轨道结构
- 格式:doc
- 大小:420.00 KB
- 文档页数:23
轨道结构及其部件轨道组成及作用钢轨轨枕道床路基?轨道加强设备(主要有防爬设备、轨距杆、如防爬设备――枕轨间,在钢轨相对于轨枕爬行时,阻止轨爬行设备,现使用较少,扣件性能较好原因。
(爬行一般指钢轨相对轨枕的爬行)。
在线路曲线上安装轨撑和轨距杆,可提高钢轨横向稳定性,防止轨距扩大。
有碴轨道:弹性好,维修方便,但易于变无碴轨道(日本板式、德国雷达2000轨道;路基上差些,隧道、桥上好些):造价高,维修难、弹性差、噪声大。
--我国:城市轨道交通有时要求采用无碴轨道(如大连公铁混行),美观、污染少、结构--客运专线拟部分或全部采用无碴轨道。
轨道结构应该保证机车车辆在规定的最大载重和最高速度运行时,具有足够的强度、稳定性、(一)承受列车荷载――重复性、随机性很大的有关,与轴重有关,机车车辆状态、1.0m弦),P变为3P。
Interaction between动力关系、接触力学、蠕滑力胶新线路基沉陷严重靠增道碴来保证运营-不--维修的经常性和周期性。
)。
钢轨一般2~3系数。
(四)引导、支承列车,要求轨道有精确的几设计速度):焊接接头,不(弦)(凸出点要求)。
所有的高速铁路必须以轨道状态保障为前提发展。
--高速铁路使得轨道结构更为复杂了。
点--自学(前已叙述)属于同一等级的铁路,近期运量与远期的发展也有很大差别,所以应采用由轻到重,逐步加强的原则。
轨道类型的选择还应考虑经济性。
轨道类型标准愈高,一次投资和大修费用愈大,但经常维修和养护费用较少,使用寿命较长,也就是说,分摊至每单位运量的运营费用愈低。
因此,各种类型轨道的适应范围是以它的使用期限内大修投资成本和维修养护费用合计为最小作为依已颁布的新《铁路线路设计规范》,对旧的《线规》进行了修改,反映了铁路现代技术的需要,适应了市场的需求。
正线轨道类型见P4表1。
选型应按照由轻到重逐步加强的原则,根据近期调查的运量及旅客最高行车速度等运营条件《线规》指出,改建既有线时,特重型、重型轨道应采用无缝线路,有条件时宜采用跨区间无缝线路;次重型轨道采用无缝线路。
市政工程技术——轨道结构组成
1、轨道结构是由钢轨、轨枕、连接零件、道床、道岔和其他附属设备等组成的构筑物。
2、轨道结构应具有足够的强度、稳定性、耐久性和适量弹性。
3、轨道结构特点
①除了车辆结构采取减振措施,必要时修筑声屏障外,轨道也应采用相应的减振轨道结构②轨道维修作业的时间
很短,因而一般采用较强的轨道部件③要求钢轨与轨下基础有较高的绝缘性能。
④在正线半径小于400m的曲线地段,应采用全长淬火钢轨或耐磨钢轨。
钢轨铺设前应进行预弯,运营时钢轨应进行涂油以减少磨耗。
4、道床与轨枕
①长度大于1OOm的隧道内和隧道外U形结构地段及高架桥和大于50m的单体桥地段,宜采用短枕式或长枕式整体
道床。
②地面正线宜采用混凝土枕碎石道床(采用弹性不分开扣件)。
5、减振结构
①一般减振轨道结构可采用无缝线路、弹性分开式扣件和整体道床或碎石道床。
②线路中心距离住宅区、宾馆、机关等建筑物小于20m 及穿越地段,宜采用较高减振的轨道结构,即在一般减振轨道结构的基础上,采用轨道减振器扣件或弹性短枕式整体道床或其他较高减振轨道结构形式。
③线路中心距离医院、学校、音乐厅、精密仪器厂、文物保护和高级宾馆等建筑物小于20m及穿越地段,宜采用特殊减振轨道结构,即在一般减振轨道结构的基础上,采用浮置板整体道床或其他特殊减振轨道结构形式。
简述轨道结构的组成部分轨道结构是一个由多个组成部分构成的系统,它是支撑和维持列车正常运行的重要组成部分。
通常,轨道结构可分为轨道线路、轨枕、轨道板、道床、扣件以及其他设施等几个主要组成部分。
首先,轨道线路是轨道结构的骨架,负责承受列车的重量和运行引起的动荷载。
它通常由两条平行的轨道构成,分别为供行车的上行线和下行线。
这两条轨道间的距离被称为轨距,通常为1435毫米。
轨道线路的材料常用钢轨,其选择根据列车的类型和运行速度来确定。
其次,轨枕作为轨道线路上的支持结构,起到固定和支撑钢轨的作用。
轨枕通常由混凝土或木材制成,用于将轨道线路固定在道床上。
它能够减缓列车运行时的振动,保持轨道线路的稳定性。
轨道板则是连接轨道线路和轨枕的主要部分。
它是铁路轨道的承载面,通过安装在轨枕上,确保钢轨安全、稳定地固定。
轨道板通常由不锈钢或者镀锌钢板制成,具有耐磨、耐腐蚀和耐候性能。
道床是轨道结构的基础层,用于承受列车的重量并分散轨道上的荷载。
它通常由石木等材料构成,经过密实后形成一个坚固的支撑平台,确保轨道线路的稳定性和安全性。
扣件则起到固定轨道线路的作用,防止其在行车过程中移动或松动。
扣件通常由钢材或其他合金材料制成,通过螺栓或者特殊连接方式将轨道、轨枕、轨道板等固定在一起。
除了以上几个主要组成部分外,轨道结构还包括其他一些设施,如信号系统、绝缘节、轨道衬垫等。
信号系统用于指示列车运行情况,绝缘节用于隔离轨道的电流,轨道衬垫则可减少列车运行时的噪音和振动。
总的来说,轨道结构的各个组成部分共同协作,确保铁路的正常运行和旅客的安全。
同时,它们也在铁路发展中起到重要的引导作用,为轨道交通的现代化和高速化提供了技术保障。
简述轨道的基本组成
轨道由道床、轨枕、钢轨、联接零件、防爬设备及道岔组成。
1、钢轨是供列车车轮滚动行驶其上的铁路构建,主要功用如下:
承受车轮重压及磨损。
将车轮重压分散置钢轨下的轨枕。
承受不断反复的重压。
无论钢轨的重量如何,断面质量比例大致应为:头部42%、腰部21%、底部37%,且钢轨的高度应等于底部的宽度。
当钢轨头部受磨损达0.64厘米时,需立即抽换钢轨。
2、铁路道钉
铁路道钉的作用在于将钢轨扣接在轨枕上,并维持两轨间的固定轨距,最常用的铁路道钉有普通道钉、钩道钉和螺旋道钉品种。
3、轨道连接零件
轨条连接零件在于维持接缝处的强度及劲度,使轨条具有均匀的弹性。
一般以两块鱼尾版贴于钢轨两侧的腰部,而以附有弹簧垫圈的螺栓旋紧。
鱼尾版有60厘米和90厘米两种,使用60厘米版需旋以4螺栓,使用90厘米者需旋以6螺栓。
现代化轨道为彻底改善轨道连接零件的缺点,采取连续焊接的方式,以连续焊接钢轨取代钢轨接头,藉以减少轨道之维修工作,并可增加使用年限,此称为长焊钢轨。
4、轨撑
用以支撑钢轨外侧的腰部,以抵抗钢轨头部所受之侧向力,防止因钢轨倾斜而导致之道钉松动。
5、扣件
嵌入轨枕扣住钢轨底部之上的金属夹或柄,除可抵抗车轮垂直滚压及侧向推力外,也可防止钢轨纵向爬行。
6、防爬设备
装设于钢轨底下,以其一侧顶住轨枕(及垫钣),除用防止钢轨因车轮滚动所造成的纵向爬行,并可控制钢轨因温度升高而产生的延伸现象。
轨道的组成及各部分的作用轨道是许多交通工具(如轮船、火车、飞机和卫星等)运行的路径或轨迹。
不同交通工具的轨道结构不同,但它们都由一些基本组成部分组成。
本文将详细介绍轨道的组成部分及其作用。
1. 轨道基础(Trackbed):轨道基础是支撑轨道的基础结构,通常由混凝土或石材铺设而成。
它的主要作用是为轨道提供稳定的基础,防止轨道发生下沉和移动。
2. 轨道轨枕(Ties/Sleepers):轨道轨枕是放置在轨道基础上的一系列横向的木质或混凝土结构,它们起到固定轨道和支撑钢轨的作用。
轨枕可以缓冲轨道和列车之间的冲击,并将列车的负荷传递到轨道基础上,以确保轨道的稳定和安全运行。
3. 钢轨(Rails):钢轨是轨道的主要组成部分,由高强度的钢材制成。
它们通过连接件固定在轨道轨枕上,并提供运输工具(如火车)行驶的轨道路径。
钢轨需要具备较高的强度、硬度和耐磨性。
4. 轨道节(Rail Joints):轨道通常无法在整个轨道线路上连续铺设,会有一些间隔。
在这些间隔处,需要安装轨道节来连接不连续的钢轨。
轨道节可以保持轨道线路的连续性,并帮助传递列车的载荷和冲击力。
5. 铺底物(Ballast):铺底物是铺设在轨道轨枕下的松散物料,如碎石或细砂。
它的主要作用是为轨道提供稳定的支撑,吸收和分散列车的振动和冲击力。
铺底物还可以排水,防止水积聚并损坏轨道。
6.铺底物排水系统:为了确保轨道的稳定和安全运行,铺底物下方需要有排水系统。
这个系统由排水管道和排水口组成,可以将积水导流到合适的位置,防止水进入轨道和轨道基础,从而降低轨道的稳定性。
除了这些基本的组成部分,轨道系统还可以包括以下附属设施:7. 隧道(Tunnels):为了跨越山脉、河流或城市建筑物等障碍物,轨道系统通常需要修建隧道。
隧道提供了列车安全通过的通道,保护列车和乘客不受外界环境的影响。
8. 桥梁(Bridges):轨道系统通常需要跨越河流、峡谷或其他交通干道,这时需要建造桥梁来支撑轨道和列车。
● 1.轨道结构自上而下由钢轨,轨枕,碎石道床或混凝土整体道床等力学性能不同的材料组成,钢轨之间用接头联结零件联结或焊接,钢轨和轨枕用扣件联结,在站场还有用于列车转换轨道的道岔。
轨道的结构特点是组合性散体性● 2.运营条件用行车速度,轴重和运量三个参数●钢轨作用:为车轮提供连续,平顺和阻力最小的滚动表面,引导列车运行;直接承受车轮巨大压力,并分布传递到轨枕;在电气化铁路或自动闭塞区段,兼作轨道电路(需要有足够强度和耐磨性,较高抗疲劳强度和冲击韧性,一定弹性,足够光滑顶面,良好可焊性,高速铁路钢轨的高平直度)● 3.钢轨类型:75,60,50,43kg/m,我国钢轨标准长度有25和12.5m,长定尺钢轨长度有50和100m● 4.钢轨“工”字形,由轨头,轨腰,轨底组成● 5.钢轨机械联接形式按相对于轨枕位置:悬空式,承垫式。
按两股钢轨接头相对位置:相对式,相错式。
我国一般采用相对悬空式。
● 6.预留轨缝条件:(1)当轨温达到当地最高轨温时,轨缝应大于等于0,使轨端不受挤压力,以防温度压力太大而胀轨跑道。
(2)当轨温达到当地最低轨温时,轨缝应小于或等于构造轨缝,使接头螺栓不受剪力,以防止接头螺栓拉弯或拉断。
●7.轨枕:横向轨枕,纵向轨枕,短枕(按构造和铺设方法分)一般区间的普通轨枕,用于道岔上的岔枕,用于无砟桥梁上的桥枕(按使用目的)木枕,混凝土枕,钢枕(按材质)混凝土枕有I,II,III型●8.扣件:足够扣压力,适当弹性,一定的轨距和水平调整量●9.扣件功用:长期有效的保持钢轨与轨枕的可靠联结,阻止钢轨相对于轨枕移动,并能在动力作用下充分发挥其缓冲减振性能,延缓轨道残余变形积累●10.道床:轨枕的基础,用于固定轨枕位置,防止轨枕纵、横向位移并把所承受的压力分布传递给路基或桥隧建筑物,同时起到排水作用●11.道床功能:(1)承受来自轨枕压力并均匀的传递到路基面(2)提供轨道的纵、横向阻力,保持轨道的稳定(3)提供轨道弹性,减缓和吸收轮轨的冲击和振动(4)提供良好的排水性能,以提高路基的承载能力,减少基床病害(5)便于轨道养护维修作业,校正线路的平纵断面●12.无咋轨道是指采用混凝土,沥青混合料等整体基础取代散粒碎石道床的轨道结构:其轨枕本身由混凝土浇灌而成,而路基也不用碎石,钢轨,轨枕直接铺设在混凝土路基上●13.CRTS 1型板式无砟轨道啊:由60kg/m钢轨,WJ-2型扣件,预制轨道板,CA砂浆层,钢筋混凝土底座组成,底座采用C40钢筋混凝土,凸型挡台,现浇道床●14.CRTSII型板式无咋轨道(1)轨道板下填充层-CA砂浆层(2)极限位方式-凸形挡台(3)板间纵连方式-不纵连●15.CRTSIII型板式轨道(1)板下U形筋(2)自密实混凝土(3)底座凹槽的限位方式●16.CRTSI型双块式无咋轨道,现浇道床●17.CRTSII型双块式无咋轨道:埋入式无咋轨道,区别于I型采用的施工工艺是先浇筑道床板混凝土,然后通过振动法将轨枕压入到混凝土中,直至达到精确的位置并适应ZPW-2000轨道铁路●18.轨道的几何形位包括:轨距,水平,轨向,高低,轨底坡●19.轨距:钢轨顶面下16mm处两股钢轨头部作用边之间的最小距离●20.游间:当轮对的一个车轮轮缘紧贴一股钢轨作用边时,另一个车轮轮缘与另一股钢轨作用边之间便形成一定的间隙,称为…●游间:对列车平稳性和轨道平稳性有重要影响,如果游间太小,就会增加行车阻力和钢轨及车轮的磨损,甚至可能卡住车轮、挤翻钢轨或导致爬轨,危及行车安全;如果游间过大,车辆运行时蛇行运动幅度越大,横向加速度越大,作用于钢轨上横向力越大,动能损失越大,轮轨间撞击越大,加剧轮轨磨耗和轨道变形,严重时引起脱轨和行车安全●21.水平指的是线路左右两股钢轨顶面的相对高差,一般用道尺测量●22.钢轨水平误差危害:(1)水平差,在一段相当长的距离内,一股钢轨的轨顶水平,较另一股始终高(2)三角坑,一段不太长的距离内,先是左股钢轨高,后是右股钢轨高(或相反)两最大水平误差点之间距离不足18m,对行车安全危害大,延长不足18m距离内出现水平差超过4mm的三角坑,就会出现车轮不能全部正常压紧钢轨的情况,甚至爬上钢轨,引起脱轨事故。
轨道结构基本知识轨道结构是指电子在原子或分子中运动的空间,它描述了电子的位置和运动方式。
了解轨道结构对于理解化学反应和物质性质非常重要。
原子轨道是描述原子中电子可能存在的空间区域。
根据量子力学理论,电子的位置不能准确确定,只能通过概率密度来描述。
因此,原子轨道通常用波函数(ψ)来表示。
根据斯特恩-盖拉赫实验的结果,电子具有自旋,可以分为自旋向上和自旋向下。
据此,原子轨道可分为两种类型:自旋轨道和反自旋轨道。
自旋轨道是指自旋量子数为+1/2的电子所占据的轨道,一般用s、p、d、f等字母来表示。
自旋轨道通常在能级图中以不同的颜色表示,如s轨道为灰色,p轨道为红色,d轨道为黄色,f轨道为绿色。
自旋轨道的形状有所不同。
s轨道是球对称的,形状类似于一个球体;p轨道是双球体,分为三个不同的方向:px、py和pz;d轨道是双叶形,分为五个不同的方向:dxy、dyz、dz2、dxz和dx2-y2;f轨道的形状更加复杂,不同方向的轨道受不同程度的排斥。
除了自旋轨道,还存在着反自旋轨道。
反自旋轨道是指自旋量子数为-1/2的电子所占据的轨道。
反自旋轨道与自旋轨道具有相同的形状,但自旋方向相反。
根据泡利不相容原理,每个轨道最多只能容纳两个电子,且这两个电子必须具有相反的自旋。
因此,每个能级上的自旋轨道数目不能超过2n^2,其中n为该能级的主量子数。
轨道结构的分布顺序可以通过洪特规则来确定。
根据洪特规则,电子填充轨道的顺序是按照能量从低到高的顺序填充的,且每个轨道中必须先填满一个电子,然后再填充第二个电子。
一般来说,s轨道先填充,然后是p、d和f轨道。
了解轨道结构对于理解原子的化学反应和电子的行为非常重要。
通过轨道结构,我们可以预测原子的化合价、键长等性质,以及解释原子间的相互作用。
此外,轨道结构还可以用于解释分子的形状、键角以及反应机理等。
总之,轨道结构是描述电子位置和运动方式的基本概念。
它对于理解化学反应和物质性质至关重要,可以帮助我们预测和解释化学现象。
轨道结构认识总结
轨道结构是指在物理学中描述电子运动的概念。
根据量子力学的原理,电子在原子核周围运动时,并不是沿着确定的轨道运动,而是存在于一组能量特定的电子云中。
这些电子云称为原子轨道或分子轨道。
原子轨道可以分为主量子数、角量子数、磁量子数和自旋量子数等几个量子数来描述。
主量子数决定了电子所处的主能级,角量子数决定了电子的角动量大小,磁量子数决定了角动量在空间中的取向,而自旋量子数则描述了电子的自旋状态。
根据角量子数的不同取值,原子轨道分为 s、p、d 和 f 四种类型。
s轨道是最基本的轨道类型,其形状呈球对称,电子云在原子核周围均匀分布。
p轨道则呈现出两个相互垂直的云状区域,其中一个区域为正电荷,另一个区域为负电荷。
d和f轨道的形状则更加复杂,难以直观地描述。
原子轨道的能量大小是由主量子数和角量子数共同决定的。
主量子数越大,能量越高;角量子数越大,能量越低。
这也意味着,s轨道的能量最低,p轨道的能量次之,d和f轨道的能量更高。
原子轨道不仅仅存在于单个原子中,还可以在分子中形成分子轨道。
分子轨道由多个原子轨道的线性组合构成,其中电子的运动状态由整个分子的结构和电子间的相互作用决定。
根据分子轨道的对称性,可以将其分为σ轨道和π轨道。
σ轨道是沿着分子轴对称的轨道,π轨道则是垂直于分子轴的平面上的对称轨道。
总之,轨道结构是描述电子运动状态的重要概念,通过量子力学的原理和对称性的分析,我们可以深入了解原子和分子中电子的分布和行为,为进一步研究物质的性质和反应提供了理论基础。
第一节钢轨概述轨道是铁路的主要技术装备之一,是行车的基础。
轨道是由钢轨、轨枕、道床、道岔、联结零件及防爬设备组成。
它的的作用是引导机车车俩运行,直接承受由车轮传来的荷载,并把它传布给路基或桥隧建筑物。
轨道必须坚固稳定,并具有正确的几何形位,以确保机车车辆的安全运行。
钢轨是轨道的主要部件,用于引导机车车辆行驶,并将所承受的荷载传布于轨枕、道床及路基。
同时,为车轮的滚动提供阻力最小的接触面。
轨枕是轨道结构的重要部件,一般横向铺设在钢轨下的道床上,承受来在钢轨的压力,使之传布于道床。
同时,利用扣件有效地保持两股钢轨的相对位置。
轨枕主要有木枕和混凝土枕两类。
联结零件是联结钢轨或联结钢轨和轨枕的部件。
前者称接头联结零件,后者称中间联结零件(或扣件)。
其作用是有效地保证钢轨与钢轨或钢轨与轨枕间的可靠联结,尽可能地保持钢轨的连续性与整体性。
阻止钢轨相对于轨枕的纵横向移支,确保轨距正常,并在机车车辆的动力作用下,充分发挥缓冲减振性能,延缓线路残余变形的积累。
防爬设备能有效地防止钢轨与轨枕之间发生纵向的相对移动,制止钢轨爬行。
道床是轨枕的基础,在其上以规定的间隔布置一定数量的轨枕,用以增加轨道的弹性和纵、横向移动的阻力,并便于排水和校正轨道的平面和纵断面。
主要材料有碎石和筛选卵石等。
道岔是机车车辆从一股轨道转入或越过加一股轨道时必不可少的线路设备,在铁路站场布置中应用极为广泛。
它是轨道结构的重要组成部分。
一、钢轨的基本功能及基本要求钢轨是铁路轨道的主要组成部件。
它的功用在于引导机车车辆的车轮前进,承受车轮的巨大压力,并传递到轨枕上。
钢轨必须为车轮提供连续、平顺和阻力最小的滚动表面。
在电气化铁道或自动闭塞区段,钢轨还可兼做轨道电路之用。
钢轨的工作条件十分复杂。
车轮施加于钢轨上的作用力,其大小、方面和位置都具有很大的随机性。
这引起都有和机车车辆与轨道的相互作用有关。
除轮载外,气候及其他因素对钢轨受力也有影响,例如,轨温的变化可以使钢轨内部产生很大的温度力,特别是无缝线路上。
钢轨是作为一根支承在连续弹性基础或点支承上的无限长梁进行工作的。
它主要承受轮载作用下的弯曲应力,但是也必须有能力承担轮轨接触点上的接触应力,以及轨腰与轨头或轨底连接处可能产生的局部应力和温度变化作用下的温度应力。
在轮载和温度力的作用下,钢轨产生复杂的变形:压缩、伸长、弯曲、扭转、压溃、磨耗等。
为使列车能够安全、平稳和不间断地运行,钢轨除必须充分发挥上述诸功能外,还应保证在轮载和轨温变化作用下,应力和变形均不超过规定的限值。
这就要求钢轨具有足够的强度、韧性和耐磨性能。
机车依靠其动轮与钢轨顶面之间的摩擦作用牵引列车前进,这就要求钢轨顶面粗糙,使车轮与钢轨之间产生足够的摩擦力。
但对车辆来说,摩阻力太大会使行车阻力增加,这就又要求钢轨有一个光滑的滚动表面。
从这一矛盾的主要方面出发,钢轨仍应维持其光滑的表面,必要时,可用向轨面撒砂的方法提高机车动轮与钢轨之间的粘着力。
钢轨依靠本身的刚度抵抗轮载作用下的弹性弯曲,但是为了减轻车轮对钢轨的动力冲击作用,防止机车车辆步行部分及钢轨的折损,又要求钢轨具有必要的弹性。
车轮与钢轨之间接触面积很小,而来自车轮的的压力却十分巨大,为使钢轨不致被压陷或磨耗太快,钢轨应具有足够的硬度。
但硬度太高,钢轨又容易受冲击而折损,因此,要求钢轨具有一定的韧性。
根据经济合理原则,还应做到钢轨断面设计合理,价格低廉,轻重齐备,自成系列。
钢轨的类型,以每米大致质量kg表示。
目前,我国铁路的钢轨类型主要有75kg/m、60kg/m、50kg/m及43kg/m。
为完成上述功能,对钢轨质量、断面、材质三要素均提出了相应的要求。
随着高速、重载运输的要求,钢轨正向重型化发展,目前世界上最重型的钢轨已达到77.5kg/m,线路上逐步铺设75kg/m钢轨。
(二)钢轨断面设计原则作用于直线轨道钢轨上的力主要是竖直力,其结果是使钢轨挠曲。
因为钢轨被视为支承在连续弹性基础上的无限长梁,而梁抵抗挠曲的最佳断面形状为工字形。
因此,钢轨采用工字形断面,由轨头、轨腰和轨低三部分组成。
钢轨断面设计应满足下面要求。
钢轨断面图钢轨断面尺寸及特性钢轨头部是直接和车轮接触的部分,应有抵抗压溃和耐磨的能力,故轨头宜大而厚,并应具有和车轮踏面相适应的外形。
钢轨头部顶面应有足够的宽度,使在其上面滚动的车轮踏面和轨头顶面磨耗均匀。
钢轨头部顶面应轧制成隆起的圆弧,使由车轮传来的压力更能集中于轨轴。
钢轨被车轮长期滚压以后,顶面近似于200~300mm半径的圆弧。
因此,在我国铁路上,较轻型钢轨的项面,常轧制成一个半径为300mm的圆弧,而较重型钢轨的顶面,则用三个半径分别为80、300、80或80、500、80mm的复合圆弧组成。
为使钢轨有较大的承载能力和抗弯能力,钢轨腰部必须有足够的厚度和高度。
轨腰的两侧为曲线。
轨腰与钢轨头部及底部的连接,必须保证夹板能有足够的支承面。
钢轨底部直接支承在轨枕顶面上。
为保持钢轨稳定,轨底应有足够的宽度和厚度,并具有必要的刚度和抵抗锈蚀的能力。
钢轨的头部顶面宽(b)、轨腰厚(t)、轨身高(H)及轨底宽(B)是钢轨断面的四个主要参数。
钢轨高度应尽可能大一些,以保证有足够的惯性矩及断面系数来承受竖直轮载的动力作用。
但钢轨愈高,其在横向水平力作用下的稳定性愈差。
轨身高与轨底宽之间应有一个适当的比例。
一般要求轨高与轨底宽之比为1.15~1.20。
为使钢轨轧制冷却均匀,要求轨头、轨腰及轨底的面积分配,有一个较合适的比例。
(三)钢轨的材质和机械性能钢轨的材质和机械性能主要取决于钢轨的化学成分、物理力学性能、金属组织及热处理工艺。
钢轨钢的化学成分除含铁(Fe)外,还含有碳(C)、锰(Mn)、硅(Si)及磷(P)、硫(S)等元素。
碳对钢的性质影响最大。
提高钢的含碳量,其抗拉强度、耐磨性及硬度均迅速增加。
例如,当含碳量从0.35%增加为0.65%,可使平炉钢轨的耐磨性能提高60%。
但含碳量过高,也会使钢轨的伸长率、断面收缩率和冲击韧性显著下降。
因此,一般含碳量不超过0.82%。
锰可以提高钢的强度和韧性,去除有害的氧化铁和硫夹杂物,其含量一般为0.6%~1.0%。
锰含量超过1.2%者称中锰钢,其抗磨性能很高。
硅易与氧化合,故能去除钢中气泡,增加密度,使钢质密实细致。
在碳素钢中,硅含量一般为0.15%~0.30%.提高钢的含硅量也能提高钢轨的耐磨性能。
磷与硫在钢中均属有害成分。
磷过多(超过0.1%),使钢轨具有冷脆性,在冬季严寒地区,易突然断裂。
硫不溶于铁,不论含量多少均生成硫化铁,在985℃时,呈晶态结晶析出。
这种晶体性脆易溶,使金属在800~1200℃时发脆,在钢轨轧制或热加工过程中容易出现大量废品。
所以磷、硫的含量必须严格加以控制。
表中除U71、U74为碳素钢外,其他均为提高锰、硅含量或增加铜含量的中锰、高硅或含铜合金钢。
钢轨钢的物理力学性能包括强度极限σb、屈服极限σs、疲劳极限σr、伸长率δ5、断面收缩率ψ、冲击韧性(落锤试验)αh及硬度等。
这些指标对钢轨的承载能力、磨损、压溃、断裂和其他伤损有很大的影响。
钢轨接头处轮轨冲击力很大,为加强接头处钢轨的抗磨能力,在钢轨两端30~70mm范围内进行轨顶淬火,淬火深度达8-12 mm。
为提高钢轨耐磨和抗压性能,还应对钢轨进行全长淬火处理。
它是采用电感应加热的方法,以局部改变轨头钢的组织,从而提高钢轨的强度和韧性。
综前所述,为适应高速、重载的需要,钢轨要重型化,但钢轨重型化后,若不采用强化技术,又会带来其它的问题。
由于重型钢轨的刚度大,相应弯曲变形较小,列车车轮对钢轨的动力作用大部分作用在轮轨接触区,同时由于重型钢轨扭转中心接近轨底,轨尖产生的纵向正应力远远大于轨底的纵向正应力,从而加速了重型钢轨轨头病害的发展。
一般来讲,钢轨愈重,钢轨的伤损数量减少,但接触疲劳伤损总数的比例提高。
如前苏联实现钢轨重型化后,钢轨伤损总数量大量减少,但50kh/m、65kg/m、75kg/m钢轨的轨头伤损却分别占伤损总数的75%、80%、94%。
重型钢轨的强化有两种技术路线:一是钢轨合金化,它生产工艺简单,投资少,能源消耗少,钢轨整体强化,表层硬度均匀,可焊性好;二是碳素钢热处理,这种方法也可获得同样的高强度和表面硬度,同时韧性好,节省合金,适于大批量生产。
冶金学原理及冶金工业生产实践认为:如不改变钢种,单凭碳素钢热处理,很难再大幅度地提高强度,唯有微合金与热处理相结合,二者相辅相成,才可得到既有更高强度,并有相应韧性、硬度和可焊性的优质钢轨。
目前我国使用的钢轨,抗拉强度约为900Mpa。
还有部分PD2全长淬火轨、PD3高碳微钒轨,抗拉萨市强度在1000 Mpa以上。
PD3高碳微钒轨,抗拉强度在1300 Mpa,可延长钢轨使用寿命50%以上。
淬火轨对材质纯净度的要求比普通钢轨更高,如果不提高钢轨的纯净度,钢轨重型化及强韧化的优势也不能更好地发挥,因此材质纯净化是重型化和强韧化的基础。
例如钢轨中非金属夹杂、钢轨金属薄弱区的存在等,都是钢轨产生疲劳伤损的根源,以这些疲劳源为中心形成核伤,对行车安全构成威胁。
钢轨重型化、强韧化和纯净化应当有机地统一,才能获得最佳综合技术经济效益。
二、钢轨接头和轨缝我国钢轨标准长度为12.5m和25m两种,对于75kg/m钢轨只有25m长一种。
还有用于曲线内股的缩短轨,对于12.5m标准系列的缩短轨有短40mm、80mm、120mm三种;对于25m轨的有短40mm、80mm、160mm三种。
轨道上钢轨与钢轨之间用夹板和螺栓连接,称为钢轨接头。
接头处轮轨动力作用大,养护维修工作量大,接头是轨首结构的薄弱环节之一。
接头的联结形式按其相对于轨枕位置,可分为悬空式和承垫式两种。
按两股钢轨接头相互位置来分,可分为相对式和相错式两种。
我国一般采用相对悬空式,即两股钢轨接头左右对齐,同时位于两接头轨枕间。
钢轨接头按其性能又可分为普通接头、异形接头、绝缘接头、导电接头、伸缩接头、冻结接头等。
为适应钢轨热胀冷缩的需要,在钢轨接头处要预留轨缝。
预留轨缝应满足如下条件:1.当轨温达到当地最高轨温时,轨缝应大于或等于零,使轨端不受挤压力,以防温度压力太大而胀轨跑道;当轨温达到当地最低轨温时,轨缝应小于或等于构造轨逢,使接头螺栓不受剪力,以防止接头螺栓拉弯或拉断。
构造轨缝是指受钢轨、接头夹板及螺栓尺寸限制,在构造上能实现的轨端最大缝隙值。
《铁路线路维修规则》规定普通线路预留轨缝计算公式为:(1-1)式中a0——换轨或调整轨缝时的预留轨缝(mm)a——钢轨钢线膨胀系数a=0.0118(mm/mc)L——钢轨长度(mm)tz——当地中间轨温(C)其中Tmax、Tmin——当地历史最高、最低轨温t0——换轨或调整轨缝时的轨温,ag——构造轨缝,38kg/m、43kg/m、50kg/m、60kg/m、75kg/m钢轨均采用ag=18mm。