自动控制原理 (26)
- 格式:pdf
- 大小:140.10 KB
- 文档页数:7
一、填空题1 闭环控制系统又称为反馈控制系统。
2 一线性系统,当输入是单位脉冲函数时,其输出象函数与 传递函数 相同。
3一阶系统当输入为单位斜坡函数时,其响应的稳态误差恒为 时间常数T 。
4 控制系统线性化过程中,线性化的精度和系统变量的 偏移程度 有关。
5 对于最小相位系统一般只要知道系统的 开环幅频特性 就可以判断其稳定性。
6 一般讲系统的位置误差指输入是 阶跃信号 所引起的输出位置上的误差。
7 超前校正是由于正相移的作用,使截止频率附近的 相位 明显上升,从而具有较大的稳定裕度。
8 二阶系统当共轭复数极点位于 +-45度 线上时,对应的阻尼比为。
9 PID 调节中的“P ”指的是 比例 控制器。
10 若要求系统的快速性好,则闭环极点应距虚轴越_ 远 越好。
11 在水箱水温控制系统中,受控对象为_水箱 ,被控量为_水温 。
12 自动控制系统有两种基本控制方式,当控制装置与受控对象之间只有顺向作用而无反向联系时,称为_ 开环控制方式 ;当控制装置与受控对象之间不但有顺向作用而且还有反向联系时,称为_ 闭环控制方式 ;含有测速发电机的电动机速度控制系统,属于_ 开环控制方式 。
13 稳定是对控制系统最基本的要求,若一个控制系统的响应曲线为衰减振荡,则该系统_ 稳定 _。
判断一个闭环线性控制系统是否稳定,在时域分析中采用_ 劳斯判据 _;在频域分析中采用_ 奈氏判据 _。
14、传递函数是指在_ 零 _初始条件下、线性定常控制系统的_ 输入拉式变换 _与_ 输出拉式变换 _之比。
15 设系统的开环传递函数为2(1)(1)K s s Ts τ++,则其开环幅频特性为_ _,相频特性为 _-180-arctan (tw-Tw )/1+tTw _。
16 频域性能指标与时域性能指标有着对应关系,开环频域性能指标中的幅值穿越频率c ω对应时域性能指标_ 调整时间t _,它们反映了系统动态过程的_快速性_。
17 复合控制有两种基本形式:即按输入的前馈复合控制和按扰动的前馈复合控制。
《自动控制原理》试题及答案1、若某串联校正装置的传递函数为(10s+1)/(100s+1),则该校正装置属于(B )。
3分2、在对控制系统稳态精度无明确要求时,为提高系统的稳定性,最方便的是(A)3分3、在系统中串联PD调节器,以下那一种说法是错误的(D)3分A是一种相位超前校正装置B能影响系统开环幅频特性的高频段C使系统的稳定性能得到改善D使系统的稳态精度得到改善4、用超前校正装置改善系统时,主要是利用超前校正装置的(A )3分5、I型系统开环对数幅频特性的低频段斜率为(B )9分6、设微分环节的频率特性为G(jω),当频率ω从0变化至∞时,其极坐标平面上的奈氏曲线是()9分7、关于线性系统稳定性的判定,下列观点正确的是( )。
9分8、若两个系统的根轨迹相同,则有相同的( ) 9分9、关于系统零极点位置对系统性能的影响,下列观点中正确的是( ) 7分10、高阶系统的主导闭环极点越靠近虚轴,则系统的( ) 2分11、若某最小相位系统的相角裕度γ>0,则下列说法正确的是( )。
2分12、某环节的传递函数是G(s)=5s+3+2/s,则该环节可看成由(D )环节组成。
2分13、主导极点的特点是(A )2分14、设积分环节的传递函数为G(s)=K/s,则其频率特性幅值A(ω)=()2分15、某环节的传递函数为K/(Ts+1),它的对数幅频率特性随K值增加而()2分16、某系统的传递函数是G(s)=1/(2s+1),则该可看成由(C )环节串联而成2分17、若系统的开环传递函数在s右半平面上没有零点和极点,则该系统称作(B)2分18、某校正环节传递函数G(s)=(100s+1)/(10s+1),则其频率特性的奈氏图终点坐标为(D)2分19、一般为使系统有较好的稳定性,希望相位裕量为(C)2分20、最小相位系统的开环增益越大,其()2分21、一阶微分环节G(s)=1+Ts,当频率ω=1/T时,则相频特性∠G(jω)为()2分22、ω从0变化到+∞时,延迟环节频率特性极坐标图为()2分23、开环传递函数为G(s)H(s)=(s+3)/(s+2)(s+5),则实轴上的根轨迹为(B)2分24、开环传递函数为G(s)H(s)=K/(s*s*s(s+4)),则实轴上的根轨迹为()2分25、某单位反馈系统的开环传递函数为:G(s)=K/(s(s+1)(s+5)),当k=(C )时,闭环系统临界稳定。
第一章 绪论1-1 试比较开环控制系统和闭环控制系统的优缺点.解答:1开环系统(1) 优点:结构简单,成本低,工作稳定。
用于系统输入信号及扰动作用能预先知道时,可得到满意的效果。
(2) 缺点:不能自动调节被控量的偏差。
因此系统元器件参数变化,外来未知扰动存在时,控制精度差。
2 闭环系统⑴优点:不管由于干扰或由于系统本身结构参数变化所引起的被控量偏离给定值,都会产生控制作用去清除此偏差,所以控制精度较高。
它是一种按偏差调节的控制系统。
在实际中应用广泛。
⑵缺点:主要缺点是被控量可能出现波动,严重时系统无法工作。
1-2 什么叫反馈?为什么闭环控制系统常采用负反馈?试举例说明之。
解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反馈。
闭环控制系统常采用负反馈。
由1-1中的描述的闭环系统的优点所证明。
例如,一个温度控制系统通过热电阻(或热电偶)检测出当前炉子的温度,再与温度值相比较,去控制加热系统,以达到设定值。
1-3 试判断下列微分方程所描述的系统属于何种类型(线性,非线性,定常,时变)?(1)22()()()234()56()d y t dy t du t y t u t dt dt dt ++=+(2)()2()y t u t =+(3)()()2()4()dy t du t ty t u t dt dt +=+ (4)()2()()sin dy t y t u t tdt ω+=(5)22()()()2()3()d y t dy t y t y t u t dt dt ++= (6)2()()2()dy t y t u t dt +=(7)()()2()35()du t y t u t u t dt dt =++⎰解答: (1)线性定常 (2)非线性定常 (3)线性时变 (4)线性时变 (5)非线性定常 (6)非线性定常 (7)线性定常1-4 如图1-4是水位自动控制系统的示意图,图中Q1,Q2分别为进水流量和出水流量。
1 请解释下列名字术语:自动控制系统、受控对象、扰动、给定值、参考输入、反馈。
解:自动控制系统:能够实现自动控制任务的系统,由控制装置与被控对象组成;受控对象:要求实现自动控制的机器、设备或生产过程扰动:扰动是一种对系统的输出产生不利影响的信号。
如果扰动产生在系统内部称为内扰;扰动产生在系统外部,则称为外扰。
外扰是系统的输入量。
给定值:受控对象的物理量在控制系统中应保持的期望值参考输入即为给定值。
反馈:将系统的输出量馈送到参考输入端,并与参考输入进行比较的过程。
2 请说明自动控制系统的基本组成部分。
解:作为一个完整的控制系统,应该由如下几个部分组成:①被控对象:所谓被控对象就是整个控制系统的控制对象;②执行部件:根据所接收到的相关信号,使得被控对象产生相应的动作;常用的执行元件有阀、电动机、液压马达等。
③给定元件:给定元件的职能就是给出与期望的被控量相对应的系统输入量(即参考量);④比较元件:把测量元件检测到的被控量的实际值与给定元件给出的参考值进行比较,求出它们之间的偏差。
常用的比较元件有差动放大器、机械差动装置和电桥等。
⑤测量反馈元件:该元部件的职能就是测量被控制的物理量,如果这个物理量是非电量,一般需要将其转换成为电量。
常用的测量元部件有测速发电机、热电偶、各种传感器等;⑥放大元件:将比较元件给出的偏差进行放大,用来推动执行元件去控制被控对象。
如电压偏差信号,可用电子管、晶体管、集成电路、晶闸管等组成的电压放大器和功率放大级加以放大。
⑦校正元件:亦称补偿元件,它是结构或参数便于调整的元件,用串联或反馈的方式连接在系统中,用以改善系统的性能。
常用的校正元件有电阻、电容组成的无源或有源网络,它们与原系统串联或与原系统构成一个内反馈系统。
3 请说出什么是反馈控制系统,开环控制系统和闭环控制系统各有什么优缺点?解:反馈控制系统即闭环控制系统,在一个控制系统,将系统的输出量通过某测量机构对其进行实时测量,并将该测量值与输入量进行比较,形成一个反馈通道,从而形成一个封闭的控制系统;开环系统优点:结构简单,缺点:控制的精度较差;闭环控制系统优点:控制精度高,缺点:结构复杂、设计分析麻烦,制造成本高。
《自动控制原理》复习参考资料一、基本知识 11、反馈控制又称偏差控制,其控制作用是通过输入量与反馈量的差值进行的。
2、闭环控制系统又称为反馈控制系统。
3、在经典控制理论中主要采用的数学模型是微分方程、传递函数、结构框图和信号流图。
4、自动控制系统按输入量的变化规律可分为恒值控制系统、随动控制系统与程序控制系统。
5、对自动控制系统的基本要求可以概括为三个方面,即:稳定性、快速性和准确性。
6、控制系统的数学模型,取决于系统结构和参数, 与外作用及初始条件无关。
7、两个传递函数分别为 G1(s)与 G2(s)的环节,以并联方式连接,其等效传递函数为G(s)+G2(s),以串联方式连接,其等效传递函数为G1(s)*G2(s)。
18、系统前向通道传递函数为 G (s),其正反馈的传递函数为 H (s),则其闭环传递函数为G(s) /(1-G(s) H(s) )。
9、单位负反馈系统的前向通道传递函数为 G (s),则闭环传递函数为G(s) /(1+ G(s) )。
10 、典型二阶系统中,ξ=0.707 时,称该系统处于二阶工程最佳状态,此时超调量为 4.3%。
11、应用劳斯判据判断系统稳定性,劳斯表中第一列数据全部为正数,则系统稳定。
12、线性系统稳定的充要条件是所有闭环特征方程的根的实部均为负,即都分布在S平面的左平面。
13、随动系统的稳态误差主要来源于给定信号,恒值系统的稳态误差主要来源于扰动信号。
14、对于有稳态误差的系统,在前向通道中串联比例积分环节,系统误差将变为零。
15、系统稳态误差分为给定稳态误差和扰动稳态误差两种。
16 、对于一个有稳态误差的系统,增大系统增益则稳态误差将减小。
17 、对于典型二阶系统,惯性时间常数 T 愈大则系统的快速性愈差。
18 、应用频域分析法,穿越频率越大,则对应时域指标 ts越小,即快速性越好19 最小相位系统是指 S 右半平面不存在系统的开环极点及开环零点。
20、按照校正装置在系统中的不同位置,系统校正可分为串联校正、反馈校正、补偿校正与复合校正四种。
自动控制原理课后习题答案(总26页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章引论1-1 试描述自动控制系统基本组成,并比较开环控制系统和闭环控制系统的特点。
答:自动控制系统一般都是反馈控制系统,主要由控制装置、被控部分、测量元件组成。
控制装置是由具有一定职能的各种基本元件组成的,按其职能分,主要有给定元件、比较元件、校正元件和放大元件。
如下图所示为自动控制系统的基本组成。
开环控制系统是指控制器与被控对象之间只有顺向作用,而没有反向联系的控制过程。
此时,系统构成没有传感器对输出信号的检测部分。
开环控制的特点是:输出不影响输入,结构简单,通常容易实现;系统的精度与组成的元器件精度密切相关;系统的稳定性不是主要问题;系统的控制精度取决于系统事先的调整精度,对于工作过程中受到的扰动或特性参数的变化无法自动补偿。
闭环控制的特点是:输出影响输入,即通过传感器检测输出信号,然后将此信号与输入信号比较,再将其偏差送入控制器,所以能削弱或抑制干扰;可由低精度元件组成高精度系统。
闭环系统与开环系统比较的关键,是在于其结构有无反馈环节。
1-2 请说明自动控制系统的基本性能要求。
答:自动控制系统的基本要求概括来讲,就是要求系统具有稳定性、快速性和准确性。
稳定性是对系统的基本要求,不稳定的系统不能实现预定任务。
稳定性通常由系统的结构决定与外界因素无关。
对恒值系统,要求当系统受到扰动后,经过一定时间的调整能够回到原来的期望值(例如恒温控制系统)。
对随动系统,被控制量始终跟踪参量的变化(例如炮轰飞机装置)。
快速性是对过渡过程的形式和快慢提出要求,因此快速性一般也称为动态特性。
在系统稳定的前提下,希望过渡过程进行得越快越好,但如果要求过渡过程时间很短,可能使动态误差过大,合理的设计应该兼顾这两方面的要求。
准确性用稳态误差来衡量。
在给定输入信号作用下,当系统达到稳态后,其实际输出与所期望的输出之差叫做给定稳态误差。
1-10:C D A A A C B C D C; 11-20:BDAAA BCDBA;21-30:AACCB CBCBA;31-40:ACADC DAXXB;41-50:ACCBC AADBB;51-60:BADDB CCBBX;61-70:DDBDA AACDB;71-80:ADBCA DCCAD;81-90:CAADC ABDCC;91-100:BCDCA BCAAB;101-112:CDBDA CCDCD CA《自动控制原理》考试说明(一)选择题1单位反馈控制系统由输入信号引起的稳态误差与系统开环传递函数中的下列哪个环节的个数有关?( )A.微分环节B.惯性环节C.积分环节D.振荡环节2 设二阶微分环节G(s)=s2+2s+4,则其对数幅频特性的高频段渐近线斜率为( )A.-40dB/dec B.-20dB/decC.20dB/dec D.40dB/dec3设开环传递函数为G(s)H(s)=K(s+1),其根轨迹( )s(s+2)(s+3)A.有分离点有会合点B.有分离点无会合点C.无分离点有会合点D.无分离点无会合点4 如果输入信号为单位斜坡函数时,系统的稳态误差e为无穷大,则此系统为ss( )A.0型系统B.I型系统C.Ⅱ型系统D.Ⅲ型系统5 信号流图中,信号传递的方向为( )A.支路的箭头方向B.支路逆箭头方向C.任意方向D.源点向陷点的方向6 描述RLC电路的线性常系数微分方程的阶次是( )A.零阶B.一阶C.二阶D.三阶7 方框图的转换,所遵循的原则为( )A.结构不变B.等效C.环节个数不变D.每个环节的输入输出变量不变8 阶跃输入函数r(t)的定义是( )A.r(t)=l(t)B.r(t)=x0C.r(t)=x0·1(t)D.r(t)=x0.δ(t)9 设单位负反馈控制系统的开环传递函数为G0(s)=()()B sA s,则系统的特征方程为( )A.G(s)=0 B.A(s)=0C.B(s)=0D.A(s)+B(s)=010 改善系统在参考输入作用下的稳态性能的方法是增加( )A.振荡环节B.惯性环节C.积分环节D.微分环节11当输入信号为阶跃、斜坡函数的组合时,为了满足稳态误差为某值或等于零,系统开环传递函数中的积分环节数N 至少应为( ) A.N≥0 B.N≥1 C.N≥2D.N≥312 设开环系统的传递函数为G(s)=1(0.21)(0.81)s s s ++,则其频率特性极坐标图与实轴交点的幅值|G (jω)|=( ) A.2.0 B.1.0 C.0.8D.0.1613设某开环系统的传递函数为G(s)=210(0.251)(0.250.41)s s s +++,则其相频特性θ(ω)=( )A.1124tg 0.25tg 10.25ωωω----- B.1120.4tg 0.25tg 10.25ωωω---+- C.1120.4tg 0.25tg 10.25ωωω---++ D.1120.4tg 0.25tg 10.25ωωω----+ 14设某校正环节频率特性G c (j ω)=1011j j ωω++,则其对数幅频特性渐近线高频段斜率为( )A.0dB /decB.-20dB /decC.-40dB /decD.-60dB /dec15 二阶振荡环节的对数幅频特性的低频段的渐近线斜率为( ) A.0dB /dec B.-20dB /dec C.-40dB /deCD.-60dB /dec16 根轨迹法是一种( ) A.解析分析法 B.时域分析法 C.频域分析法D.时频分析法 17 PID 控制器是一种( ) A.超前校正装置 B.滞后校正装置 C.滞后—超前校正装置D.超前—滞后校正装置 18 稳态位置误差系数K ρ为( ) A .)s (H )s (G 1lim0s →B. )s (H )s (sG lim 0s →C. )s (H )s (G s lim 20s →D. )s (H )s (G lim 0s →19 若系统存在临界稳定状态,则根轨迹必定与之相交的为( ) A .实轴B .虚轴C .渐近线D .阻尼线20 下列开环传递函数中为最小相位传递函数的是( ) A.)2s 2s )(1s (12+++B.2s 1-C.16s 4s 12+-D. 10s 1-21 当二阶系统的阻尼比ξ在0<ξ<l 时,特征根为( )A .一对实部为负的共轭复根B .一对实部为正的共轭复根C .一对共轭虚根D .一对负的等根22 二阶振荡环节对数幅频特性高频段的渐近线斜率为( ) A .-40dB /dec B .-20dB /dec C .0dB /decD .20dB /dec23 已知单位负反馈控制系统的开环传递函数为G(s)=2s49,则该闭环系统为( )A .稳定B .条件稳定C .临界稳定D .BIBO 稳定24 设系统的开环传递函数为G(s)H(s) =)4s )(2s ()3s 2(K +++,其在根轨迹法中用到的开环放大系数为( ) A .K /2B .KC .2KD .4K25 PI 控制器属于下列哪一种校正装置的特例( ) A .超前 B .滞后 C .滞后—超前 D .超前—滞后26 设系统的G(s)=1s 5s 2512++,则系统的阻尼比ξ为( )A .251B .51C .21D .127 设某系统开环传递函数为G(s)= )5s )(2s )(1s (10+++,则其频率特性的奈氏图起点坐标为( ) A .(0,j10) B .(1,j0) C .(10,j0)D .(0,j1)28 单位负反馈系统的开环传递函数G(s)= )1Ts (s )1s )(1s 2(K 2+++,K>0,T>0,则闭环控制系统稳定的条件是( ) A .(2K+1)>T B .2(2K+2)>T C .3(2K+1)>TD .K>T+1,T>229 设积分环节频率特性为G(jω)=j ω1,当频率ω从0变化至∞时,其极坐标中的奈氏曲线是( )A.正实轴B.负实轴C.正虚轴D.负虚轴30 控制系统的最大超调量σp反映了系统的( ) A.相对稳定性B.绝对稳定性C.快速性D.稳态性能31 当二阶系统的阻尼比ζ>1时,特征根为( )A.两个不等的负实数B.两个相等的负实数C.两个相等的正实数D.两个不等的正实数32 稳态加速度误差数Ka=( )A.G(s)H(s)lims→B.sG(s)H(s)lims→C.G(s)H(s)slim2s→D.G(s)H(s)1lims→33 信号流图中,输出节点又称为( ) A.源点B.陷点C.混合节点D.零节点34 设惯性环节频率特性为G(jω)=1j ω1.01+,则其对数幅频渐近特性的转角频率为ω= ( ) A .0.01rad /s B .0.1rad /s C .1rad /sD .10rad /s35 下列开环传递函数中为非最小相位传递函数的是( )A .)1s 10)(1s 4(1++B .)1s 5(s 1+C .)1s 5(s )1s (10+-D .2s 2s 12++36 利用开环奈奎斯特图可以分析闭环控制系统的( ) A .稳态性能 B .动态性能 C .精确性D .稳定性37 要求系统快速性好,则闭环极点应距( ) A .虚轴远 B .虚轴近 C .实轴近D .实轴远38 已知开环传递函数为G(s)=1)ζs 0.2s(0.01s k2++ (ζ>0)的单位负反馈系统,则闭环系统稳定时k 的范围为( )A .0<k<20ζB .3<k<25ζC .0<k<30ζD .k>20ζ39 设单位反馈控制系统的开环传递函数为G o (s)=)4s (s 1+,则系统的阻尼比ζ等于( )A .21B .1C .2D .440 开环传递函数G(s)H(s)=10)2)(s (s 5)k(s +++,当k 增大时,闭环系统( )A .稳定性变好,快速性变差B .稳定性变差,快速性变好C .稳定性变好,快速性变好D .稳定性变差,快速性变差41 一阶系统G (s )=1Ts K +的单位阶跃响应是y (t )=( )A.K (1-Tt e -)B.1-Tt e -C.T te TK - D.K Tt e -42 当二阶系统的根为一对相等的负实数时,系统的阻尼比ζ为( )A. ζ=0B. ζ=-1C. ζ=1D.0<ζ<143 当输入信号为阶跃、斜坡、抛物线函数的组合时,为了使稳态误差为某值或等于零,系统开环传递函数中的积分环节数N 至少应为( ) A.N≥0 B.N≥l C.N≥2D.N≥344 设二阶振荡环节的频率特性为164j )j (16)j (G 2+ω+ω=ω,则其极坐标图的奈氏曲线与负虚轴交点频率值=ω ( ) A.2 B.4C.8D.1645 设开环系统频率特性为)14j )(1j (j 1)j (G +ω+ωω=ω,当频率ω从0变化至∞时,其相角变化范围为( ) A.0°~-180° B.-90°~-180° C.-90°~-270°D.-90°~90°46 幅值条件公式可写为( )A.∏∏==++=m1i in1j j|zs ||p s |KB. ∏∏==++=m1i in1j j|zs ||p s |KC. ∏∏==++=n1j jm1i i|ps ||z s |KD. ∏∏==++=n1j jm1i i|ps ||z s |K47 当系统开环传递函数G (s )H (s )的分母多项式的阶次n 大于分子多项式的阶次m 时,趋向s 平面的无穷远处的根轨迹有( ) A.n —m 条 B.n+m 条 C.n 条D.m 条48 设开环传递函数为G (s )H (s )=)5s )(3s ()9s (K +++,其根轨迹( )A.有会合点,无分离点B.无会合点,有分离点C.无会合点,无分离点D.有会合点,有分离点49 采用超前校正对系统抗噪声干扰能力的影响是( ) A.能力上升 B.能力下降 C.能力不变D.能力不定50 单位阶跃函数r (t )的定义是( ) A.r (t )=1B.r (t )=1(t )C.r (t ) =Δ(t )D.r (t )=δ(t )51 设惯性环节的频率特性1101)(+=ωωj j G ,则其对数幅频渐近特性的转角频率为( ) A.0.01rad /s B.0.1rad /s C.1rad /sD.10rad /s52 迟延环节的频率特性为ωτωj e j G -=)(,其幅频特性M (ω)=( ) A.1 B.2 C.3D.453 计算根轨迹渐近线的倾角的公式为( ) A.m n l ++=πϕ)12( B. m n l ++-=πϕ)12(C. mn l ++=πϕ)12(D. mn l -+=πϕ)12(54 已知开环传递函数为)1()3()(-+=s s s k s G k 的单位负反馈控制系统,若系统稳定,k 的范围应为( ) A.k<0 B.k>0 C.k<1D.k>155 设二阶系统的4394)(2++=s s s G ,则系统的阻尼比ζ和自然振荡频率n ω为( )A.2191、 B. 3241、C. 9231、D. 4121、56 一阶系统11)(+=Ts s G 的单位斜坡响应y (t )=( )A.1-e -t/TB.T1e -t/TC.t-T+Te -t/TD.e -t/T57 根轨迹与虚轴交点处满足( ) A.0)()(=ωωj H j G B. 0)]()(Re[=ωωj H j G C. 1)()(-=ωωj H j G D. 0)]()(Im[=ωωj H j G58 开环传递函数为)(4p s s +,讨论p 从0变到∞时闭环根轨迹,可将开环传递函数化为( ) A.42+s ps B. 42+s pC. 42-s psD.42-s p59 对于一个比例环节,当其输入信号是一个阶跃函数时,其输出是( ) A.同幅值的阶跃函数 B.与输入信号幅值成比例的阶跃函数 C.同幅值的正弦函数 D.不同幅值的正弦函数60 对超前校正装置TsTss G c ++=11)(β,当φm =38°时,β值为( )A .2.5B .3C .4.17D .561 决定系统传递函数的是系统的( ) A .结构 B .参数 C .输入信号D .结构和参数62 终值定理的数学表达式为( ) A .)(lim )(lim )(0s X t x x s t →∞→==∞B .)(lim )(lim )(s X t x x s t ∞→∞→==∞C .)(lim )(lim )(0s sX t x x x t ∞→→==∞D .)(lim )(lim )(0s sX t x x s t →∞→==∞63 梅森公式为( )A .∑=∆nk k k p 1B .∑=∆∆nk kk p11C .∑=∆∆nk k11D .∑∆∆k k p 164 斜坡输入函数r(t)的定义是( ) A .t t r =)( B .)(1·)(0t x t r = C .2)(at t r = D .vt t r =)(65 一阶系统1)(+=Ts Ks G 的时间常数T 越小,则系统的响应曲线达到稳态值的时间( ) A .越短 B .越长 C .不变D .不定66 设微分环节的频率特性为ωωj j G =)(,当频率ω从0变化至∞时,其极坐标平面上的奈氏曲线是( ) A .正虚轴 B .负虚轴 C .正实轴D .负实轴67 设某系统的传递函数110)(+=s s G ,则其频率特性)(ωj G 的实部=)(ωR ( )A .2110ω+ B .2110ω+-C .Tω+110D .Tω+-11068 若劳斯阵列表中第一列的系数为(3,1,ε,2-ε1,12)T ,则此系统的稳定性为( ) A .稳定 B .临界稳定 C .不稳定D .无法判断69 设惯性环节的频率特性为110)(+=ωωj j G ,当频率ω从0变化至∞时,则其幅相频率特性曲线是一个半圆,位于极坐标平面的( ) A .第一象限B .第二象限C .第三象限D .第四象限70 开环传递函数为)2()5()()(++=s s s k s H s G 的根轨迹的弯曲部分轨迹是( )A .半圆B .整圆C .抛物线D .不规则曲线71 开环传递函数为)106)(1()()(2++-=s s s ks H s G ,其根轨迹渐近线与实轴的交点为( )A .35-B .53-C .53D .3572 频率法和根轨迹法的基础是( ) A .正弦函数 B .阶跃函数 C .斜坡函数D .传递函数73 方框图化简时,并联连接方框总的输出量为各方框输出量的( ) A .乘积 B .代数和 C .加权平均D .平均值74 求取系统频率特性的方法有( ) A .脉冲响应法B .根轨迹法C .解析法和实验法D .单位阶跃响应法75 设开环系统频率特性为G (jω)=)12)(1(1++ωωωj j j ,则其频率特性的奈氏图与负实轴交点的频率值ω为( ) A .rad 22/s B .1rad /s C .2rad/sD .2rad/s76 某单位反馈控制系统开环传递函数G (s )=21ss +α,若使相位裕量γ=45°,α的值应为多少?( ) A .21B .21C .321D .42177 已知单位负反馈系统的开环传递函数为G (s )=12)1(223++++s as s s ,若系统以ωn =2rad/s 的频率作等幅振荡,则a 的值应为( )A .0.4B .0.5C .0.75D .178 设G (s )H (s )=)5)(2()10(+++s s s k ,当k 增大时,闭环系统( )A .由稳定到不稳定B .由不稳定到稳定C .始终稳定D .始终不稳定79 设开环传递函数为G(s)=)1(+s s k,在根轨迹的分离点处,其对应的k 值应为( ) A .41B .21C .1D .480 单位抛物线输入函数r(t)的数学表达式是r(t)=( ) A .at 2 B .21Rt 2C .t 2D .21t 281 当二阶系统特征方程的根为具有负实部的复数根时,系统的阻尼比为( ) A .ζ<0 B .ζ=0 C .0<ζ<1D .ζ≥182 已知单位反馈控制系统在阶跃函数作用下,稳态误差e ss 为常数,则此系统为( ) A .0型系统 B .I 型系统 C .Ⅱ型系统D .Ⅲ型系统83 设某环节的传递函数为G(s)=121+s ,当ω=0.5rad /s 时,其频率特性相位移θ(0.5)=( )A .-4πB .-6πC .6πD .4π84 超前校正装置的最大超前相角可趋近( ) A .-90° B .-45° C .45°D .90°85 单位阶跃函数的拉氏变换是( ) A .31sB .21sC .s1D .186 同一系统,不同输入信号和输出信号之间传递函数的特征方程( ) A .相同 B .不同 C .不存在D .不定87 2型系统对数幅频特性的低频段渐近线斜率为( ) A .-60dB /dec B .-40dB /dec C .-20dB /decD .0dB /dec88 已知某单位负反馈系统的开环传递函数为G(s)=)1(24+s s ,则相位裕量γ的值为( ) A .30° B .45° C .60°D .90°89 设开环传递函数为G(s)H(s)=)3)(2()1(+++s s s s k ,其根轨迹渐近线与实轴的交点为( ) A .0 B .-1 C .-2D .-390 惯性环节又称为( ) A .积分环节 B .微分环节 C .一阶滞后环节 D .振荡环节91 没有稳态误差的系统称为( ) A .恒值系统 B .无差系统 C .有差系统 D .随动系统 92 根轨迹终止于( ) A .闭环零点 B .闭环极点C .开环零点D .开环极点93 若某系统的传递函数为G (s )=1)s s(T K1+,则相应的频率特性G (jω)为( )A .1)ω(jωT K 1+B .1)ω(jωT j K1+-C .1)ω(jωT K1+-D .1)ω(jωT j K1+94 若劳斯阵列表中某一行的参数全为零,或只有等于零的一项,则说明在根平面内存在的共轭虚根或共轭复根对称于( ) A .实轴 B .虚轴 C .原点D .︒45对角线95 滞后校正装置最大滞后相角处的频率ωm 为( )A .βT 1B .βTC .βT D .T β96 已知α+jβ是根轨迹上的一点,则必在根轨迹上的点是( ) A .-α+jβ B .α-jβC .-α-jβD .β+jα97 当原有控制系统已具有满意的动态性能,但稳态性能不能满足要求时,可采用串联 ( )A .超前校正B .滞后校正C .反馈校正D .前馈校正98 设l 型系统开环频率特性为G (jω)=1)(j10ωj 0.1+ω,则其对数幅频渐近特性低频段(0ω→)的L (ω)为( ) A .-20-20lgω B .20-20lgω C .40-20lgωD .20+20lgω99 设某开环系统的传递函数为G (s )=1)0.4s 1)(0.25s (0.25s 102+++,频率特性的相位移(θω)为( )A .-tg-10.25ω-tg-120.25ω10.4ω- B .tg-10.25ω+tg-120.25ω10.4ω-C .tg-10.25ω-tg-120.25ω10.4ω-D .-tg-10.25ω+tg -120.25ω10.4ω-100 线性定常系统传递函数的变换基础是A.齐次变换B.拉氏变换C.富里哀变换D.Z 变换101 在电气环节中,可直接在复域中推导出传递函数的概念是 A.反馈 B.负载效应 C.复阻抗D.等效变换102 不同的物理系统,若可以用同一个方框图表示,那么它们的 A.元件个数相同B.环节数相同C.输入与输出的变量相同D.数学模型相同103 设某函数x (t )的数学表达式为()00,0,0t x t x t <⎧=⎨≥⎩,式中x 0为常数,则x (t )是A.单位阶跃函数B.阶跃函数C.比例系数D.常系数104 通常定义当t ≥t s 以后,系统的响应曲线不超出稳态值的范围是 A.±1%或±3% B.±1%或±4% C.±3%或±4%D.±2%或±5%105 若要改善系统的动态性能,可以增加A.微分环节B.积分环节C.振荡环节D.惯性环节106 当输入信号为阶跃、抛物线函数的组合时,为了使稳态误差为某值或等于零,系统开环传递函数中的积分环节数N 至少应为 A.N≥0 B.N≥1 C.N≥2D.N≥3107 设开环系统传递函数为0.5()(101)(0.11)G s s s s =++,则其频率特性的奈氏图与负实轴交点的频率值ω= A.0.1rad /s B.0.5 rad /s C.1 rad /sD.10 rad /s108 设某开环系统的传递函数为24(101)()(1)s G s s s +=+,其频率特性的相位移θ(ω)=A.-90°+tg -1ω- tg -110ωB. -90°+ tg -1ω+ tg -110ωC. -180°- tg -110ω+ tg -1ωD. -180°+ tg -110ω- tg -1ω109 设II 型系统开环幅相频率特性为21()()(10.1)j G j j j ωωωω+=+,则其对数幅频渐近特性与ω轴交点频率为 A.0.01 rad /s B.0.1 rad /s C.1 rad /sD.10 rad /s110 0型系统对数幅频特性的低频段渐近线斜率为A.-60 dB/decB.-40 dB/decC.-20 dB/decD.0 dB/dec111 系统的根轨迹关于A.虚轴对称B.原点对称C.实轴对称D.渐近线对称112 PD控制器具有的相位特征是A.超前B.滞后C.滞后-超前D.超前一滞后113 控制系统采用负反馈形式连接后,下列说法正确的是()A 一定能使闭环系统稳定B 系统的动态性能一定会提高C 一定能使干扰引起的误差逐渐减少,最后完全消除D 一般需要调整系统的结构和参数,才能改善系统的性能114 单输入单输出的线性系统其传递函数与下列哪些因素有关()A 系统的外作用信号B 系统或元件的结构和参数C 系统的初始状态D 作用于系统的干扰信号115 一阶系统()1+=Ts Ks G 的放大系数K 愈小,则系统的输出响应的稳态值( ) A 不变B 不定C 愈小D 愈大116 当二阶系统的根分布在根平面的虚轴上时,则系统的阻尼比ξ为( ) A ξ<0B 0<ξ<1C ξ =0D ξ>1117 高阶系统的主导极点越靠近虚轴,则系统的( ) A 准确度越高 B 准确度越低 C 响应速度越快 D 响应速度越慢118 下列哪种措施达不到提高系统控制精度的目的( ) A 增加积分环节 B 提高系统的开环增益K C 增加微分环节 D 引入扰动补偿119 若二个系统的根轨迹相同,则二个系统有相同的( ) A 闭环零点和极点 B 开环零点 C 闭环极点 D 阶跃响应120 若某最小相位系统的相角裕度γ>00,则下列说法正确的是( ) A 系统不稳定 B 只有当幅值裕度k g >1 时系统才稳定 C 系统稳定 D 不能用相角裕度判断系统的稳定性121 进行串联超前校正后,校正前的穿越频率ωc 与校正后的穿越频率'c ω 的关系,通常是( )A ωc = 'c ωB ωc > 'c ωC ωc < 'c ωD ωc 与'c ω无关。
1、关于奈氏判据及其辅助函数F(s)=1+G(s)H(s),错误的说法是(A )A、F(s)的零点就是开环传递函数的极点B、F(s)的极点就是开环传递函数的极点C、F(s)的零点数与极点数相同D、F(s)的零点就是闭环传递函数的极点2、已知负反馈系统的开环传递函数为221()6100s G s s s +=++,则该系统的闭环特征方程为(B )。
A 、261000s s ++=B 、2(6100)(21)0s s s ++++=C 、2610010s s +++=D 、与是否为单位反馈系统有关3、一阶系统的闭环极点越靠近S 平面原点,则(D )。
A 、准确度越高B 、准确度越低C 、响应速度越快D 、响应速度越慢4、已知系统的开环传递函数为100(0.11)(5)s s ++,则该系统的开环增益为(C )。
A 、100B 、1000C 、20D 、不能确定5、若两个系统的根轨迹相同,则有相同的:(C )A 、闭环零点和极点B 、开环零点C 、闭环极点D 、阶跃响应6、下列串联校正装置的传递函数中,能在1c ω=处提供最大相位超前角的是(B )。
A 、1011s s ++B 、1010.11s s ++C 、210.51s s ++D 、0.11101s s ++7、关于P I 控制器作用,下列观点正确的有(A )A、可使系统开环传函的型别提高,消除或减小稳态误差;B、积分部分主要是用来改善系统动态性能的;C、比例系数无论正负、大小如何变化,都不会影响系统稳定性;D、只要应用P I 控制规律,系统的稳态误差就为零。
8、关于线性系统稳定性的判定,下列观点正确的是(C )。
A、线性系统稳定的充分必要条件是:系统闭环特征方程的各项系数都为正数;B、无论是开环极点或是闭环极点处于右半S 平面,系统不稳定;C、如果系统闭环系统特征方程某项系数为负数,系统不稳定;D、当系统的相角裕度大于零,幅值裕度大于1时,系统不稳定。
第一章 自动控制的一般概念1.如果被调量随着给定量的变化而变化,这种控制系统叫( )A. 恒值调节系统B. 随动系统C. 连续控制系统D.数字控制系统2.主要用于产生输入信号的元件称为( )A.比较元件B.给定元件C.反馈元件D.放大元件3.与开环控制系统相比较,闭环控制系统通常对( )进行直接或间接地测量,通过反馈环节去影响控制信号。
A.输出量B.输入量C.扰动量D.设定量4. 直接对控制对象进行操作的元件称为( )A.给定元件B.放大元件C.比较元件D.执行元件5. 对于代表两个或两个以上输入信号进行( )的元件又称比较器。
A.微分B.相乘C.加减D.相除6. 开环控制系统的的特征是没有( )A.执行环节B.给定环节C.反馈环节D.放大环节7. 主要用来产生偏差的元件称为( )A.比较元件B.给定元件C.反馈元件D.放大元件8. 某系统的传递函数是()s e s s G τ-+=121,则该可看成由( )环节串联而成。
A.比例.延时 B.惯性.导前 C.惯性.延时 D.惯性.比例10. 在信号流图中,在支路上标明的是( )A.输入B.引出点C.比较点D.传递函数11.采用负反馈形式连接后,则 ( )A.一定能使闭环系统稳定;B.系统动态性能一定会提高;C.一定能使干扰引起的误差逐渐减小,最后完全消除;D.需要调整系统的结构参数,才能改善系统性能。
第二章 自动控制的数学模型1. 已知)45(32)(22++++=s s s s s s F ,其原函数的终值=∞→t t f )(( ) B.∞2.正弦函数sin ωt 的拉氏变换是( )3.传递函数反映了系统的动态性能,它与下列哪项因素有关?( )A.输入信号B.初始条件C.系统的结构参数D.输入信号和初始条件4.对复杂的信号流图直接求出系统的传递函数可以采用( )A.终值定理B.初值定理C.梅森公式D.方框图变换5.采用系统的输入.输出微分方程对系统进行数学描述是( )A.系统各变量的动态描述B.系统的外部描述C.系统的内部描述D.系统的内部和外部描述6.拉氏变换将时间函数变换成( )A .正弦函数B .单位阶跃函数C .单位脉冲函数D .复变函数7.线性定常系统的传递函数,是在零初始条件下( )A .系统输出信号与输入信号之比B .系统输入信号与输出信号之比C .系统输入信号的拉氏变换与输出信号的拉氏变换之比D .系统输出信号的拉氏变换与输入信号的拉氏变换之比8.方框图化简时,并联连接方框总的输出量为各方框输出量的( )A .乘积B .代数和C .加权平均D .平均值9. 某典型环节的传递函数是()151+=s s G ,则该环节是( )A.比例环节B.积分环节C.惯性环节D.微分环节10. 已知系统的微分方程为()()()()t x t x t x t xi 2263000=++ ,则系统的传递函数是() ω+s A 1.22.ωω+s B 22.ω+s s C 221.ω+s DA.26322++s s B.26312++s s C.36222++s s D.36212++s s11. 引出点前移越过一个方块图单元时,应在引出线支路上( )A.并联越过的方块图单元B.并联越过的方块图单元的倒数C.串联越过的方块图单元D.串联越过的方块图单元的倒数12. 某典型环节的传递函数是()Tss G 1=,则该环节是( ) A.比例环节 B.惯性环节 C.积分环节 D.微分环节13. 已知系统的单位脉冲响应函数是()21.0t t y =,则系统的传递函数是( ) A. 32.0s B.s 1.0 C.21.0s D.22.0s14. 梅逊公式主要用来( )A.判断稳定性B.计算输入误差C.求系统的传递函数D.求系统的根轨迹15. 传递函数只取决于系统或元件的( ) ,而与系统输入量的形式和大小无关,也不反映系统内部的任何信息。
自动控制原理考试题型:一、填空题(26分)1.闭环系统与开环系统的基本概念。
2.什么是传递函数,由开环传递函数求闭环函数的求法。
3.基本函数的拉普拉斯变换,已知单位脉冲系统响应为t e t g 3.03)(-=,求传递函数。
4.已知系统的特征函数)()(1)(s H s G s F +=,则该系统的开环极点及闭环极点为多少?5.系统的超调量p M 为多少?6.根轨迹的基本画法,起点和终点的确定。
7.什么是最小相位系统,给出最小相位系统的相频特性,写出该系统的开环传递函数。
8.给出开环传递函数)1)(1()(21++=s T s T s K s G ,则其幅频特性为?相频特性为?二、选择题(30分)1.用劳斯判据判定系统的稳定性(多次出现要掌握);2.由幅相特性曲线判系统稳定的方法,即系统在右半平面闭环极点的个数0=-=R P Z ,参考课件,弄清各参数的意义。
3.已知一个系统的开环传递函数)5)(14(50)(++=s s s G ,则该系统的开环增益为多少? 4.典型环节的对数幅相特性曲线Ts s G +=1)(或s s G τ+=11)(。
5.由开环传递函数求闭环特性方程。
6.已知开环传递函数))(()(b s a s s K s G ++=,求K 值变化的系统稳定及临界稳定的情况。
三、综合题(44分) 1.劳斯判据判断稳定性, ++=242)(s s s D 最高阶数为4,判断正实部根的个数,进而判断稳定性。
2.已知开环系统))(()(b s a s s K s G ++=,则求使系统稳定的K 的取值范围。
3.已知开环传递函数))(a ()()(b s s s K s H s G ++=,画出根轨迹。
4.画系统的bode 图,给出传递函数。
(参考课件的两个例题)。
1-10:CDAAA CBCDC; 11-20:BDAAA BCDBA; 21-30:AACCB CBCBA; 31-40:ACADC DAXXB; 41-50:ACCBC AADBB; 51-60:BADDB CCBBX; 61-70:DDBDA AACDB; 71-80:ADBCA DCCAD; 81-90:CAADC ABDCC; 91-100:BCDCA BCAAB; 101-112:CDBDA CCDCD CA 《自动控制原理》考试说明 (一)选择题1单位反馈控制系统由输入信号引起的稳态误差与系统开环传递函数中的下列哪个环节的个数有关?( ) A .微分环节 B .惯性环节 C .积分环节 D .振荡环节2 设二阶微分环节G(s)=s 2+2s+4,则其对数幅频特性的高频段渐近线斜率为( ) A .-40dB /dec B .-20dB /dec C .20dB /dec D .40dB /dec3设开环传递函数为G(s)H(s)=K(s+1)s(s+2)(s+3),其根轨迹( )A .有分离点有会合点B .有分离点无会合点C .无分离点有会合点D .无分离点无会合点4 如果输入信号为单位斜坡函数时,系统的稳态误差e ss 为无穷大,则此系统为( ) A .0型系统 B .I 型系统 C .Ⅱ型系统 D .Ⅲ型系统5 信号流图中,信号传递的方向为( )A .支路的箭头方向B .支路逆箭头方向C .任意方向D .源点向陷点的方向6 描述RLC 电路的线性常系数微分方程的阶次是( )A.零阶B.一阶C.二阶D.三阶7 方框图的转换,所遵循的原则为( ) A.结构不变 B.等效 C.环节个数不变 D.每个环节的输入输出变量不变8 阶跃输入函数r (t )的定义是( ) A.r (t )=l(t ) B.r (t )=x 0 C.r (t )=x 0·1(t ) D.r (t )=x 0.δ(t ) 9 设单位负反馈控制系统的开环传递函数为G 0(s)=()()B s A s ,则系统的特征方程为( ) A.G 0(s)=0 B.A(s)=0 C.B(s)=0 D.A(s)+B(s)=010 改善系统在参考输入作用下的稳态性能的方法是增加( ) A.振荡环节 B.惯性环节 C.积分环节 D.微分环节11当输入信号为阶跃、斜坡函数的组合时,为了满足稳态误差为某值或等于零,系统开环传递函数中的积分环节数N 至少应为( ) A.N≥0 B.N≥1 C.N≥2 D.N≥3 12 设开环系统的传递函数为G(s)=1(0.21)(0.81)s s s ++,则其频率特性极坐标图与实轴交点的幅值|G (jω)|=( ) A.2.0 B.1.0 C.0.8D.0.1613设某开环系统的传递函数为G (s )=210(0.251)(0.250.41)s s s +++,则其相频特性θ(ω)=( )A.1124tg 0.25tg10.25ωωω-----B.1120.4tg 0.25tg 10.25ωωω---+-C.1120.4tg 0.25tg 10.25ωωω---++ D.1120.4tg 0.25tg 10.25ωωω----+ 14设某校正环节频率特性G c (j ω)=1011j j ωω++,则其对数幅频特性渐近线高频段斜率为( )A.0dB /decB.-20dB /decC.-40dB /decD.-60dB /dec15 二阶振荡环节的对数幅频特性的低频段的渐近线斜率为( ) A.0dB /dec B.-20dB /dec C.-40dB /deC D.-60dB /dec 16 根轨迹法是一种( ) A.解析分析法 B.时域分析法 C.频域分析法 D.时频分析法 17 PID 控制器是一种( ) A.超前校正装置 B.滞后校正装置 C.滞后—超前校正装置 D.超前—滞后校正装置 18 稳态位置误差系数K ρ为( )A .)s (H )s (G 1lim 0s → B. )s (H )s (sG lim 0s →C. )s (H )s (G s lim 20s →D. )s (H )s (G lim 0s →19 若系统存在临界稳定状态,则根轨迹必定与之相交的为( ) A .实轴 B .虚轴 C .渐近线 D .阻尼线20 下列开环传递函数中为最小相位传递函数的是( )A.)2s 2s )(1s (12+++ B.2s 1-C.16s 4s 12+-D.10s 1- 21 当二阶系统的阻尼比ξ在0<ξ<l 时,特征根为( ) A .一对实部为负的共轭复根 B .一对实部为正的共轭复根 C .一对共轭虚根 D .一对负的等根22 二阶振荡环节对数幅频特性高频段的渐近线斜率为( ) A .-40dB /dec B .-20dB /dec C .0dB /dec D .20dB /dec23 已知单位负反馈控制系统的开环传递函数为G(s)=2s49,则该闭环系统为( )A .稳定B .条件稳定C .临界稳定D .BIBO 稳定24 设系统的开环传递函数为G(s)H(s) =)4s )(2s ()3s 2(K +++,其在根轨迹法中用到的开环放大系数为( ) A .K /2 B .K C .2K D .4K25 PI 控制器属于下列哪一种校正装置的特例( ) A .超前 B .滞后 C .滞后—超前 D .超前—滞后26 设系统的G(s)=1s 5s 2512++,则系统的阻尼比ξ为( )A .251B .51 C .21 D .127 设某系统开环传递函数为G(s)= )5s )(2s )(1s (10+++,则其频率特性的奈氏图起点坐标为( ) A .(0,j10) B .(1,j0) C .(10,j0)D .(0,j1) 28 单位负反馈系统的开环传递函数G(s)= )1Ts (s )1s )(1s 2(K 2+++,K>0,T>0,则闭环控制系统稳定的条件是( ) A .(2K+1)>T B .2(2K+2)>T C .3(2K+1)>TD .K>T+1,T>229 设积分环节频率特性为G(jω)=j ω1,当频率ω从0变化至∞时,其极坐标中的奈氏曲线是( ) A .正实轴 B .负实轴 C .正虚轴D .负虚轴 30 控制系统的最大超调量σp 反映了系统的( ) A .相对稳定性 B .绝对稳定性 C .快速性D .稳态性能31 当二阶系统的阻尼比ζ>1时,特征根为( ) A .两个不等的负实数 B .两个相等的负实数 C .两个相等的正实数D .两个不等的正实数 32 稳态加速度误差数K a =( ) A .G (s)H(s)lim 0s →B .sG(s)H(s)lim 0s →C .G(s)H(s)s lim 20s →D .G(s)H(s)1lim0s →33 信号流图中,输出节点又称为( ) A .源点 B .陷点 C .混合节点D .零节点34 设惯性环节频率特性为G(jω)=1j ω1.01+,则其对数幅频渐近特性的转角频率为ω=( ) A .0.01rad /s B .0.1rad /s C .1rad /sD .10rad /s35 下列开环传递函数中为非最小相位传递函数的是( ) A .)1s 10)(1s 4(1++B .)1s 5(s 1+C .)1s 5(s )1s (10+-D .2s 2s 12++ 36 利用开环奈奎斯特图可以分析闭环控制系统的( ) A .稳态性能 B .动态性能 C .精确性D .稳定性37 要求系统快速性好,则闭环极点应距( ) A .虚轴远 B .虚轴近 C .实轴近D .实轴远38 已知开环传递函数为G(s)=1)ζs 0.2s(0.01s k2++ (ζ>0)的单位负反馈系统,则闭环系统稳定时k 的范围为( ) A .0<k<20ζ B .3<k<25ζ C .0<k<30ζD .k>20ζ39 设单位反馈控制系统的开环传递函数为G o (s)=)4s (s 1+,则系统的阻尼比ζ等于( )A .21 B .1 C .2D .440 开环传递函数G(s)H(s)=10)2)(s (s 5)k(s +++,当k 增大时,闭环系统( )A .稳定性变好,快速性变差B .稳定性变差,快速性变好C .稳定性变好,快速性变好D .稳定性变差,快速性变差41 一阶系统G (s )=1Ts K+的单位阶跃响应是y (t )=( )A.K (1-Tt e -) B.1-T t e -C.T te TK - D.K Tt e-42 当二阶系统的根为一对相等的负实数时,系统的阻尼比ζ为( ) A. ζ=0 B. ζ=-1 C. ζ=1 D.0<ζ<143 当输入信号为阶跃、斜坡、抛物线函数的组合时,为了使稳态误差为某值或等于零,系统开环传递函数中的积分环节数N 至少应为( ) A.N≥0 B.N≥l C.N≥2 D.N≥344 设二阶振荡环节的频率特性为164j )j (16)j (G 2+ω+ω=ω,则其极坐标图的奈氏曲线与负虚 轴交点频率值=ω ( ) A.2 B.4 C.8D.1645 设开环系统频率特性为)14j )(1j (j 1)j (G +ω+ωω=ω,当频率ω从0变化至∞时,其相角变化范围为( ) A.0°~-180° B.-90°~-180° C.-90°~-270° D.-90°~90°46 幅值条件公式可写为( )A.∏∏==++=m1i in1j j|zs ||ps |KB. ∏∏==++=m1i in1j j|zs ||ps |KC. ∏∏==++=n1j jm1i i|ps ||z s |KD. ∏∏==++=n1j jm1i i|ps ||z s |K47 当系统开环传递函数G (s )H (s )的分母多项式的阶次n 大于分子多项式的阶次m 时,趋向s 平面的无穷远处的根轨迹有( ) A.n —m 条 B.n+m 条 C.n 条 D.m 条48 设开环传递函数为G (s )H (s )=)5s )(3s ()9s (K +++,其根轨迹( )A.有会合点,无分离点B.无会合点,有分离点C.无会合点,无分离点D.有会合点,有分离点 49 采用超前校正对系统抗噪声干扰能力的影响是( ) A.能力上升 B.能力下降 C.能力不变 D.能力不定 50 单位阶跃函数r (t )的定义是( ) A.r (t )=1 B.r (t )=1(t ) C.r (t ) =Δ(t ) D.r (t )=δ(t )51 设惯性环节的频率特性1101)(+=ωωj j G ,则其对数幅频渐近特性的转角频率为( ) A.0.01rad /s B.0.1rad /s C.1rad /sD.10rad /s52 迟延环节的频率特性为ωτωj e j G -=)(,其幅频特性M (ω)=( ) A.1 B.2 C.3 D.4 53 计算根轨迹渐近线的倾角的公式为( ) A.m n l ++=πϕ)12(B. m n l ++-=πϕ)12(C. mn l ++=πϕ)12(D. mn l -+=πϕ)12(54 已知开环传递函数为)1()3()(-+=s s s k s G k 的单位负反馈控制系统,若系统稳定,k 的范围应为( ) A.k<0 B.k>0 C.k<1D.k>155 设二阶系统的4394)(2++=s s s G ,则系统的阻尼比ζ和自然振荡频率n ω为( )A.2191、B. 3241、C.9231、 D.4121、 56 一阶系统11)(+=Ts s G 的单位斜坡响应y (t )=( ) A.1-e -t/TB.T 1e -t/T C.t-T+Te -t/TD.e -t/T 57 根轨迹与虚轴交点处满足( ) A.0)()(=ωωj H j G B. 0)]()(Re[=ωωj H j G C. 1)()(-=ωωj H j G D. 0)]()(Im[=ωωj H j G58 开环传递函数为)(4p s s +,讨论p 从0变到∞时闭环根轨迹,可将开环传递函数化为( )A.42+s psB. 42+s pC. 42-s psD. 42-s p59 对于一个比例环节,当其输入信号是一个阶跃函数时,其输出是( ) A.同幅值的阶跃函数 B.与输入信号幅值成比例的阶跃函数 C.同幅值的正弦函数 D.不同幅值的正弦函数 60 对超前校正装置TsTss G c ++=11)(β,当φm =38°时,β值为( ) A .2.5 B .3 C .4.17D .561 决定系统传递函数的是系统的( )A .结构B .参数C .输入信号D .结构和参数62 终值定理的数学表达式为( ) A .)(lim )(lim )(0s X t x x s t →∞→==∞B .)(lim )(lim )(s X t x x s t ∞→∞→==∞C .)(lim )(lim )(0s sX t x x x t ∞→→==∞D .)(lim )(lim )(0s sX t x x s t →∞→==∞63 梅森公式为( ) A .∑=∆nk kk p1B .∑=∆∆nk kk p11C .∑=∆∆nk k11 D .∑∆∆kkp 164 斜坡输入函数r(t)的定义是( ) A .t t r =)( B .)(1·)(0t x t r = C .2)(at t r = D .vt t r =)(65 一阶系统1)(+=Ts Ks G 的时间常数T 越小,则系统的响应曲线达到稳态值的时间( ) A .越短 B .越长 C .不变D .不定 66 设微分环节的频率特性为ωωj j G =)(,当频率ω从0变化至∞时,其极坐标平面上的奈氏曲线是( ) A .正虚轴 B .负虚轴 C .正实轴D .负实轴67 设某系统的传递函数110)(+=s s G ,则其频率特性)(ωj G 的实部=)(ωR ( ) A .2110ω+ B .2110ω+-C .Tω+110D .Tω+-11068 若劳斯阵列表中第一列的系数为(3,1,ε,2-ε1,12)T ,则此系统的稳定性为( )A .稳定B .临界稳定C .不稳定D .无法判断69 设惯性环节的频率特性为110)(+=ωωj j G ,当频率ω从0变化至∞时,则其幅相频率特性曲线是一个半圆,位于极坐标平面的( ) A .第一象限 B .第二象限 C .第三象限D .第四象限70 开环传递函数为)2()5()()(++=s s s k s H s G 的根轨迹的弯曲部分轨迹是( )A .半圆B .整圆C .抛物线D .不规则曲线71 开环传递函数为)106)(1()()(2++-=s s s ks H s G ,其根轨迹渐近线与实轴的交点为( )A .35- B .53- C .53 D .35 72 频率法和根轨迹法的基础是( ) A .正弦函数 B .阶跃函数 C .斜坡函数D .传递函数73 方框图化简时,并联连接方框总的输出量为各方框输出量的( ) A .乘积 B .代数和 C .加权平均D .平均值74 求取系统频率特性的方法有( ) A .脉冲响应法 B .根轨迹法 C .解析法和实验法D .单位阶跃响应法 75 设开环系统频率特性为G (jω)=)12)(1(1++ωωωj j j ,则其频率特性的奈氏图与负实轴交点的频率值ω为( ) A .rad 22/s B .1rad /s C .2rad/sD .2rad/s76 某单位反馈控制系统开环传递函数G (s )=21ss +α,若使相位裕量γ=45°,α的值应为多少?( ) A .21B .21C .321D .42177 已知单位负反馈系统的开环传递函数为G (s )=12)1(223++++s as s s ,若系统以ωn =2rad/s 的频率作等幅振荡,则a 的值应为( ) A .0.4 B .0.5 C .0.75 D .178 设G (s )H (s )=)5)(2()10(+++s s s k ,当k 增大时,闭环系统( )A .由稳定到不稳定B .由不稳定到稳定C .始终稳定D .始终不稳定79 设开环传递函数为G(s)=)1(+s s k,在根轨迹的分离点处,其对应的k 值应为( )A .41 B .21 C .1 D .480 单位抛物线输入函数r(t)的数学表达式是r(t)=( )A .at 2B .21Rt 2C .t 2D .21t 2 81 当二阶系统特征方程的根为具有负实部的复数根时,系统的阻尼比为( ) A .ζ<0 B .ζ=0 C .0<ζ<1D .ζ≥182 已知单位反馈控制系统在阶跃函数作用下,稳态误差e ss 为常数,则此系统为( ) A .0型系统 B .I 型系统 C .Ⅱ型系统D .Ⅲ型系统83 设某环节的传递函数为G(s)=121+s ,当ω=0.5rad /s 时,其频率特性相位移θ(0.5)= ( )A .-4π B .-6π C .6π D .4π 84 超前校正装置的最大超前相角可趋近( ) A .-90° B .-45° C .45°D .90°85 单位阶跃函数的拉氏变换是( )A .31sB .21sC .s1 D .186 同一系统,不同输入信号和输出信号之间传递函数的特征方程( )A .相同B .不同C .不存在D .不定87 2型系统对数幅频特性的低频段渐近线斜率为( ) A .-60dB /dec B .-40dB /dec C .-20dB /decD .0dB /dec88 已知某单位负反馈系统的开环传递函数为G(s)=)1(24+s s ,则相位裕量γ的值为( )A .30°B .45°C .60°D .90°89 设开环传递函数为G(s)H(s)=)3)(2()1(+++s s s s k ,其根轨迹渐近线与实轴的交点为( )A .0B .-1C .-2D .-390 惯性环节又称为( ) A .积分环节 B .微分环节 C .一阶滞后环节 D .振荡环节 91 没有稳态误差的系统称为( ) A .恒值系统 B .无差系统 C .有差系统 D .随动系统 92 根轨迹终止于( ) A .闭环零点 B .闭环极点 C .开环零点 D .开环极点93 若某系统的传递函数为G (s )=1)s s(T K1+,则相应的频率特性G (jω)为( ) A .1)ω(jωT K1+B .1)ω(jωT j K1+-C .1)ω(jωT K 1+-D .1)ω(jωT j K1+94 若劳斯阵列表中某一行的参数全为零,或只有等于零的一项,则说明在根平面内存在的共轭虚根或共轭复根对称于( ) A .实轴 B .虚轴C .原点D .︒45对角线95 滞后校正装置最大滞后相角处的频率ωm 为( )A .βT 1B .βTC .βT D .T β96 已知α+jβ是根轨迹上的一点,则必在根轨迹上的点是( ) A .-α+jβ B .α-jβ C .-α-jβ D .β+jα97 当原有控制系统已具有满意的动态性能,但稳态性能不能满足要求时,可采用串联 ( )A .超前校正B .滞后校正C .反馈校正D .前馈校正98 设l 型系统开环频率特性为G (jω)=1)(j10ωj 0.1+ω,则其对数幅频渐近特性低频段(0ω→)的L (ω)为( ) A .-20-20lgω B .20-20lgω C .40-20lgω D .20+20lgω99 设某开环系统的传递函数为G (s )=1)0.4s 1)(0.25s (0.25s 102+++,频率特性的相位移(θω)为( )A .-tg-10.25ω-tg-120.25ω10.4ω-B .tg-10.25ω+tg -120.25ω10.4ω-C .tg-10.25ω-tg-120.25ω10.4ω-D .-tg-10.25ω+tg -120.25ω10.4ω- 100 线性定常系统传递函数的变换基础是 A.齐次变换 B.拉氏变换 C.富里哀变换 D.Z 变换101 在电气环节中,可直接在复域中推导出传递函数的概念是 A.反馈 B.负载效应 C.复阻抗 D.等效变换102 不同的物理系统,若可以用同一个方框图表示,那么它们的 A.元件个数相同 B.环节数相同C.输入与输出的变量相同D.数学模型相同103 设某函数x (t )的数学表达式为()00,0,0t x t x t <⎧=⎨≥⎩,式中x 0为常数,则x (t )是A.单位阶跃函数B.阶跃函数C.比例系数D.常系数104 通常定义当t ≥t s 以后,系统的响应曲线不超出稳态值的范围是 A.±1%或±3% B.±1%或±4% C.±3%或±4% D.±2%或±5% 105 若要改善系统的动态性能,可以增加 A.微分环节 B.积分环节 C.振荡环节 D.惯性环节106 当输入信号为阶跃、抛物线函数的组合时,为了使稳态误差为某值或等于零,系统开环传递函数中的积分环节数N 至少应为 A.N≥0 B.N≥1 C.N≥2 D.N≥3107 设开环系统传递函数为0.5()(101)(0.11)G s s s s =++,则其频率特性的奈氏图与负实轴交点的频率值ω= A.0.1rad /s B.0.5 rad /s C.1 rad /sD.10 rad /s108 设某开环系统的传递函数为24(101)()(1)s G s s s +=+,其频率特性的相位移θ(ω)=A.-90°+tg -1ω- tg -110ωB. -90°+ tg -1ω+ tg -110ωC. -180°- tg -110ω+ tg -1ωD. -180°+ tg -110ω- tg -1ω109 设II 型系统开环幅相频率特性为21()()(10.1)j G j j j ωωωω+=+,则其对数幅频渐近特性与ω轴交点频率为 A.0.01 rad /s B.0.1 rad /s C.1 rad /s D.10 rad /s 110 0型系统对数幅频特性的低频段渐近线斜率为 A.-60 dB /dec B.-40 dB /dec C.-20 dB /dec D.0 dB /dec 111 系统的根轨迹关于 A.虚轴对称 B.原点对称 C.实轴对称 D.渐近线对称 112 PD 控制器具有的相位特征是 A.超前 B.滞后 C.滞后-超前 D.超前一滞后113 控制系统采用负反馈形式连接后,下列说法正确的是( ) A 一定能使闭环系统稳定 B 系统的动态性能一定会提高 C 一定能使干扰引起的误差逐渐减少,最后完全消除D 一般需要调整系统的结构和参数,才能改善系统的性能114 单输入单输出的线性系统其传递函数与下列哪些因素有关( )A 系统的外作用信号B 系统或元件的结构和参数C 系统的初始状态D 作用于系统的干扰信号 115 一阶系统()1+=Ts Ks G 的放大系数K 愈小,则系统的输出响应的稳态值( ) A 不变 B 不定 C 愈小 D 愈大116 当二阶系统的根分布在根平面的虚轴上时,则系统的阻尼比ξ为( ) A ξ<0 B 0<ξ<1 C ξ =0 D ξ>1 117 高阶系统的主导极点越靠近虚轴,则系统的( ) A 准确度越高 B 准确度越低 C 响应速度越快 D 响应速度越慢118 下列哪种措施达不到提高系统控制精度的目的( ) A 增加积分环节 B 提高系统的开环增益K C 增加微分环节 D 引入扰动补偿119 若二个系统的根轨迹相同,则二个系统有相同的( ) A 闭环零点和极点 B 开环零点 C 闭环极点 D 阶跃响应120 若某最小相位系统的相角裕度γ>00,则下列说法正确的是( ) A 系统不稳定 B 只有当幅值裕度k g >1 时系统才稳定 C 系统稳定 D 不能用相角裕度判断系统的稳定性121 进行串联超前校正后,校正前的穿越频率ωc 与校正后的穿越频率'c ω的关系,通常是( ) A ωc = 'c ω B ωc > 'c ω C ωc < 'c ω D ωc 与'c ω无关。
西安电子科技大学2010年《自动控制原理》考研试题与答案一、(24分)单项选择填空题。
在每小题列出的备选项中,只有一个是最符合题意的,请将其选出。
1.单位负反馈系统的闭环传递函数o 24()24G s s s =++,则其相对阻尼系数ζ为( )。
A .1B .2C .1/2D .2 答案:C2.二阶系统的闭环传递函数为216()216s s s Φ=++,该系统所处的状态是( )。
A .欠阻尼B .临界阻尼C .过阻尼D .无阻尼 答案:A3.传递函数的概念适用于( )。
A .线性系统B .非线性系统C .线性时不变连续系统D .线性时变连续系统 答案:C4.系统处于欠阻尼状态时的特征根为( )。
A .实数根B .共轭复根C .共轭虚根D .不相等的实数根 答案:B5.零型采样控制系统,在单位阶跃信号作用下,其稳态误差是( )。
A .p 11K +B .0C .∞D .p 1K答案:D6.单位负反馈系统的开环传递函数为1ks τ+,则其相角裕量γ( )。
A .c 180arctan τω- B .c 180arctan τω+ C .n 180arctan τω- D .n 180arctan τω+ 答案:A7.设j s σω=+是s 平面上的点,当该点映射到z 平面上位于单位园以外的区域时,则有( )。
A .0σ= B .0σ> C .0σ< D .0ω< 答案:B8.一阶保持器两相邻采样点之间的输出是( )。
A .线性变化B .常值C .线性减小D .线性增加 答案:A9.著系统开环对数幅频特性曲线第一个转折频率之前的斜率为1-,则该系统的型号为( )。
A .零型系统 B .Ⅰ型系统 C .Ⅱ型系统 D .Ⅲ型系统 答案:B10.相位滞后校正装置的传递函数为c 1()1Ts G s Ts α+=+,其中α应为( )。
A .1α<B .1α0<<C .0α<D .1α> 答案:B11.相位超前校正网络的传递函数为c 1()1Ts G s Ts β+=+,其中系数β应为( )。
v1.0 可编辑可修改1-10:CDAAA CBCDC;11-20:BDAAA BCDBA;21-30:AACCB CBCBA;31-40:ACADC DAXXB;41-50:ACCBC AADBB;51-60:BADDB CCBBX;61-70:DDBDA AACDB;71-80:ADBCA DCCAD;81-90:CAADC ABDCC;91-100:BCDCA BCAAB;101-112:CDBDA CCDCD CA《自动控制原理》考试说明(一)选择题1单位反馈控制系统由输入信号引起的稳态误差与系统开环传递函数中的下列哪个环节的个数有关( )A.微分环节B.惯性环节C.积分环节D.振荡环节2 设二阶微分环节G(s)=s2+2s+4,则其对数幅频特性的高频段渐近线斜率为( ) A.-40dB/dec B.-20dB/decC.20dB/dec D.40dB/dec3设开环传递函数为G(s)H(s)=K(s+1)s(s+2)(s+3),其根轨迹( )A.有分离点有会合点B.有分离点无会合点C.无分离点有会合点D.无分离点无会合点4 如果输入信号为单位斜坡函数时,系统的稳态误差e ss为无穷大,则此系统为( ) A.0型系统B.I型系统C.Ⅱ型系统D.Ⅲ型系统5 信号流图中,信号传递的方向为( )A.支路的箭头方向B.支路逆箭头方向C.任意方向D.源点向陷点的方向6 描述RLC电路的线性常系数微分方程的阶次是( )A.零阶B.一阶C.二阶D.三阶7 方框图的转换,所遵循的原则为( ) A.结构不变B.等效C.环节个数不变D.每个环节的输入输出变量不变8 阶跃输入函数r (t )的定义是( ) (t )=l(t ) (t )=x 0 (t )=x 0·1(t )(t )=x 0.δ(t )9 设单位负反馈控制系统的开环传递函数为G 0(s)=()()B s A s ,则系统的特征方程为( ) (s)=0 (s)=0 (s)=0(s)+B(s)=010 改善系统在参考输入作用下的稳态性能的方法是增加( ) A.振荡环节 B.惯性环节 C.积分环节D.微分环节11当输入信号为阶跃、斜坡函数的组合时,为了满足稳态误差为某值或等于零,系统开环传递函数中的积分环节数N 至少应为( ) ≥0 ≥1 ≥2≥312 设开环系统的传递函数为G(s)=1(0.21)(0.81)s s s ++,则其频率特性极坐标图与实轴交点的幅值|G (jω)|=( ) A.2.0设某开环系统的传递函数为G(s)=210(0.251)(0.250.41)s s s +++,则其相频特性θ(ω)=( )A.1124tg 0.25tg10.25ωωω----- B.1120.4tg 0.25tg10.25ωωω---+- C.1120.4tg 0.25tg10.25ωωω---++ D.1120.4tg 0.25tg10.25ωωω----+14设某校正环节频率特性G c (j ω)=1011j j ωω++,则其对数幅频特性渐近线高频段斜率为( ) /dec /dec /dec/dec15 二阶振荡环节的对数幅频特性的低频段的渐近线斜率为( ) /dec /dec /deC/dec16 根轨迹法是一种( ) A.解析分析法 B.时域分析法 C.频域分析法D.时频分析法17 PID 控制器是一种( ) A.超前校正装置 B.滞后校正装置 C.滞后—超前校正装置D.超前—滞后校正装置18 稳态位置误差系数K ρ为( ) A .)s (H )s (G 1lim0s →B. )s (H )s (sG lim 0s →C. )s (H )s (G s lim 20s →D. )s (H )s (G lim 0s →19 若系统存在临界稳定状态,则根轨迹必定与之相交的为( ) A .实轴 B .虚轴 C .渐近线D .阻尼线20 下列开环传递函数中为最小相位传递函数的是( )A.)2s 2s )(1s (12+++ B.2s 1- C.16s 4s 12+- D.10s 1- 21 当二阶系统的阻尼比ξ在0<ξ<l 时,特征根为( ) A .一对实部为负的共轭复根 B .一对实部为正的共轭复根 C .一对共轭虚根D .一对负的等根22 二阶振荡环节对数幅频特性高频段的渐近线斜率为( ) A .-40dB /dec B .-20dB /dec C .0dB /decD .20dB /dec23 已知单位负反馈控制系统的开环传递函数为G(s)=2s49,则该闭环系统为( )A .稳定B .条件稳定C .临界稳定D .BIBO 稳定24 设系统的开环传递函数为G(s)H(s) =)4s )(2s ()3s 2(K +++,其在根轨迹法中用到的开环放大系数为( ) A .K /2 B .K C .2KD .4K25 PI 控制器属于下列哪一种校正装置的特例( ) A .超前 B .滞后 C .滞后—超前 D .超前—滞后26 设系统的G(s)=1s 5s 2512++,则系统的阻尼比ξ为( )A .251B .51 C .21 D .127 设某系统开环传递函数为G(s)= )5s )(2s )(1s (10+++,则其频率特性的奈氏图起点坐标为( ) A .(0,j10) B .(1,j0) C .(10,j0) D .(0,j1)28 单位负反馈系统的开环传递函数G(s)= )1Ts (s )1s )(1s 2(K 2+++,K>0,T>0,则闭环控制系统稳定的条件是( ) A .(2K+1)>T B .2(2K+2)>T C .3(2K+1)>TD .K>T+1,T>229 设积分环节频率特性为G(jω)=j ω1,当频率ω从0变化至∞时,其极坐标中的奈氏曲线是( ) A .正实轴 B .负实轴 C .正虚轴D .负虚轴30 控制系统的最大超调量σp 反映了系统的( ) A .相对稳定性 B .绝对稳定性 C .快速性D .稳态性能31 当二阶系统的阻尼比ζ>1时,特征根为( ) A .两个不等的负实数 B .两个相等的负实数 C .两个相等的正实数D .两个不等的正实数32 稳态加速度误差数K a =( ) A .G(s)H(s)lim 0s →B .sG(s)H(s)lim 0s →C .G(s)H(s)s lim 20s →D .G(s)H(s)1lim0s →33 信号流图中,输出节点又称为( ) A .源点 B .陷点 C .混合节点D .零节点34 设惯性环节频率特性为G(jω)=1j ω1.01+,则其对数幅频渐近特性的转角频率为ω=( ) A ./s B ./s C .1rad /sD .10rad /s35 下列开环传递函数中为非最小相位传递函数的是( ) A .)1s 10)(1s 4(1++B .)1s 5(s 1+C .)1s 5(s )1s (10+-D .2s 2s 12++ 36 利用开环奈奎斯特图可以分析闭环控制系统的( ) A .稳态性能 B .动态性能 C .精确性D .稳定性37 要求系统快速性好,则闭环极点应距( ) A .虚轴远 B .虚轴近 C .实轴近D .实轴远38 已知开环传递函数为G(s)=1)ζs 0.2s(0.01s k2++ (ζ>0)的单位负反馈系统,则闭环系统稳定时k 的范围为( ) A .0<k<20ζ B .3<k<25ζ C .0<k<30ζD .k>20ζ39 设单位反馈控制系统的开环传递函数为G o (s)=)4s (s 1+,则系统的阻尼比ζ等于( )A .21 B .1 C .2D .440 开环传递函数G(s)H(s)=10)2)(s (s 5)k(s +++,当k 增大时,闭环系统( )A .稳定性变好,快速性变差B .稳定性变差,快速性变好C .稳定性变好,快速性变好D .稳定性变差,快速性变差41 一阶系统G (s )=1Ts K+的单位阶跃响应是y (t )=( )(1-Tt e-) Tt e -C.T te TK - Tt e-42 当二阶系统的根为一对相等的负实数时,系统的阻尼比ζ为( ) A. ζ=0 B. ζ=-1 C. ζ=1<ζ<143 当输入信号为阶跃、斜坡、抛物线函数的组合时,为了使稳态误差为某值或等于零,系统开环传递函数中的积分环节数N 至少应为( ) ≥0 ≥l ≥2≥344 设二阶振荡环节的频率特性为164j )j (16)j (G 2+ω+ω=ω,则其极坐标图的奈氏曲线与负虚 轴交点频率值=ω ( )45 设开环系统频率特性为)14j )(1j (j 1)j (G +ω+ωω=ω,当频率ω从0变化至∞时,其相角变化范围为( ) °~-180° °~-180° °~-270° °~90°46 幅值条件公式可写为( )A.∏∏==++=m1i in1j j|zs ||ps |KB. ∏∏==++=m1i in1j j|zs ||ps |KC. ∏∏==++=n1j jm1i i|ps ||z s |KD. ∏∏==++=n1j jm1i i|ps ||z s |K47 当系统开环传递函数G (s )H (s )的分母多项式的阶次n 大于分子多项式的阶次m 时,趋向s 平面的无穷远处的根轨迹有( ) —m 条 +m 条 条条48 设开环传递函数为G (s )H (s )=)5s )(3s ()9s (K +++,其根轨迹( )A.有会合点,无分离点B.无会合点,有分离点C.无会合点,无分离点D.有会合点,有分离点49 采用超前校正对系统抗噪声干扰能力的影响是( ) A.能力上升 B.能力下降 C.能力不变D.能力不定50 单位阶跃函数r (t )的定义是( ) (t )=1 (t )=1(t ) (t ) =Δ(t )(t )=δ(t )51 设惯性环节的频率特性1101)(+=ωωj j G ,则其对数幅频渐近特性的转角频率为( ) A.0.01rad /s/s52 迟延环节的频率特性为ωτωj e j G -=)(,其幅频特性M (ω)=( )53 计算根轨迹渐近线的倾角的公式为( ) A.m n l ++=πϕ)12(B. m n l ++-=πϕ)12(C. mn l ++=πϕ)12(D. mn l -+=πϕ)12(54 已知开环传递函数为)1()3()(-+=s s s k s G k 的单位负反馈控制系统,若系统稳定,k 的范围应为( ) <0 >0 <1>155 设二阶系统的4394)(2++=s s s G ,则系统的阻尼比ζ和自然振荡频率n ω为( )A.2191、B. 3241、C. 9231、D. 4121、56 一阶系统11)(+=Ts s G 的单位斜坡响应y (t )=( ) TT1T+Te -t/TT57 根轨迹与虚轴交点处满足( ) A.0)()(=ωωj H j G B. 0)]()(Re[=ωωj H j G C. 1)()(-=ωωj H j G D. 0)]()(Im[=ωωj H j G58 开环传递函数为)(4p s s +,讨论p 从0变到∞时闭环根轨迹,可将开环传递函数化为( ) A.42+s psB. 42+s p C. 42-s psD.42-s p59 对于一个比例环节,当其输入信号是一个阶跃函数时,其输出是( ) A.同幅值的阶跃函数 B.与输入信号幅值成比例的阶跃函数 C.同幅值的正弦函数 D.不同幅值的正弦函数60 对超前校正装置TsTss G c ++=11)(β,当φm =38°时,β值为( ) A . B .3 C .D .561 决定系统传递函数的是系统的( ) A .结构 B .参数 C .输入信号D .结构和参数62 终值定理的数学表达式为( ) A .)(lim )(lim )(0s X t x x s t →∞→==∞B .)(lim )(lim )(s X t x x s t ∞→∞→==∞C .)(lim )(lim )(0s sX t x x x t ∞→→==∞D .)(lim )(lim )(0s sX t x x s t →∞→==∞63 梅森公式为( ) A .∑=∆nk kk p1B .∑=∆∆nk kk p11C .∑=∆∆nk k 11D .∑∆∆kkp 164 斜坡输入函数r(t)的定义是( ) A .t t r =)( B .)(1·)(0t x t r = C .2)(at t r =D .vt t r =)(65 一阶系统1)(+=Ts Ks G 的时间常数T 越小,则系统的响应曲线达到稳态值的时间( ) A .越短 B .越长 C .不变D .不定66 设微分环节的频率特性为ωωj j G =)(,当频率ω从0变化至∞时,其极坐标平面上的奈氏曲线是( ) A .正虚轴 B .负虚轴 C .正实轴D .负实轴67 设某系统的传递函数110)(+=s s G ,则其频率特性)(ωj G 的实部=)(ωR ( ) A .2110ω+ B .2110ω+-C .Tω+110D .Tω+-11068 若劳斯阵列表中第一列的系数为(3,1,ε,2-ε1,12)T,则此系统的稳定性为( )A .稳定B .临界稳定C .不稳定D .无法判断69 设惯性环节的频率特性为110)(+=ωωj j G ,当频率ω从0变化至∞时,则其幅相频率特性曲线是一个半圆,位于极坐标平面的( ) A .第一象限 B .第二象限 C .第三象限D .第四象限70 开环传递函数为)2()5()()(++=s s s k s H s G 的根轨迹的弯曲部分轨迹是( )A .半圆B .整圆C .抛物线D .不规则曲线71 开环传递函数为)106)(1()()(2++-=s s s ks H s G ,其根轨迹渐近线与实轴的交点为( )A .35- B .53- C .53 D .35 72 频率法和根轨迹法的基础是( ) A .正弦函数 B .阶跃函数 C .斜坡函数D .传递函数73 方框图化简时,并联连接方框总的输出量为各方框输出量的( ) A .乘积 B .代数和C .加权平均D .平均值74 求取系统频率特性的方法有( ) A .脉冲响应法 B .根轨迹法C .解析法和实验法D .单位阶跃响应法 75 设开环系统频率特性为G (jω)=)12)(1(1++ωωωj j j ,则其频率特性的奈氏图与负实轴交点的频率值ω为( ) A .rad 22/s B .1rad /s C .2rad/sD .2rad/s76 某单位反馈控制系统开环传递函数G (s )=21s s +α,若使相位裕量γ=45°,α的值应为多少( ) A .21B .21C .321D .42177 已知单位负反馈系统的开环传递函数为G (s )=12)1(223++++s as s s ,若系统以ωn =2rad/s 的频率作等幅振荡,则a 的值应为( ) A . B .C .D .178 设G (s )H (s )=)5)(2()10(+++s s s k ,当k 增大时,闭环系统( )A .由稳定到不稳定B .由不稳定到稳定C .始终稳定D .始终不稳定79 设开环传递函数为G(s)=)1(+s s k,在根轨迹的分离点处,其对应的k 值应为( )A .41 B .21 C .1 D .480 单位抛物线输入函数r(t)的数学表达式是r(t)=( )A .at 2B .21Rt 2C .t 2D .21t 281 当二阶系统特征方程的根为具有负实部的复数根时,系统的阻尼比为( ) A .ζ<0 B .ζ=0 C .0<ζ<1 D .ζ≥182 已知单位反馈控制系统在阶跃函数作用下,稳态误差e ss 为常数,则此系统为( ) A .0型系统 B .I 型系统 C .Ⅱ型系统D .Ⅲ型系统83 设某环节的传递函数为G(s)=121+s ,当ω=/s 时,其频率特性相位移θ= ( )A .-4π B .-6π C .6π D .4π 84 超前校正装置的最大超前相角可趋近( ) A .-90° B .-45° C .45°D .90°85 单位阶跃函数的拉氏变换是( )A .31sB .21sC .s1 D .186 同一系统,不同输入信号和输出信号之间传递函数的特征方程( ) A .相同 B .不同 C .不存在D .不定87 2型系统对数幅频特性的低频段渐近线斜率为( ) A .-60dB /dec B .-40dB /dec C .-20dB /decD .0dB /dec88 已知某单位负反馈系统的开环传递函数为G(s)=)1(24+s s ,则相位裕量γ的值为( ) A .30° B .45°C .60°D .90° 89 设开环传递函数为G(s)H(s)=)3)(2()1(+++s s s s k ,其根轨迹渐近线与实轴的交点为( )A .0B .-1C .-2D .-390 惯性环节又称为( ) A .积分环节 B .微分环节 C .一阶滞后环节 D .振荡环节91 没有稳态误差的系统称为( ) A .恒值系统 B .无差系统 C .有差系统 D .随动系统 92 根轨迹终止于( ) A .闭环零点 B .闭环极点 C .开环零点 D .开环极点93 若某系统的传递函数为G (s )=1)s s(T K1+,则相应的频率特性G (jω)为( ) A .1)ω(jωT K1+B .1)ω(jωT j K1+-C .1)ω(jωT K 1+-D .1)ω(jωT j K1+94 若劳斯阵列表中某一行的参数全为零,或只有等于零的一项,则说明在根平面内存在的共轭虚根或共轭复根对称于( ) A .实轴 B .虚轴 C .原点 D .︒45对角线95 滞后校正装置最大滞后相角处的频率ωm 为( )A .βT 1B .βTC .βT D .T β96 已知α+jβ是根轨迹上的一点,则必在根轨迹上的点是( ) A .-α+jβ B .α-jβ C .-α-jβ D .β+jα97 当原有控制系统已具有满意的动态性能,但稳态性能不能满足要求时,可采用串联 ( )A .超前校正B .滞后校正C .反馈校正D .前馈校正98 设l 型系统开环频率特性为G (jω)=1)(j10ωj 0.1+ω,则其对数幅频渐近特性低频段(0ω→)的L (ω)为( ) A .-20-20lgω B .20-20lgω C .40-20lgωD .20+20lgω99 设某开环系统的传递函数为G (s )=1)0.4s 1)(0.25s (0.25s 102+++,频率特性的相位移(θω)为( )A .ω-tg-120.25ω10.4ω-B .ω+tg -120.25ω10.4ω-C .ω-tg-120.25ω10.4ω-D .ω+tg -120.25ω10.4ω- 100 线性定常系统传递函数的变换基础是 A.齐次变换 B.拉氏变换 C.富里哀变换变换101 在电气环节中,可直接在复域中推导出传递函数的概念是 A.反馈 B.负载效应 C.复阻抗D.等效变换102 不同的物理系统,若可以用同一个方框图表示,那么它们的 A.元件个数相同 B.环节数相同 C.输入与输出的变量相同D.数学模型相同103 设某函数x (t )的数学表达式为()00,0,0t x t x t <⎧=⎨≥⎩,式中x 0为常数,则x (t )是A.单位阶跃函数B.阶跃函数C.比例系数D.常系数104 通常定义当t ≥t s 以后,系统的响应曲线不超出稳态值的范围是 A.±1%或±3% B.±1%或±4% C.±3%或±4% D.±2%或±5%105 若要改善系统的动态性能,可以增加 A.微分环节 B.积分环节 C.振荡环节D.惯性环节106 当输入信号为阶跃、抛物线函数的组合时,为了使稳态误差为某值或等于零,系统开环传递函数中的积分环节数N 至少应为 ≥0 ≥1 ≥2≥3107 设开环系统传递函数为0.5()(101)(0.11)G s s s s =++,则其频率特性的奈氏图与负实轴交点的频率值ω= A.0.1rad /srad /s rad /srad /s108 设某开环系统的传递函数为24(101)()(1)s G s s s +=+,其频率特性的相位移θ(ω)=°+tg -1ω- tg -110ωB. -90°+ tg -1ω+ tg -110ω C. -180°- tg -110ω+ tg -1ωD. -180°+ tg -110ω- tg -1ω109 设II 型系统开环幅相频率特性为21()()(10.1)j G j j j ωωωω+=+,则其对数幅频渐近特性与ω轴交点频率为 A.0.01 rad /srad /s rad /srad /s110 0型系统对数幅频特性的低频段渐近线斜率为 dB /decdB /dec dB /decdB /dec111 系统的根轨迹关于 A.虚轴对称 B.原点对称 C.实轴对称D.渐近线对称112 PD 控制器具有的相位特征是 A.超前 B.滞后C.滞后-超前D.超前一滞后113 控制系统采用负反馈形式连接后,下列说法正确的是( ) A 一定能使闭环系统稳定 B 系统的动态性能一定会提高 C 一定能使干扰引起的误差逐渐减少,最后完全消除 D 一般需要调整系统的结构和参数,才能改善系统的性能114 单输入单输出的线性系统其传递函数与下列哪些因素有关( ) A 系统的外作用信号 B 系统或元件的结构和参数 C 系统的初始状态 D 作用于系统的干扰信号 115 一阶系统()1+=Ts Ks G 的放大系数K 愈小,则系统的输出响应的稳态值( ) A 不变B 不定C 愈小D 愈大116 当二阶系统的根分布在根平面的虚轴上时,则系统的阻尼比ξ为( ) A ξ<0B 0<ξ<1C ξ =0D ξ>1117 高阶系统的主导极点越靠近虚轴,则系统的( ) A 准确度越高 B 准确度越低 C 响应速度越快 D 响应速度越慢118 下列哪种措施达不到提高系统控制精度的目的( ) A 增加积分环节 B 提高系统的开环增益K C 增加微分环节 D 引入扰动补偿119 若二个系统的根轨迹相同,则二个系统有相同的( ) A 闭环零点和极点 B 开环零点 C 闭环极点 D 阶跃响应 120 若某最小相位系统的相角裕度γ>00,则下列说法正确的是( ) A 系统不稳定 B 只有当幅值裕度k g >1 时系统才稳定 C 系统稳定 D 不能用相角裕度判断系统的稳定性121 进行串联超前校正后,校正前的穿越频率ωc 与校正后的穿越频率'c ω的关系,通常是( )A ωc = 'c ωB ωc > 'c ωC ωc < 'c ωD ωc 与'c ω无关。
自动控制原理吴秀华第三版答案1、科学家发明了雷达,利用的是()。
[单选题] *A.苍蝇的复眼B.鱼的侧线C.蝙蝠的“回声定位”(正确答案)2、古人“钻木取火”的过程中,能量转化关系是()。
[单选题] *A.机械能转化为动能B.动能转化为化学能C.动能转化为热能和光能(正确答案)3、大鱼吃小鱼,小鱼吃虾米,这就是一条完整的食物链。
[判断题] *对错(正确答案)4、(郑东新区)在垃圾清理中,可以利用电磁起重机拣出垃圾中的一部分铁质物品,为了方便快速地让铁质物品从电磁起重机上落进卡车车厢里,科学的方法是()[单选题] *A.减小电磁铁线圈中的电流B.切断电磁铁的电源(正确答案)C.在卡车车厢里安装一个大磁铁5、下列三幅图中的电磁铁是用相同规格的铁芯、导线、电池制作而成的,其中电磁铁磁性最强的是()。
[单选题] *A.B.(正确答案)C.6、奇奇用手电筒模拟太阳,用乒乓球模拟地球,做昼夜交替模拟实验,下面说法不正确的是()。
[单选题] *A.实验中,乒乓球被手电筒照亮的部分代表的是白天B.假设乒乓球不动,手电筒围绕乒乓球不停旋转,不会出现昼夜交替现象(正确答案)C.假设手电筒不动,乒乓球不停地自转,会出现昼夜交替现象7、在同一天内,探探第一次测得阳光下竹竿影长为300厘米,一小时后,测得的影长为200厘米,她两次测量竹竿影长的时间可能是()。
[单选题] *A.上午(正确答案)B.下午C.傍晚8、物体因运动具有的能量是动能;储存在食物,燃烧中的能量是化学能[判断题] *对(正确答案)错9、《哈利波特》中罗恩的两个哥哥是双胞胎,两个长得非常像,甚至连罗恩的妈妈也经常把他们叫错。
下列说法中不正确的是( )。
[单选题] *A.两个人长得完全一样(正确答案)B.两个人有很多相貌特征是相同的C.两个人的相貌并不完全一样10、在种子发芽实验中,下列做法正确的是()。
[单选题] *A.每天观察一次(正确答案)B.只需要观察有水的那组种子有没有发芽C.多天的实验中,第一天加一次水就够了11、(杭州市)弟弟对地球充满了好奇,关于地球和地球的运动,说法不正确的是([单选题] *A.托勒密坚持“地心说”,他认为地球处于宇宙中心B.“日心说”最早的提出者是哥白尼,他认为地球在运动,并且24小时自转一周(正确答案)C.贝塞尔用量日仪的观测结果,证明了地球在围绕着太阳公转12、放大镜的特点是透明,中间薄边缘厚。
自动控制原理名词解释
自动控制原理(Automatic Control Principle)是指通过感知系
统状态、分析信息并采取相应措施,以调节和控制系统的工作状态和输出。
在自动控制原理中,涉及到以下几个重要的概念:
1. 反馈(Feedback):指系统输出被传递回系统进行比较和调
节的过程。
通过反馈,系统可以根据实际输出与期望输出之间的偏差来调节自身的工作状态,从而使系统更加稳定和准确。
2. 控制器(Controller):是一种用于自动控制系统的装置或
算法,根据输入信号和反馈信息来生成输出信号,以控制系统响应和稳定工作。
常见的控制器包括比例控制器、积分控制器、微分控制器以及它们的组合形式。
3. 传感器(Sensor):用于感知系统输入和输出的物理量或信
号的装置。
通过传感器,系统可以实时获取各种参数的信息来监测系统状态,并作为反馈信号提供给控制器。
4. 执行器(Actuator):用于执行控制器输出信号的装置,将
控制器生成的信号转化为系统的物理行为或操作,对系统状态进行调节和控制。
常见的执行器包括电动机、阀门、液压缸等。
5. 状态变量(State Variable):用于描述系统状态的物理量或
变量。
通过监测和记录状态变量的数值,可以实时了解系统的运行情况,并根据需要进行调控和优化。
常见的状态变量有位置、速度、压力、温度等。
自动控制原理应用于各个领域,包括工业生产、交通运输、环境控制、电力系统、航空航天等。
它可以提高系统的稳定性、精确度和效率,实现自动化操作和优化控制,使得各种工程和技术应用更加可靠和智能化。
21.一线性系统,当输入是单位脉冲函数时,其输出象函数与传递函数相同. 22。
输入信号和反馈信号之间的比较结果称为偏差。
23。
对于最小相位系统一般只要知道系统的开环幅频特性就可以判断其稳定性。
24。
设一阶系统的传递G(s)=7/(s+2),其阶跃响应曲线在t=0处的切线斜率为 2 . 25。
当输入为正弦函数时,频率特性G(jω)与传递函数G(s)的关系为s=j ω。
26。
机械结构动柔度的倒数称为动刚度。
27.当乃氏图逆时针从第二象限越过负实轴到第三象限去时称为正穿越。
28.二阶系统对加速度信号响应的稳态误差为 1/K 。
即不能跟踪加速度信号.29.根轨迹法是通过开环传递函数直接寻找闭环根轨迹。
30.若要求系统的快速性好,则闭环极点应距虚轴越远越好。
21.对控制系统的首要要求是系统具有 .稳定性。
22。
在驱动力矩一定的条件下,机电系统的转动惯量越小,其。
加速性能越好。
23。
某典型环节的传递函数是,则系统的时间常数是 0。
5 。
24。
延迟环节不改变系统的幅频特性,仅使相频特性发生变化.25。
二阶系统当输入为单位斜坡函数时,其响应的稳态误差恒为 2ζ/ n . 26。
反馈控制原理是检测偏差并纠正偏差的原理.27.已知超前校正装置的传递函数为,其最大超前角所对应的频率 1.25 。
28.在扰动作用点与偏差信号之间加上积分环节能使静态误差降为0。
29.超前校正主要是用于改善稳定性和快速性。
30。
一般讲系统的加速度误差指输入是静态位置误差系数所引起的输出位置上的误差.21.“经典控制理论”的内容是以传递函数为基础的。
22.控制系统线性化过程中,变量的偏移越小,则线性化的精度越高。
23。
某典型环节的传递函数是,则系统的时间常数是 0.5 。
24。
延迟环节不改变系统的幅频特性,仅使相频特性发生变化。
25。
若要全面地评价系统的相对稳定性,需要同时根据相位裕量和幅值裕量来做出判断.26。
一般讲系统的加速度误差指输入是匀加速度所引起的输出位置上的误差。