宁波认识不等式
- 格式:ppt
- 大小:2.28 MB
- 文档页数:36
浙教版数学八年级上册3.1《认识不等式》教案一. 教材分析《认识不等式》是浙教版数学八年级上册第三章的第一节内容。
本节内容主要介绍了不等式的定义、不等式的性质以及不等式的解法。
通过本节的学习,使学生能够理解不等式的概念,掌握不等式的性质,并能够运用不等式解决一些实际问题。
二. 学情分析学生在学习本节内容前,已经掌握了有理数的相关知识,对数学符号和运算有一定的了解。
但学生对不等式的概念和性质可能较为陌生,因此,在教学过程中,需要通过具体的例子和实际问题,帮助学生理解和掌握不等式的相关知识。
三. 教学目标1.理解不等式的概念,能够正确读写不等号。
2.掌握不等式的性质,并能够运用不等式解决实际问题。
3.培养学生的逻辑思维能力和解决实际问题的能力。
四. 教学重难点1.不等式的概念和性质。
2.不等式的解法。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过设置问题,引导学生思考和探索,通过具体案例让学生理解和掌握不等式的知识,通过小组合作学习,培养学生的团队协作能力和解决实际问题的能力。
六. 教学准备1.PPT课件。
2.相关案例和实际问题。
3.练习题。
七. 教学过程1.导入(5分钟)通过一个实际问题:小明和小华赛跑,小明用10分钟跑完1000米,小华用8分钟跑完1000米,请问谁跑得快?引出不等式的概念。
2.呈现(10分钟)呈现不等式的定义和性质,通过PPT课件和例题,让学生理解和掌握不等式的概念和性质。
3.操练(10分钟)让学生分组讨论,通过PPT上的练习题,运用不等式的性质解决问题。
教师巡回指导,解答学生的问题。
4.巩固(10分钟)让学生独立完成PPT上的练习题,教师选取部分题目进行讲解和分析,巩固学生对不等式的理解和掌握。
5.拓展(10分钟)让学生通过小组合作学习,解决一个实际问题:一家超市举行促销活动,购买一件商品价格为200元,购买两件商品价格为300元,请问购买几件商品最划算?引导学生运用不等式解决实际问题。
一、选择题1.如图,按下面的程序进行运算,规定:程序运行到“判断结果是否大于28”为一次运算,若运算进行了3次才停止,则x 的取值范围是( )A .24x <≤B .24x ≤<C .24x <<D .24x ≤≤ A解析:A【分析】根据程序运算进行了3次才停止,即可得出关于x 的一元一次不等式组:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩,解之即可得出x 的取值范围. 【详解】解:依题意,得:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩①②, 由①得:936x ≤4x ∴≤,由②得:()398x ->30,98x ∴->10,x >2,所以不等式组的解集为:24x <≤.故选:A .【点睛】本题考查了程序框图中的一元一次不等式组的应用,找准不等关系,正确列出一元一次不等式组是解题的关键.2.不等式组20240x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A . B .C .D .C 解析:C【解析】 分析:先求出各不等式的解集,再求出其公共解集即可.详解:解不等式x+2>0,得:x >-2,解不等式2x-4≤0,得:x≤2,则不等式组的解集为-2<x≤2,将解集表示在数轴上如下:故选C .点睛:本题主要考查解一元一次不等式组,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.如果a b >,可知下面哪个不等式一定成立( )A .a b ->-B .11a b <C .2a b b +>D .2a ab > C解析:C【分析】由基本不等式a >b ,根据不等式的性质,逐一判断.【详解】解:A 、∵a >b ,∴-a <-b ,故本选项不符合题意;B 、∵a >b , ∴当a 与b 同号时有11a b <,当a 与b 异号时,有11a b>, 故本选项不符合题意;C 、∵a >b ,∴a+b >2b ,故本选项符合题意;D 、∵a >b ,且a >0时,∴a 2>ab ,故本选项不符合题意;故选:C .【点睛】本题考查了不等式的性质.不等式的基本性质: (1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.4.已知点()121M m m --,在第四象限,则m 的取值范围在数轴上表示正确的是( ) A . B .C .D . B解析:B【分析】 由点()121M m m --,在第四象限,可得出关于m 的一元一次不等式组,解不等式组即可得出m 的取值范围,再对照四个选项即可得出结论.【详解】解:由点()121M m m --,在第四象限,得1-2010m m >⎧⎨-<⎩, ∴0.51m m <⎧⎨<⎩即不等式组的解集为:0.5m <,在数轴上表示为:故选:B .【点睛】此题考查了象限及点的坐标的有关性质、在数轴上表示不等式的解集、解一元一次不等式组,需要综合掌握其性质5.若|65|56x x -=-,则x 的取值范围是( )A .56x >B .56x <C .56x ≥D .56x ≤ D 解析:D【分析】先根据绝对值的性质判断出65x -的符号,再求出x 的取值范围即可.【详解】 ∵6556x x -=-,∴650x -≤, ∴56x ≤. 故选:D .【点睛】 本题考查了绝对值的性质以及解一元一次不等式,解答此题的关键是熟知绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0. 6.不等式()2x 13x -≥的解集是( )A .x 2≥B .x 2≤C .x 2≥-D .x 2≤- D解析:D【分析】 去括号、移项、合并同类项,然后系数化成1即可求解.【详解】解:()2x 13x -≥,去括号,得2x 23x -≥,移项,得23x 2x -≥-,解得x 2≤-.故选:D .【点睛】本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.7.若a b <,则下列不等式中不正确的是( )A .11+<+a bB .a b ->-C .22a b --<--D .44a b < C 解析:C【分析】根据不等式的性质来解答即可.不等式的性质为:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A :不等式a <b 两边都加1,不等号的方向不变,原变形正确,故此选项不符合题意;B :不等式a <b 两边都乘以-1,不等号的方向改变,原变形正确,故此选项不符合题意;C :不等式a <b 两边都乘-1再加上-2,不等号的方向改变,原变形不正确,故此选项符合题意;D :不等式a <b 两边都除以4,不等号的方向不变,原变形正确,故此选项不符合题意; 故选:C .【点睛】本题考查了利用不等式的性质进行不等式的变形.解题的关键是熟练掌握不等式的性质并正确运用.8.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足0x y +>,则m 的取值范围为( )A .2m >-B .2m >C .3m >D .2m <- A 解析:A【分析】首先解关于x 和y 的方程组,利用m 表示出x+y ,代入x+y >0即可得到关于m 的不等式,求得m 的范围.【详解】解:2133x y m x y -+⋯⎧⎨+⋯⎩=①=②①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m >-2.故选:A .【点睛】本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m 当作已知数表示出x+y 的值,再得到关于m 的不等式.9.如果a 、b 两个数在数轴上的位置如图所示,则下列各式正确的是( )A .0a b +>B .0ab <C .0b a -<D .0a b> B 解析:B【分析】由题意可得a 、b 的大小关系和符号关系,从而根据不等式的基本性质和有理数乘除法的符号法则可以得到正确解答.【详解】解:由题意可得:a<b ,-a>b ,所以由不等式的性质可得:b-a>0,a+b<0,故A 、C 错误; 又由题意可得a 、b 异号,所以B 正确,D 错误;故选B .【点睛】本题考查数轴的应用,利用数形结合的思想方法、不等式的性质和有理数乘除法的符号法则求解是解题关键.10.在数轴上,点A 2,现将点A 沿数轴做如下移动,第一次点A 向左移动4个单位长度到达点1A ,第二次将点1A 向右移动8个单位到达点2A ,第三次将点2A 向左移动12个单位到达点3A ,第四次将点3A 向右移动16个单位长度到达点4A ,按照这种规律下去,第n 次移动到点n A ,如果点n A 与原点的距离不少于18,那么n 的最小值是( )A .7B .8C .9D .10C解析:C【分析】 根据题意依次得出点A 移动的规律,当点A 奇数次移动时,对应表示的数为负数,当点A 偶数次移动时,对应表示的数为正数,得出对应规律,根据点n A 与原点的距离不少于18,列出不等式,求解可得.【详解】解:第一次:1A4-,第二次:2A4,第三次:3A8,第四次:4A8+,...当n 为奇数时,第n142n +⨯22n -, 当n 为偶数时,第n42n ⨯2n , ∵点n A 与原点的距离不少于18,∴2218n -≥218n ≥,解得:82n ≥+,92n ≥-,∵012<<, ∴n≥9,∴n 的最小值是9,故选C .【点睛】本题是数字类的变化规律题,考查了解不等式,还考查了数轴的性质:向左移→减,向右移→加;从第一个点移动开始分别计算出表示的数,大胆猜想,找出对应的规律,并验证,列式计算.二、填空题11.不等式组351231148x x x x ⎧+>-⎪⎪⎨⎪--⎪⎩的解集是__.【分析】分别求出不等式组中两不等式的解集找出两解集的公共部分即可【详解】解:解不等式①得:解不等式②得:所以不等式组的解集是故答案为:【点睛】本题考查了解一元一次不等式组正确求出每一个不等式解集是基 解析:8752x -< 【分析】 分别求出不等式组中两不等式的解集,找出两解集的公共部分即可.【详解】解:351231148x x x x ⎧+>-⎪⎪⎨⎪--⎪⎩①②, 解不等式①得:85x >-, 解不等式②得:72x , 所以不等式组的解集是8752x -<, 故答案为:8752x -<. 【点睛】 本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.12.“x 的4倍与1的差不大于3”用不等式表示为 ________________ .4x-13【分析】的4倍与1的差即4x-1不大于就是据此列不等式【详解】由题意得4x-13故答案为:4x-13【点睛】此题考查列不等式正确理解语句是解题的关键解析:4x-1≤3,【分析】x 的4倍与1的差即4x-1,不大于就是≤,据此列不等式.【详解】由题意得4x-1≤3,故答案为:4x-1≤3.【点睛】此题考查列不等式,正确理解语句是解题的关键.13.若关于x 的不等式组0721x m x -<⎧⎨-≤⎩的整数解共有4个,则整数解是________,m 的取值范围是________.3456【分析】首先解不等式组利用m 表示出不等式组的解集然后根据不等式组有4个整数解即可求得m 的范围【详解】由①得:由②得:∵不等式组的整数解共有4个∴整数解为3456∴m 取值范围为故答案为:345 解析:3,4,5,6 67m <≤【分析】首先解不等式组,利用m 表示出不等式组的解集,然后根据不等式组有4个整数解即可求得m 的范围.【详解】0721x m x -<⎧⎨-≤⎩①②, 由①得:x m <,由②得:26x ≥,3x ≥,∵不等式组的整数解共有4个,∴整数解为3,4,5,6,∴m 取值范围为67m <≤.故答案为:3,4,5,6;67m <≤.【点睛】本题考查了不等式组的解法及整数解.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.关于x ,y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足x +y >﹣1,则m 的取值范围是_____.【分析】先将方程组中的两个方程相加化简可得再代入可得一个关于m 的一元一次不等式然后解不等式即可得【详解】两个方程相加得:即由题意得:解得故答案为:【点睛】本题考查了二元一次方程组一元一次不等式熟练掌解析:3m <【分析】先将方程组中的两个方程相加化简可得2x y m +=-+,再代入1x y +>-可得一个关于m 的一元一次不等式,然后解不等式即可得.【详解】23224x y m x y +=-+⎧⎨+=⎩, 两个方程相加得:3336x y m +=-+,即2x y m +=-+,由题意得:21m -+>-,解得3m <,故答案为:3m <.【点睛】本题考查了二元一次方程组、一元一次不等式,熟练掌握二元一次方程组的特殊解法是解题关键.15.关于x 的不等式组0321x a x -≥⎧⎨->⎩有3个整数解,则a 的取值范围是________.【分析】先解出不等式组根据它有3个整数解求出a 的取值范围【详解】解:解不等式组得∵它有3个整数解∴解是-2-10∴故答案是:【点睛】本题考查函参不等式组求参数问题解题的关键是掌握解不等式组的方法解析:32a -<≤-【分析】先解出不等式组,根据它有3个整数解求出a 的取值范围.【详解】解:解不等式组得1a x ≤<,∵它有3个整数解,∴解是-2,-1,0,∴32a -<≤-.故答案是:32a -<≤-.【点睛】本题考查函参不等式组求参数问题,解题的关键是掌握解不等式组的方法.16.己知不等式组1x x a ≤⎧⎨≤⎩的解集是1x ≤,则a 的取值范围是______.a≥1【分析】已知不等式组的解集为再根据不等式组解集的口诀:同大取大得到a 的范围【详解】解:∵一元一次不等式组的解集为∴a≥1故答案为:a≥1【点睛】本题考查了一元一次不等式组解集的求法将不等式组解解析:a≥1【分析】已知不等式组的解集为1x ≤,再根据不等式组解集的口诀:同大取大,得到a 的范围.【详解】解:∵一元一次不等式组1x x a ≤⎧⎨≤⎩的解集为1x ≤, ∴a≥1,故答案为:a≥1.【点睛】本题考查了一元一次不等式组解集的求法,将不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)逆用,已知不等式解集反过来求a 的范围.17.点()1,2P x x -+不可能在第__________象限.四【分析】去掉坐标轴上点的情况可分x <﹣2﹣2<x <1与x >1三种情况逐一判断x -1与x+2的正负进而可得答案【详解】解:当x <﹣2时x -1<0x+2<0此时点P 在第三象限;当﹣2<x <1时x -1<解析:四【分析】去掉坐标轴上点的情况,可分x <﹣2、﹣2<x <1与x >1三种情况,逐一判断x -1与x+2的正负,进而可得答案.【详解】解:当x <﹣2时,x -1<0,x+2<0,此时点P 在第三象限;当﹣2<x <1时,x -1<0,x+2>0,此时点P 在第二象限;当x >1时,x -1>0,x+2>0,此时点P 在第一象限;综上,点P 不可能在第四象限.故答案为:四.【点睛】本题考查了平面直角坐标系的基本知识和一元一次不等式的内容,属于基本题型,正确分类、掌握解答的方法是解题关键.18.若关于x 的不等式组2()102153x m x 的解集为76x -<<-,则m 的值是______.【分析】先解不等式组得出其解集为结合可得关于的方程解之可得答案【详解】解:由①得:由②得:不等式的解集为:∵关于的不等式组的解集为【点睛】本题考查的是利用一元一次不等式组的解集求参数熟悉相关性质是解 解析:152【分析】 先解不等式组得出其解集为1262mx ,结合76x -<<-可得关于m 的方程,解之可得答案.【详解】解:2()102153x m x ①②由①得:2210x m +->,221x m >-+, 12x m >-+由②得:212x <-,6x <-, ∴不等式的解集为:162m x -+<<- ∵关于x 的不等式组的解集为76x -<<-,172m ∴-+=- 152m ∴= 【点睛】本题考查的是利用一元一次不等式组的解集求参数,熟悉相关性质是解题的关键.19.若不等式a x c x c b +>⎧⎨≥-⎩的解为x≥-b+c ,则a ,b 的大小关系一定满足:a___b .【分析】根据不等式组的同大取大得到-b+c≥c -a 即可得到a 与b 的大小关系【详解】解不等式组解不等式①得x>c-a 解不等式②得x≥-b+c ∵不等式组的解集为x≥-b+c ∴-b+c≥c -a ∴ab 故答案 解析:≥【分析】根据不等式组的同大取大得到-b+c≥c -a ,即可得到a 与b 的大小关系. 【详解】 解不等式组a x c x c b +>⎧⎨≥-⎩①②,解不等式①得x>c-a , 解不等式②得x≥-b+c , ∵不等式组的解集为x≥-b+c , ∴-b+c≥c -a , ∴a ≥b , 故答案为:≥. 【点睛】此题考查解不等式组,不等式组的解集的情况:同大取大、同小取小、大小小大中间找、大大小小无解了,掌握不等式组解集的确定方法是解题的关键.20.现用甲、乙两种运输车将46吨救灾物资运往灾区,甲种车每辆载重5吨,乙种车每辆载重4吨,安排车辆不超过10辆,则甲种运输车至少需要安排 ________辆.6【解析】设甲种运输车共运输x 吨则乙种运输车共运输(46-x )吨根据题意得≤10解不等式得:则故甲种运输车辆至少需要6辆故答案:6解析:6 【解析】设甲种运输车共运输x 吨,则乙种运输车共运输(46-x )吨.根据题意,得x 4654x -+≤10.解不等式得:45(46)200,30x x x +-≤≥,则65x≥ ,故甲种运输车辆至少需要6辆. 故答案:6.三、解答题21.为发展校园足球运动,某城区四校决定联合购买一批足球运动装备.市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球;乙商场优惠方案是:若购买队服超过80套,则购买足球打八折. (1)求每套队服和每个足球的价格是多少元;(2)若城区四校联合购买100套队服和()10a a >个足球,请用含a 的式子分别表示出到甲商场和乙商场购买装备所花费用;(3)在(2)的条件下,计算a 为何值时,两家商场所花费用相同;(4)在(3)的条件下,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?(直接写出方案)解析:(1)150元;100元;(2)甲商场()10014000a + ,乙商场()8015000a +元;(3)50a =;(4)当50a =时,两家花费一样;当1050a <<时,到甲处购买更合算;当50a 时,到乙处购买更合算 【分析】(1)设每个足球的定价是x 元,则每套队服是()50x +元,根据“两套队服与三个足球的费用相等”得出等量关系,列出一元一次方程,求解即可; (2)根据甲商场和乙商场的方案列出式子即可; (3)令100140008015000,a a ++=解方程即可; (4)列出不等式分别求解即可. 【详解】解:(1)设每个足球的定价是x 元,则每套队服是()50x +元. 根据题意得()2503x x +=解得100,50150x x +==. 答:每套队服150元,每个足球100元.(2)到甲商场购买所花的费用为:()1001001501001001400010a a ⎛⎫⨯+-=+ ⎪⎝⎭元; 到乙商场购买所花的费用为:()100150+100808015000a a ⨯⨯%=+元; (3)由100140008015000,a a ++= 得:50a =,所以:当50a =时,两家花费一样。
浙教版数学八年级上册《第3章认识不等式》说课稿一. 教材分析浙教版数学八年级上册第3章《认识不等式》是学生在学习了实数、代数式等基础知识后,进一步拓展和深化的内容。
这一章节的主要内容包括不等式的概念、不等式的性质、一元一次不等式及其解法等。
通过这一章节的学习,使学生能够掌握不等式的基本概念和性质,会解一元一次不等式,培养学生解决实际问题的能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对实数、代数式等知识有了初步的了解。
但学生在学习不等式时,可能会对不等式的概念和性质产生困惑,特别是对不等式的解法,需要通过实例和练习来进一步理解和掌握。
三. 说教学目标1.知识与技能:使学生掌握不等式的基本概念和性质,会解一元一次不等式。
2.过程与方法:通过观察、实验、探究等方法,让学生体验不等式的发现和形成过程,培养学生的抽象思维能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生解决实际问题的能力,提高学生的数学素养。
四. 说教学重难点1.教学重点:不等式的概念、不等式的性质、一元一次不等式的解法。
2.教学难点:不等式的性质的理解和应用,一元一次不等式的解法。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、探究式教学法等,引导学生主动参与,积极思考。
2.教学手段:利用多媒体课件、教学卡片、黑板等辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过生活中的实例,引导学生认识不等式,激发学生的学习兴趣。
2.自主学习:学生自主阅读教材,了解不等式的概念和性质。
3.合作交流:学生分组讨论,总结不等式的性质,并通过实例进行验证。
4.教师讲解:教师讲解不等式的解法,引导学生理解和解题思路。
5.练习巩固:学生自主完成课后练习,巩固所学知识。
6.课堂小结:教师引导学生总结本节课的主要内容和收获。
七. 说板书设计板书设计如下:1.不等式的概念2.不等式的性质3.一元一次不等式的解法八. 说教学评价1.学生课堂参与度:观察学生在课堂上的发言和表现,评价学生的参与度。