地铁主变电所简介要点
- 格式:docx
- 大小:11.26 KB
- 文档页数:6
地铁变电所的作用地铁是我国大型城市公共交通的重点发展方向,而可靠的供电是地铁安全运营的重要保障,功能强大的地铁供电变电站自动化系统又是保证供电质量的基础。
地铁供电变电站的一次设备、运行方式及管理模式与大电网变电站有一定的差异,导致了其自动化系统的功能也与大电网变电站的功能存在不少差异。
1、一次系统:主变电站、牵引变电站、降压变电地铁供电变电站按功能划分主要有4种类型站和跟随变电站。
主变电所将110kV电网电压降为35kV,给牵引变电站和降压变电站供电(电压等级仅为参考值,进口一次设备可能略有差异,以下同);牵引变电站则是将35kV交流电经变压器、整流器转换为直流1500V/750V,给接触网/接触轨供电;降压变电站则是将35kV电网电压降为400V,提供车站的动力和照明电源,同时也是跟随变电站的进线电源;跟随变电站无变压器,是降压变电站400V侧在地理上的延伸,是为离降压变电站较远的地铁设备供电。
主变电站、降压变电站、跟随变电站与交流电网上的其他变电站并无本质的区别,无论是电气接线方式还是运行方式均与普通变电站类似,只有直流牵引变电站是地铁供电系统所特有的。
地铁变电站自动化系统的很多独特之处也多与直流牵引变电站有关。
2、系统功能现代意义的变电站自动化系统的功能在IEC61850-5:2003中作了系统、全面的阐述。
IEC61850-5将系统的功能从逻辑上分为变电站层、间隔层和过程层3个层次和系统支持功能(如自检、时钟同步)、系统配置或维护功能(如测试、配置参数)、运行或控制功能(如遥控)、本地过程自动化功能(如数据采集、继电保护)、分布式自动化支持功能(如联锁、同期)和分布式过程自动化功能(如顺控、电压无功控制),共6种类别。
而传统意义的变电站自动化系统指的是数据采集与处理(SCADA)系统(不包括继电保护等功能)的子站部分,或称为远动终端设备。
远动终端设备可以视为现代意义的变电站自动化系统的一部分。
地铁主变电所简介集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-地铁主变电所简介1、概述地铁主变电所将城市电网的高压110KV(或220KV)电能降压后以35KV或10KV的电压等级分别供给牵引变电所和降压变电所。
为保证供电的可靠性,地铁线路通常设置两座或两座以上主变电所。
主变电所由两路独立的电源进线供电,内部设置2台相同的主变压器。
根据牵引负荷和动力负荷的不同情况,主变压器可采用三相三绕组的有载调压变压器或双绕组的变压器。
采用有载调压变压器在电源进线电压波动时二次侧电压维持在正常值范围内。
主变电所为地铁线路的总变电所,承担整条地铁线路的电力负荷的用电。
(1)可根据负荷计算确定在地铁线路上设置的主变电所数量。
(2)每座主变电所设置2台主变压器,由城市电网地区变电站引入两路独立的110KV专用线路供电,两回路同时运行,互为备用,以保证供电的可靠性和供电质量。
进线电源容量应满足远期时其供电区域内正常运行及故障运行情况下的供电要求。
(3)低压35KV侧采用单母线分段接线,两段母线间设母联断路器,正常运行时母联断路器打开。
(4)正常运行时每座主变电所的两路110KV电源和2台主变压器分列运行。
通过35KV馈出电缆分别向各自供电区域的负荷和动力照明负荷供电。
2、主变电所的主要设备(一)主变压器高压侧电压为110KV,低压侧电压为35KV(或10KV)。
主变压器容量应能满足正常运行时,每台变压器容量承担其所供区域内的全部牵引负荷和动力照明的供电。
当发生故障时,应满足如下条件:(1)当一台主变压器发生故障时,另一台主变压器应能满足该供电区域高峰小时牵引负荷和动力及照明一、二级负荷的供电。
(2)当一座变电所因故解列时,剩余主变电所应能承担全线的动力和照明一、二级负荷及牵引负荷。
主变压器容量的选择应考虑近期实际负荷和远期发展的需求。
单台容量大约在20MVA~40MVA范围,主要考虑相邻变电所故障解列时应满足向该段牵引负荷越区供电的要求。
地铁供电科普文章地铁作为一种重要的城市交通工具,为了能够正常运行,需要有稳定可靠的供电系统。
地铁供电系统是地铁运营中的重要组成部分,它为地铁列车提供所需的电力。
本文将对地铁供电系统进行科普介绍,帮助读者更好地了解地铁供电的工作原理和相关设备。
一、直流供电系统地铁供电系统一般采用直流供电,其主要原因是直流供电具有稳定性好、传输损耗小等优点。
直流供电系统由供电变电所、接触网、牵引变流器等组成。
1. 供电变电所:地铁供电系统的起点是供电变电所,它将电网中的交流电转换为地铁所需的直流电。
供电变电所还负责控制和保护地铁供电系统的正常运行。
2. 接触网:接触网是地铁供电系统中的一个关键部件,它位于地铁轨道上方,由一根根金属导线组成。
接触网上方悬挂着地铁列车的集电弓,当列车行驶时,集电弓与接触网接触,从而实现电能的传输。
3. 牵引变流器:牵引变流器是地铁供电系统中的关键设备,它将接触网提供的直流电转换为适合地铁列车使用的电能。
牵引变流器可以根据列车的需要进行电流和电压的调整,确保地铁列车能够平稳运行。
二、地铁供电系统的特点地铁供电系统具有以下特点:1. 稳定可靠:地铁供电系统需要保证供电的稳定性和可靠性,以确保地铁列车的正常运行。
供电系统中的各个设备都经过严格的设计和测试,以应对各种复杂的工作环境。
2. 安全性高:地铁供电系统需要满足严格的安全标准,以确保乘客和工作人员的安全。
供电系统中设备的绝缘性能和防火性能都要达到一定的要求,以防止意外事故的发生。
3. 节能环保:地铁供电系统需要尽可能地减少能源的消耗,以降低对环境的影响。
供电系统中的设备需要具备良好的能效,以减少能源的浪费。
4. 维护成本低:地铁供电系统的设备需要具备良好的可维护性,以降低运营成本。
供电系统中的设备需要方便维修和更换,以减少维护所需的时间和成本。
三、地铁供电系统的发展趋势随着科技的不断进步,地铁供电系统也在不断发展和改进。
未来地铁供电系统的发展趋势主要体现在以下几个方面:1. 新能源的应用:随着新能源技术的不断发展,未来地铁供电系统可能会采用更多的新能源,如太阳能、风能等,以减少对传统能源的依赖。
城市轨道交通供电系统一、城市轨道交通供电系统介绍城市轨道交通供电系统是为城市轨道交通运营提供所需电能的系统,不仅为城市轨道交通电动列车提供牵引用电,而且还为城市轨道交通运营服务的其他设施提供电能,如照明、通风、空调、给排水、通信、信号、防灾报警、自动扶梯等,应具备安全可靠、技术先进、功能齐全、调度方便和经济合理等特点。
在城市轨道交通的运营中,供电一旦中断,不仅会造成城市轨道交通运输系统的瘫痪,还会危及乘客生命与财产安全。
因此,高度安全可靠而又经济合理的电力供给是城市轨道交通正常运营的重要保证和前提。
城市轨道交通的用电负荷按其功能不同可分为两大用电群体。
一是电动客车运行所需要的牵引负荷。
二是车站、区间、车辆段、控制中心等其他建筑物所需要的动力照明用电,诸如:通风机、空调、自动扶梯、电梯、水泵、照明、AFC系统、FAS、BAS、通信系统、信号系统等。
在上述用电群体中,有不同电压等级直流负荷、不同电压等级交流负荷,有固定负荷、有时刻在变化的运动负荷。
每种用电设备都有自己的用电要求和技术标准,而且这种要求和标准又相差甚远。
城市轨道供电系统就是要满足这些不同用户对电能的不同需求,以使其发挥各自的功能与作用。
二、城市轨道交通供电系统的组成城市轨道交通供电系统一般包括外部电源、主变电所(或电源开闭所)、牵引供电系统、动力照明供电系统、电力监控系统。
其中,牵引供电系统包括牵引变电所和牵引网,动力照明供电系统包括降压变电所和动力照明配电系统。
城市轨道交通供电系统中一般设置三类变电所,即主变电所(分散式供电方式为电源开闭所)、降压变电所及牵引降压混合变电所。
主变电所是指采用集中供电方式时,接受城市电网35kV及以上电压等级的电源,经其降压后以中压供给牵引变电所和降压变电所的一种地铁变电所,是专为城市轨道交通系统提供能源的枢纽。
降压变电所:从主变电所(电源开闭所)获得电能并降压变成低压交流电,为车站、隧道动力照明负荷提供电源。
城市轨道交通供电系统的变电站类型及作用二、主变电站(一)主变电站的作用主变电站(简称主变)是城市轨道交通供电系统接受电源的场所,也称受电点。
它是系统内电压等级最高的变电站,它将城市电网提供的110KV交流电压,降压至35KV;然后配送到城市轨道交通沿线的各个牵引变电站和中心降压变电站。
一座主变电站承担着一条轨交线路一半左右用户的供电,一旦主变因故失电,将直接影响一、二类负荷的供电。
所以要求主变的供电必须可靠,为此,每座主变电站都设有两路以上的进线电源。
图4-3 主变电站内的主变压器三、牵引变电站(一)牵引电力制式牵引供电的制式有直流制和交流制两种。
我国电气化铁路的牵引供电,一般采用单相工频(50赫)25千伏交流供电电压。
城市轨道交通的运行环境与电气铁路不同,后者铁路站间距离长,接触网的周围空间环境宽大,因而绝缘安全距离大,可选用较高的触网电压;而城市轨道交通的站间距离短,接触网的周围环境狭窄,绝缘安全距离小,触网电压不能选得很高。
但考虑到触网线路的电压损耗,触网电压又不能太低,所以城市轨道交通采用直流1500V供电较为妥当。
且触网结构也较简单,因此城市轨道交通几乎都采用直流供电制式。
我国城市公共交通系统中,直流600V仅用于无轨电车的供电;北京、广州、武汉、天津等城市的地铁部分采用750V直流供电,上海、深圳等城市的轨道交通线路都采用1500V 直流供电。
为确保电动列车的可靠供电,通常是隔一座车站设立一个座牵引变电站,如图4- 所示。
前面在介绍城市轨道交通供电系统结构时已经提到,相邻牵引站之间彼此联系,发生局部供电故障时,牵引变电站能进行跨区域的供电,确保了电动列车供电的可靠性。
车站1 车站2 车站3 车站4 车站5牵引站1牵引站2牵引站3图4- 6 牵引站分布示意图(二)牵引变电站作用牵引变电站是为电动列车提供直流牵引电源,而进行降压、整流的场所。
牵引站将主变电站输出的35KV交流电降压、整流后,变换成750V或1500V的直流电源输送到接触网上供电动列车使用。
轨道交通供电主变电所设计要点摘要:我国的经济建设规模不断扩大,带动了城市轨道交通建设也获得了快速的发展渠道。
当前,各大城市都在部署或者已经开建各类城市轨道交通,特大城市的城市轨道交通已经进入了智能化网络化的发展时代。
因此做好供电系统的设计工作,是发展城市轨道交通建设的动力和源泉。
供电系统为城市轨道交通提供了源源不断的运营动力,电能是设备运行的唯一的能源,因此要保证城市轨道交通的安全运行,必须在服务水平、科学性和安全可靠性上下功夫,经过前期关于城市轨道交通的供电系统的研究,已经形成了适用于城市轨道交通供电系统的较为有效的设计理念和方法。
关键词:城市轨道交通;供电系统;设计一、城市轨道交通供电系统随着城市经济的快速发展,城市中常住人口数量以及流动人口数量开始快速增加。
此类现状下,交通压力也面临越来越多的问题。
如何改善交通问题,建设轨道交通系统则为主要的发展途径之一。
在城市轨道交通中,供电系统是重要的基础,因而在建设时必须给予充分的重视。
我国经济和交通的繁荣发展,使得我国的供电系统设计方案和施工技术都获得了快速发展,供电系统理论、设计方案等都更加合理,对轨道交通设计也产生了积极的促进作用。
但是当前很多的方法只适合轨道交通供电系统的初步规划和方案设计。
在探索城市轨道交通工程建设的前期准备和深入设计中,结合轨道交通供电系统进行分析,深入了解和归纳供电系统设计方法,力求设计方法更合理,可以很好地完成当前轨道交通供电系统设计的前期准备和设计工作。
二、城市轨道交通供配电节能设计(一)准备阶段的主要任务在轨道交通的设计前期,也就是编制轨道交通工程可行性研究报告中,对项目的可行性和必要性展开研究。
供电系统设计在规划初期是重要部分,供电系统设计的最初目标是要预计和估算完整的轨道交通用电负荷需求,随后结合相应的技术方法和经济两方面,找出最科学合理的电源实施方案和系统设计方案,将其作为供电系统设计的根本性依据,并且大致推算出供电系统的工程预算。
变电所基本知识1、变电所的作用:变电所是连接发电厂、电网和电力用户的中间环节,主要有汇集和分配电力、控制操作、升降电压等功能。
2、变电所的构成:变压器、高压配电装置、低压配电装置和相应建筑物。
3、变电所分类⑴按作用分类①升压变电所:建在发电厂和发电厂附近,将发电机电压升高后与电力系统连接,通过高压输电线路将电力送至用户。
②降压变电所:建于电力负荷中心,将高压降低到所需各级电压,供用户使用。
③枢纽变电所:汇集电力系统多个大电源和联络线路而设立的变电所,其高压侧主要以交换电力系统大功率为主,低压侧供给工矿企业和居民生活用电等。
⑵按管理形式分类①有人值班变电所:所内有常驻值班员,对设备运行情况进行监视、维护、操作、管理等,此类变电所容量较大。
②无人值班变电所:不设常驻值班员,而是由别处的控制中心通过远动设备或指派专人对变电所设备进行检查、维护,遇有操作随时派人切换运行设备或停、送电。
⑶按结构型式分类①屋外变电所:一次设备布置在屋外。
高压变电所用此方式。
②屋内变电所:电气设备均布置在屋内,市内居民密集地区或污秽严重的地区、电压在110KV以下用此方式。
⑷按地理条件分类地上变电所、地下变电所。
4、变电所的规模按电压等级、变压器总容量和各级电压出线回路数表示。
电压等级以变压器的高压侧额定电压表示,如35、110、220、330、500KV变电所。
变压器总容量通常以全所主变压器的容量总和来表示。
各级电压出线回路数,根据变电所的容量和工业区用户来确定。
如一变电所有5条35KV 输电线路、4条110KV输电线路、3条10KV用户配电线路,该所共有出线12回。
5、变电所的电气一次设备构成:变压器、断路器、隔离开关、电流互感器、电压互感器、架空母线、消弧线圈、并联电抗器、电力电容器、调相机等设备。
6、变压器⑴作用:变换电压,将一种等级的电压变换成同频率的另一种等级的电压。
⑵变压器的分类①按相数分:单相变压器、三相变压器。
地铁主变电所简介
1、概述
地铁主变电所将城市电网的高压110KV (或220KV电能降压后以35KV或
10KV的电压等级分别供给牵引变电所和降压变电所。
为保证供电的可靠性,地铁线路通常设置两座或两座以上主变电所。
主变电所由两路独立的电源进线供电,内部设置2台相同的主变压器。
根据牵引负荷和动力负荷的不同情况,主变压器可采用三相三绕组的有载调压变压器或双绕组的变压器。
采用有载调压变压器在电源进线电压波动时二次侧电压维持在正常值范围内。
主变电所为地铁线路的总变电所,承担整条地铁线路的电力负荷的用电。
(1可根据负荷计算确定在地铁线路上设置的主变电所数量。
(2每座主变电所设置2台主变压器,由城市电网地区变电站引入两路独立的110KV专用线路供电,两回路同时运行,互为备用,以保证供电的可靠性和供电质量。
进线电源容量应满足远期时其供电区域内正常运行及故障运行情况下的供电要求。
(3低压35KV侧采用单母线分段接线,两段母线间设母联断路器,正常运行时母联断路器打开。
(4正常运行时每座主变电所的两路110KV电源和2台主变压器分列运行。
通过35KV馈出电缆分别向各自供电区域的负荷和动力照明负荷供电。
2、主变电所的主要设备
(一主变压器
高压侧电压为110KV ,低压侧电压为35KV (或10KV。
主变压器容量应能满足正常运行时,每台变压器容量承担其所供区域内的全部牵引负荷和动力照明的供电。
当发生故障时,应满足如下条件:
(1当一台主变压器发生故障时,另一台主变压器应能满足该供电区域高峰小时牵引负荷和动力及照明一、二级负荷的供电。
(2当一座变电所因故解列时,剩余主变电所应能承担全线的动力和照明一、二级负荷及牵引负荷。
主变压器容量的选择应考虑近期实际负荷和远期发展的需求。
单台容量大约在20MVA ~40MVA范围,主要考虑相邻变电所故障解列时应满足向该段牵引负荷越区供电的要求。
(二110KV GIS组合电器
主变电所采用110KV全封闭六氟化硫组合电器设备,SF6气体绝缘的金属封闭开关设备,简称GIS(Gas InsuLated metaL-encLosed Switchgear。
GIS 是由各种开关电器:断路器GCB、隔离开关DS、接地开关ES、母线、现地汇控柜LCP以及电流互感器CT、电压互感器VT和避雷器LA等组成的电力设备,具有结构紧凑、抗污染能力强、运行安全、外型美观、设备占用空间小等特点。
主要技术规格如下:
(1额定电压:110KV
(2最高工作电压:126KV
(3额定绝缘水平:
额定雷电冲击耐受电压(峰值:相对地650KV
断口650+100KV(隔离开关
断口650KV (断路器
•额定1分钟工频耐受电压(有效值:耐受电压275KV
断口315KV (隔离开关
断口275KV (断路器
(4 SF6气体零表压时耐受电压(相对地:1.3*126d3 KV(5min
(5局部放电量(1.1倍相电压下
•气隔绝缘子:小于3PC
•整体GIS :小于10PC
(6额定电流:2000A
(7额定热稳定电流及持续时间:40KA/3s
(8额定动稳定电流:100KA
(9额定频率:50HZ
(10相数:3
(11断路器操动机构和辅助回路的额定电压:直流220V
(三主变电所二次设备
(1主变压器保护
・SR745数字式变压器管理继电器,用于变压器保护、控制、接口、测量和监测。
可实现以下功能:
l主变内部故障时的纵差保护,保护动作跳主变两侧;
l SR745低压侧过流元件和MIV电压继电器配合,组成低压侧复合过流,依次跳本侧及主变两侧;
l按负荷起动风扇回路;
l联跳电容器回路;
l用于2#主变时,作主变及线路的纵差保护,动作跳主变两侧。
・MIF数字式馈线管理继电器(装于110KV侧,用于主变压器保护、接口、测量和监测。
可实现以下功能:
l同MIV电压继电器共同组成110KV复合电压过流保护,第一时限跳本侧,第二时限跳两侧;l同MIV电压继电器共同组成110KV零序过流方向保护,第一时限跳本侧,第二时限跳两侧;l监视零序,保护动作经0.3~0.5S跳主变两侧;
l过负荷保护,发信号及闭锁有载调压开关。
・MIV电压继电器,共2台:
l 一台装于110KV侧,实现洞MIF共同组成复合电压过流保护,第一时限跳本侧,第二时限跳两侧洞MIF共同组成零序过流方向保护,第一时限跳本侧,第二时限跳两侧;零序过压保护保护动作经0.3~0.5S跳主变两侧。
l另一台装于35KV侧,实现:
利用SR745的过流保护功能共同组成复合电压过流保护,依次跳本侧及主变两侧。
(2线路保护
配置L90线路差动继电器,实现线路保护要求
L90光纤纵差保护用于跳闸输出的A型继电器动作时间小于4ms,用于信号输出的快速C型继电器动作时间小于0.6ms。
L90与电力监控系统的接口采用数字通讯方式,实现控制、监视、测量和保护动作信号的数据交换。
L90光纤纵差保护的3个通讯口,可以独立或同时运行。
L90具备完善的在线自检功能,在正常运行时一直进行自检,但不影响任何保护功能, 如检出异常则发出告警信号并闭锁保护。
(四环网电缆(110KV电缆,35KV电缆,1500V直流电缆
环网电力电缆选用低烟、低卤、低毒、阻燃电缆;敷设于重要场所的电缆则选用无烟、无卤、无毒、阻燃电缆。
(1敷设条件:布置于隧道(或地面及变电所内电缆支架上或敷设于地面电缆沟槽的电缆支架上,可敷设于可能短时积水的电缆沟内。
(2材料要求:
l电缆应具有低烟、低卤、阻燃等特性,部分电缆还应同时考虑防水、防紫外线要求。
l电缆的防水、防潮性能应满足:电缆样品在水中浸泡72小时后,去除绝缘层外面的复合层后,用肉眼观察,绝缘层外表面应是干燥的。
l电缆燃烧时的阻燃性能、低烟或无烟、无毒性能应满足相关规定的技术要求。
l电缆具有防白蚁性能,按照GB/T2952.38《电线电缆白蚁试验方法》中击倒法的规定进行测试,测试结果要求为:KT50应不大于250分钟。
l电缆的绝缘电阻应满足GB12706-1991的规定。
交联聚乙烯绝缘在最高额定温度下,绝缘电阻常数Ki应不小于3.67MQ・km
(3电缆敷设要求
地铁电缆种类多、数量大、敷设空间条件恶劣。
电缆敷设是否达到要求,不仅影响供电系统的可靠性,而且还影响故障发生率和事故范围。
l上下行环网电缆分别敷设在线路两侧,电缆支架上的电缆按电压等级由高到低分层敷设以减少相互间的干扰,特别是电力电缆与弱电电缆应保持>0.5米的间距要求。
l变电所电气设备多、相互间连线密集,因此应在设备室下设置电缆夹层以便于电缆敷设。
电缆夹层设置进人孔,其位置和数量应满足电缆敷设和后期运营维护的要求。
l在车辆段、停车场内,电缆采用在电缆沟内敷设方式,由于车辆段、停车场的管线多,设置电缆沟要注意与其他管线的协调。
l在电缆敷设施工完成后,应严格封堵预留管、孔、洞,减少小动物进入设备房造成事故的可能及控制火灾漫沿范围。
供电系统的安全性、可靠性是地铁正常运行的重要保证。
为此,牵引变电所均由两个独立的电源供电,考虑到地铁线路分布范围广,通常需要在沿线设置多个牵引变电所。