C51串行口及串行通信技术
- 格式:ppt
- 大小:2.31 MB
- 文档页数:223
51单片机的串口通信程序(C语言) 51单片机的串口通信程序(C语言)在嵌入式系统中,串口通信是一种常见的数据传输方式,也是单片机与外部设备进行通信的重要手段之一。
本文将介绍使用C语言编写51单片机的串口通信程序。
1. 硬件准备在开始编写串口通信程序之前,需要准备好相应的硬件设备。
首先,我们需要一块51单片机开发板,内置了串口通信功能。
另外,我们还需要连接一个与单片机通信的外部设备,例如计算机或其他单片机。
2. 引入头文件在C语言中,我们需要引入相应的头文件来使用串口通信相关的函数。
在51单片机中,我们需要引入reg51.h头文件,以便使用单片机的寄存器操作相关函数。
同时,我们还需要引入头文件来定义串口通信的相关寄存器。
3. 配置串口参数在使用串口通信之前,我们需要配置串口的参数,例如波特率、数据位、停止位等。
这些参数的配置需要根据实际需要进行调整。
在51单片机中,我们可以通过写入相应的寄存器来配置串口参数。
4. 初始化串口在配置完串口参数之后,我们需要初始化串口,以便开始进行数据的发送和接收。
初始化串口的过程包括打开串口、设置中断等。
5. 数据发送在串口通信中,数据的发送通常分为两种方式:阻塞发送和非阻塞发送。
阻塞发送是指程序在发送完数据之后才会继续执行下面的代码,而非阻塞发送是指程序在发送数据的同时可以继续执行其他代码。
6. 数据接收数据的接收与数据的发送类似,同样有阻塞接收和非阻塞接收两种方式。
在接收数据时,需要不断地检测是否有数据到达,并及时进行处理。
7. 中断处理在串口通信中,中断是一种常见的处理方式。
通过使用中断,可以及时地响应串口数据的到达或者发送完成等事件,提高程序的处理效率。
8. 串口通信实例下面是一个简单的串口通信实例,用于在51单片机与计算机之间进行数据的传输。
```c#include <reg51.h>#include <stdio.h>#define BAUDRATE 9600#define FOSC 11059200void UART_init(){TMOD = 0x20; // 设置定时器1为模式2SCON = 0x50; // 设置串口为模式1,允许接收TH1 = 256 - FOSC / 12 / 32 / BAUDRATE; // 计算波特率定时器重载值TR1 = 1; // 启动定时器1EA = 1; // 允许中断ES = 1; // 允许串口中断}void UART_send_byte(unsigned char byte){SBUF = byte;while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志位}unsigned char UART_receive_byte(){while (!RI); // 等待接收完成RI = 0; // 清除接收完成标志位return SBUF;}void UART_send_string(char *s){while (*s){UART_send_byte(*s);s++;}}void main(){UART_init();UART_send_string("Hello, World!"); while (1){unsigned char data = UART_receive_byte();// 对接收到的数据进行处理}}```总结:通过以上步骤,我们可以编写出简单的51单片机串口通信程序。
51单片机串口通信(相关例程) 51单片机串口通信(相关例程)一、简介51单片机是一种常用的微控制器,它具有体积小、功耗低、易于编程等特点,被广泛应用于各种电子设备和嵌入式系统中。
串口通信是51单片机的常见应用之一,通过串口通信,可以使单片机与其他外部设备进行数据交互和通信。
本文将介绍51单片机串口通信的相关例程,并提供一些实用的编程代码。
二、串口通信基础知识1. 串口通信原理串口通信是通过串行数据传输的方式,在数据传输过程中,将信息分为一个个字节进行传输。
在51单片机中,常用的串口通信标准包括RS232、RS485等。
其中,RS232是一种常用的串口标准,具有常见的DB-9或DB-25连接器。
2. 串口通信参数在进行串口通信时,需要设置一些参数,如波特率、数据位、停止位和校验位等。
波特率表示在单位时间内传输的比特数,常见的波特率有9600、115200等。
数据位表示每个数据字节中的位数,一般为8位。
停止位表示停止数据传输的时间,常用的停止位有1位和2位。
校验位用于数据传输的错误检测和纠正。
三、串口通信例程介绍下面是几个常见的51单片机串口通信的例程,提供给读者参考和学习:1. 串口发送数据```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_SendChar(unsigned char dat){SBUF = dat; // 发送数据while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志}void main(){UART_Init(); // 初始化串口while (1){UART_SendChar('A'); // 发送字母A}}```2. 串口接收数据```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_Recv(){unsigned char dat;if (RI) // 检测是否接收到数据{dat = SBUF; // 读取接收到的数据 RI = 0; // 清除接收中断标志// 处理接收到的数据}}void main(){UART_Init(); // 初始化串口EA = 1; // 允许中断ES = 1; // 允许串口中断while (1)// 主循环处理其他任务}}```3. 串口发送字符串```C#include <reg51.h>void UART_Init(){TMOD = 0x20; // 设置计数器1为工作方式2(8位自动重装) TH1 = 0xFD; // 设置波特率为9600SCON = 0x50; // 设置串口工作方式1,允许串行接收TR1 = 1; // 启动计数器1}void UART_SendString(unsigned char *str){while (*str != '\0')SBUF = *str; // 逐个发送字符while (!TI); // 等待发送完成TI = 0; // 清除发送完成标志str++; // 指针指向下一个字符}}void main(){UART_Init(); // 初始化串口while (1){UART_SendString("Hello, World!"); // 发送字符串}}```四、总结本文介绍了51单片机串口通信的基础知识和相关编程例程,包括串口发送数据、串口接收数据和串口发送字符串。
论坛新老朋友们。
祝大家新年快乐。
在新的一年开始的时候,给大家一点小小的玩意。
工程师经常碰到需要多个串口通信的时候,而低端单片机大多只有一个串行口,甚至没有串口。
这时候无论是选择高端芯片,还是更改系统设计都是比较麻烦的事。
我把以前搞的用普通I/O口模拟串行口通讯的程序拿出来,供大家参考,希望各位兄弟轻点拍砖。
基本原理:我们模拟的是串行口方式1.就是最普通的方式。
一个起始位、8个数据位、一个停止位。
模拟串行口最关键的就是要计算出每个位的时间。
以波特率9600为例,每秒发9 600个位,每个位就是1/9600秒,约104个微秒。
我们需要做一个精确的延时,延时时间+对IO口置位的时间=104微秒。
起始位是低状态,再延时一个位的时间。
停止位是高状态,也是一个位的时间。
数据位是8个位,发送时低位先发出去,接收时先接低位。
了解这些以后,做个IO模拟串口的程序,就是很容易的事。
我们开始。
先上简单原理图:就一个MAX232芯片,没什么好说的,一看就明白。
使用单片机普通I/ O口,232数据输入端使用51单片机P3.2口(外部中断1口,接到普通口上也可以,模拟中断方式的串行口会有用。
呵呵)。
数据输出为P0.4(随便哪个口都行)。
下面这个程序,您只需吧P0.4 和P3.2 当成串口直接使用即可,经过测试完全没有问题.2、底层函数代码如下:sbit TXD1 = P0^4; //定义模拟输出脚sbit RXD1 = P3^2; //定义模拟输入脚bdata unsigned char SBUF1; //定义一个位操作变量sbit SBUF1_bit0 = SBUF1^0;sbit SBUF1_bit1 = SBUF1^1;sbit SBUF1_bit2 = SBUF1^2;sbit SBUF1_bit3 = SBUF1^3;sbit SBUF1_bit4 = SBUF1^4;sbit SBUF1_bit5 = SBUF1^5;sbit SBUF1_bit6 = SBUF1^6;sbit SBUF1_bit7 = SBUF1^7;void delay_bps() {unsigned char i; for (i = 0; i < 29; i++); _nop_(); _nop_();} //波特率9600 模拟一个9600波特率unsigned char getchar2() //模拟接收一个字节数据{while (RXD1);_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_(); delay_bps();SBUF1_bit0 = RXD1; //0delay_bps();SBUF1_bit1 = RXD1; //1delay_bps();SBUF1_bit2 = RXD1; //2delay_bps();SBUF1_bit3 = RXD1; //3delay_bps();SBUF1_bit4 = RXD1; //4delay_bps();SBUF1_bit5 = RXD1; //5delay_bps();SBUF1_bit6 = RXD1; //6delay_bps();SBUF1_bit7 = RXD1; //7delay_bps();return(SBUF1) ; //返回读取的数据}void putchar2(unsigned char input) //模拟发送一个字节数据{SBUF1 = input;TXD1 = 0; //起始位delay_bps();TXD1 = SBUF1_bit0; //0delay_bps();TXD1 = SBUF1_bit1; //1delay_bps();TXD1 = SBUF1_bit2; //2delay_bps();TXD1 = SBUF1_bit3; //3delay_bps();TXD1 = SBUF1_bit4; //4delay_bps();TXD1 = SBUF1_bit5; //5delay_bps();TXD1 = SBUF1_bit6; //6delay_bps();TXD1 = SBUF1_bit7; //7delay_bps();TXD1 = 1; //停止位delay_bps();}3、实现串行通讯。
C51单片机知识总结C51单片机知识总结单片机I/O口的使用51单片机总共有P0、P1、P2、P3四个8位双向输入输出端口,每个端口都有锁存器、输出驱动器和输入缓冲器。
4个I/O端口都能作输入输出口用,其中P0和P2通常用于对外部存储器的访问。
在无片外扩展存储器的系统中,这4个端口的每一位都可以作为准双向通用I/O端口使用。
在具有片外扩展存储器的系统中,P2口作为高8位地址线,P0口分时作为低8位地址线和双向数据总线。
下图为P0口的某位P0.n(n=0~7)结构图,它由一个输出锁存器、两个三态输入缓冲器和输出驱动电路及控制电路组成。
从图中可以看出,P0口既可以作为I/O 用,也可以作为地址/数据线用。
①输出时CPU发出控制电平“0”封锁“与”门,将输出上拉场效应管T1截止,同时使多路开关MUX把锁存器与输出驱动场效应管T2栅极接通。
故内部总线与P0口同相。
由于输出驱动级是漏极开路电路,若驱动NMOS或其它拉流负载时,需要外接上拉电阻。
P0的输出级可驱动8个LSTTL负载。
②输入时----分读引脚或读锁存器读引脚:由传送指令(MOV)实现;下面一个缓冲器用于读端口引脚数据,当执行一条由端口输入的指令时,读脉冲把该三态缓冲器打开,这样端口引脚上的数据经过缓冲器读入到内部总线。
读锁存器:有些指令如:ANLP0,A称为“读-改-写”指令,需要读锁存器。
上面一个缓冲器用于读端口锁存器数据。
**原因:如果此时该端口的负载恰是一个晶体管基极,且原端口输出值为1,那么导通了的PN结会把端口引脚高电平拉低;若此时直接读端口引脚信号,将会把原输出的“1”电平误读为“0”电平。
现采用读输出锁存器代替读引脚,图中,上面的三态缓冲器就为读锁存器Q端信号而设,读输出锁存器可避免上述可能发生的错误。
**P0口必须接上拉电阻;在读信号之前数据之前,先要向相应的锁存器做写1操作的I/O口称为准双向口;三态输入缓冲器的作用:(ANLP0,A)准双向口:从图中可以看出,在读入端口数据时,由于输出驱动FET并接在引脚上,如果T2导通,就会将输入的高电平拉成低电平,产生误读。
51单片机串口通信实例一、原理简介51 单片机内部有一个全双工串行接口。
什么叫全双工串口呢?一般来说,只能接受或只能发送的称为单工串行;既可接收又可发送,但不能同时进行的称为半双工;能同时接收和发送的串行口称为全双工串行口。
串行通信是指数据一位一位地按顺序传送的通信方式,其突出优点是只需一根传输线,可大大降低硬件成本,适合远距离通信。
其缺点是传输速度较低。
与之前一样,首先我们来了解单片机串口相关的寄存器。
SBUF 寄存器:它是两个在物理上独立的接收、发送缓冲器,可同时发送、接收数据,可通过指令对SBUF 的读写来区别是对接收缓冲器的操作还是对发送缓冲器的操作。
从而控制外部两条独立的收发信号线RXD(P3.0)、TXD(P3.1),同时发送、接收数据,实现全双工。
串行口控制寄存器SCON(见表1) 。
表1 SCON寄存器表中各位(从左至右为从高位到低位)含义如下。
SM0 和SM1 :串行口工作方式控制位,其定义如表2 所示。
表2 串行口工作方式控制位其中,fOSC 为单片机的时钟频率;波特率指串行口每秒钟发送(或接收)的位数。
SM2 :多机通信控制位。
该仅用于方式2 和方式3 的多机通信。
其中发送机SM2 = 1(需要程序控制设置)。
接收机的串行口工作于方式2 或3,SM2=1 时,只有当接收到第9 位数据(RB8)为1 时,才把接收到的前8 位数据送入SBUF,且置位RI 发出中断申请引发串行接收中断,否则会将接受到的数据放弃。
当SM2=0 时,就不管第位数据是0 还是1,都将数据送入SBUF,并置位RI 发出中断申请。
工作于方式0 时,SM2 必须为0。
REN :串行接收允许位:REN =0 时,禁止接收;REN =1 时,允许接收。
TB8 :在方式2、3 中,TB8 是发送机要发送的第9 位数据。
在多机通信中它代表传输的地址或数据,TB8=0 为数据,TB8=1 时为地址。
RB8 :在方式2、3 中,RB8 是接收机接收到的第9 位数据,该数据正好来自发送机的TB8,从而识别接收到的数据特征。
51单片机串行通讯在当今的电子世界中,单片机的应用无处不在,从家用电器到工业自动化,从智能仪表到航空航天,都能看到它的身影。
而在单片机的众多功能中,串行通讯是一项非常重要的技术。
首先,咱们来了解一下什么是串行通讯。
简单来说,串行通讯就是指数据一位一位地按顺序传送。
与并行通讯(数据的各位同时传送)相比,串行通讯虽然速度相对较慢,但它只需要少数几条线就能完成数据传输,大大降低了硬件成本和连线的复杂性。
51 单片机的串行通讯有两种工作方式:同步通讯和异步通讯。
异步通讯是比较常用的一种方式。
在异步通讯中,数据是以字符为单位进行传输的。
每个字符由起始位、数据位、奇偶校验位和停止位组成。
起始位是一个低电平信号,用于通知接收方数据即将开始传输。
数据位通常是 5 到 8 位,可以表示一个字符的信息。
奇偶校验位用于检验传输数据的正确性,而停止位则是高电平,标志着一个字符传输的结束。
同步通讯则是在发送和接收两端使用同一个时钟信号来控制数据的传输。
这种方式传输速度快,但硬件要求相对较高。
51 单片机的串行口结构包括发送缓冲器和接收缓冲器。
发送缓冲器只能写入不能读出,而接收缓冲器只能读出不能写入。
在进行串行通讯时,我们需要对 51 单片机的串行口进行初始化设置。
这包括设置波特率、数据位长度、奇偶校验位和停止位等参数。
波特率是指每秒传输的位数,它决定了数据传输的速度。
通过设置定时器 1 的工作方式和初值,可以得到不同的波特率。
在编程实现串行通讯时,我们可以使用查询方式或者中断方式。
查询方式相对简单,但会占用大量的 CPU 时间,影响系统的实时性。
中断方式则可以在数据接收或发送完成时触发中断,提高系统的效率。
比如说,我们要实现 51 单片机与 PC 机之间的串行通讯。
在 PC 端,我们可以使用串口调试助手等软件来发送和接收数据。
在单片机端,通过编写相应的程序,设置好串行口的参数,然后根据接收的数据执行相应的操作,或者将需要发送的数据发送出去。
51单片机与PC串口间通讯设计与分析一、串口通讯原理串口通讯是指通过串口来进行数据的收发传输的一种通讯方式。
串口通讯分为同步串行通讯和异步串行通讯两种方式,而51单片机与PC之间的串口通讯采用的是异步串行通讯方式。
异步串行通信是指每个数据字节之间可以有可变长度的停止位和起始位。
串口通讯一般由以下几个部分组成:1.传输数据线:用于传输数据的信号线,包括发送数据线(TXD)和接收数据线(RXD)。
2.时钟线:用于提供通讯双方的时钟信号。
3.控制线:用于控制串口通讯的流程,包括数据准备好(DSR)、数据就绪(DTR)等。
二、串口通讯协议串口通讯协议是约定通讯双方数据传输的格式和规则,常见的串口通讯协议有RS-232、RS-485等。
在51单片机与PC之间的串口通讯中,一般使用的是RS-232协议。
RS-232协议规定了数据的起始位、数据位数、校验位和停止位等。
起始位用于标识数据的传输开始,通常为一个逻辑低电平;数据位数指定了每个数据字节的位数,常见的值有5位、6位、7位和8位等;校验位用于校验数据的正确性,一般有无校验、奇校验和偶校验等选项;停止位用于表示数据的传输结束,通常为一个逻辑高电平。
三、51单片机串口的程序设计#include <reg52.h>#define UART_BAUDRATE 9600 // 波特率设置#define UART_DIV 256- UART_BAUDRATE/300void UART_Init( //串口初始化TMOD=0x20;SCON=0x50;PCON=0x00;TH1=UART_DIV;TL1=UART_DIV;TR1=1;EA=1;ES=1;void UART_SendByte(unsigned char ch) //串口发送字节TI=0;SBUF = ch;while(TI == 0);TI=0;void UART_Interrupt( interrupt 4 //串口中断处理if(RI)unsigned char ch;ch = SBUF;RI=0;//处理接收到的数据}if(TI)TI=0;//发送下一个字节}void mainUART_Init(;while(1)//主循环}在上述程序中,首先通过UART_Init(函数进行串口初始化,其中设置了波特率为9600;然后使用UART_SendByte(函数发送数据,调用该函数时会把数据放入SBUF寄存器,并等待TI标志位变为1;最后,在UART_Interrupt(函数中,使用RI标志位判断是否收到数据,然后对数据进行处理,TI标志位判断是否发送完当前字节。
51单片机串口通信串行口通信是一种在计算机和外部设备之间进行数据传输的通信方式,其中包括了并行通信、RS-232通信、USB通信等。
而在嵌入式系统中,最常见、最重要的通信方式就是单片机串口通信。
本文将详细介绍51单片机串口通信的原理、使用方法以及一些常见问题与解决方法。
一、串口通信的原理串口通信是以字节为单位进行数据传输的。
在串口通信中,数据传输分为两个方向:发送方向和接收方向。
发送方将待发送的数据通过串行转并行电路转换为一组相对应的并行信号,然后通过串口发送给接收方。
接收方在接收到并行信号后,通过串行转并行电路将数据转换为与发送方发送时相对应的数据。
在51单片机中,通过两个寄存器来实现串口通信功能:SBUF寄存器和SCON寄存器。
其中,SBUF寄存器用于存储要发送或接收的数据,而SCON寄存器用于配置串口通信的工作模式。
二、51单片机串口通信的使用方法1. 串口的初始化在使用51单片机进行串口通信之前,需要进行串口的初始化设置。
具体的步骤如下:a. 设置波特率:使用波特率发生器,通过设定计算器的初值和重装值来实现特定的波特率。
b. 串口工作模式选择:设置SCON寄存器,选择串行模式和波特率。
2. 发送数据发送数据的过程可以分为以下几个步骤:a. 将要发送的数据存储在SBUF寄存器中。
b. 等待发送完成,即判断TI(发送中断标志位)是否为1,如果为1,则表示发送完成。
c. 清除TI标志位。
3. 接收数据接收数据的过程可以分为以下几个步骤:a. 等待数据接收完成,即判断RI(接收中断标志位)是否为1,如果为1,则表示接收完成。
b. 将接收到的数据从SBUF寄存器中读取出来。
c. 清除RI标志位。
三、51单片机串口通信的常见问题与解决方法1. 波特率不匹配当发送方和接收方的波特率不一致时,会导致数据传输错误。
解决方法是在初始化时确保两端的波特率设置一致。
2. 数据丢失当发送方连续发送数据时,接收方可能会出现数据丢失的情况。
用C51实现带奇偶校验的串行通信MCS-51系列单片机的串行口有4种工作方式。
方式0为移位寄存器方式,用于外接同步I/O设备或扩展I/O口,不算起始位和停止位。
方式1为8位异步串行通讯,方式2和方式3为9位异步串行通讯。
方式2和方式3中的第9位是可程控位,即可由软件来确定第9位是“0”还是“1”。
也就是说,MCS-51系列单片机不像某些专用串行芯片,如INTEL8051、8050、TLC16C550等那样,可根据初始化条件自动加入串行通讯中的奇偶校验位发送出去,而是需要软件参与产生奇偶校验位。
用软件产生奇偶校验位是根据MCS-51系列单片机的状态寄存器PSW的定义:当累加器A中为1的个数为奇数时,P=1,否则P=0,来编程的。
假定待发送的数据已放入累加器A中,可用如下汇编语言来实现(串行口工作于方式2):MOVC,P;把奇偶标志送给进位位MOVTB8,C;把进位位送给TB8MOVSBUF,A;把待发送的数据放入串行口用C语言来编写时,因累加器A对编程者不透明,则会带来问题。
例如,假定待发送的数据已放入变量VARIABLE中,若要从串行口发送出去,想当然地认为使用如下语句即可:TB8=P;/*语句1*/SBUF=VARIABLE /*语句2*/实际上,2条语句并不能可靠地产生奇偶校验位。
因为在语句1前面的语句所对应的汇编语言中的累加器A中为1的个数是不确定的,而语句2又是不可分割的。
语句1和2对应的汇编语言程序为:MOVC,P;语句3MOVTB8,C;语句4MOVA,VARIABLE;语句5MOVSBUF,A;语句6可以看出,只有将语句3、4放到语句5和语句6之间时,才能正确地产生奇偶校验位。
为了达到这一目的,可引入全局变量VARIABLE1 相应的C语言程序如下:VARIABLE1=0;/* 语句7*/VARIABLE+=VARIABLE1;/* 语句8*/TB8=P;/*语句9 */SBUF=VARIABLE;/*语句10*/需要强调的是:1.在串行中断服务程序中,VARIABLE1一定要设置为全局变量,若设置为局部变量,则可能引起意想不到的后果。
MCS-51单⽚机的串⾏⼝及串⾏通信技术数据通信的基本概念串⾏通信有单⼯通信、半双⼯通信和全双⼯通信3种⽅式。
单⼯通信:数据只能单⽅向地从⼀端向另⼀端传送。
例如,⽬前的有线电视节⽬,只能单⽅向传送。
半双⼯通信:数据可以双向传送,但任⼀时刻只能向⼀个⽅向传送。
也就是说,半双⼯通信可以分时双向传送数据。
例如,⽬前的某些对讲机,任⼀时刻只能⼀⽅讲,另⼀⽅听。
全双⼯通信:数据可同时向两个⽅向传送。
全双⼯通信效率最⾼,适⽤于计算机之间的通信。
此外,通信双⽅要正确地进⾏数据传输,需要解决何时开始传输,何时结束传输,以及数据传输速率等问题,即解决数据同步问题。
实现数据同步,通常有两种⽅式,⼀种是异步通信,另⼀种是同步通信。
异步通信在异步通信中,数据⼀帧⼀帧地传送。
每⼀帧由⼀个字符代码组成,⼀个字符代码由起始位、数据位、奇偶校验位和停⽌位4部分组成。
每⼀帧的数据格式如图7-1所⽰。
⼀个串⾏帧的开始是⼀个起始位“0”,然后是5〜8位数据(规定低位数据在前,⾼位数据在后),接着是奇偶校验位(此位可省略),最后是停⽌位“1”。
起始位起始位"0”占⽤⼀位,⽤来通知接收设备,开始接收字符。
通信线在不传送字符时,⼀直保持为“1”。
接收端不断检测线路状态,当测到⼀个“0”电平时,就知道发来⼀个新字符,马上进⾏接收。
起始位还被⽤作同步接收端的时钟,以保证以后的接收能正确进⾏。
数据位数据位是要传送的数据,可以是5位、6位或更多。
当数据位是5位时,数据位为D0〜D4;当数据位是6位时,数据位为D0〜D5;当数据位是8位时,数据位为D0〜D7。
奇偶校验位奇偶校验位只占⼀位,其数据位为D8。
当传送数据不进⾏奇偶校验时,可以省略此位。
此位也可⽤于确定该帧字符所代表的信息类型,“1"表明传送的是地址帧,“0”表明传送的是数据帧。
停⽌位停⽌位⽤来表⽰字符的结束,停⽌位可以是1位、1.5位或2位。
停⽌位必须是⾼电平。
接收端接收到停⽌位后,就知道此字符传送完毕。
51单片机与PC机通信随着嵌入式系统和物联网技术的发展,51单片机在许多应用中扮演着重要的角色。
这些单片机具有低功耗、高性能和易于编程等优点,使其在各种嵌入式设备中得到广泛应用。
在这些应用中,与PC机的通信是一个关键的需求。
本文将探讨51单片机与PC机通信的方法和协议。
串口通信是51单片机与PC机进行通信的最常用方式之一。
串口通信使用一个或多个串行数据线来传输数据,通常使用RS232或TTL电平标准。
在硬件连接方面,需要将51单片机的串口与PC机的串口进行连接。
通常使用DB9或USB转TTL电路来实现这一连接。
在软件编程方面,需要使用51单片机的UART控制器来进行数据的发送和接收。
具体实现可以使用Keil C51或IAR Embedded Workbench 等集成开发环境进行编程。
USB通信是一种比较新的通信方式,它具有传输速度快、支持热插拔等优点。
在51单片机中,可以使用USB接口芯片来实现与PC机的通信。
在硬件连接方面,需要将51单片机的USB接口芯片与PC机的USB接口进行连接。
通常使用CH340G或FT232等USB转串口芯片来实现这一连接。
在软件编程方面,需要使用51单片机的USB接口芯片来进行数据的发送和接收。
具体实现可以使用相应的USB库来进行编程。
网络通信是一种更加灵活和高效的通信方式。
在51单片机中,可以使用以太网控制器来实现与PC机的网络通信。
在硬件连接方面,需要将51单片机的以太网控制器与PC机的网络接口进行连接。
通常使用ENC28J60等以太网控制器来实现这一连接。
在软件编程方面,需要使用51单片机的以太网控制器来进行数据的发送和接收。
具体实现可以使用相应的网络库来进行编程。
需要注意的是,网络编程涉及到更多的协议和数据格式,需要有一定的网络基础知识。
本文介绍了51单片机与PC机通信的三种常用方式:串口通信、USB 通信和网络通信。
每种方式都有其各自的优缺点和适用场景。
stc c51 串口通信协议常用校验计算以及一些常用方法一、引言随着嵌入式系统应用的不断普及,STC C51 单片机因其高性能、低功耗等特点在众多领域得到广泛应用。
串口通信作为一种常见的数据传输方式,在STC C51 应用中占有重要地位。
本文将介绍STC C51 串口通信协议的常用校验计算方法,并通过实际应用案例,分析如何在实际项目中实现高效、稳定的串口通信。
二、STC C51 串口通信协议简介1.串口通信基本原理串口通信是通过在两条信号线(数据线和时钟线)之间传输数据来实现设备间的通信。
数据传输过程中,需要遵循一定的通信协议,如波特率、数据位、停止位和奇偶校验等。
2.STC C51 串口通信特点STC C51 单片机内部集成了全双工UART 模块,支持异步通信。
其具有以下特点:1)支持多种数据传输格式:数据位、停止位、奇偶校验等可自定义;2)波特率发生器:内部集成波特率发生器,可根据需要设置不同的波特率;3)硬件支持流控制:支持硬件握手信号(RX、TX),实现数据传输的可靠性控制;4)低功耗:待机模式下,UART 模块功耗较低,有利于降低系统整体功耗。
三、常用校验计算方法1.奇偶校验奇偶校验是一种简单而有效的校验方法。
在数据传输过程中,附加一位校验位,使得数据中的1的个数为奇数或偶数。
接收端根据校验位和数据位的奇偶性进行校验,若不一致,则表示数据传输出现错误。
2.循环冗余校验(CRC)CRC 是一种基于二进制多项式的校验方法。
发送端根据数据生成一个校验码,附加在数据末尾,接收端对接收到的数据进行CRC 校验,若校验结果与预期值不符,则表示数据传输出现错误。
3.异或校验异或校验是一种基于异或运算的校验方法。
在数据传输过程中,每发送一个数据位,就对该数据位进行异或运算,并将结果作为校验位附加在数据末尾。
接收端对接收到的数据进行异或校验,若校验结果与预期值不符,则表示数据传输出现错误。
四、STC C51 串口通信实际应用1.通信速率与波特率的设置通信速率是指单位时间内传输的比特数,与波特率密切相关。
stc c51 串口通信协议常用校验计算以及一些常用方法STC C51 是一种基于8051 内核的单片机,广泛应用于各种嵌入式系统。
在串口通信中,为了保证数据的正确传输,通常需要使用校验位来检测数据传输过程中可能出现的错误。
以下是一些常用的校验计算方法以及一些常用的方法:1. 奇校验:o 定义:在数据字节的最高位(第8位)为校验位。
该位确保数据中1的个数为奇数。
o 规则:如果字节中的1的个数是偶数,那么奇校验位为1;如果字节中的1的个数是奇数,那么奇校验位为0。
o 优点:简单易懂,易于实现。
o 缺点:对于数据中连续的多个0,可能会产生错误的奇校验结果。
2. 偶校验:o 定义:在数据字节的最高位(第8位)为校验位。
该位确保数据中1的个数为偶数。
o 规则:如果字节中的1的个数是奇数,那么偶校验位为1;如果字节中的1的个数是偶数,那么偶校验位为0。
o 优点:对于数据中连续的多个0,可以避免错误的偶校验结果。
o 缺点:可能会增加多余的1,从而使得接收方无法正确识别信号电平。
3. 无校验:o 定义:不使用额外的校验位。
o 优点:简单、不需要额外的校验位。
o 缺点:无法检测传输错误。
4. 软件校验:o 在发送端对数据进行简单的加和,然后取反(如果是偶数),或减去最大值(如果是奇数),得到一个校验和。
接收端进行相同的计算,并与发送端的校验和进行比较,以检测错误。
5. 硬件校验:o 使用硬件电路(如RS-485 转换器)来实现校验和检测。
这通常更可靠,但也需要额外的硬件成本。
6. 校验方法的选用:o 对于通信距离较短、可靠性要求不高的场合,可以选择简单的校验方法。
o 对于通信距离长、可靠性要求高的场合,建议使用硬件校验或更复杂的软件校验方法。
7. 其他注意事项:o在设计串口通信协议时,应考虑数据的起始、结束标志,以及数据的格式和顺序。
o 为了提高通信的可靠性,可以考虑使用多重的起始和结束标志、重发机制等。
o 在数据传输过程中,应定期检查校验和,以确保数据的完整性。
C51单片机和电脑串口通信电路图与源码51单片机有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通讯。
进行串行通讯时要满足一定的条件,比如电脑的串口是RS232电平的,而单片机的串口是TTL电平的,两者之间必须有一个电平转换电路,我们采用了专用芯片MAX232进行转换,虽然也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。
我们采用了三线制连接串口,也就是说和电脑的9针串口只连接其中的3根线:第5脚的GND、第2脚的RXD、第3脚的TXD。
这是最简单的连接方法,但是对我们来说已经足够使用了,电路如下图所示,MAX232的第10脚和单片机的11脚连接,第9脚和单片机的10脚连接,第15脚和单片机的20脚连接.串口通讯的硬件电路如上图所示在制作电路前我们先来看看要用的MAX232,这里我们不去具体讨论它,只要知道它是TTL和RS232电平相互转换的芯片和基本的引脚接线功能就行了。
通常我会用两个小功率晶体管加少量的电路去替换MAX232,可以省一点,效果也不错,下图就是MAX232的基本接线图。
按图7-3加上MAX232就可以了。
这大热天的拿烙铁焊焊,还真的是热气迫人来呀:P串口座用DB9的母头,这样就可以用买来的PC串口延长线进行和电脑相连接,也可以直接接到电脑com口上。
为了能够在电脑端看到单片机发出的数据,我们必须借助一个WINDOWS软件进行观察,这里我们利用一个免费的电脑串口调试软件。
本串口软件在本网站可以找到软件界面如上图,我们先要设置一下串口通讯的参数,将波特率调整为4800,勾选十六进制显示。
串口选择为COM1,当然将网站提供的51单片机实验板的串口也要和电脑的COM1连接,将烧写有以下程序的单片机插入单片机实验板的万能插座中,并接通51单片机实验板的电源。
#include <reg51。
h〉#define BUFFERLEGTH 10//-—---———-—-——————--——-----—--——--——------—-—--—-—--—--——-———-—--—void UART_init();//串口初始化函数void COM_send(void);//串口发送函数char str[20];char j;//——-----————---——-—--—--—-—-—-———-———-—-——-—--—-—-——————--———-—--———void main(void){unsigned char i;UART_init();j=0; //初始化串口for(i = 0;i < 10 ;i++){COM_send(); //首先发送一次数据作为测试用};while(1);}//-——-——-——---------———-——-—-—-——--—---—---—--—-—--——---—---—--//——-——--——--—-—-—--———————---—-——-——-———-—-----——--—---——————-—-—-—-—————-—--—-—---—--———-——---——-- // 函数名称:UART_init()串口初始化函数// 函数功能: 在系统时钟为11.059MHZ时,设定串口波特率为9600bit/s// 串口接收中断允许,发送中断禁止//—-——--—-----———---—-——-—-——————-————-—-————---——-———————--———-———----—-—--—---——-—---—-————-———---void UART_init(){//初始化串行口和波特率发生器SCON =0x50; //选择串口工作方式1,打开接收允许TMOD =0x20; //定时器1工作在方式2,定时器0工作在方式1TH1 =0xfA; //实现波特率9600(系统时钟11。