基于k_means聚类算法的研究
- 格式:pdf
- 大小:308.28 KB
- 文档页数:5
电子技术与软件工程Electronic Technology & Software Engineering数据库技术Database Technology 基于K-means 算法的亚洲足球聚类研究孙鹏杨杉*(四川大学锦城学院 四川省成都市 611731 )摘 要:本文利用数据挖掘中的K-means 算法对亚洲足球队的排名数据进行了聚类研究,并利用“手肘法”选择合适的K 值,客观地 反映中国男子足球国家队在亚洲的真实水平。
关键词:数据挖掘;K-means 算法;数据特征1前言大数据时代的到来,让数据的处理、分析及挖掘成为了人们热 衷于研究的一大课题,各行各业都能通过数据挖掘从数据源中探寻 出许多有用的潜在知识,而我们在进行数据挖掘之前通常还会对数 据进行探索、预处理等一系列操作来对我们之后的工作奠定基础。
数据挖掘的主要方法有:分类、聚类、关联分析、回归预测。
本文 所使用到的K-means 算法就是一种无监督学习的聚类算法,它是用 于将数据划分成不同的分组的方法。
1. 1研究背景足球起源于中国古代的“蹴鞠”。
1958年7月,前国际足联 主席阿维兰热访华时说,足球运动最初起源于中国。
他的这一说法 于2004年得到了国际足联的正式确认⑴。
亚足联自1954年成立以 来,现有46个会员协会和1个准会员协会⑵。
亚洲足球在世界范 围内水平较弱,身处亚洲的我国在足球方面的成绩也往往不理想, 常常受到外界诟病。
而为了客观地反映国足在亚洲的真实水平,本 文通过K-means 算法,来对亚洲各个球队的排名进行一个聚类研究, 将亚洲球队的排名数据进行一个档次的划分,以此来观察中国足球 到底在亚洲层面属于哪一档次的球队。
1. 2研究意义及方法本文利用《虎扑体育》等专业足球网站收集和整理到了 24支 进入到2019年阿联酋亚洲杯决赛圈的亚洲主流球队的2020FIFA 排 名、2019年亚洲杯排名以及2015年亚洲杯的排名,利用K-means 算法进行聚类研究,在大数据的剖析下客观地反映国足在亚洲足坛 的一个真实地位。
K-means聚类算法的研究的开题报告一、选题背景K-means聚类算法是一种常用的聚类算法,它可以把数据分成K个簇,每个簇代表一个聚类中心。
该算法适用于大数据分析、图像分析等领域。
由于其具有简单、快速、效果明显等特点,因此备受研究者的关注。
二、研究意义K-means聚类算法在大数据分析、图像分析等领域的应用广泛,研究该算法有着十分重要的意义。
本次研究将对该算法进行探究,通过改进和优化算法,提高其聚类效果和运行效率,为实际应用提供更加可靠、有效的解决方案。
三、研究内容与方法本研究将围绕K-means聚类算法展开,重点探讨以下内容:1. K-means聚类算法原理及优缺点分析2. 基于距离的K-means聚类算法优化3. 基于密度的K-means聚类算法研究4. 算法的实现与效果评估在研究方法上,将采用文献调研、数学统计方法、算法实现和效果评估等多种方法对K-means聚类算法进行研究。
四、计划进度安排本研究总计时长为12周,具体进度安排如下:第1-2周:文献调研,研究K-means聚类算法的原理和优缺点分析第3-4周:基于距离的K-means聚类算法优化第5-6周:基于密度的K-means聚类算法研究第7-8周:算法实现第9-10周:效果评估第11-12周:论文撰写和答辩准备五、预期研究结果本研究将针对K-means聚类算法进行深入探究,并尝试改进和优化算法,提高其聚类效果和运行效率。
预期研究结果将包括以下几个方面:1.对该算法的优缺点进行全面分析,揭示其内在机制和局限性。
2.基于距离和密度两种方法对算法进行优化,提高其聚类效果和运行效率。
3.通过实验评估算法效果,得出具体的结论。
4.输出论文成果,向相关领域进行贡献。
六、研究的难点1.算法优化的设计,需要具备一定的数学和计算机知识。
2.实验的设计需要满足实际应用场景,需要有较强的应用能力。
3.研究过程中可能遇到一些技术难点,需要耐心解决。
七、可行性分析K-means聚类算法是广泛使用的算法之一,其研究具有实际意义和可行性。
k-means聚类算法研究及应用
K-means聚类算法研究及应用
一、简介
K-means聚类算法是一种非监督学习算法,它是一种广泛应用在模式分类和无监督式学习的数据挖掘技术。
它使用了基于距离的聚类算法,以相似性作为衡量子簇类别的标准,任务是将样本(属性)空间中的数据分为K个不同的类,使聚类的误差平方和最小化:通常假设样本由簇中心所处的子空间所构建,每个子空间由一个簇中心控制,因此K-means算法常常被形象地称为“均值聚类”算法。
二、原理
K-means聚类算法是一种迭代算法,它的基本思想是:首先,随机选取若干个“簇中心”,然后将其他的数据点根据其与“簇中心”的距离,归到最近的“簇中心”所代表的簇中。
然后根据新聚集的簇,重新更新这些“簇中心”;如此不断迭代,最终计算得到一组稳定的“簇中心”,这组“簇中心”所代表的簇就是最后的结果了。
三、应用
1、生物信息学:K-means聚类算法用于基因芯片和定量PCR,以及蛋白质表达数据。
2、计算机视觉:K-means用于图像分割,聚类,像素重新分配等。
3、自然语言处理:K-means用于文本聚类,文档分类,文本挖掘等方面。
4、机器学习:K-means用于各种拟合问题,比如参数估计,探索异常
值等等。
四、总结
K-means聚类算法是一种简单高效的聚类算法,它可以有效地将数据空间分割成几个簇,属于非监督学习算法,它的核心在于划分数据空间,对数据的模式分类和无监督式学习有较好的应用,如生物信息学、计
算机视觉、自然语言处理、机器学习等领域。
K-Means聚类算法的研究周爱武;于亚飞【摘要】The algorithm of K-means is one kind of classical clustering algorithm, including both many points and also shortages.For example must choose the initial clustering number.The choose of initial clustering centre has randomness.The algorithm receives locally optimal solution easily, the effect of isolated point is serious.Mainly improved the choice of initial clustering centre and the problem of isolated point.First of all ,the algorithm calculated distance between all data and eliminated the effect of isolated point.Then proposed one new method for choosing the initial clustering centre and compared the algorithm having improved and the original algorithm using the experiment.The experiments indicate that the effect of isolated point for algorithm having improved reduces obviously, the results of clustering approach the actual distribution of the data.%K-Means算法是一种经典的聚类算法,有很多优点,也存在许多不足.比如初始聚类数K要事先指定,初始聚类中心选择存在随机性,算法容易生成局部最优解,受孤立点的影响很大等.文中主要针对K-Means算法初始聚类中心的选择以及孤立点问题加以改进,首先计算所有数据对象之间的距离,根据距离和的思想排除孤立点的影响,然后提出了一种新的初始聚类中心选择方法,并通过实验比较了改进算法与原算法的优劣.实验表明,改进算法受孤立点的影响明显降低,而且聚类结果更接近实际数据分布.【期刊名称】《计算机技术与发展》【年(卷),期】2011(021)002【总页数】4页(P62-65)【关键词】K-Means算法;初始聚类中心;孤立点【作者】周爱武;于亚飞【作者单位】安徽大学,计算机科学与技术学院,安徽,合肥,230039;安徽大学,计算机科学与技术学院,安徽,合肥,230039【正文语种】中文【中图分类】TP301.6聚类分析是数据挖掘领域中重要的研究课题,用于发现大规模数据集中未知的对象类。
《基于改进K-means聚类和WKNN算法的WiFi室内定位方法研究》篇一一、引言随着无线通信技术的快速发展,室内定位技术在诸多领域如智能建筑、物流管理、智慧城市等扮演着日益重要的角色。
其中,WiFi因其覆盖面广、布网方便和低成本等优势,已成为室内定位的主流技术之一。
然而,传统的WiFi室内定位方法在面对复杂多变的室内环境时,仍存在定位精度不高、稳定性差等问题。
因此,本文提出了一种基于改进K-means聚类和WKNN(加权k近邻)算法的WiFi室内定位方法,旨在提高定位精度和稳定性。
二、K-means聚类算法的改进K-means聚类算法是一种常用的无监督学习方法,通过迭代优化将数据划分为K个聚类,使得每个聚类内部的样本具有较高的相似性。
在WiFi室内定位中,我们可以将WiFi信号强度作为数据特征,利用K-means算法对不同位置点的WiFi信号强度进行聚类。
然而,传统的K-means算法在处理大规模数据时存在计算复杂度高、易陷入局部最优等问题。
因此,本文提出了一种改进的K-means算法。
该算法通过引入密度峰值检测技术,能够在迭代过程中自动识别并剔除噪声数据和异常值,从而提高聚类的准确性和稳定性。
此外,我们还采用了一种基于质心的初始化方法,以减少算法陷入局部最优的可能性。
三、WKNN算法的引入WKNN算法是一种基于距离度量的分类与回归方法,通过计算待测样本与已知样本之间的距离,并赋予不同的权重,以实现对未知样本的分类或预测。
在WiFi室内定位中,我们可以将WKNN算法应用于计算用户设备(UE)与各个接入点(AP)之间的距离,进而确定UE的位置。
相比传统的KNN算法,WKNN算法通过引入权重因子,能够更好地处理不同特征之间的差异性,提高定位精度。
此外,WKNN算法还可以通过调整权重的计算方式,灵活地适应不同的应用场景和需求。
四、基于改进K-means和WKNN的WiFi室内定位方法本文将改进的K-means聚类算法和WKNN算法相结合,提出了一种新的WiFi室内定位方法。
K-means聚类算法实验总结在本次实验中,我们深入研究了K-means聚类算法,对其原理、实现细节和优化方法进行了探讨。
K-means聚类是一种无监督学习方法,旨在将数据集划分为K个集群,使得同一集群内的数据点尽可能相似,不同集群的数据点尽可能不同。
实验步骤如下:1. 数据准备:选择合适的数据集,可以是二维平面上的点集、图像分割、文本聚类等。
本实验中,我们采用了二维平面上的随机点集作为示例数据。
2. 初始化:随机选择K个数据点作为初始聚类中心。
3. 迭代过程:对于每个数据点,根据其与聚类中心的距离,将其分配给最近的聚类中心所在的集群。
然后,重新计算每个集群的聚类中心,更新聚类中心的位置。
重复此过程直到聚类中心不再发生明显变化或达到预设的迭代次数。
4. 结果评估:通过计算不同指标(如轮廓系数、Davies-Bouldin指数等)来评估聚类效果。
实验结果如下:1. K-means聚类能够有效地将数据点划分为不同的集群。
通过不断迭代,聚类中心逐渐趋于稳定,同一集群内的数据点逐渐聚集在一起。
2. 在实验中,我们发现初始聚类中心的选择对最终的聚类结果有一定影响。
为了获得更好的聚类效果,可以采用多种初始聚类中心并选择最优结果。
3. 对于非凸数据集,K-means算法可能会陷入局部最优解,导致聚类效果不佳。
为了解决这一问题,可以考虑采用其他聚类算法,如DBSCAN、层次聚类等。
4. 在处理大规模数据集时,K-means算法的时间复杂度和空间复杂度较高,需要进行优化。
可以采用降维技术、近似算法等方法来提高算法的效率。
通过本次实验,我们深入了解了K-means聚类算法的原理和实现细节,掌握了其优缺点和适用场景。
在实际应用中,需要根据数据集的特点和需求选择合适的聚类算法,以达到最佳的聚类效果。
k-means聚类算法实验总结-回复K-means聚类算法是一种常用的无监督学习算法,广泛应用于数据挖掘、图像分割、文本分类等领域。
本文将基于我对K-means聚类算法的实验总结,分步详细介绍这一算法的原理、实验设置、实验结果及其分析。
希望通过本文的总结,读者能够对K-means算法有一个更全面的了解。
一、算法原理K-means聚类算法的原理比较简单,其基本步骤如下:1. 初始化k个聚类中心,可以是随机选择样本或根据经验预设;2. 对于每个样本,计算其与各个聚类中心的距离,并将其划分到距离最近的聚类中心所属的类别;3. 调整聚类中心的位置,将各个类别内的样本点的均值作为新的聚类中心,重复步骤2,直到聚类中心的位置不再变化或达到预设的最大迭代次数。
二、实验设置为了验证K-means聚类算法的性能,我选择了UCI机器学习库中的Iris 数据集作为实验数据集。
该数据集包含150个样本,每个样本有4个属性。
为了方便可视化,将数据集中的前两个属性作为横纵坐标,将样本点分布在二维平面上。
在实验中,我使用Python编程语言实现了K-means聚类算法,并使用matplotlib库绘制了聚类结果的散点图。
实验中设置聚类的类别数k为3,迭代次数上限为100。
三、实验结果及分析执行K-means聚类算法后,得到了如下图所示的聚类结果:[图1 聚类结果图]根据聚类结果可以看出,三个类别的样本点被分别用不同的颜色表示,并且通过散点图可以很直观地看到各个样本点与聚类中心的距离。
为了更客观地评估K-means的聚类性能,我采用了两项指标:聚类准确率和轮廓系数。
聚类准确率是将聚类结果与原始类别进行对比,计算分类正确的样本数量占总样本数量的比例。
通过计算实验结果,我得到了聚类准确率为85.33。
轮廓系数是一种评价聚类结果的衡量指标,其数值范围在-1到1之间,越接近于1表示聚类越紧密、样本点越相似,越接近于-1表示聚类越分散、样本点越不相似。
K -means 聚类算法研究综述摘要:总结评述了K -means 聚类算法的研究现状,指出K -means 聚类算法是一个NP 难优化问题,无法获得全局最优。
介绍了K -means 聚类算法的目标函数,算法流程,并列举了一个实例,指出了数据子集的数目K ,初始聚类中心选取,相似性度量和距离矩阵为K -means 聚类算法的3个基本参数。
总结了K -means 聚类算法存在的问题及其改进算法,指出了K -means 聚类的进一步研究方向。
关键词:K -means 聚类算法;NP 难优化问题;数据子集的数目K ;初始聚类中心选取;相似性度量和距离矩阵Review of K-means clustering algorithmAbstract: K-means clustering algorithm is reviewed. K-means clustering algorithm is a NP hard optimal problem and global optimal result cannot be reached. The goal , main steps and example of K-means clustering algorithm are introduced. K-means algorithm requires three user-specified parameters: number of clusters K , cluster initialization , and distance metric. Problems and improvement of K-means clustering algorithm are summarized then. Further study directions of K-means clustering algorithm are pointed at last.Key words: K-means clustering algorithm; NP hard optimal problem; number of clusters K; cluster initialization; distance metricK -means 聚类算法是由Steinhaus 1955年、Lloyed 1957年、Ball & Hall 1965年、McQueen 1967年分别在各自的不同的科学研究领域独立的提出。
中国储运网H t t p ://w w w .c h i n a c h u y u n .c o m1.前言近几年,企业间竞争加剧,无论是大企业还是小企业,都处于机遇与挑战并存的状态。
库存管理作为企业成本控制中的重要环节之一,对中小企业至关重要,科学合理的库存管理系统,可以提升仓储作业的效率,降低存货的成本费用,提升企业的盈利空间,从而使企业在市场竞争中获得更强大的竞争力[1]。
本文主要基于A商贸公司库存管理的现状及问题分析,使用A B C分类法和K -me a n s 聚类算法,对A商贸公司库存商品进行分类,通过对比选择分类最优的方法,制定相应的库存管理策略。
2.A商贸公司库存管理现状及问题分析2.1公司简介A商贸公司于2017年9月在山东省德州市成立,其经营业务主要包含了乳制品、饮料以及预包装商品,是一家食品批发零售业务为主的贸易商,同时还为制造商提供一定的渠道服务。
经过多年的努力,A商贸公司建立起了自身独特的渠道服务团队和业务体系,培养了许多优秀的销售人才,有较强的渠道运营管理经验。
2.2A商贸公司库存管理现状2.2.1公司订货管理方面A商贸公司的库存管理中对关键货物没有进行严格管控,导致信息不能及时传达,订货无法按时到达,货物无法按时送出,出现供货不及时的问题。
为了避免缺货问题,保证货物充足,公司选择增加库存量,但是A商贸公司却忽略了市场的变化,导致需求预测不准出现库存积压问题。
2.2.2公司在库货物管理方面A商贸公司库存货物的分类较为简单,仓库入库后采用随机存储。
当出现退货情况时,所退回的商品会全部返还到企业的库房中。
由于库存管理存在随意性,特别是在发出商品数量较多的情况下,退回的商品并没有按照顺序分类储存。
这种做法会导致产品过期,无法再次销售,也会成为占用仓库储存空间的无效库存,增加仓库管理的实际成本。
2.3A商贸公司库存管理问题分析2.3.1缺乏针对性的库存分类标准公司仅将常温低温作为货物的唯一分类标准,分类方法单一,没有科学地使用库存分类方法从多个因素对商品的重要性进行分类。