数学人教版六年级下册《鸽巢问题》观评记录
- 格式:doc
- 大小:3.01 MB
- 文档页数:4
六年级下册数学说课稿《鸽巢问题》人教版一. 教材分析《鸽巢问题》是人教版六年级下册数学的教学内容。
本节课主要让学生理解并掌握鸽巢问题的基本概念及解题方法,能够运用鸽巢问题解决实际问题。
通过学习,学生可以培养逻辑思维能力、归纳总结能力和解决实际问题的能力。
二. 学情分析六年级的学生已经具备了一定的数学基础,对于问题解决有一定的认识。
但是,对于鸽巢问题的理解和运用还需要进一步引导和培养。
在学生的认知过程中,需要通过实例分析、讨论交流等方式,让学生逐步理解并掌握鸽巢问题的解题方法。
三. 说教学目标1.知识与技能:学生能够理解鸽巢问题的基本概念,掌握解决鸽巢问题的方法,能够运用鸽巢问题解决实际问题。
2.过程与方法:通过实例分析、讨论交流等方式,培养学生逻辑思维能力、归纳总结能力和解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:学生能够理解鸽巢问题的基本概念,掌握解决鸽巢问题的方法。
2.教学难点:学生能够运用鸽巢问题解决实际问题,培养学生的逻辑思维能力和解决实际问题的能力。
五. 说教学方法与手段本节课采用问题驱动法、实例分析法、讨论交流法等教学方法,利用多媒体课件、教学卡片等教学手段,帮助学生理解和掌握鸽巢问题的解题方法。
六. 说教学过程1.导入:通过一个实际问题,引发学生对鸽巢问题的思考,激发学生的学习兴趣。
2.基本概念:引导学生通过观察、分析实例,总结出鸽巢问题的基本概念。
3.解决方法:让学生通过小组合作、讨论交流等方式,探索并掌握解决鸽巢问题的方法。
4.实际应用:让学生运用解决鸽巢问题的方法,解决实际问题,体会数学在生活中的应用。
5.总结提升:通过总结归纳,使学生形成系统化的知识结构,培养学生解决实际问题的能力。
七. 说板书设计板书设计主要包括鸽巢问题的基本概念、解决方法和实际应用,通过板书设计,帮助学生理解和掌握鸽巢问题的解题方法。
六年级下册数学教案:数学广角——鸽巢问题(一)-人教新课标教学目标:知识与技能:1. 理解鸽巢原理,并能运用其解决实际问题。
2. 培养学生的逻辑思维能力和数学推理能力。
过程与方法:1. 通过实际操作和观察,让学生体验和理解鸽巢原理。
2. 通过小组合作,培养学生的团队合作能力。
情感态度价值观:1. 培养学生对数学的兴趣和好奇心。
2. 培养学生的逻辑思维能力和数学推理能力。
教学重点:1. 理解鸽巢原理。
2. 能运用鸽巢原理解决实际问题。
教学难点:1. 理解鸽巢原理的应用范围。
2. 解决实际问题时,如何运用鸽巢原理。
教学准备:1. 教师准备:多媒体课件,教具。
2. 学生准备:学习用品。
教学过程:一、导入(5分钟)教师通过一个有趣的故事引入鸽巢原理,激发学生的兴趣。
二、新课导入(10分钟)1. 教师引导学生思考:如果有更多的鸽子,但巢的数量不变,会发生什么?2. 学生回答后,教师总结并引入鸽巢原理。
三、探索发现(10分钟)1. 教师引导学生进行实际操作,让学生亲身体验鸽巢原理。
2. 学生通过观察和思考,发现鸽巢原理。
四、巩固练习(10分钟)1. 教师出示一些实际问题,让学生运用鸽巢原理解决。
2. 学生通过练习,巩固对鸽巢原理的理解和应用。
五、拓展延伸(10分钟)1. 教师出示一些更复杂的问题,让学生尝试解决。
2. 学生通过思考和讨论,解决这些问题。
六、总结反思(5分钟)1. 教师引导学生总结本节课的学习内容。
2. 学生分享自己的学习心得。
教学评价:1. 学生对鸽巢原理的理解和应用。
2. 学生在解决问题时的逻辑思维能力和数学推理能力。
教学延伸:1. 让学生尝试用鸽巢原理解决生活中的实际问题。
2. 引导学生探索鸽巢原理在其他数学问题中的应用。
通过本节课的学习,学生能理解鸽巢原理,并能运用其解决实际问题。
同时,学生的逻辑思维能力和数学推理能力也得到了培养。
在以上的教案中,需要重点关注的是“探索发现”环节。
这个环节是学生对鸽巢原理进行深入理解和应用的关键步骤,通过实际操作和观察,学生可以亲身体验鸽巢原理,从而更好地理解其内涵和应用。
人教版数学六年级下册鸽巢问题优秀教案(推荐3篇)人教版数学六年级下册鸽巢问题优秀教案【第1篇】一、教材分析“鸽巢问题”是六年级下册教学内容,“鸽巢原理”又称“抽屉原理”,是组合教学中最基本最简单的原理之一,灵活多变,应用广泛。
教学“鸽巢问题”,教材安排了两个例题。
这节课教学内容是例1。
例1把4支铅笔放进3个笔筒中的操作情景,介绍“鸽巢原理”的最基本形式。
初步接触“鸽巢问题”对于学生来说,有一定的难度。
教学时,应放手让学生自主探索。
教师要引导学生对教材上提供的两种方法进行比较,思考枚举的方法有什么优越性和局限性,假设的方法有什么独特的优点,使学生逐步学会运用一般性的数学方法来思考问题。
二、教学内容教材第68页例1及“做一做”第1、2题。
三、教学目标1.让学生经历“鸽巢问题”的探究过程,通过数学活动理解“鸽巢原理”,学会简单的“鸽巢问题”分析方法,并解决一些简单问题。
2.结合具体的实际问题,通过实验、观察、分析、归纳等数学活动使学生经历“鸽巢原理”的形成过程,体会和掌握逻辑推理思想和模型思想,提高解决实际问题的能力。
3.在主动参与数学活动的过程中,让学生感受到数学的魅力,提高学习数学的兴趣。
四、教学重难点教学重点:能用“鸽巢原理”解决最基本的相关实际问题。
教学难点:初步理解“鸽巢原理”,能口头表达推理过程。
五、教学准备一副扑克牌、课件等。
六、教学过程(一)引入新知1.抢凳子游戏。
2.抽扑克牌游戏。
教师:这类问题在数学上称为鸽巢问题(板书)。
因为52张扑克牌数量较大,为了方便研究,我们先来玩数量较小的抢凳子游戏。
【设计意图】从学生喜欢的“抢凳子”“魔术”入手,设置悬念,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
(二)探究新知1.教学例1。
(1)把3枝铅笔放进2个笔筒中。
想一想:可以怎样放?有几种不同的放法?(不考虑笔筒摆放顺序,学生可用笔盒当笔筒)摆一摆:先用来学具摆一摆,然后用自己喜欢的方法表示出来,如画一画,写一写。
第2课时鸽巢问题(2)工欲善其事,必先利其器。
《论语·卫灵公》原创不容易,【关注】店铺,不迷路!教学内容教科书P69例2,完成教科书P71“练习十三”中第2、3、6题。
教学目标1.经历“鸽巢原理”的探究过程,进一步了解“鸽巢原理”,会用“鸽巢原理”解决简单的实际问题。
2.经历从直观到抽象的探究过程,提高学生有根据、有条理地进行思考和推理的能力,渗透模型思想。
3.在探究过程中,经历将具体数学问题数学化的过程,培养学生的模型思维。
教学重点掌握“鸽巢原理”的一般形式,会运用除法算式来解决实际问题。
教学难点对“把多于kn(k是正整数)个物体任意分放入n个空抽屉,总有一个抽屉里至少有(k+1)个物体”形成一般性理解。
教学准备课件。
教学过程一、复习导入,揭示课题课件出示教科书P69“做一做”第2题。
【学情预设】预设1:我们把4把椅子看成4个“鸽巢”,把5个人放进4个“鸽巢”中,总有1个“鸽巢”里至少有2个人,即总有一把椅子上至少坐2人。
预设2:我用算式表示:5÷4=1……1,1+1=2,所以总有一把椅子上至少坐2人。
师:同学们研究了物体数比盛放物体的工具数多1的情况,得出了总有一个盛放物体的工具里至少放有两个物体。
“鸽巢原理”真是这样吗?今天我们继续来研究相关问题。
[板书课题:鸽巢问题教学笔记(2)]【设计意图】通过复习,帮助学生回忆例1学习的有关知识,并直接揭示课题,为新课学习作准备。
二、自主探究,建立模型1.课件出示教科书P69例2。
师:请你试着证明这个结论。
(学生用自己的方式证明。
)【学情预设】预设1:我随便放放看,一个抽屉1本,一个抽屉2本,一个抽屉4本。
可以证明总有一个抽屉里至少放进3本书。
预设2:我用假设法来思考,如果每个抽屉最多放2本,那么3个抽屉最多放6本,最后的1本书一定会放到3个抽屉中的任何一个,可以证明总有一个抽屉里至少放进3本书。
预设3:我用算式来证明:7÷3=2……1,2+1=3。
人教版数学六年级下册第27课鸽巢问题说课稿(推荐3篇) 人教版数学六年级下册第27课鸽巢问题说课稿【第1篇】《鸽巢问题》说课稿尊敬的各位评委老师,大家好!我是()号考生。
今天我说课的内容是《鸽巢问题》,下面我将就这个内容从以下几个方面进行阐述。
一、说教材1、《鸽巢问题》是人教版小学数学六年级下册第68页的内容,,是数与代数领域的重要知识点。
2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定了以下三点教学目标:①认知目标:经历“鸽巢问题”的探究过程,初步了解“抽屉原理”,会用“抽屉原理”解决简单的实际问题。
②能力目标:通过画图发展学生的类推能力,形成比较抽象的数学思维。
③情感目标:通过“鸽巢问题”的灵活应用感受数学的魅力。
3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:经历“鸽巢问题”的探究过程,初步了解“抽屉原理”。
难点是:理解“鸽巢问题”,并对一些简单实际问题加以“模型化”二、说教法学法有这样一句话:听见了,忘记了;看见了,记住了;体验了,理解了。
可见让学生感受数学、经历数学、体验数学是学生学习数学的最佳方式。
因此,这节课我采用的教法:引导法、观察法、讨论法;学法是:动手操作法,合作交流法。
三、说教学准备在教学过程中,我采用多媒体辅助教学,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、说教学过程新课标指出:“教学活动是师生积极参与、交往互动、共同发展的过程”本着这个教学理念,我设计了如下教学环节。
环节一、情境导入我给大家表演一个魔术。
一副牌,取出大小王,还剩52张牌,你们5人每人随意抽出一张,我知道至少有2张牌是同花色的。
问问同学是否相信?并做几组实验,验证这一猜想。
借助同学的疑问和兴趣,此时,我会点明:告知这个故事里蕴含着一个重要的数学原理,即抽屉原理,从而引出新知。
通过情境设置,从学生熟悉的生活情境和已有的知识基础出发,找准了新知识的起点,激发起学生对的比例的学习兴趣和求知欲。
人教版课标教材小学数学六年级下册《鸽巢问题》教学设计【教学内容】人教版课标教材小学数学六年级下册第五单元数学广角第68-70页。
【教学目标】1.通过操作、观察、比较、分析、推理、抽象概括,引导学生经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。
2.在探究的过程中,渗透模型思想,培养学生的推理和抽象思维能力。
3.使学生感受数学的魅力,培养学习的兴趣。
【教学重点】经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。
【教学难点】理解抽屉原理,并对一些简单的实际问题加以模型化。
【教具】磁铁球【学具】小圆片【教学过程】一、创设情境,生成问题。
同学们,喜欢玩游戏吗?(喜欢)那好,上课之前我们就先来玩个抢板凳的小游戏,愿意参加的同学请举手。
5名同学,4个凳子,我猜至少2人坐在同一个凳子上,你相信吗?我们来验证看看。
下面我宣布游戏规则:我喊开始,大家击掌,你们开始围着板凳同一个方向转起来,我喊停,你们要抢坐在板凳上,听明白游戏规则了吗?好,开始。
停。
同学们,经过验证,至少有2人坐在同一个板凳上。
这个结论是。
同学们,其实游戏很好玩,问题也很简单,对吗?不过这类问题,蕴含了一个有趣的数学原理,叫抽屉原理。
今天我们就一起来研究它。
(设计意图:这样设计使学生在生动活泼的数学活动中主动参与,主动思考,使学生的数学情感得到充分的发展。
从而达到智与情的完美结合,全面提高学生的整体素质。
)二、探索交流,解决问题。
1.出示课件:请大家看大屏幕。
为了方便研究,我们先来研究数量较小的同类问题。
师:4个小球放进3个抽屉里,不管怎么放,总有一个抽屉里面至少放2个小球。
这句话里哪个词语比较难理解?这里总有是什么意思?(总会有、一定有、肯定有。
)至少是什么意思?(最少、不低于、不少于、最底线。
)至少2个是什么意思?(最少有2个,不少于2个,包括2个或2个以上)现在谁能说说你对这句话理解。
生:不管怎么放,一定有一个抽屉放了2个或2个以上的小球。
数学广角——鸽巢问题》评课稿身临其境有感悟之乐,深切体会有受益之美!我今天与各位同仁共同聆听了两位老师的精彩示范课,受益匪浅。
说是评课,实在不敢当。
下面我就XXX老师执教的《鸽巢问题》这节课谈谈自己的感受。
鸽巢问题》也就是抽屉问题,是数学中的一个重要原理,其中蕴含了推理、模型、列举、假设等各种数学思想方法。
小学阶段的《鸽巢问题》内容比较简单,但要学生建立鸽巢原理的一般化模型就比较困难。
XXX的这节课给我的整体感受就是“美”,具体体现在以下几个方面:一、教师言行美。
XXX这是借班上课,在课堂上,她总以美的语言、美的行为、美的形象来影响教育学生,用无声的力量去感染、滋润这些陌生的孩子们,在孩子们的心灵深处起到了潜移默化的作用,促进了学生心理健康的发展,激发了学生渴求新知的欲望。
二、教学设计新。
教师把一节课的教学过程、课件制作、即时练、板书慨括都设计得非常巧妙、实用。
新课开始,教师就从大多数学生熟悉的扑克牌,采用他们喜爱的魔术表演导入,来吸引学生眼球,抓住学生的注意力,激发学生的研究兴趣,使原本枯燥的数学“活”了,让学生感到新知识既好玩又有意义,使学生有乐学要学之感。
整节课教学环节紧凑,实施过程是层层推进,循序渐进、扎实有效。
在学生的小组合作中,教师先从列举、数的组成角度分析、假设等方法来理解简单的鸽巢问题;再让学生用“平均分”的方法去探究并建立鸽巢原理的一般化模型,这样学生对新知识的理解就有了浓厚的兴趣,有助于发展学生的形象思维,从知识和方法上看都有很大的提升。
课上的即时练有层次,有坡度,首先使用简单的迁移推理方法,然后针对具体问题进行“数学化”的过程,这样有利于培养学生的思维能力,让学生在解决问题的过程中,让学生真正体验到数学的价值,感受到数学的魅力。
三、教学思路清。
课堂教学的成功与否,很大程度上是取决于老师的教学思路是否清晰。
XXX这节课在教学设计上科学合理,思路清晰,既尊重了学生的个性,又考虑了学生水平的差异,符合教学的规律;设计的教学环节是循序渐进,由浅入深,教师不仅给了学生充分展示的空间,还积极鼓励学生采用不同策略,从中优化解决方法,解决问题,学生在老师指导下,研究也是轻松自如,渐入佳境。
《鸽巢问题》评课稿《鸽巢问题》是人教版六年级数学下册数学广角《鸽巢问题》第一课时的例1。
虽然小学阶段的鸽巢原理的内容比较简单,但是学生建立鸽巢原理的一般化模型比较困难。
张老师《鸽巢问题》一课,给我整体的感觉是教师教得扎实,学生学得有效。
她能够根据新课改的要求努力做到,以学生为主体,以教师为主导,放手学生又有效调控课堂。
在教学过程中充分发挥了学生的主体性,张老师的这节课有以下亮点:1、课前游戏激发了学生的学习兴趣,引发了学生的求知欲,为突破重难点打好铺垫。
课前张老师通过“你放我猜”的游戏导入,非常贴切新课,吸引了同学们的眼球,激发了学生的学习兴趣。
当张老师说“你把3枝笔放入2个笔筒,我不用看就能猜到你们是怎么放的,你们相信吗?”学生由不信到信,但又半信半疑中,对今天所学知识有了强烈的学习兴趣,这其中一定蕴含着一个有趣的数学原理,引发了学生学习数学的求知欲,为学生学习鸽巢原理作了很好的铺垫。
而且通过这个游戏,是无形中交给学生记录数据的方法,为后面例一的第一次探究服务。
在这个环节老师还主要抓住两个关键词“总有”和“至少”,让学生对这两个词充分的理解,为后面的学习打好坚实的基础,如果这里两个词理解不到位,后面的活动几乎都是无效的。
2、用具体的操作,将抽象变为直观。
本节课张老师组织的教学结构紧凑,实施过程层层推进上的扎实有效。
本节课的重难点是让学生经历抽屉原理的建模过程,将具体操作过程转化成深刻的数学原理。
为了突破重难点,张老师让学生自己的动手实际操作,培养他们抽象、逻辑推理,建模等数学核心素养。
教师首先通过让学生小组合作动手操作把4枝笔放进3个笔筒里,不管怎么放总有一个笔筒里至少有2支铅笔。
学生用枚举法,把所有情况摆出来,运用直观的方式,发现并描述:理解简单的“鸽巢原理”。
这里通过具体的操作,列举所有的情况后,教师引导学生直接关注到每种分法中数量最多的笔筒,理解“总有一个笔筒里”以及“至少2支”。
让学生初步经历“数学证明”的过程,训练学生的逻辑思维能力。
本节课是数学广角内容,也叫“抽屉原理”。
实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。
反思如下:1.从学生喜欢的“游戏”入手,激发学生学习的兴趣和求知欲望,从而提出需要研究的数学问题。
这样设计使学生在生动、活泼的数学活动中主动参与、主动实践、主动思考,使学生的数学知识、数学能力、数学思想、数学情感得到充分的发展,从而达到动智与动情的完美结合,全面提高学生的整体素质。
2.引导学生在经历猜测、尝试、验证的过程中逐步从直观走向抽象。
在例1中针对实验的所有结果,在学生总结表征的基础上,进而提出“你还可以怎样想?”的问题,组织学生展开讨论交流。
我引导学生借助平均分即每个笔筒里先只放1支,这时学生看到还剩下1支铅笔,这1支铅笔不管放入其中的哪一个笔筒,这个笔筒都会有2支铅笔。
进一步引导学生加深对“至少有一个笔筒中有2支铅笔”的理解。
最后,组织学生进一步借助直观操作,讨论诸如“5支铅笔放进4个笔筒,不管怎么放,总有一个笔筒中至少有2支铅笔,为什么?”的问题,并不断改变数据(铅笔数比笔筒数多1),让学生继续思考,引导学生归纳得出一般性的结论:(+1)支铅笔放进个笔筒里,总有一个笔筒里至少放进2支铅笔。
注重让学生在观察、实验、猜想、验证等活动中,发展合情推理能力,培养学生能进行有条理的思考,能比较清楚地表达自己的思考过程与结果,经历与他人合作交流解决问题的过程。
本节课首先通过三个基础练习回顾了“鸽巢原理”,接下来的练习题是鸽巢问题的原理比较简单,但是在实际的题目当中,最主要的是帮助学生在不同的题目中找出该道题目的“鸽巢”是什么,然后要放到“鸽巢”里的东西是什么,只有帮助学生在解题时有了构建鸽巢问题模型的能力,才能使学生真正的理解鸽巢问题,以便更好地解决鸽巢问题。
鸽巢问题的出题方式都比较有趣,可以涉及生活的许多不同的方面。
在解决这些问题时可以让学生都动手,构解题的模型,用实物去解决问题,教师要提高学生的这种能力,才能让学生真正地学会学习,产生学习数学动力,掌握学习数学的方法。
六年级下册数学教案《第2课时鸽巢问题》人教版一. 教材分析《人教版六年级下册数学》第2课时鸽巢问题,是在学生已经学习了简单的排列组合知识的基础上进行授课的。
本节课的主要内容是让学生了解并理解鸽巢问题的实质,学会用列举法解决鸽巢问题,并能够运用所学的知识解决实际问题。
二. 学情分析六年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,但是对于鸽巢问题还是第一次接触,可能会存在一定的困难。
因此,在教学过程中,需要教师引导学生通过实际操作、交流讨论等方式,逐步理解并掌握鸽巢问题的解决方法。
三. 教学目标1.让学生了解并理解鸽巢问题的实质,学会用列举法解决鸽巢问题。
2.培养学生的逻辑思维能力和解决问题的能力。
3.让学生能够运用所学的知识解决实际问题。
四. 教学重难点1.重点:让学生了解并理解鸽巢问题的实质,学会用列举法解决鸽巢问题。
2.难点:让学生能够运用所学的知识解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生通过实际操作、交流讨论等方式,逐步理解并掌握鸽巢问题的解决方法。
六. 教学准备1.教师准备相关的案例和问题,用于引导学生进行思考和讨论。
2.准备黑板、粉笔等教学工具。
七. 教学过程导入(5分钟)教师通过向学生提出一个问题:“如果有5个鸽巢和6只鸽子,那么至少有一只鸽子会在哪个鸽巢里?”引发学生的思考,激发学生的学习兴趣。
呈现(10分钟)教师向学生呈现鸽巢问题的具体案例,让学生通过观察和分析,理解鸽巢问题的实质。
操练(10分钟)教师引导学生进行实际的操作,通过列举法解决鸽巢问题。
教师可以给出一些具体的例子,让学生进行模仿和练习。
巩固(10分钟)教师可以通过一些练习题,让学生进行巩固练习,检查学生对鸽巢问题的理解和掌握程度。
拓展(10分钟)教师可以给出一些实际的问题,让学生运用所学的知识进行解决,提高学生的解决问题的能力。
小结(5分钟)教师引导学生对所学的内容进行小结,加深学生对鸽巢问题的理解。
六年级数学科《数学广角执教者:陈秀引 2016年 4 月 28 日(第 11 周三第 2 节)上课班级:六1班设计理念:《鸽巢问题》即鸽巢原理又称抽屉原理,它是组合数学的一个基本原理,最先是由德国数学家狄利克雷明确提出来的,因此,也称为狄利克雷原理。
首先,用具体的操作,将抽象变为直观。
“总有一个筒至少放进2支笔”这句话对于学生而言,不仅说起来生涩拗口,而且抽象难以理解。
怎样让学生理解这句话呢?我觉得要让学生充分的操作,一在具体操作中理解“总有”和“至少”;二在操作中理解“平均分”是保证“至少”的最好方法。
通过操作,最直观地呈现“总有一个筒至少放进2支笔”这种现象,让学生理解这句话。
其次,充分发挥学生主动性,让学生在证明结论的过程中探究方法,总结规律。
学生是学习的主动者,特别是这种原理的初步认识,不应该是教师牵着学生去认识,而是创造条件,让学生自己去探索,发现。
所以我认为应该提出问题,让学生在具体的操作中来证明他们的结论是否正确,让学生初步经历“数学证明”的过程,逐步提高学生的逻辑思维能力。
再者,适当把握教学要求。
我们的教学不同奥数,因此在教学中不需要学生说理的严密性,也不需要学生确定过于抽象的“鸽巢”和“物体”。
教材分析:《鸽巢问题》这是一类与“存在性”有关的问题,如任意13名学生,一定存在两名学生,他们在同一个月过生日。
在这类问题中,只需要确定某个物体(或某个人)的存在就可以了,并不需要指出是哪个物体(或哪个人),也不需要说明通过什么方式把这个存在的物体(或人)找出来。
这类问题依据的理论,我们称之为“鸽巢问题”。
通过第一个例题教学,介绍了较简单的“鸽巢问题”:只要物体数比鸽巢数多,总有一个鸽巢至少放进2个物体。
它意图让学生发现这样的一种存在现象:不管怎样放,总有一个筒至少放进2支笔。
呈现两种思维方法:一是枚举法,罗列了摆放的所有情况。
二是假设法,用平均分的方法直接考虑“至少”的情况。
通过前一个例题的两个层次的探究,让学生理解“平均分”的方法能保证“至少”的情况,能用这种方法在简单的具体问题中解释证明。
人教版数学六年级下册鸽巢问题教案与反思推荐3篇〖人教版数学六年级下册鸽巢问题教案与反思第【1】篇〗教材分析:“鸽巢问题”是人教版小学数学六年级下册第五单元数学广角的内容。
“鸽巢问题”是一类较为抽象的数学问题,难度较大。
“鸽巢问题”实际上是解决生活中某一类数学问题的模型,本课的目的是让学生经历数学化的过程,初步建立“鸽巢问题”的一般模型思想。
教材以学生熟悉的和感兴趣的材料作为学习素材,提高学生学习的积极性,缓解学习难度带来的压力,例题的编排关注细节,循序渐进,培养学生的思维能力和模型思想。
学生分析:经过六年的学习,学生具备了基本的推理能力和语言表达能力,敢于积极的思考和大胆的表达,学生自学能力和小组合作能力较强。
教学目标:1.使学生理解“鸽巢问题”的基本形式,并能初步运用“鸽巢问题”解决相关的实际问题或解释相关的现象。
2.通过操作,观察,比较,说理等数学活动,使学生经历“鸽巢问题”的形成过程,体会和掌握逻辑推理思想和模型思想,提高数学学习的兴趣和信心。
教学重点:在操作中理解“鸽巢问题”的模型。
教学难点:理解并建立“鸽巢问题”的模型。
课前准备:扑克牌,课件。
教学过程一、精彩导入出示刘谦的照片师:同学们,你们见过他吗?做什么的?喜欢看他玩魔术吗?老师也会玩魔术,你信吗?这是一幅扑克牌,取出大王和小王以及花牌,还剩下52张牌。
我请5位同学上来给我当助手,每人随意抽一张,不要把你的牌给我看。
你们抽的牌中,至少有两张牌是同花色的?信吗?这到底是巧合呢?还是隐藏了什么数学奥秘呢?我们今天就一起来研究研究。
我们先从比较小的同类问题开始研究。
【设计意图】通过玩“扑克牌”游戏,让学生体验不管怎么抽,总有同一花色的牌至少有2张,激起学生认识上的兴趣,趁机抓住他们的求知欲,作为新课的切入点,激发了学生探究新知的热情,使学生积极主动地投入到新课的学习中。
二、用列举和假设法,初步感知模型结构1.理解“总有”和“至少”两个词的含义(1)师:把3支笔放到2个铅笔盒里,有哪些放法?师:“不管怎么放,总有一个铅笔盒里至少有2支笔”。
六年级数学下册教案:数学广角——鸽巢问题(人教版)教学目标1. 知识与技能:理解鸽巢原理,能够应用鸽巢原理解决实际问题。
2. 过程与方法:通过实际操作和思考,培养学生的逻辑思维能力和问题解决能力。
3. 情感态度价值观:激发学生对数学的兴趣,培养探究精神和合作意识。
教学重点与难点1. 重点:理解鸽巢原理,能够应用鸽巢原理解决实际问题。
2. 难点:在实际问题中灵活运用鸽巢原理。
教学准备1. 教学材料:课本、练习册、教学用具(如卡片、小球等)。
2. 教学环境:安静、有序的课堂环境,学生分小组进行讨论。
教学过程1. 导入(5分钟)- 通过一个简单的例子引入鸽巢原理:如果有10个苹果要放到9个篮子里,是否一定会有一个篮子里放多于1个苹果?- 引导学生思考并回答,激发学生的兴趣。
2. 探究(15分钟)- 将学生分成小组,每组发放一些卡片和小球,让学生通过实际操作来探究鸽巢原理。
- 学生通过实验,发现无论怎样放置,总会有至少一个小球和另一个小球在同一个篮子里。
- 引导学生总结出鸽巢原理:如果有n个物体要放到m个容器中,且n>m,那么至少有一个容器里会放多于1个物体。
3. 应用(10分钟)- 出示一些实际问题,让学生尝试应用鸽巢原理来解决。
- 例如:一个班级有30个学生,其中有18个学生喜欢打篮球,19个学生喜欢踢足球,至少有多少个学生既喜欢打篮球又喜欢踢足球?- 引导学生通过画图或列出表格来解决问题,培养学生的逻辑思维能力和问题解决能力。
4. 巩固(10分钟)- 让学生完成练习册上关于鸽巢原理的题目,巩固所学知识。
- 教师巡回指导,解答学生的疑问。
5. 总结(5分钟)- 让学生回顾本节课所学的内容,总结鸽巢原理的应用。
- 强调鸽巢原理在实际生活中的重要性,激发学生对数学的兴趣。
6. 作业(布置课后作业,让学生在家中继续练习,加深对鸽巢原理的理解。
)教学反思1. 在教学过程中,注意观察学生的反应,及时调整教学节奏和难度,确保学生能够跟上。
六年级下册数学教案:数学广角——鸽巢问题(人教版)教学目标1. 知识与技能:理解鸽巢原理,能够应用鸽巢原理解决实际问题。
2. 过程与方法:通过实际操作和小组讨论,培养学生观察、分析和解决问题的能力。
3. 情感态度价值观:激发学生对数学的兴趣,培养合作精神和探究精神。
教学重点1. 理解鸽巢原理:学生能够理解鸽巢原理的基本概念。
2. 应用鸽巢原理解决实际问题:学生能够将鸽巢原理应用于解决实际问题。
教学难点1. 鸽巢原理的理解:学生可能难以理解鸽巢原理的抽象概念。
2. 实际问题的应用:学生可能难以将鸽巢原理应用于解决实际问题。
教学准备1. 教学材料:教科书、练习册、教学卡片。
2. 教学工具:黑板、粉笔、多媒体设备。
教学过程1. 导入(5分钟)- 教师通过一个简单的例子引入鸽巢原理的概念。
- 学生分享他们对鸽巢原理的理解。
2. 新课导入(10分钟)- 教师通过讲解和演示,向学生详细介绍鸽巢原理。
- 学生通过小组讨论,探讨鸽巢原理的应用。
3. 实践应用(10分钟)- 学生分组,每组解决一个实际问题,应用鸽巢原理。
- 教师巡回指导,解答学生的疑问。
4. 总结与拓展(5分钟)- 教师总结鸽巢原理的概念和应用。
- 学生分享他们在实践应用中的体会和收获。
5. 作业布置(5分钟)- 教师布置相关的练习题,巩固学生对鸽巢原理的理解和应用。
教学反思1. 教学效果:观察学生在课堂上的参与程度和作业完成情况,评估学生对鸽巢原理的理解和应用能力。
2. 教学改进:根据学生的反馈和学习情况,调整教学方法和教学内容,以提高教学效果。
通过本节课的学习,学生应能够理解鸽巢原理,并能够应用鸽巢原理解决实际问题。
同时,通过小组合作和实际操作,培养学生的观察、分析和解决问题的能力。
在以上的教案中,需要重点关注的是“实践应用”环节。
这个环节是学生将理论知识转化为实际操作能力的关键步骤,也是检验学生对鸽巢原理理解程度的重要环节。
以下对“实践应用”环节进行详细的补充和说明。
人教版数学六年级下册鸽巢问题教案(推荐3篇)人教版数学六年级下册鸽巢问题教案【第1篇】《鸽巢问题(第1课时)》教学设计一、教学目标1.引导学生经历“鸽巢问题”的抽象过程,初步了解“鸽巢原理”并用其解决相关生活中的简单问题。
2.通过猜测、验证、观察、分析等数学活动,提高学生有根据有条理的进行思考和推理的能力。
3.经历从具体到抽象的探究过程,建立数学模型,培养“模型思想”。
4.灵活应用“鸽巢原理”,提高学生解决数学问题的能力和兴趣。
二、教学重点教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。
教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。
三、教学准备纸杯、吸管、多媒体课件。
四、教学过程(一)创设情境 揭示课题多媒体演示“二桃杀三士”的成语故事【设计意图】通过问题引发学生思考,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
(二)探索新知(1)初步感知。
把3个磁扣放到2个圆圈里,有哪些放法?(学生思考)师:“不管怎么放,总有一个圆圈里至少有2个磁扣”,这句话说得对吗?师:这句话里“总有” “至少”是什么意思?【设计意图】从学生喜欢的游戏入手,设置悬念,激发学生学习的兴趣和求知欲望,为原本枯燥的数学注入了活力,从而提出需要研究的数学问题。
教师:“总有一个圆圈里至少有2个磁扣”,这句话说得对吗?教师:这句话里“总有” “至少”是什么意思?【设计意图】此处设计注意了从最简单的数据开始摆放,有利于学生观察、理解,有利于调动所有的学生积极参与进来。
通过对“总有”“至少”的意思的单独说明,让学生更深入地理解“不管怎么放,总有一个圆圈里至少有2个磁扣”这句话。
(2)逐步深入 初建模型把4根吸管放到3个纸杯里,有哪些放法? 4人为一组动手试一试。
(学生思考—组内交流—汇报)【设计意图】通过操作,将抽象的结论具体化,学生得到了四种全部情况,从而获得了支持这个结论所有的实物图像表征,为后面的“说理”提供了有力的支撑。
鸽巢问题教学反思沈家河小学张家珍数学广角的教学是为了丰盛学生解决问题的方法和策略,使学生感受到数学的魅力。
本节课我让学生经历探究“鸽巢原理”的过程,初步了解了“鸽巢原理”,并能够应用于实际,学会思考数学问题的方法,培养学生的数学思维。
一、情境导入,初步感知兴趣是最佳的老师。
在导入新课时,我让四人玩“抢凳子”的游戏,这个游戏虽简单却能真实的反映“鸽巢原理”的本质。
通过小游戏,一下就抓住学生的注意力,有用地调动和激发学生的学习主动性和兴趣,让学生觉得这节课要探究的问题,好玩又有意义。
二、活动中恰当引导,建立模型采用列举法,让学生把4枝铅笔放入3个笔筒中的所有情况通过摆一摆、画一画或写一写等方式都列举出来,运用直观的方式,发现并描述,理解最简单的“鸽巢原理”即“铅笔数比笔筒数多1时,总有一个笔筒里至少有2枝笔”。
在例2的教学时,让学生借助直观操作发现列举法适用于数字较小时,有局限性,而假设法应用范围广,假设把书尽量多的“平均分”到各个抽屉,看每个抽屉能分到多少本书,剩下的书不管放到哪个抽屉里,总有一个抽屉比平均分得的本数多1本,可以用有余数的除法这一数学规律来表示。
大量例举之后,再引导学生总结归纳这一类“鸽巢原理”的大凡规律,让学生借助直观操作、观察、表达等方式,让学生经历从例外的角度认识鸽巢原理。
特别是通过学生归纳总结的规律:到底是“商+余数”还是“商+1”,引发学生的思维步步深入,并通过讨论和说理活动,使学生经历了一个初步的“数学证明”的过程,培养了学生的推理能力和初步的逻辑能力。
三、通过练习,解释应用合适设计形式多样化的练习,可以引起并保持学生的练习兴趣。
如“从扑克牌中取出两张王牌,在剩下的52张中任意抽出18张,至少有几张是同花色的。
任意抽出20张,至少有几张是数字相同的。
练习内容紧密联系生活,让学生体会数学来源于生活。
练习由易到难,层层递进,符合学生的认知规律。
在练习中,学生兴趣盎然,达到了预期的效果。