飞机结构原理-北航
- 格式:ppt
- 大小:5.06 MB
- 文档页数:115
飞机结构设计报告39051210齐士杰本学期上了2节飞机结构设计设计现场课,我从中学到了很多知识。
在现场课上我们近距离接触了许多飞机结构,下面我对我们接触的飞机结构进行简单的分析。
1右图所示为梁式翼面结构主要的构造特点是蒙皮很薄,常用轻质铝合金制作,纵向翼梁很强(有单梁、双梁或多梁等布置).纵向长桁较少且弱,梁缘条的剖面与长桁相比要大得多,当布置有一根纵梁时同时还要布置有一根以上的纵墙。
该型式的机翼通常不作为一个整体,而是分成左、右两个机翼,用几个梁、墙根部传集中载荷的对接接头与机身连接。
薄蒙皮梁式翼面结构常用于早期的低速飞机或现代农用飞机、运动飞机中,这些飞机的翼面结构高度较大,梁作为惟一传递总体弯矩的构件,在截面高度较大处布置较强的梁。
2右图所示为翼肋普通翼肋构造上的功用是维持机翼剖面所需的形状。
一般它与蒙皮、长桁相连,机翼受气动载荷时,它以自身平面内的刚度向蒙皮、长桁提供垂直方向的支持。
同时翼肋又沿周边支持在蒙皮和梁(或墙)的腹板上,在翼肋受载时,由蒙皮、腹板向翼肋提供各自平面内的支承剪流。
加强翼肋虽也有上述作用,但其主要是用于承受并传递自身平面内的较大的集中载荷或由于结构不连续(如大开口处)引起的附加载荷。
3右图所示为铝蜂窝蒙皮机身蒙皮在构造上的功用是构成机身的气动外形,并保持表面光滑,所以它承受局部空气动力。
蒙皮在机身总体受载中起很重要的作用。
它承受两个平面内的剪力和扭矩;同时和长桁等一起组成壁板承受两个平面内弯矩引起的轴力,只是随构造型式的不同,机身承弯时它的作用大小不同。
4右图所示为机体结构机身的主要功用是装载乘员、旅客、武器、货物和各种设备;还可将飞机的其它部件如尾翼、机翼及发动机等连接成一个整体。
桁梁式机身结构特点是有几根(如四根)桁梁,桁梁的截面面积很大。
在这类机身结构上长桁的数量较少而且较弱,甚至长桁可以不连续。
蒙皮较薄。
这种结构的机身,由弯曲引起的轴向力主要由桁梁承受,蒙皮和长桁只承受很小部分的轴力。
北航航空发动机原理总结航空发动机作为航空器的心脏,对航空器的性能和安全起着举足轻重的作用。
北航作为中国航空工业的重要支柱,研制了众多优秀的航空发动机,为航空事业的发展做出了巨大贡献。
本文将对北航航空发动机的原理进行总结,以帮助读者更好地了解和学习航空发动机的工作原理。
一、航空发动机的分类航空发动机主要分为活塞发动机和涡轮发动机两大类。
活塞发动机是早期航空发动机的代表,其工作原理类似于内燃机,通过往复运动的活塞进行工作;涡轮发动机则是现代航空发动机的主流,其利用喷气推力来驱动飞机。
二、航空发动机的工作原理1. 活塞发动机的工作原理活塞发动机主要由气缸、活塞、曲轴、点火装置等组成。
其工作原理可以分为四个冷态工作过程,包括进气、压缩、燃烧和排气。
首先,气缸内的活塞从上往下运动,通过进气门吸入混合气;然后,活塞往上移动时将混合气压缩;接下来是燃烧过程,当活塞压缩到极限位置时,点火装置产生火花引燃混合气,形成爆震;最后,活塞再次向下运动,将燃烧产生的废气通过排气门排出气缸。
2. 涡轮发动机的工作原理涡轮发动机主要由压气机、燃烧室和涡轮三部分组成。
其工作原理可以分为压气机压缩气体、燃烧室燃烧和涡轮驱动压缩空气三个过程。
首先,进气口引入空气,经过压气机进行压缩。
接下来,压缩后的空气进入燃烧室,在燃烧室中与燃料混合燃烧,产生高温高压气体。
最后,高温高压气体作用于涡轮叶片,通过涡轮的驱动产生推力,推动飞机向前飞行。
三、北航航空发动机的创新北航航空发动机在航空发动机研制领域具有丰富的经验和优势,通过不断的创新,取得了多项重要成果。
1. 碳复合材料的应用北航航空发动机在发动机部件的制造中广泛应用了碳复合材料。
碳复合材料具有重量轻、强度高、耐腐蚀等优点,可以有效提高发动机的性能和寿命。
2. 先进的火箭燃料喷射技术北航航空发动机采用了先进的火箭燃料喷射技术,通过提高燃料的燃烧效率,提高发动机的推力和热效率,使飞机飞行更加安全和高效。
飞机结构原理
飞机结构原理介绍
飞机是一种能够在空中飞行的交通工具,其结构原理是实现飞行的基础。
飞机的结构原理主要包括以下几个方面:
1. 翼面结构:飞机翼面是飞机最重要的结构之一,它能够产生升力并支撑飞机的重量。
翼面通常由翼根、翼尖、翼肋、翼面板等部分组成,通过各部件的结合形成整体结构。
一般而言,飞机的翼面采用弯曲的形状,这样可以增加升力并减小阻力。
2. 机身结构:飞机的机身是飞机的主要承载结构之一,它连接并支撑起飞机的各个重要部件,如机翼、发动机、机尾等。
机身通常由铝合金、复合材料等构成,具有较强的刚性和轻量化的特点。
飞机的机身结构要求具有足够的强度和刚度,以便在飞行过程中承受各种力的作用。
3. 发动机结构:发动机是飞机的动力来源,其结构原理是实现发动机正常工作的基础。
发动机通常由机身、进气道、燃烧室、喷口等部分组成,机身用于承载和固定发动机各个部件,进气道用于引入空气供给燃烧室燃烧,燃烧室用于燃烧燃料产生高温高压的气体,喷口用于排出燃烧产生的高速气流。
4. 起落架结构:起落架是飞机在地面行驶和起降过程中支撑飞机重量和减震的重要部件。
起落架一般由主起落架和前起落架组成,主起落架用于支撑飞机的重量,前起落架用于控制飞机的转向。
起落架结构需要具备足够的强度和稳定性,以应对飞机在地面行驶和起降时的复杂工况。
综上所述,飞机的结构原理是实现飞行的基础,包括翼面结构、机身结构、发动机结构和起落架结构等方面。
这些结构通过各自的设计和组合,使得飞机能够在空中自由飞行,并实现人类的空中旅行和运输。
航空航天行业了解航空器的构造和飞行原理航空航天行业是现代科技的重要组成部分,而了解航空器的构造和飞行原理是理解该行业的基础知识。
本文将详细介绍航空器的构造以及常见的飞行原理。
一、航空器的构造航空器一般由以下几个主要部分构成:1. 机身:机身是航空器的主要结构,承载起飞行所需的各种部件和设备。
通常由铝合金、复合材料等轻质材料制造,以减轻整体重量。
2. 机翼:机翼是航空器上方的水平扩张部分,用于提供升力,使得航空器能够在空中飞行。
机翼多采用翼型设计,其上有襟翼、副翼等辅助部分,以增加机动性能。
3. 发动机:发动机是航空器的动力来源,可以是喷气式发动机、螺旋桨发动机等。
通过燃烧燃料产生的推力,使航空器能够前进和保持飞行。
4. 尾翼:尾翼包括水平尾翼和垂直尾翼,位于航空器后部。
水平尾翼主要用于控制飞机的俯仰运动,而垂直尾翼则用于控制飞机的航向稳定。
5. 起落架:起落架是航空器的支撑装置,在起飞和降落时用于支撑机身。
起落架一般由多个轮子和悬挂系统组成,以便航空器在地面平稳移动。
二、飞行原理航空器的飞行原理主要包括空气动力学和控制原理。
其中,空气动力学涉及到升力和阻力的生成和控制,而控制原理涉及到飞行器的操纵和稳定。
1. 空气动力学升力是指航空器在飞行中产生的向上的力,使其能够克服重力并保持在空中飞行。
升力主要由机翼产生,通过使机翼上表面的气流速度比下表面的气流速度更大,产生气流压差从而形成升力。
阻力是指航空器在飞行中所受到的阻碍运动的力,它主要由空气阻力和涡轮阻力组成。
空气阻力是航空器飞行速度快时所受到的阻力,而涡轮阻力是由于航空器与空气接触面积增大所产生的阻力。
2. 控制原理航空器的操纵和稳定主要通过控制尾翼和副翼来实现。
在飞行中,通过改变水平尾翼和垂直尾翼的角度,可以控制航空器的俯仰运动和航向。
另外,航空器还可以通过改变副翼的角度来实现滚转控制,以调整飞机的横滚姿态。
通过同时操作这些控制面,飞行员可以实现航空器在空中的各种动作,如上升、下降、转弯等。
北航航空发动机原理大作业航空发动机是飞机最核心的部件之一,它负责提供动力以便飞机能够在空中顺利飞行。
北航航空发动机原理大作业旨在深入研究航空发动机的工作原理,包括结构、工作循环、燃烧过程以及相关技术等方面。
本文将围绕这些内容进行详细的阐述。
航空发动机的结构一般包括压缩机、燃烧室、涡轮和喷管等组成部分。
首先,压缩机负责将来自外界的空气加压,使其增加密度,为燃烧提供充足的氧气。
然后,在燃烧室中燃烧燃料与氧气的混合物,产生高温高压的燃气。
接着,燃气驱动涡轮旋转,通过轴向流动推动涡轮转子。
最后,高速的喷气流通过喷管喷出,产生向后的推力,推动飞机向前飞行。
航空发动机的工作循环一般采用布雷顿循环。
该循环由四个过程组成:进气、压缩、燃烧和排气。
在进气过程中,空气被压缩机压缩,增加了密度和温度。
接着,燃料被喷射到燃烧室中,与压缩空气混合燃烧,释放出大量的热能。
然后,燃烧产生的高温高压气体驱动涡轮旋转,将一部分动能转化为机械功,用于驱动压缩机和其他系统工作。
最后,燃烧产物通过喷口排出,形成喷气流,产生推力。
航空发动机的燃烧过程是发动机组成中较为重要的一个环节。
燃烧室是燃烧过程的主要场所,其中燃料与空气发生充分混合和燃烧。
燃烧的质量和稳定性直接关系到发动机的性能和效率。
为了实现燃烧的充分,燃烧室通常具有特殊的结构设计,如喷嘴、涡流室和火花塞等。
喷嘴的作用是将燃料细小雾化,并与空气充分混合,以促进燃烧。
涡流室则通过旋转气流的方式,使燃料和氧气更好地混合,并提高燃烧效率。
火花塞则在适当的时间点产生火花,引燃燃料,使燃烧开始。
航空发动机还涉及到多种相关技术。
例如,超音速进气技术可以通过进气道中的激波冷却进气空气并提高压力,提高发动机的性能。
燃烧室冷却技术可以通过将冷却剂喷射到燃烧室壁面,降低燃烧室温度,延长发动机寿命。
另外,航空发动机还涉及到调节和控制系统,如油门控制、温度控制和故障监测等,以确保发动机的正常运行和安全性。
飞机的构造原理是什么
飞机的构造原理可以概括为以下几个方面:
一、机翼产生升力
飞机机翼为对称的气动布局,翼型截面具有特殊轮廓。
当迎风时,上下翼面会产生不同的空气流动状态,根据伯努利阻力差原理,在机翼上方产生下压,下方产生上压,形成总的向上升力。
二、尾翼保持平衡
尾翼位于机身后方,包括垂直安定面和水平安定面。
它们可以感受到机身的运动状态变化并产生反作用力,帮助飞机保持平衡和稳定飞行。
三、机身载荷支撑
机身承载驾驶舱、载荷、燃料等,要具有足够的强度和刚性。
机身使用波纹管、桁架和蒙皮构造,能够抵受飞行载荷。
四、起落架承重起降
起落架包括两侧主着落架和前着落架,能够支撑飞机起降与地面滑行。
起落架能
够收放,减少空气阻力。
五、推进系统提供推力
螺旋桨飞机使用活塞发动机和螺旋桨作为推进系统。
喷气飞机使用涡轮喷气发动机直接产生推力。
六、飞行控制系统
通过升降舵、方向舵的调整来控制飞机,利用各控制面产生的反作用力进行飞行操纵。
飞机根据这些基本构造原理实现升力产生、平衡控制、载荷运输等功能,能够完成飞行任务。
这些是飞机构造设计的基本原理。
北航航空发动机原理总结航空发动机是一种将燃料燃烧产生的高温高压气体转化为推力的设备,是飞机飞行的关键组件之一。
北航航空发动机作为中国国内领先的航空发动机制造商,其发动机原理总结具有重要的意义。
本文将对北航航空发动机的原理进行总结和分析。
一、航空发动机基本原理航空发动机的基本原理是利用内燃机的燃烧产生的高温高压气体,通过喷射式原则将其排出,产生反向的推力。
航空发动机主要由气体压缩机、燃烧室和涡轮机组成。
气体压缩机通过叶片将外界空气进行压缩,增加其密度和压力。
随后,燃料被喷入燃烧室中,与压缩空气混合燃烧,产生高温高压气体。
最后,高温高压气体通过涡轮机的叶片驱动压缩机,实现循环自动供能的过程。
航空发动机的原理可概括为:压缩气体、气体燃烧、喷出气体,三个主要步骤。
二、北航航空发动机的特点北航航空发动机在国内外航空发动机制造领域具有重要的地位。
其主要特点体现在以下几个方面:1. 高效性:北航航空发动机通过不断优化设计,提高热效率、机械效率,实现发动机轻量化和节能减排。
2. 可靠性:北航航空发动机在设计中注重结构强度和耐久性,提高了发动机的可靠性和寿命。
3. 先进技术:北航航空发动机采用了先进的喷油技术、热管理技术等,提高了发动机的性能和可控性。
4. 环保性:北航航空发动机采用了先进的排放控制技术,减少了对环境的污染,符合国际航空发动机排放标准。
三、北航航空发动机的发展趋势未来航空发动机的发展趋势,将是朝着高效、低排放、低噪音、轻量化和可重复使用等方向发展。
在此趋势下,北航航空发动机有以下几个发展方向:1. 全球市场:北航航空发动机将加强与国际航空公司的合作,进一步拓展全球市场份额。
2. 新材料应用:北航航空发动机将加强对新材料的研发和应用,提高发动机的强度、耐久性和轻量化程度。
3. 绿色技术研究:北航航空发动机将加大对环保技术的研究力度,减少对环境的污染和资源消耗。
4. 智能化发展:北航航空发动机将注重智能化技术的研发和应用,提高发动机的控制性和自动化程度。