2017八年级数学最简二次根式1.doc
- 格式:doc
- 大小:191.20 KB
- 文档页数:4
最简二次根式举例
二次根式是一种数学表达式,它由一个二次项和一个常数项组成,可以用来描述一个二次函数的行为。
二次根式的一般形式为:ax²+bx+c=0,其中a、b、c是常数,x是未知数。
二次根式的最简形式是把二次项的系数a变为1,即ax²+bx+c=0变为
x²+bx+c=0。
例如,2x²+5x+3=0的最简形式是x²+5x+3=0。
二次根式的最简形式有助于我们更好地理解二次函数的行为,并且可以更容易地求解二次根式的根。
例如,x²+5x+3=0的根可以用公式x=-b±√b²-4ac/2a来求解,其中a=1,b=5,c=3,因此x=-5±√25-4×1×3/2×1= -5±√7/2,即x=-
5±√7/2或x=-2.5±√7/2。
二次根式的最简形式也可以用来求解复杂的二次函数。
例如,4x²+7x+3=0的最简形式是x²+7x+3=0,其解为x=-7±√49-4×1×3/2×1= -7±√7/2,即x=-
7±√7/2或x=-3.5±√7/2。
从上面的例子可以看出,二次根式的最简形式可以帮助我们更容易地求解二次根式的根,从而更好地理解二次函数的行为。
八年级数学最简二次根式最简二次根式(说课)作用与地位作为二次根式乘、除法与加减法的过渡桥梁的”最简二次根式”这一节课在本章中起着承上启下的作用,必须先复习与巩固已学过的乘、除法知识。
另一方面,本小节的内容,显然是下一小节”二次根式的加减法”的基础,因为加减法就是在识别”同类的”最简二次根式的前提下进行的。
目的与要求本课的内容比较单纯,就是要求学生掌握化简一个二次根式成最简二次根式的方法。
当然,这首先需要知道什幺是最简二次根式(即本节课的重点),让学生了解最简二次根式的概念,不在于能否背出定义,关键还是遇到实际式子能够加以判断(也就是本节课的难点),所以应在练习中让学生熟悉这个概念。
我采用启发式教学并借助实物投影以扩充教学容量。
背景在实际问题中,遇到二次根式,一般应把它先化简,这会给解决问题带来方便,把二次根式化简,至少有以下三种用途:(1)、把一个二次根式化简后,可避免因误差积累而造成的结果不准确。
(2)、把两个二次根式化简后,它们的乘除法运算可能变得简单,例如:;15 ÷2===。
(3)、把一组二次根式化简成最简二次根式后,可以对同类二次根式进行加法、减法运算(这将在下一小节中学习).学生们在前面已经看到了这些用途,实际上,看到这些用途是第二位的,最重要的是从这些用途中领会把复杂化为简单,把未知化为已知,从而使问题得以解决的思想方法。
教学过程分成以下几个步骤一、提出问题:(投影显示)两个问题首先是对二次根式乘、除法的复习;其次通过两种解法对比得出将繁杂的二次根式化为简单的二次根式后,使解决问题更加容易。
二、问题解决:依照学生的认知规律引导学生从从简单的问题中发现规律,突出本节课的重点。
并由此引出新课”最简二次根式”,达到本课的第一个教学目的(理解最简二次根式的定义)。
对于最简二次根式的定义以开门见山的方式直接给出。
三、解决问题:接着通过训练将最简二次根式的定义加以熟练并总结出化简最简二次根式的步骤,从而达到本课的第二个教学目的(会将不是最简二次根式的根式化成最简二次根式)。
16.2 (1)最简二次根式教学目标:1、经历最简二次根式概念的形成过程,理解最简二次根式的概念,2、通过化简二次根式,体会研究二次根式的方法.3、会判别最简二次根式,会化最简二次根式.教学重点和难点:会判别最简二次根式,会把不是最简的二次根式化为最简二次根式. 教学过程:一、课前练习1、化简下列二次根式2、化简下列二次根式3、观察:下列化简后的二次根式里的被开方数有什么共同特征:二、新课探索1、引导学生归纳:1) 被开方数中各因式的指数都为1;2) 被开方数不含分母.师生共同总结:同时符合....上述两个条件的二次根式,叫做最简二次根式. 举例说明:如ab 3、y x +231、)(622b a m +等都是最简二次根式.2、例题分析:例1:判断下列二次根式是不是最简二次根式:1)35a2)a 42 3)324x 4))1()12(32-≥++a a a(课件演示解题格式)如果以个二次根式不是最简二次根式,那么可以利用上一节化简二次根式的方法,把它化简成最简二次根式.将上式中不是最简二次根式的化简.例2:将下列二次根式化成最简二次根式:1))0(423>y y x 2))0())((22≥≥+-b a b a b a3))0(>>-+n m n m nm 4(分母中指数为奇数的,则分子分母同时再乘它一次,凑成偶次再开方)(注意解题格式,先保留绝对值符号,然后判断范围再化简)三、课堂练习 书P7-8 1-3四、课堂小结:(1)掌握判断最简二次根式的依据:二次根式里被开方数中各因式的指数都为1且被开方数不含分母.(2)化简二次根式时,要特别注意判断根号内字母的取值范围,从而正确化简.五、作业布置:练习册习题16.2(1) ;复习同类项六、拓展练习:教学反思:。
最简二次根式的定义。
全文共四篇示例,供读者参考第一篇示例:最简二次根式是指根号下面的被开方数为正数,且不能再约简的二次根式。
它是代数学中一个非常重要的概念,常常出现在高中数学的教学内容中。
二次根式在数学中的引入,是为了解决方程x^2=a 中的数a 是不是负数时的问题。
在实数范围内,如果a 大于等于0,那么方程x^2=a 有两个不同的实根;如果a 小于0,那么方程就没有实数根了。
为了能够对所有的实数进行开平方运算,数学家就引入了二次根式的概念。
最简二次根式就是在二次根式中的一种特殊形式,它只包含一个根号和一个不可约的正整数。
也就是说,如果一个二次根式不能再约简,那么它就是最简二次根式。
最简二次根式的一般形式为\sqrt{n} ,其中n 是一个正整数,且n 不含有平方因子,即n 的素因数分解中没有一个数出现了两次及以上。
举例来说,\sqrt{2} 、\sqrt{3} 、\sqrt{5} 都是最简二次根式,因为它们没有共同的公因数,无法再约简;而\sqrt{4} 、\sqrt{6} 、\sqrt{8} 就不是最简二次根式,因为它们的因数中有平方因子。
最简二次根式在数学中的运算和化简中有着很重要的作用。
在代数中,我们常常需要对二次根式进行加减乘除等运算,而如果能够将二次根式化为最简形式,就可以简化运算过程,减少出错的可能性。
最简二次根式的化简规则是:提取出平方因数后,就无法再继续简化了。
对于\sqrt{4m^2} ,我们可以提取出m,得到m\times \sqrt{4} = 2m ,但不能再将其简化。
最简二次根式在数学中的应用非常广泛,不仅在代数中常见,也会在几何、物理等领域中不断出现。
掌握好最简二次根式的定义和化简方法,可以帮助我们更好地理解数学知识,提高解题的速度和准确性。
在学习最简二次根式的过程中,我们还需要注意以下几点:要能够区分最简二次根式和一般的二次根式;要掌握最简二次根式的化简规则;要多做练习,加深对最简二次根式的理解和运用能力。
人教版八年级下册数学二次根式二次根式是指形如$\sqrt{a}$的式子,其中$a\geq 0$。
最简二次根式是指被开方数的因数是整数且因式是整式(分母中不含根号),同时被开方数中含能开得尽方的因数或因式的二次根式。
如果几个二次根式化成最简二次根式后,被开方数相同,那么这几个二次根式就是同类二次根式。
二次根式有一些性质,比如$\sqrt{a}\cdot\sqrt{b}=\sqrt{ab}$(其中$a\geq 0$,$b\geq 0$),以及$\sqrt{a}=\sqrt{|a|}$(其中$a$为任意实数)。
分母有理化是指将分母中的根号化去,有理化因式则是指两个含有二次根式的代数式相乘,若它们的积不含二次根式,则称这两个代数式互为有理化因式。
在解题时,需要掌握二次根式的计算和化简求值,以及二次根式的运算法则,包括加减乘除四则运算和分母有理化。
在选择题中,常考查最简二次根式、同类二次根式的概念,而在中等难度的解答题中,则常考查二次根式的计算和化简求值。
在计算或化简求值时,可以使用因式的外移和内移的方法,将被开方数中的因式移到根号外面或根号里面。
11.当$x=-2$时,代数式$5x^2-3x-1$的值是多少?1.计算:$(3-2)+\frac{1}{3}+4\cos30^\circ-|-12|$。
2.在进行二次根式化简时,有时会遇到如下式子:$\frac{\sqrt{5}-1}{2}$,其实我们还可以将其进一步化简:begin{aligned} \frac{\sqrt{5}-1}{2} &= \frac{\sqrt{5}-1}{2} \cdot \frac{\sqrt{5}+1}{\sqrt{5}+1} \\ &= \frac{5-1}{4} \\ &=\frac{3}{2}-\frac{1}{2} \end{aligned}$$以上这种化简的步骤叫做分母有理化。
还可以用以下方法化简:begin{aligned} \frac{3+1}{\sqrt{2^2\cdot 3^2}} &=\frac{3+1}{2\sqrt{3}} \\ &= \frac{1}{\sqrt{3}}-\frac{1}{2\sqrt{3}} \\ &= \frac{\sqrt{3}}{3}-\frac{\sqrt{3}}{6} \\ &= \frac{\sqrt{3}}{6} \end{aligned}$$1) 请用不同的方法化简$\frac{2}{5+\sqrt{3}}$。
[文件] sxc2dja0024.doc[科目] 数学[年级] 初二[章节][关键词] 最简二次根式/二次根式[标题] 最简二次根式(1)[内容]最简二次根式(1)教学目标1.使学生理解最简二次根式的概念;2.掌握把二次根式化为最简二次根式的方法;教学重点和难点重点:化二次根式为最简二次根式的方法.难点:最简二次根式概念的理解.教学过程设计一、导入新课计算:(1)3a· 6a2; (2)8a5÷6a2.解 (1)3a·6a2=3a×6a2=3×3×2a×a2=32·a2·2a=3a 2a;(2)8a5÷6a2=8a56a2=4a33=4a2·a 3=2aa 3=2aa·33·3=2a3a3.我们再看下面的问题:如果已知3≈1.732,能不能求出13与27的近似值呢?答:直接求13及27的近似值比较麻烦.若先把13及27分别化简,得到13=13=1×3 3×3=33.27=32×3=32×3=33.再利用3≈1.732来计算就简便了.从上面例子可以看出,如果把二次根式先进行简化,会对解决问题带来方便.二、新课观察上面的计算题,得到结果3a2a及2a3a3都具有什么特点呢?答:1.被开方数的因数是整数或整式;2.被开方数中不含能开得尽方的因数或因式.满足上面两个条件的二次根式叫做最简二次根式.例1 试判断下列各式中哪些是最简二次根式,哪些不是?为什么?(1)3a3b; (2)3ab2; (3)x2+y2;(4)a-b(a>b); (5)5x3; (6)8xy.解 (1)不是最简二次根式.因为a3=a2·a,而a2可以开方,即被开方数中有开得尽方的因式.(2)不是最简二次根式.因为被开方数的因数是分数32,不是整数.(3)是最简二次根式.因为被开方数的因式x2+y2开不尽方,而且是整式.(4)是最简二次根式.因为被开方数的因式a-b开不尽方,而且是整式.(5)是最简二次根式.因为被开方数的因式5x开不尽方,而且是整式.(6)不是最简二次根式.因为被开方数中的因数8=22·2,含有开得尽方的因数22.指出:从(1),(2),(6)题可以看到如下两个结论.1.在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;2.在二次根式的被开方数中每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.例2 把下列各式化为最简二次根式:(1)12;(2)45a2b; (3)8(x+y)3.分析:把被开方数分解因式或因数,再利用积的算术平方根的性质及a2=a(a≥0)进行化简.解 (1)12=22×3=22×3=23;(2)45a2b=32×5a2b=32a25b=3a5b;(3)8(x+y)3=22×2(x+y)2(x+y)=22(x+y)22(x+y)=2(x+y)2(x+y).例3 把下列各式化成最简二次根式:(1)4112; (2)x2yx; (3)328n3 3m.分析:题(1)的被开方数是带分数,应把它变成假分数,然后将分母有理化,把原式化成最简二次根式.题(2)及题(3)的被开方数是分式,先应用题商的算术平方根的性质把原式表示为两个根式的商的形式,再把分母有理化,把原式化成最简二次根式.解 (1)4112=432=432=42×2 2×2=462=26;(2)x2yx=x2yx=x2yx xx=x2xy x=xxy;(3)328n3 3m=38n323m=322·2n2·n 23m=3×2n 2n 23m=3n2n3m 3m3m=3n 6mn 3m=n 6mn m.通过例2、例3,请同学们总结出把二次根式化成最简二次根式的方法.答:如果被开方数是分式或分数(包括小数)先利用商的算术平方根的性质,把它写成分式的形式,然后利用分母有理化化简.如果被开方数是整式或整式,先把它分解因式或分解因数,然后把开得尽方的因式事或因数开出来,从而将式子化简.三、课堂练习1.在下列各式中,是最简二次根式的式子为( ).A.16aB.m-n5C.a18D.6x4y32.在式子18,13,0.5m, x2+4,2a,a-ba+b中,是最简二次根式的式子有( )个.A.2B.3C.1D.03.把下列各式化成最简二次根式:(1)32;(2)2a3b3; (3)1.5;(4)43; (5)20a2b c; (6)x218x30.四、小结1.最简二次根式必须满足两个条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.2.把一个式子化为最简二次根式的方法是:(1)如果被开方数是整式或整数,先把它分解成因式(或因数)的积的形式,把开得尽方的因式(或因数)移到根号外;(2)如果被开方数含有字母,应去掉分母的根号.五、作业1.把下列各式化成最简二次根式:(1)618; (2)10145; (3)xy; (4)16a; (5)32; (6)0.2.2.把下列各式化成最简二次根式:(1)0.4m2n; (2)2a2 148a; (3)1xx3;(4)1467a; (5)5672ab3; (6)456a.答案:1.(1)322; (2)65; (3)xyy; (4)6a6a; (5)42; (6)55.2.(2)m10n5; (2)a63a; (3)x; (4)2a7ab; (5)5b2ab; (6)23a30a.。
最简二次根式的定义。
-概述说明以及解释1.引言1.1 概述最简二次根式是数学中一个重要的概念,它在代数与数论的研究中有着广泛的应用。
简单来说,最简二次根式是指一个形如√a的根式表达式,其中a是一个自然数。
最简二次根式可以被表示为有理数的平方根,并且在根号下的数a是一个最简分数。
最简二次根式在数学中扮演着重要的角色,它们广泛应用于各个领域,包括几何、代数、物理等。
在几何中,最简二次根式可以用来表示一些特殊的长度或比例关系。
而在代数中,最简二次根式的性质与运算规则可以帮助我们进行各种复杂的数学计算。
为了更好地理解最简二次根式的定义,我们需要了解一些相关概念,如根式、有理数和最简分数。
根式是指一个形如√a的表达式,其中a可以是任何实数。
有理数是可以写成m/n的数,其中m和n都是整数,且n不能为零。
最简分数是指一个分数,其分子和分母没有公因数,即它不能被更小的整数表示。
通过对最简二次根式的深入研究,我们可以发现它们具有一些独特的性质。
例如,最简二次根式的和、差、积和商仍然是最简二次根式。
这些性质为我们解决一些复杂的问题提供了便利。
在本文的后续部分中,我们将进一步探讨最简二次根式的性质和应用。
首先,我们将介绍最简二次根式的定义和相关概念。
接着,我们将详细讨论最简二次根式的特性和运算规则。
最后,我们将总结本文的主要内容,并展望最简二次根式在未来研究中的应用前景。
1.2文章结构文章结构部分的内容可以包括以下内容:文章结构部分介绍了整篇文章的组织结构和各部分的内容概述,帮助读者更好地理解文章的整体架构和各个部分的作用。
文章结构部分一般包括以下内容:1. 引言部分:简要介绍文章的主题和研究背景,概述文章的目的和意义。
引言部分可以用几句话引起读者的兴趣和关注,概述研究领域中的问题和现状。
2. 正文部分:根据文章大纲中的各个要点进行展开。
每个要点可以单独成为一个小节,在正文中进行详细的叙述和论证。
正文部分应该清晰地叙述问题、提出观点、列举例证,论述论据等。
初中数学二次根式的运算考试要求:重难点:1.(0)a≥的内涵,(0)a≥是一个非负数;2a=(0)a≥;a=(0)a≥ 及其运用.2.二次根式乘除法的规定及其运用.3.二次根式的加减运算.例题精讲:模块一二次根式的加减运算二次根式的加减法法则:二次根式加减时,可以先将二次根式化成最简二次根式,再对同类二次根式进行合并.二次根式加减法的实质是合并同类二次根式,合并时只把系数相加减,根指数和被开方数不变.二次根式的加减法步骤:(1)将每一个二次根式化成最简二次根式;(2)找出并合并同类二次根式.【例1】计算:(1)(2【难度】1星【解析】如果几个二次根式的被开方数相同,可以直接进行加减运算;如果所给的二次根式不是最简二次根式应该先化简,再进行加减运算.(1)(3=+;(2(2==+【答案】(1);(2).【巩固】485127-=______.【难度】1星【解析】485127-7=5(14⨯⨯=-=-【答案】-【例2】计算:(1)(2【难度】1星【解析】先化简成最简二次根式,再对同类二次根式进行合并.(1)1132(41)242=⨯⨯⨯-+;(2=1443(212)99⨯⨯-+=【答案】(1(2【巩固】计算:(1) (2【难度】2星 【解析】(1)1(64)5=+=-+=(2)=1(22=--= 【答案】(1(2).【例3】 如图,一架长为10m 的梯子AB 斜靠在墙上,梯子的顶端距地面的垂直距离为8m .如果梯子的顶端下滑1m ,那么它的底端是否也下滑1m ?【难度】1星【解析】如图所示,在RT ABC ∆中,由勾股定理,得BC = 当AC=8m时,6BC ==m ; 当AC=7m时,BC =,所以梯子的顶端下滑1m6 1.1≈m .【答案】梯子的顶端下滑1m ,那么它的底端不是下滑1m ,而是滑动1.1m .模块二 二次根式的混合运算在进行二次根式的混合运算时,要注意几点: (1) 整式和分式的运算法则仍然适用.如CBA=== (2) 多项式的乘法法则及乘法公式在运算中同样是适用的.乘法公式:22()()a b a b a b +-=-;222()2a b a b ab ±=+±.【例4】 计算:(1 (26x 【难度】1星【解析】(1)原式==(2)原式=23223⋅=-【答案】(1(2)-【例5】 计算:(1)2 (2)(2(3)22(2(2-+ (4)20112012(3(3-【难度】2星 【解析】(1)用完全平方公式;(2)逆用平方差公式;(3)用平方差公式;(4)逆用平方差公式.(1)2222184866=-⨯=-=-(2)(2=22[224(82484-+=-=-+=----(3)22(2(2-+(2224(==⨯-=- ;(4)20112012(3(320112011[(3(3(98)(33=-+=-+=+【答案】(1)66- (2)4--(3) -; (4)3+【巩固】(1) (2(3) (4)3ab (0,0a b ≥≥) 【难度】2星【解析】在二次根式的乘除法中,首先确定结果的符号,同时要注意指数和运算顺序,最后的结果必须化成最简二次根式.(1)2(1218624==++-=+;(21=;(3)(61834=⨯⨯⨯⨯;(4)3ab3ab a ==-【答案】(1)24+; (2)1; (3) (4)a -.【例6】 解方程或不等式:(1))11x x +>- (21+=【难度】2星【解析】解不等式时,在系数化为1时,要注意系数的正负.(1))11x x +>- (21x +=x >=x <x =13x <+ x =x【答案】(1)13x <+ (2.【巩固】已知1018222=++a a a a,求a 的值. 【难度】2星【解析】先化原方程中的二次根式为最简二次根式,然后按着解一般整式方程的步骤去解即可.10=10=2=a =【答案】a =模块三 二次根式的化简求值【例7】 (2008年西城二模)先化简,再求值:2221412211m m m m m m --⋅÷+-+-,其中m =. 【难度】1星【解析】2221412211m m m m m m --⋅÷+-+-21(2)(2)(1)(1)(1)(2)2(1)m m m m m m m m m --+=⋅⋅-+=+-+-22m m =--,当m 时,原式21-=【答案】1【例8】 (2009年西城二模)先化简,再求值222x y xyx y x y x y +++--,其中x =-,y =.【难度】1星【解析】222x y xyx y x y x y +++-- 222()()22()()()()()()()()()()()x x y y x y xy x xy y xy xy x y x y x y x y x y x y x y x y x y x y x y x y x y-+-+++++=++===+-+-+-+-+--.当x =-y =时,原式15==.【答案】15【巩固】(2011年东城区一模)先化简,再求值:2232()111x x xx x x +÷---,其中1x =. 【难度】1星【解析】原式232132[]2(1)(1)111x x x x x x x x x x x --=-⨯=-=-+-++,当1x =时,原式1===-【答案】1【巩固】(2011年东城区二模)先化简,再求值:2(21)(2)(2)4(1)x x x x x +++--+,其中x =. 【难度】2星 【解析】原式222441444x x x x x =+++---23x =- .当x =时 ,原式227153344=-=-=⎝⎭.【答案】154总结:解此类题目时,一定要先化简再代入求值.【例9】已知x =,y =,求2y x x y ++的值.【难度】2星【解析】当分母中含有根号时,要先化简再求值.x ==231)+,y231)=-=, ∴2y xx y ++222(3336===+-=. 【答案】36【例10】 已知121x x +=,121x x ⋅=-,求12x x 的值. 【难度】3星【解析】12x x -==,12x x ∴-=22221111212221122()()22x x x x x x x x x x x x ⋅++-∴==⋅21212121212[()2][()()]2x x x x x x x x x x +-++-==.总结:该类题目直接将a ,b (或a ,b 化简后的结果)代入所求的式子中,计算都相对繁琐.在类似的题目中,要灵活的应用公式的变形,以便使计算过程大大的简化.【例11】2011++的值. 【难度】2星【解析】通过观察可以知道,先进行分母有理化,通过前几项的分母有理化发现,每一项的结果都是分母的后一项前去分母前一项,这样把每项展开,即可相加减,也就得出了结果. 原式1201211+-=-+【答案】1-+【例12】【巩固】2011+【难度】2星【解析】原式=2[1)(20122(12⨯---=-⨯-+=-【答案】2-总结:=利用这个公式解题.【例13】当a=,求代数式2963a aa-++-的值.【难度】2星【解析】原式=211(3)33(1)(1)a aaaa a aa a---+=-+---,2)212a a=-∴=-=<+原式=111333(1)(1)a aa a aa a a a a---+=-+=----,当a=时,原式= 2321+=.【答案】1【巩固】已知13a=-,12b=【难度】2星【解析】由题可知,0b a->,∴原式13a=-,12b=时,原式=115231622+==⨯.总结:在这类题目中,依然是对原题目进行化简,化简过程中出现了绝对值,此时应特别注意绝对值里面式子的正负,不能贸然的去掉绝对值符号.模块四二次根式的大小比较通过平方比较大小【例14】比较大小(1)1+(2)133-【难度】1星【解析】比较大小可以左右平方,比较平方数的大小,对于两个正数,平方大的就大;对于两个负数,平方大的反而小.(1)2(13=+23=,3223+>,1∴(2)2(10=,221101001(3)()113399-===,110119<,133-.【巩固】比较大小:【难度】1星【解析】略 【答案】>【巩固】实数-3-的大小关系是 .(用“>”表示) 【难度】1星【解析】通过比较平方数的大小来比较原数的大小.【答案】3->-.总结:在比较两个数或式子的大小时,如果只是数,可以平方之后再比较原数的大小;如果是式子且每个式子只含有一个根号时,可以采用平方法比较大小.通过做差比较大小【例15】 比较大小【难度】2星【解析】直接比较大小,无从入手,所以可以通过做差的方法比较大小.0=,<通过取倒数比较大小【例16】 比较大小(1 (2【难度】2星【解析】(1=====65+(2=2011+,【答案】(1<;(2<.总结:在比较两个式子的大小,且每一个式子都含有两个二次根式,可以通过取倒数比较大小.由上题我模块五 非负数性质的综合应用0≥且0a ≥,以前所学的平方和绝对值同样具有非负性,这也是中考中必考的三个非负性.【例17】 2(4)0y -=,则y x 的值等于 . 【难度】1星【解析】对二次根式和平方非负性的直接考察. 【答案】1【例18】 如果2y =,则2x y += . 【难度】1星【解析】对二次根式非负性的直接考察. 解:注意到230320x x -≥-≥,, 0230230x x ∴≤-≤-=, 232x y ∴==, 25x y ∴+=. 【答案】5【例19】 当x【难度】1星【解析】因为二次根式的被开方数大于或等于零,所以222012x x x≥-+.因为x >,.【巩固】已知0a <的值.【难度】2星【解析】原式= (*)因为21()0a a --≥但21()0a a --≤故只有21()0a a --=即1a a=又0a <,所以1a =- 代入(*)得:原式=2-. 【答案】2-【例20】 已知实数x ,y ,z满足2144104x y z z -+-+=,求2()x z y +⋅的值. 【难度】2星【解析】对绝对值、二次根式和平方非负性的考察.原式可化为1441()02x y z -+-=,441020102x y y z z ⎧⎪-+=⎪∴+=⎨⎪⎪-=⎩,解得121412x y z ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩22111()()()0224x z y ∴+⋅=-+⨯-=.【答案】0【巩固】已知实数a ,b ,c满足212102a b c c -+-+=,求()a b c +【难度】2星【解析】略【答案】14-课堂检测:【练习1】下列计算正确的是( )A B C D【难度】1星【解析】考察二次根式的运算.【答案】A【练习22得( ).A 2B C D【难度】1星【解析】 因为230x -≥,23232x x ≥=-,,所以210|21|21x x x ->-=-221(23)2x x =---=.故选A .【答案】A【练习3化简,然后自选一个合适的x 值,代入化简后的式子求值.【难度】2星【解析】这是一道结论开放题,它留给我们较大的发挥和创造空间.但要注意x 的取值范围是2x >.原式===2,x >∴取4x =,原式=2.【答案】2(合理即可)【练习4】设22a b c==-==,则a,b,c的大小关系是()A a b c>>B a c b>> C c b a>> D b c a>>【难度】2星【解析】1a===,同理1122b c=220>>,所以1110,c b ac b a>>><<.故选A.【答案】A【练习53x=+,求11xy++的值.【难度】2星【解析】考察的是非负性,同时也对分式进行了考察.3x=+,2309030x yxx-=⎧⎪∴-=⎨⎪+≠⎩,解得31xy=⎧⎨=⎩,1312111xy++∴==++.【答案】2课后作业:1.化简时,==,乙的解法:==,以下判断正确的是().A 甲的解法正确,乙的解法不正确B 甲的解法不正确,乙的解法正确C 甲、乙的解法都正确D 甲、乙的解法都不正确【难度】2星【解析】甲是将分子和分母同乘以进行分母有理化,乙是利用3=进行约分,所以二人都是正确的,故选C .【答案】C2. 计算:(1)(2) 【难度】1星【解析】题中每个二次根式都不是最简二次根式,应“先化简——再判断——最后合并”.(1)原式=1121023⎛⎛=+-- ⎝⎝= (2)原式=2a b b a b =⎛=- -⎝= 【答案】(1(23.化简 【难度】1星 【解析】初看此题像没有给出化简条件,但充分发掘隐含条件,由二次根式的定义可知10a->,即.故用分母有理化化简的第三步中1a 应为1a -. 原式1a a a a ===⋅=- 【答案】4.已知x=,y=222)x xy y x y+++-的值.【难度】2星【解析】x=2)2==2222)())x xy y x y x y x y∴+++-=++-,把x y==代入得原式=2402416=-=.【答案】165.请先化简下列式子,再选取两个能使原式有意义,而你又喜爱的数代入化简后的式子中求值.÷【难度】2星【解析】原式====当2x=时,原式=当3x=时,原式=.2x=时,原式=3x=时,原式=.6.=a、x、y是两两不同的实数,求22223x xy yx xy y+--+的值.【难度】3星【解析】由题可知,()0()0a x aa y ax aa y-≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩,解得x aaa ya≥⎧⎪≥⎪⎨≥⎪⎪≤⎩,0a∴=,此时,原式变为0,x y=-把x y=-代入有222222222222222233()()3()()3x xy y y y y y y y y yx xy y y y y y y y y y+--+----∴===-+---+++,a、x、y是两两不同的实数,0y∴≠,原式13=.【答案】13。
最简二次根式及分母有理化龙泉九中黄智艳(一)教材分析《最简二次根式及分母有理化》是北师大版八年级数学上册第二章《实数》部分的内容之一。
教材中没有直接给出最简二次根式及分母有理化的概念,这样的编排对学生学习这部分内容有一定困难。
《最简二次根式及分母有理化》是二次根式运算的重要组成部分,它在二次根式的运算中起着承上启下的作用,为此我区导学案就此内容作了深入细致的研究。
学案中将它放在《二次根式2a的化简》及《二次根式的乘除法》之后,为本课的学习提供了方法技能基础,同时它又是后面学习《二次根式的加减法》、《二次根式的混合运算》的根本。
从初中代数的学习来看,该部分是初中代数中进行数式运算的一个重要课题,也是提高学生运算能力的好时机。
这里培养起来的实数的运算能力不光会影响学生代数部分的后继学习,同时在几何的学习中起着举足轻重的作用。
从中考角度来看,历届中考几乎从未错失过该考点。
(二)学情分析a)知识方面:学生会分解质因数,能对2a、2)(a进行化简,已经掌握的《二次根式的乘除法》及二次根式的性质都为本节课的学习作好了充分而必要的知识铺垫。
就知识掌握情况而言,仍有部分学生对公式感觉较抽象,运用起来还不太熟练。
b)能力方面:学习能力强一点的同学已经拥有一定的知识迁移能力,归纳能力和较强的合作交流能力。
c)心理方面:初二的学生经过一年的培养,对DJP教学模式已经充分认同和接受了,能够有序地进行小组合作学习。
初二的学生好胜心较强,有较强的自主意识,能对知识是非进行分辨。
(三)教学目标知识与技能目标:1.能判断所给的二次根式是否是最简二次根式;2.能把所给的二次根式化为最简二次根式;3.能进行分母有理化。
过程与方法目标:让学生经历二次根式化简的过程,体验数学的简洁美。
通过一题多解使学生体会数学中的最优、最简思想,感受数学计算的魅力。
情感态度与价值观目标:通过本节课的学习让学生体验学习的乐趣,增强学生对学习的信心。
(四)教学重、难点教学重点:化二次根式为最简二次根式及分母有理化。
最简二次根式
教学目的
1、 理解最简二次根式的定义;
2、 会将不是最简二次根式的根式化成最简二次根式。
教学重点:最简二次根式的定义
教学难点: 最简二次根式的识别
教学方法:启发、讨论
教学媒体:实物投影仪
教学过程:
一、复习提问:
练习1:
①、二次根式的乘法运算法则是什么?(在黑板上写出来)用文字语言怎么表达?对于运算的结果有什么要求?(要尽量化简)
②、二次根式的除法运算法则是什么?(在黑板上写出来)用文字语言怎么表达?对于运算的结果有什么要求?
练习2:
计算(1)2710⨯ (2) 1512 ÷245
解(1)方法1:2710⨯=2710⨯=23310⨯⨯=330
方法2:2710⨯=10×33=330
解(2)方法1:1512 ÷245=45
452451215⋅⋅=4523532152
2⨯⨯⨯⨯ =45
2153215⨯⨯⨯=15 方法2:1512 ÷245=5323215⨯⨯=535=15
从这两个题目中,都可看出先化简再计算的好处。
练习3: 已知:2=1.414,如何求2
1与8的近似值?(结果保留二位有效数字) 解:(1)21=21=222=2
2≈1.414÷2≈0.71
(2)8=22≈2×1.414≈2.8
小结:从这个问题又可以看出,遇到一个二次根式将它化简会给解决问题带来方便,说到化简总是希望能化简到最简形式,那么什么样的二次根式是“最简二次根式”呢?
二、问题解决:
(板书)课题:§11.4 最简二次根式
定义:
它要求满足以下两条:
(1)被开方数中的因数是整数,因式是整式。
(2)被开方数中不含能开得尽方的因式或因数。
我们把符合这两个条件的二次根式,叫做最简二次根式。
例如:问题4中的2
1化成最简二次根式就是22,8化成最简二次根就是22。
判断下列各式是否为最简二次根式?
(1)12;(2)b a 245;(3)x 30; (4)x 3x
y ; (5)42
11;(6)5m 92+m ;(7)2422525m m + 三、解决问题:
例1 把下列各式化成最简二次根式:
(1)12 (2)b a 245
分析:化简时,往往需要把被开方数分解因式或分解因数,把被开方数中能开得尽方的因数或因式用它的算术平方根代替后移到根号外。
解(1)12=322⨯=23;
(2)b a 245=b a 2253⨯=3a a 5。
练习1:(1)32; (2)233b a 。
答案:(1)42; (2)2ab ab 。
例2 把下列各式化成最简二次根式:
(1)4211; (2)x 3
x y 。
分析:(1)把被开方数中的带分数化成假分数;
(2)化去根号下的分母;
(3)化去分母中的根号。
解:(1)4211=423=234=2
2234⨯⨯=264=26; (2)x 3x y =3x y x =x
x y x =x x x y x xy 。
注意:第1题中根号外面的4与根号里的带分数的整数部分1在运
算的意义上是有区别的。
练习2:(1)8.0; (2)214; (3)c
b a 220; (4)x 2381x 。
分析:把被开方数中的小数化成分数
答案:(1) 52
5; (2) 23
2; (3)c bc a 52 ; (4)4
2x 。
练习3:判断下列各等式是否成立,若不成立请说出正确的解法和答案。
(1)916+=4+3; (2)23=2
3; (3)214=221; (4) 29
5=592 练习4:
(1)()()4482-⨯--;(2)2422525m m +;
(3)01.004.0+;(4)a
a a a a +--23211(a>1) 分析:化简时,当被开方数是和的形式时先将它化为积的形式。
答案:(1)45; (2) 5m 92+m ;
(3)105; (4)2a
a 。
四、问题总结:(采用学生小结教师补充的方式)
本节课学习了哪些知识?
本节课学习了最简二次根式的概念,知道了它的一些用途,同时还知道了如何化二次根式为最简二次根式,即如何辨析最简二次根式
课外作业:187页A组:1、2、3的偶数题;B组:1、2(学有余力的同学做)。