【解答】解:(1)方法一:如图(1﹣1),连接BM,EM,BE.由题设,得四边形ABNM和四边形FENM关于直线MN对称.∴MN垂直平分BE,∴BM=EM,BN=EN.∵四边形ABCD是正方形,∴∠A=∠D=∠C=90°,设AB=BC=CD=DA=2.∵,∴CE=DE=1.第25页(共33页)设BN=x,则NE=x,NC=2﹣x.在Rt△CNE中,NE2=CN2+CE2.∴x2=(2﹣x)2+12,解得x=,即BN=.在Rt△ABM和在Rt△DEM中,AM2+AB2=BM2,DM2+DE2=EM2,∴AM2+AB2=DM2+DE2.设AM=y,则DM=2﹣y,∴y2+22=(2﹣y)2+12,解得y=,即AM=(6分)∴.方法二:同方法一,BN=.如图(1﹣2),过点N做NG∥CD,交AD于点G,连接BE.∵AD∥BC,∴四边形GDCN是平行四边形.∴NG=CD=BC.同理,四边形ABNG也是平行四边形.∴AG=BN=∵MN⊥BE,∴∠EBC+∠BNM=90度.∵NG⊥BC,∴∠MNG+∠BNM=90°,第26页(共33页)∴∠EBC=∠MNG.在△BCE与△NGM中,∴△BCE≌△NGM,EC=MG.∵AM=AG﹣MG,AM=﹣1=.∴.(2)如图1,当四边形ABCD为正方形时,连接BE,=,不妨令CD=CB=n,则CE=1,设BN=x,则EN=x,EN2=NC2+CE2,x2=(n﹣x)2+12,x=;作MH⊥BC于H,则MH=BC,又点B,E关于MN对称,则MN⊥BE,∠EBC+∠BNM=90°;而∠NMH+∠BNM=90°,故∠EBC=∠NMH,则△EBC≌△NMH,∴NH=EC=1,AM=BH=BN﹣NH=﹣1=则:==.故当=,则的值等于;若=,则的值等于;第27页(共33页)(3)若四边形ABCD为矩形,连接BE,=,不妨令CD=n,则CE=1;又==,则BC=mn,同样的方法可求得:BN=,BE⊥MN,易证得:△MHN∽△BCE.故=,=,HN=,故AM=BH=BN﹣HN=,故==.故答案为:;;;.第28页(共33页)第29页(共33页)9.阅读理解:如图1,在直角梯形ABCD 中,AB ∥CD ,∠B=90°,点P 在BC 边上,当∠APD=90°时,易证△ABP ∽△PCD ,从而得到BP•PC=AB•CD ,解答下列问题.(1)模型探究:如图2,在四边形ABCD 中,点P 在BC 边上,当∠B=∠C=∠APD 时,结论BP•PC=AB•CD 仍成立吗?试说明理由;(2)拓展应用:如图3,M 为AB 的中点,AE 与BD 交于点C ,∠DME=∠A=∠B=45°且DM 交AC 于F ,ME 交BC 于G .AB=,AF=3,求FG 的长.【解答】解:(1)∵∠APC=∠APD +∠CPD ,∠APC=∠BAP +∠B (三角形外角定理),∠B=∠APD (已知),∴∠BAP=∠CPD,又∵∠B=∠C,∴△ABP∽△PCD∴=,∴BP•PC=AB•CD;(2)∵∠AFM=∠DME+∠E(三角形外角定理),∠DME=∠A(已知),∴∠AFM=∠A+∠E(等量代换),又∠BMG=∠A+∠E(三角形外角定理),∴∠AFM=∠BMG.∵∠A=∠B,∴△AMF∽△BGM.当∠A=∠B=45°时,∠ACB=180°﹣∠A﹣∠B=90°,即AC⊥BC且AC=BC.∵M为AB的中点,∴AM=BM=,AC=BC=4.又∵△AMF∽△BGM,∴,∴BG===,又∵,CF=4﹣3=1,∴.第30页(共33页)10.基本模型如下图,点B、P、C在同一直线上,若∠B=∠1=∠C=90°,则△ABP∽△PCD成立,(1)模型拓展如图1,点B、P、C在同一直线上,若∠B=∠1=∠C,则△ABP∽△PCD成立吗?为什么?(2)模型应用①如图2,在等腰梯形ABCD中,AD∥BC,AD=1,AB=2,BC=4,在BC上截取BP=AD,作∠APQ=∠B,PQ交CD于点Q,求CQ的长;②如图3,正方形ABCD的边长为1,点P是线段BC上的动点,作∠APQ=90°,PQ交CD于Q,当P在何处时,线段CQ最长?最长是多少?【解答】解:(1)成立,∵∠A=180°﹣(∠B+∠APB),第31页(共33页)∠CPD=180°﹣(∠1+∠APB),∠B=∠1,∴∠A=∠CPD,∵∠B=∠C,∴△ABP∽△PCD;(2)①∵四边形ABCD是等腰梯形,∴∠B=∠C,∵∠B=∠APQ,∴∠B=∠APQ=∠C,由(1)知,△ABP∽△PCD,∴=,∴=,∴CQ=;②设BP=x,CQ=y.∵∠B=∠APQ=90°,∴△ABP∽△PCQ,∴=,即=,∴y=﹣x2+x=﹣(x﹣)2+,第32页(共33页)∴当x=时,y=,最大即当P是BC的中点时,CQ最长,最长为.第33页(共33页)。
学生做题前请先回答以下问题问题1:类比探究往往会围绕一个不变结构进行考查.类比探究中常见的不变结构有哪些?问题2:处理类比探究问题时,若属于常见结构,则________.问题3:处理类比探究问题时,若不属于常见结构类型,则需要我们尝试着去寻找不变结构解决问题.此时常见的处理思路是什么?以下是问题及答案,请对比参考:问题1:类比探究往往会围绕一个不变结构进行考查.类比探究中常见的不变结构有哪些?答:类比探究中常见的不变结构有:①中点结构,常考虑平行夹中点,构造中位线等;②旋转结构,特征:等线段共点③平行结构,常考虑作平行,造相似④直角结构.常考虑斜直角放正问题2:处理类比探究问题时,若属于常见结构,则.答:调用结构类比解决.问题3:处理类比探究问题时,若不属于常见结构类型,则需要我们尝试着去寻找不变结构解决问题.此时常见的处理思路是什么?答:①根据题干条件,结合支干条件先解决第一问.②类比解决下一问.如果不能,分析条件变化,寻找不变特征.③结合所求目标,依据不变特征尝试找不变结构,大胆猜测、尝试、验证.类比探究专题(五)——探究应用一、单选题(共3道,每道33分)1.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是_________;②设△BDC的面积为,△AEC的面积为,则与之间的数量关系是_______.( )A.DE=2AC;B.DE⊥AC;C.DE∥AC;D.DE∥AC;答案:C解题思路:试题难度:三颗星知识点:探究应用2.(上接第1题)(2)猜想论证当△DEC绕点C旋转到如图3所示的位置时,△BDC的面积与△AEC的面积之间的数量关系是( )A. B. C. D.答案:A解题思路:试题难度:三颗星知识点:探究应用3.(上接第1,2题)(3)拓展探究如图4,已知∠ABC=60°,D是角平分线上一点,BD=CD=4,DE∥AB,交BC于点E.若在射线BA上存在点F,使,则BF的长为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:探究应用。
学生做题前请先回答以下问题问题1:类比探究问题的处理思路是什么?以下是问题及答案,请对比参考:问题1:类比探究问题的处理思路是什么?答:类比探究问题的处理思路为:(1)类比探究往往会围绕一个不变结构进行考查.类比探究中常见的不变结构有:中点结构、直角结构、旋转结构、平行结构.(2)若不属于常见结构类型,则需要我们尝试着去寻找不变结构解决问题.①根据题干条件,结合支干条件先解决第一问.②类比解决下一问.如果不能,分析条件变化,寻找不变特征.③结合所求目标,依据不变特征尝试找不变结构,大胆猜测、尝试、验证.若属于类比探究常见的结构类型,调用结构类比解决.类比探究专题(一)——平行结构一、单选题(共6道,每道16分)1.如图1,D是△ABC的边BC上一点,过点D的一条直线交AC于点F,交BA的延长线于点E.(1)若BD=CD,CF=2AF,则的值为( )A.2B.C. D.答案:B解题思路:试题难度:三颗星知识点:平行结构2.(上接第1题)(2)如图2,若BD=CD,CF=mAF,则的值为( ) (用含m的代数式表示)A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:平行结构3.(上接第1,2题)(3)如图3,将原题改为“过点D的一条直线交AC的延长线于点F,交AB于点E”,若BD=nCD,CF=mAF,则的值为( )(用含m,n的代数式表示)A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:平行结构4.已知AD是△ABC的中线,将BC边所在直线绕点D顺时针旋转角,交AB边于点M,交射线AC于点N,设.(1)如图1,满足的函数关系式为( ) A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:平行结构5.(上接第4题)(2)如图2,当G是AD上任意一点时(点G不与点A重合),过点G的直线交AB边于点,交AC边于点,设,则满足的函数关系式为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:平行结构6.(上接第4,5题)(3)如图3,当G是AD上任意一点时(点G不与点A重合),过点G 的直线交AB边于点,交AC的延长线于点,设,则满足的函数关系式为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:平行结构。
类比考试题及答案一、单项选择题1. 类比推理中,如果“苹果:水果”是正确的类比,那么“铅笔:文具”也是正确的类比。
这是因为:A. 苹果和铅笔都是物品B. 水果和文具都是集合名词C. 苹果是水果的一种,铅笔是文具的一种D. 苹果和铅笔都是可以吃的答案:C2. 在类比推理中,“医生:病人”与“教师:学生”之间的相似性在于:A. 医生和教师都是专业人士B. 病人和学生都是需要帮助的人C. 医生和教师都是服务提供者,病人和学生都是服务接受者D. 医生和教师都需要穿制服,病人和学生都需要穿校服答案:C3. “太阳:地球”与“月亮:地球”之间的类比关系是:A. 太阳和月亮都是地球的卫星B. 太阳和月亮都是地球的光源C. 太阳是地球的恒星,月亮是地球的卫星D. 太阳和月亮都是地球的行星答案:C4. “猫:猫科动物”与“狗:犬科动物”之间的类比关系是:A. 猫和狗都是宠物B. 猫科动物和犬科动物都是哺乳动物C. 猫是猫科动物的一种,狗是犬科动物的一种D. 猫和狗都是食肉动物答案:C5. “汽车:轮胎”与“自行车:轮子”之间的类比关系是:A. 汽车和自行车都是交通工具B. 轮胎和轮子都是圆形的C. 汽车需要轮胎,自行车需要轮子D. 汽车和自行车都是由金属制成的答案:C二、多项选择题6. 下列哪些选项中的类比是正确的?A. “书:知识”与“食物:营养”B. “笔:书写”与“刀:切割”C. “医生:病人”与“教师:学生”D. “太阳:白天”与“月亮:夜晚”答案:A, B, C7. 在类比推理中,以下哪些选项正确地表达了“父亲:儿子”与“祖父:孙子”之间的关系?A. 父亲和祖父都是长辈B. 儿子和孙子都是晚辈C. 父亲和儿子之间有直接的血缘关系,祖父和孙子之间也有直接的血缘关系D. 父亲和祖父都是男性,儿子和孙子都是男性答案:A, B, D8. “图书馆:书籍”与以下哪些选项之间的类比关系是正确的?A. “超市:食品”B. “博物馆:艺术品”C. “学校:学生”D. “医院:医生”答案:A, B9. “春天:播种”与以下哪些选项之间的类比关系是正确的?A. “夏天:收获”B. “秋天:落叶”C. “冬天:滑雪”D. “春天:开花”10. “钥匙:锁”与以下哪些选项之间的类比关系是正确的?A. “密码:账户”B. “遥控器:电视”C. “车票:火车”D. “笔:纸”答案:A, B三、填空题11. 在类比推理中,“鸟:飞行”与“鱼:____”之间的类比关系是正确的。
四边形类比探究问题一.解答题(共11 小题)1.已知,如图1,正方形ABCD 和正方形BEFG,三点A、B、E 在同一直线上,连接AG和CE(1)线段AG 和线段CE 的数量关系为;(2)将正方形BEFG,绕点B 顺时针旋转到图2 的位置时,(1)中的结论是否成立?请说明理由;(3)若在图2 中连接AE 和CG,且AE=5,CG=2,求AC2+GE2=.(直接写出结果)2.问题探究:(1)已知:如图1,在正方形ABCD 中,点E,H 分别在BC,AB 上,若AE⊥DH于点O.求证:AE=DH;类比探究:(2)已知:如图2,在正方形ABCD 中,点H,E,G,F分别在AB,BC,CD,DA 上,若EF⊥HG 于点O,则线段EF 与HG 有什么数量关系,并说明理由;拓展应用:(3)已知:如图3,在(2)问条件下,若HF∥EG,BE=EC=3,EO=3FO,求HG 的长.(写出求解过程)3.(1)问题发现如图1,△ACB 和△DCE 均为等边三角形,点A、D、E 在同一条直线上,连接BE.填空:①∠AEB 的度数为;②线段AD、BE 之间的数量关系为.(2)拓展研究如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E 在同一条直线上,CM 为△DCE 中DE 边上的高,连接BE,请判断∠AEB 的度数及线段CM、AE、BE 之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD 中,CD=2,若点P 满足PD=2,且∠BPD=90°,请直接写出点A 到BP 的距离.4.如图1,点C 在线段AB 上,分别以AC、BC 为边在线段AB 的同侧作正方形ACDE 和正方形BCMN,连结AM、BD.(1)AM 与BD 的关系是:.(2)如果将正方形BCMN 绕点C 顺时针旋转锐角α,其它不变(如图2).(1)中所得的结论是否仍然成立?请说明理由.(3)在(2)的条件下,连接AB、DM,若AC=4,BC=2,求AB2+DM2的值.5.如图①,在▱ABCD 中,点E、F 分别在AD、BC 上,且AE=CF,连接AF、BE 交于点G,连接CE、DF 交于点H.(1)求证四边形EGFH 为平行四边形.(2)提出问题:在AD、BC 边上是否存在点E、F,使得四边形EGFH 为矩形?小明从特殊到一般探究了问题.【特殊化】如图②,若∠ABC=90°,AB=2,BC=6.在AD、BC 边上是否存在点E、F,使得四边形EGFH 为矩形?若存在,求出此时AE 的长度;若不存在,说明理由.【一般化】如图③,若∠ABC=60°,AB=m,BC=n.在AD、BC 边上是否存在点E、F 使得四边形EGFH 为矩形?根据点E、F 存在(或不存在)的可能情况,写出对应的m、n 满足的条件,存在时直接写出AE 的长度.(用含m、n 的代数式表示)6.问题探究:(1)已知:如图1,在正方形ABCD 中,点E,H 分别在BC,AB 上,若AE⊥DH 于点O,求证:AE=DH;类比探究:(2)如图2,在正方形ABCD 中,点H,E,G,F分别在AB,BC,CD,DA 上,若EF⊥HG 于点O,探究线段EF 与HG 的数量关系,并说明理由.拓展应用:(3)已知,如图3,在(2)的条件下,若BC=4,点E 为BC 的中点,DF=3AF,连结FH,HE,EG,GF.求四边形HEGF 的面积.7.已知AC,EC 分别是四边形ABCD 和EFCG 的对角线,直线AE 与直线BF 交于点H(1)观察猜想如图1,当四边形ABCD 和EFCG 均为正方形时,线段AE 和BF 的数量关系是;∠AHB=.(2)探究证明如图2,当四边形ABCD 和FFCG 均为矩形,且∠ACB=∠ECF=30°时,(1)中的结论是否仍然成立,并说明理由.(3)拓展延伸在(2)的条件下,若BC=9,FC=6,将矩形EFCG 绕点C 旋转,在整个旋转过程中,当A、E、F 三点共线时,请直接写出点B 到直线AE 的距离.8.数学学习小组“文化年”最近正在进行几何图形组合问题的研究,认真研读以下三个片段,并回答问题.【片断一】小文说:将一块足够大的等腰直角三角板置于一个正方形中,直角顶点与对角线交点重合,在转动三角板的过程中我发现某些线段之间存在确定的数量关系.如图(1),若三角板两条直角边的外沿分别交正方形的边AB,BC 于点M,N,则①OM+ON =MB+NB;②AM+CN=OD.请你判断他的猜想是否正确?若正确请说明理由;若不正确请说明你认为正确的猜想并证明.【片断】小化说:将角板中个45°角的顶点和正方形的一个顶点重合放置,使得这个角的两条边与正方形的一组邻边有交点.如图(2),若以A 为顶点的45°角的两边分别交正方形的边BC、CD 于点M,N.交对角线BD 于点E、F,我发现:BE2+DE2=2AE2,只要准确旋转图(2)中的一个三角形就能证明这个结论.请你在图2 中画出图形并写出小化所说的具体的旋转方式:.【片断三】小年说:将三角板的一个45°角放置在正方形的外部,同时角的两边恰好经过正方形两个相邻的顶点.如图(3),设顶点为E 的45°角位于正方形的边AD 上方,这个角的两边分别经过点B、C,连接EA,ED,那么线段EB,EC,ED 也存在确定的数量关系:(EB+ED)2=2EC2,请你证明这个结论.9.(1)[方法回顾]证明:三角形中位线定理.已知:如图1,在△ABC 中,D、E 分别是AB、AC 的中点.求证:DE∥BC,DE=BC.证明:如图1,延长DE 到点F,使得EF=DE,连接CF;请继续完成证明过程:(2)[问题解决]如图2,在矩形ABCD 中,E 为AD 的中点,G、F 分别为AB、CD 边上的点,若AG=3,DF=7,∠GEF=90°,求GF 的长.(3)[思维拓展]如图3,在梯形ABCD 中,AD∥BC,∠A=90°,∠D=120°,E 为AD 的中点,G、F 分别为AB、CD 边上的点,若AG=2,DF=4,∠GEF=90°,求GF 的长.10.如图1,图2,△ABC 中,BF,CE 分别为AC,AB 边上的中线,BF⊥CE 于点P.(1)如图1,当BC=6,∠PCB=45°时,PE=,AB=;(2)如图2,猜想AB2、AC2、BC2 三者之间的数量关系,并给予证明;(3)如图3,▱ABCD 中,点M,N 分别在AD,BC 上,AD=3AM,BC=3BN,连接AN,BM,CM,AN 与BM 交于点G,若BM⊥CM 于点M,AB=4,AD=3,求AN 的长.11.【探索发现】如图1,△ABC 是等边三角形,点D 为BC 边上一个动点,将△ACD 绕点A 逆时针旋转60°得到△AEF,连接CE.小明在探索这个问题时发现四边形ABCE 是菱形.小明是这样想的:(1)请参考小明的思路写出证明过程;(2)直接写出线段CD,CF,AC 之间的数量关系:;【理解运用】如图2,在△ABC 中,AD⊥BC 于点D.将△ABD 绕点A 逆时针旋转90°得到△AEF,延长FE 与BC 交于点G.(3)判断四边形ADGF 的形状,并说明理由;【拓展迁移】(4)在(3)的前提下,如图3,将△AFE 沿AE 折叠得到△AME,连接MB,若AD=6,BD=2,求MB 的长.四边形类比探究问题参考答案与试题解析一.解答题(共11 小题)1.【分析】(1)由正方形的性质得出AB=CB,BG=BE,∠ABG=∠CBE=90°,由SAS证明△ABG≌△CBE,得出对应边相等AG=CE;(2)由正方形的性质得出AB=CB,BG=BE,∠ABG=∠CBE=90°,证出∠ABG=∠CBE,由SAS 证明△ABG≌△CBE,得出AG=CE;(3)连接AC、EG,设AG、CE 交点为H,由由角的互余关系得出∠2+∠BCE=90°,得出∠ AHC=90°,得出AG⊥CE;再由勾股定理求出AC2+EG2=C G2+AE2,求出AC2+EG2,然后由正方形的面积等于对角线平方的一半求解即可.【解答】解:(1)如图1 所示:延长AG 交CE 于H,∵四边形ABCD 和四边形BEFG 是正方形,∴AB=CB,BG=BE,∠ABG=∠CBE=90°,在△ABG 和△CBE 中,∵,∴△ABG≌△CBE(SAS),∴AG=CE,故答案为:AG=CE;(2)AG=CE,且AG⊥CE 仍然成立.理由如下:如图2 所示:∵四边形ABCD 和四边形BEFG 是正方形,∴AB=CB,BG=BE,∠ABC=∠EBG=90°,∵∠ABG=∠ABC+∠CBG,∠CBE=∠EBG+∠CBG,∴∠ABG=∠CBE,在△ABG 和△CBE 中,∵,∴△ABG≌△CBE(SAS),∴AG=CE;(3)如图2 所示:连接AC、EG,∵△ABG≌△CBE,∴∠BAG=∠BCE,∵∠1+∠BAG=90°,∴∠1+∠BCE=90°,∵∠1=∠2,∴∠2+∠BCE=90°,∴∠AHC=90°,∴AG⊥CE;在Rt△CGH 中,CG2=CH2+GH2,在Rt△AEH 中,AE2=AH2+EH2,∴CG2+AE2=CH2+GH2+AH2+EH2=(CH2+AH2)+(GH2+EH2)=AC2+EG2,∵AE=5,CG=2,∴AC2+EG2=22+52=29.故答案为:29.【点评】本题是四边形的综合问题,主要考查了正方形的性质、全等三角形的判定与性质、勾股定理;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.2.【分析】(1)由正方形的性质得AB=DA,∠ABE=90°=∠DAH.所以∠HAO+∠OAD=90°,又知∠ADO+∠OAD=90°,所以∠HAO=∠ADO,于是△ABE≌△DAH,可得AE=DH;(2)EF=GH.将FE 平移到AM 处,则AM∥EF,AM=EF,将GH 平移到DN 处,则DN∥ GH,DN=GH.根据(1)的结论得AM=DN,所以EF=GH;(3)易得△AHF∽△CGE,所以,由EC=3 得AF=1,过F 作FP⊥BC 于P,根据勾股定理得EF,因为FH∥EG,所以,【解答】解:(1)∵四边形ABCD 是正方形,∴AB=DA,∠ABE=90°=∠DAH.∴∠HAO+∠OAD=90°.∵AE⊥DH,∴∠ADO+∠OAD=90°.∴∠HAO=∠ADO.∴△ABE≌△DAH(ASA),∴AE=DH.(2)EF=GH.将FE 平移到AM 处,则AM∥EF,AM=EF.将GH 平移到DN 处,则DN∥GH,DN=GH.∵EF⊥GH,∴AM⊥DN,根据(1)的结论得AM=DN,所以EF=GH;(3)∵四边形ABCD 是正方形,∴AB∥CD∴∠AHO=∠CGO∵FH∥EG∴∠FHO=∠EGO∴∠AHF=∠CGE∴△AHF∽△CGE∴,∵EC=3∴AF=1过 F 作FP⊥BC 于P,根据勾股定理得EF=,∵根据(2)知EF=GH,∴GH=2 .【点评】本题考查了四边形的综合知识.用到正方形的性质,全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等综合性较强,难度较大.3.【分析】问题发现:(1)①由等边三角形的性质可得AC=BC,DC=CE,∠ACB=∠DCE=∠CDE=60°=∠CED,由“SAS”可证△ACD≌△BCE,可得AD=BE,∠ADC=∠CEB=120°即可求∠AEB 的度数;(2)由全等三角形的性质可得AD=BE;拓展研究:(2)仿照(1)中的解法可求出∠AEB 的度数,证出AD=BE;由△DCE 为等腰直角三角形及CM 为△DCE 中DE 边上的高可得CM=DM=ME,可得AE=2CH+BE;解决问题:(3)由题意可得点P 在以D 为圆心,2 为半径的圆上,同时点P 也在以BD 为直径的圆上,即点P 是两圆的交点,分两种情况讨论,由勾股定理可求BP,AH 的长,即可求点A 到BP 的距离.【解答】解:问题发现(1)①∵△ACB 和△DCE 均为等边三角形,∴AC=BC,DC=CE,∠ACB=∠DCE=∠CDE=60°=∠CED∵点A、D、E 在同一条直线上,∴∠ADC=120°∵∠ACB﹣∠DCB=∠DCE﹣∠DCB∴∠ACD=∠BCE,且AC=BC,DC=CE∴△ACD≌△BCE(SAS)∴∠ADC=∠CEB=120°∴∠ABE=∠CEB﹣∠CED=60°②∵△ACD≌△BCE∴AD=BE故答案为:60°,AD=BE(2)拓展研究:猜想:①∠AEB=90°,②AE=BE+2CM.理由:如图2,∵△ACB 和△DCE 均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.且AC=BC,CD=CE∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE 为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E 在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.解决问题:(3)∵点P 满足PD=2,∴点P 在以D 为圆心,2 为半径的圆上,∵∠BPD=90°,∴点P 在以BD 为直径的圆上,∴如图,点P 是两圆的交点,若点P 在AD 上方,连接AP,过点A 作AH⊥BP,∵CD=2=BC,∠BCD=90°∴BD=4,∵∠BPD=90°∴BP==2∵∠BPD=90°=∠BAD∴点A,点B,点D,点P 四点共圆∴∠APB=∠ADB=45°,且AH⊥BP∴∠HAP=∠APH=45°∴AH=HP在Rt△AHB 中,AB2=AH2+BH2,∴8=AH2+(2 ﹣AH)2,∴AH=+1(不合题意),或AH=﹣1若点P 在CD 的右侧,同理可得AH=+1综上所述:点A 到BP 的距离为:+1 或﹣1【点评】本题是四边形综合题,考查了等边三角形的性质、直角三角形斜边上的中线等于斜边的一半、三角形全等的判定与性质、正方形的性质,勾股定理等知识,熟练运用这些性质进行推理是本题的关键.4.【分析】(1)利用正方形的性质和已知条件证明△AMC≌△DBC,从而求出AM 与BD相等且垂直;(2)如果将正方形BCMN 绕点C 逆时针旋转锐角α,其它不变(1)中所得的结论任然成立,先求出∠ACM=∠DCB,然后利用“边角边”证明△AMC 和△DBC 全等,再根据全等三角形对应边相等即可得证;(3)根据AM⊥BD,得相交的角为直角,由勾股定理计算可得结论.【解答】解:(1)∵四边形ACDE 和四边形BCMN 都为正方形,∴AC=DC,∠ACD=∠BCD=90°,BC=CM,在△AMC 和△DBC 中,,∴△AMC≌△DBC(SAS).∴AM=BD,∠CAM=∠CDB,延长AM 交BD 于F,∵∠AMC=∠DMF,∴∠ACM=∠DFM=90°,∴AM⊥BD;故答案为:AM=BD 且AM⊥BD;(2)如果将正方形BCMN 绕点C 逆时针旋转锐角α,其它不变,(1)中所得的结论仍然成立,理由如下:在正方形ABCE 和正方形BCMN 中,AC=CD,CM=BC,∠ACD=∠MCB=90°,∵∠ACM=90°+∠MCD,∠DCB=90°+∠MCD,∴∠ACM=∠DCB,在△ACM 和△DCB 中,,∴△AMC≌△DBC(SAS).∴AM=BD,∠CAM=∠CDB,∵∠AFC=∠DFG,∴∠ACF=∠DGF=90°,∴AM⊥BD.(3)如图2,连接AD、BM,∵AC=4,BC=2,由勾股定理得:AD2=42+42=32,BM2=22+22=8,∵AM⊥BD,∴∠AGB=∠DGM=∠AGD=∠BGM=90°,∴AB2+DM2=AG2+BG2+DG2+GM2,∵AD2+BM2=AG2+DG2+BG2+MG2=32+8=40,∴AB2+DM2=40.【点评】本题考查了四边形的综合题、正方形的性质、旋转的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考压轴题.5.【分析】(1)由条件可证明四边形AECF 和四边形EDFB 为平行四边形,可得到EH∥GF,GE∥FH,可证明四边形EGFH 为平行四边形;(2)由矩形的性质得出AB=CD=2,∠ABC=∠ADC=∠BAD=90°,证出∠ABE=∠DEC,得出△ABE∽△DEC,得出=,即可求出AE 的长;(3)作AP⊥AD 于P,CQ⊥AD 于Q,则BP=CQ,PQ=BC=AD,由直角三角形的性质得出AP=AB=m,BP=CQ=AP=m,设AE=x,则PE=x+m,AQ=n﹣x﹣m,同(2)得:△BPE∽△EQC,得出=,得出方程整理得:x2+(m﹣n)x+m2﹣=0,由判别式△=n2﹣3m2,当△≥0,即n2﹣3m2≥0 时,方程有解,得出m、n 满足的条件和AE 的长.【解答】(1)证明:∵四边形ABCD 为平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形AECF、四边形EDFB 为平行四边形,∴EH∥GF,GE∥FH,∴四边形EGFH 为平行四边形;(2)解:存在,如图②所示,理由如下:∵四边形ABCD 是矩形,∴AB=CD=2,∠ABC=∠ADC=∠BAD=90°,∴∠ABE+∠AEB=90°,四边形EGFH 为矩形时,∠BEC=90°,则∠AEB+∠DEC=90°,∴∠ABE=∠DEC,∴△ABE∽△DEC,∴=,即=,解得:AE=3±;即在AD、BC 边上存在点E、F,使得四边形EGFH 为矩形,此时AE 的长度为3±;(3)解:存在,如图③所示,理由如下:作AP⊥AD 于P,CQ⊥AD 于Q,则BP=CQ,PQ=BC=AD,∴AP=DQ,∵AD∥BC,∴∠PAB=∠ABC=60°,∴∠ABP=30°,∴AP=AB=m,∴BP=CQ=AP=m,设AE=x,则PE=x+m,AQ=n﹣x﹣m,同(2)得:△BPE∽△EQC,∴=,即=,整理得:x2+(m﹣n)x+m2﹣=0,∵△=(m﹣n)2﹣4(m2﹣)=n2﹣3m2,当△≥0,即n2﹣3m2≥0 时,方程有解,即m、n 满足n≥m 时,在AD、BC 边上存在点E、F 使得四边形EGFH 为矩形,此时AE=.【点评】本题是四边形综合题目,考查了平行四边形的判定和性质、矩形的判定与性质、相似三角形的判定与性质、一元二次方程的解法以及判别式的运用等知识;本题综合性强,证明三角形相似是解决问题的关键.6.【分析】(1)根据正方形的性质得到AB=DA,∠ABE=∠DAH=90°,利用ASA 定理证明△ABE≌△DAH,根据全等三角形的性质得到AE=DH;(2)过得A 作AM∥EF 交BC 于M,过点D 作DN∥GH 交AB 于N,由(1)的结论证明即可;(3)过点F 作FP⊥BC 于点P,根据勾股定理求出EF,由(2)的结论求出HG,根据四边形的面积公式计算即可.【解答】(1)证明:∵四边形ABCD 是正方形,∴AB=DA,∠ABE=∠DAH=90°,∴∠HAO+∠OAD=90°,∵AE⊥DH,∴∠ADO+∠OAD=90°,∴∠HAO=∠ADO,在△ABE 和△DAH 中,,∴△ABE≌△DAH(ASA),∴AE=DH;(2)解:EF=GH.理由:如图2,过得A 作AM∥EF 交BC 于M,则四边形AMEF 为平行四边形,∴AM=EF,过点D 作DN∥GH 交AB 于N,同理,DN=GH,∵EF⊥GH,∴AM⊥DN,根据(1)的结论得AM=DN,所以EF=GH;(3)解:如图3,过点F 作FP⊥BC 于点P,∵四边形ABCD 是正方形,BC=4,∴AD=BC=AB=FP=4,∵E 为BC 的中点,DF=3AF,∴BE=2,AF=1,∴PE=2﹣1=1,在Rt△FPE 中,EF==,由(2)得:HG=EF,∴HG=,∵EF⊥HG,∴四边形HEGF 的面积=×EF×GH=.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.7.【分析】(1)由正方形的性质得出==,∠ACB=∠ECF=45°,得出∠ACE=∠BCF,证出△CAE∽△CBF,得出∠CAE=∠CBF,==,因此=,求出∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,再由三角形内角和定理求出∠AHB 的度数即可;(2)不成立;由矩形的性质和已知条件得出==,∠ACE=∠BCF,得出△CAE ∽△CBF,因此∠CAE=∠CBF,求出==,∠CAB=∠CAE+∠EAB=∠CBF+ ∠EAB=60°,再由三角形内角和定理即可得出∠AHB 的度数;(3)分两种情况:①如图2 所示:作BM⊥AE 于M,当A、E、F 三点共线时,由(2)得:∠AFB=30°,∠AFC=90°,在Rt△ABC 和Rt△CEF 中,由三角函数求出AC=6 ,EF=2,在Rt△ACF 中,由勾股定理求出AF=6,得出AE=AF﹣EF=6﹣2 ,再由(2)的结论=,求出BF=3 ﹣3,在Rt△BFM 中,由直角三角形的性质求出BM 即可;②如图2 所示:作BM⊥AE 于M,当A、E、F 三点共线时,同②得:AE=6+2,BF=3+3,由直角三角形的性质求出BM 即可.【解答】解:(1)如图1 所示:∵四边形ABCD 和EFCG 均为正方形,∴==,∠ACB=∠ECF=45°,∴∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,==,∴=,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣45°=45°,故答案为:=,45°;(2)不成立;理由如下:∵四边形ABCD 和EFCG 均为矩形,且∠ACB=∠ECF=30°,∴==,∠ACE=∠BCF,∴△CAE∽△CBF,∴∠CAE=∠CBF,==,∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,∵∠CBA=90°,∴∠AHB=180°﹣90°﹣60°=30°;(3)分两种情况:①如图2 所示:作BM⊥AE 于M,当A、E、F 三点共线时,由(2)得:∠AFB=30°,∠AFC=90°,在Rt△ABC 和Rt△CEF 中,∵∠ACB=∠ECF=30°,∴AC===6 ,EF=CF×tan30°=6×=2 ,在Rt△ACF 中,AF===6 ,∴AE=AF﹣EF=6 ﹣2,由(2)得:=,∴BF=(6﹣2)=3﹣3,在△BFM 中,∵∠AFB=30°,∴BM=BF=;②如图3 所示:作BM⊥AE 于M,当A、E、F 三点共线时,同②得:AE=6+2,BF=3 +3,则BM=BF=;综上所述,当A、E、F 三点共线时,点B 到直线AE 的距离为.【点评】本题是四边形综合题目,考查了正方形的性质、矩形的性质、含30°角的直角三角形的性质、相似三角形的判定与性质、三角函数、勾股定理以及分类讨论等知识;本题综合性强,证明三角形相似是解决问题的关键.8.【分析】【片断一】如图1 中,①错误.结论:OM2+ON2=BM2+BN2.②正确.只要证明△MOB≌△NOC 即可解决问题;【片断二】如图2 中,将△ABE 绕点A 逆时针旋转90°得到△ADG.连接GF.理由勾股定理即可证明;【片断三】如图3 中,过点C 作EC 的垂线交EB 延长线于F,构造全等三角形即可解决问题;【解答】解:【片断一】:如图1 中,①错误,②正确;理由:如图1 中,∵四边形ABCD 是正方形,∴AC⊥BD,OB=OC=OD=OA,∠ABO=∠OCN=45°,∵∠MON=∠BOC,∴∠MOB=∠NOC,∴△MOB≌△NOC,∴BN=CN,∴AM+CN=AM+BM=AB=OA=OD,①正确的结论:OM2+ON2=BM2+BN2.理由:∵OM2+ON2=MN2,BM2+BN2=MN2,∴OM2+ON2=BM2+BN2.【片断二】:如图 2 中,将△ABE 绕点A 逆时针旋转90°得到△ADG.连接GF.理由:∵AF=AF,∠GAF=∠EAF=45°,AG=AE,∴△AFG≌△AFE,∴EF=GF,∵∠ADG=∠ABE=∠ADF=45°,∴∠FDG=90°,∴GF2=DF2+DG2,∴EF2=BE2+DF2.故答案为:将△ABE 绕点A 逆时针旋转90°得到△ADG.连接GF.【片断三】:如图 3 中,过点C 作EC 的垂线交EB 延长线于F,∵∠ECF=∠DCB=90°,∴∠DCE=∠BCF,∵CD=CB,CE=CF,∴△CDE≌△CBF,∴ED=FB,∴EB+ED=EB+FB=EF,又因为EC2+FC2=EF2,∴(EB+ED)2=2EC2.【点评】本题考查四边形综合题、正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.9.【分析】(1)用“倍长法”将DE 延长一倍:延长DE 到F,使得EF=DE,利用“边角边”证明△ADE 和△CEF 全等,根据全等三角形对应边相等可得AD=CF,然后判断出四边形BCFD 是平行四边形,根据平行四边形的性质可得;(2)先判断出△AEG≌△DEH(ASA),进而判断出EF 垂直平分GH,即可得出结论;(3)如图3,作辅助线构建全等三角形,先求出AG=HD=2,进而判断出△PDH 为30 度的直角三角形,再用勾股定理求出HF 即可得出结论.【解答】(1)证明:(1)如图1,延长DE 到点F,使得EF=DE,连接CF,在△ADE 和△CFE 中,,∴△ADE≌△CFE(SAS),∴∠A=∠ECF,AD=CF,∴CF∥AB,又∵AD=BD,∴CF=BD,∴四边形BCFD 是平行四边形,∴DE∥BC,DE=BC.(2)解:如图2,延长GE、FD 交于点H,∵E 为AD 中点,∴EA=ED,且∠A=∠EDH=90°,在△AEG 和△DEH 中,,∴△AEG≌△DEH(ASA),∴AG=HD=3,EG=EH,∵∠GEF=90°,∴EF 垂直平分GH,∴GF=HF=DH+DF=3+7=10;(3)解:如图3,过点D 作AB 的平行线交GE 的延长线于点H,过H 作CD 的垂线,垂足为P,连接HF,同(1)可知△AEG≌△DEH,GF=HF,∴∠A=∠HDE=90°,AG=HD=2 ,∵∠ADC=120°,∴∠HDF=360°﹣90°﹣120°=150°,∴∠HDP=30°,∴PH=DH=,PD=3,∴PF=PD+DF=3+4=7,在Rt△HFP 中,∠HPF=90°,HP=,PF=7,∴HF===2,∴GF=2 .【点评】此题是四边形综合题,主要考查了正方形和直角梯形的性质和判定,全等三角形的判定和性质,等腰直角三角形的性质和判定,勾股定理,解(1)的关键是判断出△ADE ≌△CFE,解(2)的关键是判断出EF 垂直平分GH,解(3)的关键是作出辅助线,是一道比较典型的中考题.10.【分析】(1)证明△BPC 是等腰直角三角形,计算BP=PC=6,先根据三角形中线可知:EF是△ABC 的中位线,得EF∥BC,EF=BC,证明△EPF∽△CPB,列比例式可得PE和AB 的长;(2)设PF=m,PE=n,则PB=2m,PC=2n,在Rt△PBC,Rt△PBE 和Rt△PCF 中,根据勾股定理列方程后,相加可得结论;(3)本题介绍两种解法:法一:证明△AGM≌△NGB(AAS),得BG 是△ABN 的中线,作辅助线,构建全等三角形和中线,得NF,BG 都为△ABN 的中线,由(2)知,AB2+AN2=5BN2,代入可得结论;法二:如图4,作BP⊥DA 延长线于点P,CQ⊥AD 于点Q,易知四边形PBCQ 为矩形,设PA=QD=x,PB=CQ=y,表示PM=x+,MQ=2﹣x,证明△PBM∽△QMC,列比例式得方程:y2=﹣x2+ x+12 ①,根据勾股定理得:AH2=AB2﹣BH2,y2=42﹣x2=16﹣x2②,根据①②得:﹣x2+ x+12=16﹣x2,解出可得结论.【解答】解:(1)如图1,∵BF⊥CE,∴∠BPC=90°,∵∠PCB=45°,∴△BPC 是等腰直角三角形,∵BC=6 ,∴PC=BP=6,∵BF,CE 分别为AC,AB 边上的中线,∴EF 是△ABC 的中位线,∴EF∥BC,EF=BC,∴△EPF∽△CPB,∴=,∴,∴EP=3,由勾股定理得:BE===3,∴AB=2BE=6 ,故答案为:3,6;(2)猜想:AB2+AC2=5BC2;证明:∵BF,CE 是△ABC 的中线,∴EF 是△ABC 的中位线,∴EF∥BC,EF=BC,==,设PF=m,PE=n,则PB=2m,PC=2n,在Rt△PBC 中,(2m)2+(2n)2=BC2①在Rt△PBE 中,②在Rt△PCF 中,③由①,②,③得:AB2+AC2=5BC2;(3)法一:在△AGM 与△NGB 中,,∴△AGM≌△NGB(AAS),∴BG=MG,AG=NG,∴BG 是△ABN 的中线,如图3,取AB 的中点F,连接NF,并延长交DA 的延长线于E,同理,△AEF≌△BNF,∴AE=BN,EM=2BN=NC,∵EM∥NC,∴四边ENCM 是平行四边形,∴EN∥CM,∵BM⊥CM,∴EN⊥BM,即BG⊥FN,∵NF,BG 都为△ABN 的中线,由(2)知,AB2+AN2=5BN2,∵AB=4,BN=AD=,∴42+AN2=5×,∴AN=.法二:如图4,作BP⊥DA 延长线于点P,CQ⊥AD 于点Q,在▱ABCD 中,AD=BC,易知四边形PBCQ 为矩形,∴PQ=BC,∴PA=QD,依题意:AM=BN=,MD=2,设PA=QD=x,PB=CQ=y,∴PM=x+ ,MQ=2﹣x,∵BM⊥CM 于点M,∠BMC=90°,∴∠BMP+∠CMQ=90°,又∠BMP+∠PBM=90°,∴∠PBM=∠CMQ,又∵∠BPM=∠MQC=90°,∴△PBM∽△QMC,∴,即,化简得:y2=﹣x2+ x+12 ①,作AH⊥BC 于点H,则BH=PA=x,AH=y,在Rt△ABH 中,AH2=AB2﹣BH2,∴y2=42﹣x2=16﹣x2②,由①②得:﹣x2+ x+12=16﹣x2,∴x=,y2=,在Rt△AHN 中,AN====.【点评】本题是四边形的综合题,考查相似三角形的判定和性质、矩形和平行四边形的判定和性质、三角形全等的性质和判定、三角形中线,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,并运用类比的方法解决问题,属于中考常考题型.1.【分析】(1)根据旋转得:△ACE 是等边三角形,可得:AB=BC=CE=AE,则四边形ABCE是菱形;(2)先证明C、F、E 在同一直线上,再证明△BAD≌△CAF(SAS),则∠ADB=∠AFC,BD =CF,可得AC=CF+CD;(3)先根据∠ADC=∠DAF=∠F=90°,证明得四边形ADGF 是矩形,由邻边相等可得四边形ADGF 是正方形;(4)证明△BAM≌△EAD(SAS),根据BM=DE 及勾股定理可得结论.【解答】(1)证明:∵△ABC 是等边三角形,∴AB=BC=AC,∵△ACD 绕点A 逆时针旋转60°得到△AEF,∴∠CAE=60°,AC=AE,∴△ACE 是等边三角形,∴AC=AE=CE,∴AB=BC=CE=AE,∴四边形ABCE 是菱形;(2)线段CD,CF,AC 之间的数量关系:CD+CF=AC,理由是:由旋转得:∠DAF=60°=∠BAC,AD=AF,∴∠BAD=∠CAF,∵△ABC 是等边三角形,∴AB=AC,∴△BAD≌△CAF(SAS),∴∠ADB=∠AFC,BD=CF,∵∠ADC+∠ADB=∠AFC+∠AFE=180°,∴C、F、E 在同一直线上,∴AC=BC=BD+CD=CF+CD,故答案为:CD+CF=AC;(3)四边形ADGF 是正方形,理由如下:∵Rt△ABD 绕点A 逆时针旋转90°得到△AEF,∴AF=AD,∠DAF=90°,∵AD⊥BC,∴∠ADC=∠DAF=∠F=90°,∴四边形ADGF 是矩形,∵AF=AD,∴四边形ADGF 是正方形;(4)如图3,连接DE,∵四边形ADGF 是正方形,∴DG=FG=AD=AF=6,∵△ABD 绕点A 逆时针旋转90°,得到△AEF,∴∠BAD=∠EAF,BD=EF=2,∴EG=FG﹣EF=6﹣2=4,∵将△AFE 沿AE 折叠得到△AME,∴∠MAE=∠FAE,AF=AM,∴∠BAD=∠EAM,∴∠BAD+∠DAM=∠EAM+∠DAM,即∠BAM=∠DAE,∵AF=AD,∴AM=AD,在△BAM 和△EAD 中,∵,∴△BAM≌△EAD(SAS),∴BM=DE===2.【点评】本题属于四边形综合题,主要考查了旋转的性质、全等三角形的判定与性质、等边三角形的判定与性质、正方形的性质以及勾股定理的综合应用,解决问题的关键是熟练掌握等边三角形和全等三角形的性质,依据图形的性质进行计算求解.。
学生做题前请先回答以下问题问题1:类比探究往往会围绕一个不变结构进行考查.类比探究中常见的不变结构有哪些?问题2:处理类比探究问题时,若属于常见结构,则________.问题3:处理类比探究问题时,若不属于常见结构类型,则需要我们尝试着去寻找不变结构解决问题.此时常见的处理思路是什么?类比结构构造——类比探究(二)一、单选题(共5道,每道20分)1.阅读下面材料:小腾遇到这样一个问题:如图1,在△ABC中,点D在BC边上,∠BAD=75°,∠CAD=30°,AD=2,BD=2CD,求AC的长.小腾发现,过点C作CE∥AB,交AD的延长线于点E,通过构造△ACE,经过推理和计算能够使问题得到解决(如图2).请回答:∠ACE的度数为_____,AC的长为_____.( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:探究应用2.(上接第1题)参考小腾思考问题的方法,解决问题:如图3,在四边形ABCD中,∠BAC=90°,∠CAD=30°,∠ADC=75°,AC与BD交于点E,AE=2,BE=2DE,则BC的长为( )A.6B.C. D.答案:C解题思路:试题难度:三颗星知识点:探究应用3.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠D=90°.E,F分别是边BC,CD上的点,且∠EAF=60°.求证:EF=BE+DF.关于证明上述结论的辅助线的作法,有如下说法:①延长FD到G,使DG=BE,连接AG;②过点A作AG⊥EF于点G;③将△ABE绕点A逆时针旋转120°得到△ADG(之后证明点G,D,F在同一条直线上).其中可以证明结论的是( )A.①B.②③C.①③D.①②③答案:C解题思路:试题难度:三颗星知识点:探究应用4.(上接第3题)探索延伸:如图2,在四边形ABCD中,AB=AD,E,F分别是边BC,CD上的点,且,则当∠B和∠D满足什么条件时,EF=BE+DF成立?( )A.∠B=∠DB.∠B+∠D=180°C.∠B=2∠DD.∠B+∠D=120°答案:B解题思路:试题难度:三颗星知识点:探究应用5.(上接第3,4题)实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,则此时两舰艇之间的距离为( )海里.A. B.210C.300D.条件不够,无法计算答案:B解题思路:试题难度:三颗星知识点:探究应用。
类比探究问题(习题)
>例题示范
例1:如图1,在正方形ABCD中,E, F分别是BC, CD上的点, 且ZE4F=45。
,则有结论EF=BE+DF成立.
(1)如图2,在四边形ABCD中,AB=AD. ZB=ZD=90。
, E, F分别是BC, CD上的点,且ZEAF是ZB4D的一半,那么结论EF二BE+DF 是否仍然成立?若成立,请证明;若不成立,请说明理山.
⑵ 如图3,若恪(1)中的条件改为:在四边形ABCD 4^,AB=AD.
ZB+上ADC=180。
,延长SC到点E,延长CD到点F,使得ZEAF 仍然是ZBAD的一半,则结论EF二BE+DF是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.图
1
D
图
2
F
思路分析:
1.题目中有旋转结构,可以类比.
题U结论思路:如图1,延长CB到G,使BG二DF,
根据已知条件容易证明^ ABG幻△ADF,
由此可以推出ZBAG=ZD4F, AG=AF.而Z EAF』ABAD.
2 所以得到ZDAF+ZBAE二ZEAF,进一步得到ZEAF二上EAG, 所以故EF=EG=BE+BG=BE+DF ・
2.类比上面思路,解决笫一问•
如图2,延长CB到G,使BG=DF, 根据已知条件容易证明^
ABG^^ADF.
山此可以推出ZBAG=ZD4F, AG=AF.而Z EAF=_ ZBAD,
2 所以得到ZDAF+ZBAE二ZEAF,进一步得到ZEAF二上EAG, 所以△
故EF=EG=BE+BG=BE+DF ・
3.照搬思路解决第二问•
结论EF=BE+DF不成立,应为EF=BE-
DF.如图3,在BC上截取BG=DF, 山于ZB+ZAQC=180。
,
Z/1DF+Z/IDC=18O^ 可以得到ZB=ZADF,所以△ABG幻△ADF,
山此可以推出ZBAG=ZD4F, AG=AF.而Z EAF』ZBAD.
2 所以得到ZEAF=ZEAG,所以△AEF竺△AEG,
A)90。
△ADF空△ABG (SAS)
I AAEF^AAEG (SAS)
I
故EF=EG=BE-BG=BE-DF ・
D
>巩固练习
1.如图1,在正方形ABCD和正方形CGEF (CG>BC)中,点
C, G在同一直线上,M是AE的中点.
(1)探究线段MD, MF的位置关系及数量关系,并证明.
(2)若将图1中的正方形CGEF绕点C顺时针旋转,使D, C, G
三点在同一直线上,如图2,其他条件不变,则(1)中得到的两
个结论是否发生变化?请写出你的猜想并加以证明.
(3)若将图1中的正方形CGEF绕点C顺时针旋转,使正方形
CGEF的对角线CE恰好与正方形ABCD的边在同一直线上,如图
3,其他条件不变,则(1)中得到的两个结论是否发生变化?请写
出你的猜想并加以证明.
图
2
E
2.在△ABC中,已知BC >AC.动点D绕△ABC'的顶点A逆时针旋
转,丄LAD=BC,连接CD. E, F分别为AB, CD的中点,直线EF与直线AD眈分别交于点M, N.如图1,当点D旋转到BQ 的延
长线上时,点N恰好与点Fifi合,取AC的中点H,连接HE, HF.根据三角形中位线定理和平行线的性质,可得结论ZAMF二ZBNE (无需证明).
(1)当点D旋转到图2中的位置时,ZAMFLj ZBNE有何数量关
系?请写出猜想,并给出证明.
(2)当点Q旋转到图3中的位置时,ZAMF与ZBNE有何数量关
系?请直接写出结论.
3.已知AABC,以△ABC的边4C为直角边向外作等腰直角三角形
ABE和等腰直角三角形ACD AB=AE. AC=AD. ZBAE= ZCAD=90\ M 是BC中点,连接AM, DE.
(1)如图1,在△ABC中,当ZB4C二90。
时,探究线段AM与
DE的数量关系和位置关系,直接写出结论;
(2)如图2,当△ABC为一般三角形时,(1)中的结论是否仍成
立?请说明理由;
(3)如图3,若以△ABC的边AC为直角边向内作等腰直角三角
形ABE和等腰直角三角形ACD,且△ABC为一般三角形,其他条
件不变,(1)中的结论是否仍成立?请说明理山
.
D
图
1
B
>思考小结
1.类比探究问题处理思路
①先解决第一问,列出问题处理的路线图.
貓用第一问路线图类比(类比字母、类比辅助线、类比思路),若能够解决,往下走;不能解决,考虑是否存在不变特征,从不变特征入手解决.
2.若属于类比探究常见的结构类型,调用结构类比解决.类比探究中
常见的结构类型有____________ 结构,中点结构等.
①下图是结构;
②中点结构对应的图形有(在方框内画出图形)
(类)倍长中线平行夹中点中位线
2. 3. 【参考答案】 巩固练习
(1) MD 丄MF, MD=MF,证明略
(1)中结论不变,证明略 (1)中结论不变,证明略
ZAMF=ZBNE,证明略
ZAMF+ZBNE=180。
DE=2AM, AM 丄 DE
(1)中结论仍成立,理由略 (1)中结论仍成立,理由略 (2) (3) (2) (1) (2) (3)
思考小结
2.旋转.①旋转;②图略。