高中物理弹簧问题求解思路浅析
- 格式:pdf
- 大小:208.47 KB
- 文档页数:4
三、弹簧问题分析弹簧问题是高中物理中常见的题型之一,并且综合性强,是个难点。
分析这类题型对训练学生的分析综合能力很有好处。
例题分析:例1:劲度系数为K的弹簧悬挂在天花板的O点,下端挂一质量为m 的物体,用托盘托着,使弹簧位于原长位置,然后使其以加度a由静止开始匀加速下降,求物体匀加速下降的时间。
分析:物体下降的位移就是弹簧的形变长度,且匀加速运动末托力为0,由匀变速直线运动公式及牛顿定律得:G–KX=maX=1/2at2解以上两式得:t=ka agm)(2例2:一质量为M 的塑料球形容器,在A处与水平面接触。
它的内部有一直立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为m的小球在竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度。
在振动过程中球形容器对桌面的最小压力为0,求容器对桌面的最大压力。
分析:由题意知弹簧正好在原长时小球恰好速度最大,所以:对小球 qE=mg (1)小球在最高点时有容器对桌面的压力最小,由题意可知,小球在最高点时: 对容器有:kx=Mg (2)此时小球受力如图,所受合力为 F=mg+kx-qE (3)由以上三式得:小球的加速度为:a=mMg由振动的对称性可知:小球在最底点时, KX-mg+qE=ma解以上式子得: kX=Mg对容器: F N=Mg+Kx=2Mg例3:已知弹簧劲度系数为K,物块重G,弹簧立在水平桌面上,下端固定,上端固定一轻盘,物块放于盘中。
现给物块一向下的压力F,当物块静止时,撤去外力。
在运动过程中,物块正好不离开盘,求:(1)给物块的向下的压力F 。
(2)在运动过程中盘对物块的最大作用力分析:(1):由物块正好不离开盘,可知在最高点时,弹簧正好在原长,所以有:a=g (1)由对称性,在最低点时:kx-mg=ma (2)A qEkx mg物块被压到最低点时有:F+mg=Kx (3)由以上三式得: F=mg(2)在最低点时盘对物块的支持力最大,此时有:F N-mg=ma 所以:F N=2mg规律总结:以上3题是胡克定律和运动的结合,此类问题特别要注意弹簧的形变 x和位移的关系;另外当两个物体共同运动时,要注意两物体正好分离时的受力特点,即:两物体间作用力为0,如竖直放置一般弹簧正好在原长。
第25卷总第288期2007年第3期(下半月)物 理 教 学 探 讨Journal of Physics TeachingVol.25 No.288(X ) 3.2007 .33 .弹簧类问题的分析思路朱忠堂东明一中,山东省东明274500 与弹簧有关的物理问题,是一个难点,如何才能正确分析弹簧类问题呢!1 根据物体所处的状态分析特殊状态时的弹簧的弹力,应用牛顿定律和胡克定律列方程求解。
弹簧的弹力作用问题属变力作用问题,因此,分析弹簧的原长、平衡状态、最大形变量等特殊状态时的弹力,是解答问题的关键。
例1 (1987年高考物理题)如图1所示,一根轻质弹簧上端固定,下端挂一质量为m 0的平盘,盘中有一物体,质量为m ,当盘静止时,弹簧的长度比其自然长度伸长了l ,今向下拉盘使弹簧再伸长△l 后停止。
然后松手放开。
设弹簧总处在弹性限度以内,则刚松开手时盘对物体的支持力等于:A. (1+Δl l )mg ;B.(1+Δl l )(m +m 0)g ;C.Δl l mg ;D.Δl l (m +m 0)g 。
分析与解 刚松开手时,盘和物体有向上的共同加速度,由牛顿第二定律得:对物体,N -mg =ma ;对整体,K(l +Δl)一(m +m 0)g =(m +m 0)a ;而题中给出盘和物体静止时弹簧伸长了l ,故有Kl =(m +m 0)g ,解上述三方程得N =(1+Δll)mg ,应选A 选项。
例2 (1996年高考物理题)如图2所示,劲度系数为k 1的轻质弹簧两端分别与质量为m 1、m 2的物块1、2拴接,劲度系数为k 2的轻质弹簧上端与物块拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将物块缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,物块2的重力势能增加了,物块1的重力势能增加了。
分析与解 题中两物块质量已给出,要求各自的重力势能的增加,只需求出两物块各自高度的变化就可以了。
高中物理弹簧问题分析的思维起点由于弹簧与其相连接的物体构成的系统的运动状态具有很强的综合性和隐蔽性;由于弹簧与其相连接的物体相互作用时涉及到的物理概念和物理规律较多,因而多年来,弹簧试题深受高考命题专家和物理教师的青睐,在物理高考中弹簧问题频频出现已见怪不怪了。
弹簧问题不仅能考查学生分析物理过程,理清物理思路,建立物理图景的能力,而且对考查学生知识综合能力和知识迁移能力,培养学生物理思维品质和挖掘学生学习潜能也具有积极意义。
因此,弹簧问题也就成为高考命题专家每年命题的重点、难点和热点。
与弹簧相连接的物理问题表现的形式固然很多,但总是有规律可循,有方法可依,存在基于弹簧特性分析问题的思维起点。
一、以弹簧遵循的胡克定律为分析问题的思维起点弹簧和物体相互作用时,致使弹簧伸长或缩短时产生的弹力的大小遵循胡克定律,即F=kx或ΔF=kΔx。
显然,弹簧的长度发生变化的时候,胡克定律首先成了弹簧问题分析的思维起点。
例1 劲度系数为A的弹簧悬挂在天花板的 O点,下端挂一质量为m的物体,用托盘托着,使弹簧位于原长位置,然后使其以加速度a由静止开始匀加速下降,求物体匀加速下降的时间。
解析物体下降的位移就是弹簧的形变长度,弹力越来越大,因而托盘施加的向上的压力越来越小,且匀加速运动到压力为零。
由匀变速直线运动公式及牛顿定律得G-kx-N=ma ①N=0 ②解以上三式得:显然,能否分析出弹力依据胡克定律随着物体的下降变得越来越大,同时托盘的压力越来越小直至为零成了解题的关键。
二、以弹簧的伸缩性质为分析问题的思维起点弹簧能承受拉伸的力,也能承受压缩的力。
在分析有关弹簧问题时,分析弹簧承受的是拉力还是压力成了弹簧问题分析的思维起点。
例2 如图1所示,小圆环重G。
固定的大环半径为R,轻弹簧原长为L(L<2R),其劲度系数为 k,接触光滑,求小环静止时,弹簧与竖直方向的夹角图1解析以小圆环为研究对象,小圆环受竖直向下的重力G、大环施加的弹力N 和弹簧的弹力F。
高中物理轻质弹簧问题全解析一、弹簧的弹力1、弹簧弹力的大小弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。
数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。
说明:①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关;②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长(或压缩)跟外力成正比这一性质可制成弹簧秤。
2、弹簧劲度系数弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,以下主要讨论螺旋式弹簧的劲度系数。
(1)定义:在弹性限度内,弹簧产生的弹力F(也可认为大小等于弹簧受到的外力)和弹簧的形变量(伸长量或者压缩量)x的比值,也就是胡克定律中的比例系数k。
(2)劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。
弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之则越大。
如两根完全相同的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;若两根完全相同的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致;二、轻质弹簧的一些特性轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。
由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
其伸长量等于弹簧任意位置受到的力和劲度系数的比值。
如图1和2中相同的轻弹簧,其端点受到相同大小的力时,无论弹簧是处于静止、匀速还是加速运动状态,各个弹簧的伸长量都是相同的。
性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间变化——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。
如在图1、2、3、4、中撤出任何一个力的瞬间,弹簧的长度不会变化,弹力的大小也不会变化;但是在图5中撤出力F的瞬时,弹簧恢复原长,弹力变为零。
常见弹簧类问题归类剖析高考分析:轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高.在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能等多个物理概念和规律,所以弹簧类问题也就成为高考中的重、难、热点.我们应引起足够重视. 弹簧类命题突破要点:1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值或弹力的功等于弹性势能的减少.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解. 一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故簧轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹一端受力为F ,另一端受力一定也为F 。
难点9 弹簧类问题求解策略在中学阶段,凡涉及的弹簧都不考虑其质量,称之为"轻弹簧",是一种常见的理想化物理模型.弹簧类问题多为综合性问题,涉及的知识面广,要求的能力较高,是高考的难点之一.●难点磁场1.(★★★★)(江西卷)如图9-1所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为 A.11k g m B.12k g m C.21k g m D.22k g m图9—1 图9—2 2.(★★★★)如图9-2所示,劲度系数为k 1的轻质弹簧两端分别与质量为m 1、m 2的物块1、2拴接,劲度系数为k 2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了______,物块1的重力势能增加了________.3.(★★★★★)质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时弹簧的压缩量为x 0,如图9-3所示.一物块从钢板正上方距离为3x 0的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已知物块质量为m 时,它们恰能回到O 点.若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度.求物块向上运动到达的最高点与O 点的距离.●案例探究例1](★★★★)如图9-4,轻弹簧和一根细线共同拉住一质量为m 的物体,平衡时细线水平,弹簧与竖直夹角为θ,若突然剪断细线,刚刚剪断细线的瞬间,物体的加速度多大?错解分析:对弹簧模型与绳模型瞬态变化的特征不能加以区分,误认为"弹簧弹力在细线剪断的瞬间发生突变"从而导致错解.图9-3 图9-4图9-5解题方法与技巧:弹簧剪断前分析受力如图9-5,由几何关系可知:弹簧的弹力T =mg /cos θ 细线的弹力T ′=mg tan θ细线剪断后由于弹簧的弹力及重力均不变,故物体的合力水平向右,与T ′等大而反向,∑F =mg tan θ,故物体的加速度a =g tan θ,水平向右.例2](★★★★★)A 、B 两木块叠放在竖直轻弹簧上,如图9-6所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k =100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g =10 m/s 2).(1)使木块A 竖直做匀加速运动的过程中,力F 的最大值;(2)若木块由静止开始做匀加速运动,直到A 、B 分离的过程中,弹簧的弹性势能减少了0.248 J ,求这一过程F 对木块做的功.错解分析:此题难点和失分点在于能否通过对此物理过程的分析后,确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力 N =0时 ,恰好分离.解题方法与技巧:当F =0(即不加竖直向上F 力时),设A 、B 叠放在弹簧上处于平衡时弹簧的压缩量为x ,有kx =(m A +m B )g x =(m A +m B )g /k ①对A 施加F 力,分析A 、B 受力如图9-7 对A F +N -m A g =m A a ② 对B kx ′-N -m B g =m B a ′ ③ 可知,当N ≠0时,AB 有共同加速度a =a ′,由②式知欲使A 匀加速运动,随N 减小F 增大.当N =0时,F 取得了最大值F m ,即F m =m A (g +a )=4.41 N 又当N =0时,A 、B 开始分离,由③式知,此时,弹簧压缩量kx ′=m B (a +g )x ′=m B (a +g )/k ④ AB 共同速度 v 2=2a (x -x ′) ⑤由题知,此过程弹性势能减少了W P =E P =0.248 J 设F 力功W F ,对这一过程应用动能定理或功能原理W F +E P -(m A +m B )g (x -x ′)=21(m A +m B )v 2 ⑥联立①④⑤⑥,且注意到E P =0.248 J可知,W F =9.64×10-2 J●锦囊妙计 图9-7一、高考要求1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k=-(21kx22-21kx12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p=21kx2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.●歼灭难点训练1.(★★★)如图9-8所示,小球在竖直力F作用下将竖直弹簧压缩,若将力F撤去,小球将向上弹起并离开弹簧,直到速度变为零为止,在小球上升的过程中A.小球的动能先增大后减小B.小球在离开弹簧时动能最大C.小球的动能最大时弹性势能为零D.小球的动能减为零时,重力势能最大图9—8 图9—92.(★★★★)(安徽春)一轻质弹簧,上端悬挂于天花板,下端系一质量为M的平板,图9-10图9-11处在平衡状态.一质量为m 的均匀环套在弹簧外,与平板的距离为h ,如图9-9所示.让环自由下落,撞击平板.已知碰后环与板以相同的速度向下运动,使弹簧伸长.A.若碰撞时间极短,则碰撞过程中环与板的总动量守恒B.若碰撞时间极短,则碰撞过程中环与板的总机械能守恒C.环撞击板后,板的新的平衡位置与h 的大小无关D.在碰后板和环一起下落的过程中,它们减少的动能等于克服弹簧力所做的功3.(★★★)如图9-10所示的装置中,木块B 与水平桌面间的接触是光滑的,子弹A 沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中A.动量守恒,机械能守恒B.动量不守恒,机械能不守恒C.动量守恒,机械能不守恒D.动量不守恒,机械能守恒4.(★★★★)如图9-11所示,轻质弹簧原长L ,竖直固定在地面上,质量为m 的小球从距地面H 高处由静止开始下落,正好落在弹簧上,使弹簧的最大压缩量为x ,在下落过程中,空气阻力恒为f ,则弹簧在最短时具有的弹性势能为E p =________.5.(★★★★)(上海)如图9-12(A )所示,一质量为m 的物体系于长度分别为l 1、l 2的两根细线上,l 1的一端悬挂在天花板上,与竖直方向夹角为θ,l 2水平拉直,物体处于平衡状态.现将l 2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解:设l 1线上拉力为T 1,l 2线上拉力为T 2,重力为mg ,物体在三力作用下保持平衡:T 1cos θ=mg ,T 1sin θ=T 2,T 2=mg tan θ剪断线的瞬间,T 2突然消失,物体即在T 2反方向获得加速度.因为mg tan θ=ma ,所以加速度a =g tan θ,方向在T 2反方向.你认为这个结果正确吗?请对该解法作出评价并说明理由.(2)若将图A 中的细线l 1改为长度相同、质量不计的轻弹簧,如图9-12(B )所示,其图9—12 图9-13他条件不变,求解的步骤与(1)完全相同,即a =g tan θ,你认为这个结果正确吗?请说明理由.6.(★★★★★)如图9-13所示,A 、B 、C 三物块质量均为m ,置于光滑水平台面上.B 、C 间夹有原已完全压紧不能再压缩的弹簧,两物块用细绳相连,使弹簧不能伸展.物块A 以初速度v 0沿B 、C 连线方向向B 运动,相碰后,A 与B 、C 粘合在一起,然后连接B 、C 的细绳因受扰动而突然断开,弹簧伸展,从而使C 与A 、B 分离,脱离弹簧后C 的速度为 v 0.(1)求弹簧所释放的势能ΔE .(2)若更换B 、C 间的弹簧,当物块A 以初速v 向B 运动,物块C 在脱离弹簧后的速度为2v 0,则弹簧所释放的势能ΔE ′是多少?(3)若情况(2)中的弹簧与情况(1)中的弹簧相同,为使物块C 在脱离弹簧后的速度仍为 2v 0,A 的初速度v 应为多大?参考答案:难点磁场]1.C2.21km 2(m 1+m 2)g 2;(2211k k )m 1(m 1+m 2)g 2 3.21x 0 歼灭难点训练]1.AD 2.AC3.B4.分析从小球下落到压缩最短全过程由动能定理:(mg -f )(H -L +x )-W 弹性=0 W 弹性=E p =(mg -f )(H -L +x )5.(1)结果不正确.因为l 2被剪断的瞬间,l 1上张力的大小发生了突变,此瞬间T 2=mg cos θ,a =g sin θ(2)结果正确,因为l 2被剪断的瞬间、弹簧l 1的长度不能发生突变、T 1的大小和方向都不变.6.(1)31mv 02 (2)121m (v -6v 0)2 (3)4v 0。
高中物理力学中弹簧和弹性体题的解题技巧高中物理力学中,弹簧和弹性体是一个重要的考点,涉及到弹性力、胡克定律等概念。
在解题过程中,我们需要掌握一些解题技巧,以便更好地应对这类题目。
首先,我们来看一个例题:一个质量为m的物体用一根劲度系数为k的弹簧悬挂在天花板上,求在物体静止时,弹簧的伸长量。
解题思路:1. 弹簧的伸长量可以通过胡克定律来求解。
根据胡克定律,弹簧的伸长量与外力成正比,与劲度系数成反比。
所以我们可以得到公式:F = kx,其中F为外力,x为伸长量。
2. 在物体静止时,弹簧受到的重力和拉力之和为零。
所以我们可以得到方程:mg = kx。
3. 根据方程求解x,即可得到弹簧的伸长量。
这个例题展示了解决弹簧和弹性体题目的一般思路。
接下来,我们再来看一个例题,进一步探讨解题技巧。
例题:一个质量为m的物体用一根劲度系数为k的弹簧悬挂在天花板上,现在将物体向下拉出一个距离x,然后释放,求物体在通过平衡位置时的速度。
解题思路:1. 在通过平衡位置时,物体受到的合力为零。
根据牛顿第二定律,合力等于质量乘以加速度。
所以我们可以得到方程:mg - kx = ma,其中a为物体的加速度。
2. 根据胡克定律,弹簧的伸长量与物体的加速度成正比。
所以我们可以得到公式:x = a/k。
3. 将公式x = a/k代入方程mg - kx = ma,整理得到:a = gk/(m + k)。
4. 根据加速度求解速度v,即可得到物体在通过平衡位置时的速度。
通过这个例题,我们可以看到解题过程中的一些关键点。
首先,要注意建立合适的方程,根据物体所受的力和加速度之间的关系进行推导。
其次,要灵活运用胡克定律,将弹簧的伸长量与物体的加速度联系起来。
最后,要善于整理方程,将未知量整理到一边,已知量整理到另一边,以便求解。
除了以上的解题思路和技巧,我们还可以通过一些类似的题目进行练习,以便更好地掌握解题方法。
例如,可以考虑以下问题:一个质量为m的物体用一根劲度系数为k的弹簧悬挂在天花板上,现在将物体向上推出一个距离x,然后释放,求物体在通过平衡位置时的速度。
高中物理弹簧问题(原创实用版)目录1.弹簧问题的背景和概述2.弹簧问题的解题思路和方法3.弹簧问题的典型例题解析4.弹簧问题的注意事项和误区点拨5.弹簧问题在中高考中的应用和意义正文高中物理弹簧问题是物理学科中的一个重要内容,涉及对弹簧的理解和应用。
弹簧是一种具有弹性的物体,在外力作用下能产生形变,当外力去除后能恢复原状。
弹簧问题在中高考中频繁出现,对学生的综合能力和思维能力有较高的要求。
在解决弹簧问题时,通常需要遵循以下步骤和方法:1.确定研究对象和受力分析:在解决弹簧问题时,首先要明确研究对象,分析物体受到的各种外力,如重力、弹力、推力等。
2.运用胡克定律:胡克定律是弹簧问题的核心,它描述了弹簧的伸长量与所受拉力成正比。
在解题过程中,要充分运用胡克定律,根据弹簧的伸长量或压缩量求出弹力。
3.利用牛顿第二定律:在求解弹簧问题时,常常需要运用牛顿第二定律,通过列方程求解物体的加速度。
4.注意临界情况:在弹簧问题中,有时会出现临界情况,如物体的分离、弹簧的断裂等。
在解题过程中,要特别注意这些临界情况,避免出现不合理的答案。
5.灵活运用整体法和隔离法:在解决弹簧问题时,可以根据问题的具体情况,灵活运用整体法和隔离法进行求解。
在解决弹簧问题时,还需注意以下事项和误区:1.弹力与弹簧长度的关系:弹力与弹簧的伸长量或压缩量成正比,而不是与弹簧的长度成正比。
2.注意弹簧的压缩和拉伸:在解题过程中,要分清弹簧是处于压缩状态还是拉伸状态,避免出现错误的答案。
3.弹簧问题的功能关系:在解决弹簧问题时,要注意功与能的关系,根据能量守恒原理进行求解。
通过以上分析,我们可以得出高中物理弹簧问题的解题思路和方法。
在实际应用中,弹簧问题可以出现在各种题型中,如选择题、填空题、计算题等。
弹簧问题总结高考高考弹簧问题及应对策略轻弹簧是一种理想化的物理模型,以轻弹簧为载体,设置一定的物理情景,可以考查弹力的概念,牛顿第二定律及变力做功等知识点。
在这些知识点中弹簧与其关联物之间总存在力、运动状态和能量的联系,对学生的要求较高,有较高的区分度,因此成为高考的热点难点。
本人在多年高手教学中摸索出一些经验,应对高考中的弹簧问题主要从以下几个方面:一.弹簧的形变量与物体的运动相联系这类题的考查主要是要求学生弹簧状态的改变中找到物体运动的距离,从弹力的变化中找出物体的加速度变化情况,确定速度的变化情况。
应对策略①弹簧的形变量与物体的运动距离密切相连,如果弹簧的初末状态均为压缩(伸长)压缩量为x1、x2,弹簧一端的物体运动距离x=x1-x2或x=x2-x1,如果弹簧的初末状态一个为压缩,一个为伸长,则弹簧一端的运动物体运动距离x=x1+x2。
②物体的运动引起弹簧弹力的改变,对物体应用牛顿第二定律或平衡条件分析物体的速度变化情况。
例1.(2005年全国理综III卷)如图所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A、B,它们的质量分别为mA、mB,弹簧的劲度系数为k,C为一固定挡板。
系统处一静止状态,现开始用一恒力F沿斜面方向拉物块A使之向上运动,求物块B刚要离开C时物块A的加速度a和从开始到此时物块A的位移d,重力加速度为g。
解:令x1表示未加F时弹簧的压缩量,由胡克定律和牛顿定律可知令x2表示B刚要离开C时弹簧的伸长量,a表示此时A的加速度,由胡克定律和牛顿定律可知:mgsinθ=kx1①kx2=mBgsinθ②F-mAgsinθ-kx2=mAa③得由题意d=x1+x2⑤由①②⑤式可得二.弹簧的瞬时问题这类题的考查主要针对弹簧两端都有物体时弹簧的弹力不能发生突变,即弹簧形变瞬间不发生变化,弹力不变。
应对策略:一个力发生变化的瞬间,弹簧的弹力大小方向都不变,绳的弹力杆的弹力瞬间发生变化,正确的受力分析后根据牛顿第二定律求解。
高中物理中的弹簧问题归类分析 (教师版 )有关弹簧的题目在高考取几乎年年出现,因为弹簧弹力是变力,学生常常对弹力大小和方向的变化过程缺少清楚的认识,不可以成立与之有关的物理模型并进行分类,致使解题思路不清、效率低下、错误率较高 .在详细实质问题中,因为弹簧特征使得与其相连物体所构成系统的运动状态拥有很强的综合性和隐蔽性,加之弹簧在伸缩过程中波及力和加快度、功和能、冲量和动量等多个物理观点和规律,所以弹簧试题也就成为高考取的重、难、热门, 一、“轻弹簧”类问题在中学阶段,凡波及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常有的理想化物理模型 .因为“轻弹簧”质量不计,选用随意小段弹簧,其两头所受张力必定均衡,不然,这小段弹簧的加快度会无穷大 .故轻弹簧中各部分间的张力到处相等,均等于弹簧两头的受力.弹簧一端受力为F ,另一端受力必定也为 F ,假如弹簧秤,则弹簧秤示数为F .【例 1】如下图,一个弹簧秤放在圆滑的水平面上,外壳质量m 不可以忽视,弹簧及挂钩质量不计,施加水平方向的力 F 1、 F 2 ,且 F 1F 2 ,则弹簧秤沿水平方向的加快度为,弹簧秤的读数为.【分析】 以整个弹簧秤为研究对象,利用牛顿运动定律得:F 1 F 2 ma ,即 aF 1F 2m仅以轻质弹簧为研究对象,则弹簧两头的受力都F 1 ,所以弹簧秤的读数为F 1 .说明 : F 2 作用在弹簧秤外壳上, 并无作用在弹簧左端, 弹簧左端的受力是由外壳内侧供给的.F 1 F 2F 1 【答案】 am二、质量不行忽视的弹簧【例 2】如图 3-7-2 所示,一质量为 M 、长为 L 的均质弹簧平放在圆滑的水平面 , 在弹簧右 端施加一水平力 F 使弹簧向右做加快运动 . 试分析弹簧上各部分的受力状况.【分析】 弹簧在水平力作用下向右加快运动,据牛顿第二定律得其加快度F, 取弹簧左部随意长度 x 为研究aM图 3-7-2对象,设其质量为m 得弹簧上的弹力为:x M Fx Fx FT x ma 【答案】 T xL MLL三、 弹簧的弹力不可以突变( 弹簧弹力刹时 ) 问题弹簧 (特别是软质弹簧 )弹力与弹簧的形变量有关, 因为弹簧两头一般与物体连结,因弹簧形变过程需要一段时间,其长度变化不可以在瞬时达成,所以弹簧的弹力不可以在瞬时发生突变.即能够以为弹力大小和方向不变,与弹簧对比较,轻绳和轻杆的弹力能够突变.【例 3】如下图,木块 A 与 B 用轻弹簧相连,竖直放在木块 C 上,三者静置于地面, A 、B 、C 的质量之比是 1:2:3. 设全部接触面都圆滑,当沿水平方向迅速抽出木块 C 的刹时,木块 A 和 B 的加快度分别是 a A = 与 a B =【分析】由题意可设 A 、B 、C 的质量分别为 m 、2m 、3m ,以木块 A 为研究对象,抽出木块 C 前, 木块 A 遇到重力和弹力一对均衡力,抽出木块 C 的刹时,木块 A 遇到重力和弹力的大小和方 向均不变,故木块 A的刹时加快度为 0. 以木块 A 、B 为研究对象,由均衡条件可知,木块 C 对木块 B 的作使劲3F CB mg .以木块 B 为研究对象, 木块 B 遇到重力、 弹力和 F CB 三力均衡, 抽出木块 C 的刹时,木块 B 遇到重力和弹力的大小和方向均不变,F CB 刹时变成 0,故木块 C 的刹时合外力为 3mg , 竖直向下,刹时加快度为【答案】 01.5g .说明:差别于不行伸长的轻质绳中张力瞬时能够突变 .【例 4】如图 3-7-4 所示,质量为住,使小球恰巧处于静止状态 . 当m 的小球用水平弹簧连结, 并用倾角为 300 的圆滑木板AB 忽然向下撤退的瞬时,小球的加快度为 ( )AB 托A. 0B. 大小为 2 3g ,方向竖直向下3C.大小为2 3g ,方向垂直于木板向下3图 3-7-4D. 大小为2 3g ,方向水平向右3【分析】 末撤退木板前, 小球受重力 G 、弹簧拉力 F 、木板支持力 F N 作用而均衡, 如图 3-7-5所示,有 F Nmg.cosG 和弹力 F 保持不变 ( 弹簧弹力不可以突变 ) ,而木板支持力 F N 立刻撤退木板的瞬时,重力 消逝 , 小球所受 G 和 F 的协力大小等于撤以前的 F N ( 三力均衡 ) ,方向与 F N 相反,故加快度方 向为垂直木板向下,大小为F N g2 3 gamcos3【答案】 C.图 3-7-5四、弹簧长度的变化问题设劲度系数为 k 的弹簧遇到的压力为F 1 时压缩量为 x 1 ,弹簧遇到的拉力为 F 2 时伸长量为x 2 ,此时的“ - ”号表示弹簧被压缩 .若弹簧受力由压力 F 1 变成拉力 F 2 ,弹簧长度将由压缩量x 1 变成伸长量 x 2 ,长度增添量为 x 1 x 2 .由胡克定律有 : F 1 k( x 1 ) , F 2kx 2 .则: F 2 ( F 1 ) kx 2( kx 1 ) ,即 F k x说明 :弹簧受力的变化与弹簧长度的变化也相同按照胡克定律, 此时 x 表示的物理意义是弹簧长度的改变量,其实不是形变量 .【例 5】如图 3-7-6 所示,劲度系数为 k 1 的轻质弹簧两头分别与质量为 m 1 、m 2 的物块 1、2 拴接,劲度系数为 k 2 的轻质弹簧上端与物块 2 拴接,下端压在桌面上 ( 不拴接 ) ,整个系统处于均衡状态 . 现将物块 1 迟缓地竖直上提,直到下边那个弹簧的下端刚离开桌面. 在此过程中,物块 2 的重力势能增添了 , 物块 1 的重力势能增添了.【分析】由题意可知,弹簧k 2 长度的增添量就是物块2 的高度增添量,弹 图 3-7-6簧 k 2 长度的增添量与弹簧 k 1 长度的增添量之和就是物块 1 的高度增添量 .由物体的受力均衡可知,弹簧 k 2 的弹力将由本来的压力 (m 1 m 2 ) g 变成 0, 弹簧 k 1 的弹力将 由本来的压力 m 1 g 变成拉力 m 2 g , 弹力的改变量也为 ( m 1 m 2 )g . 所以 k 1 、 k 2 弹簧的伸长量分别为 : 1( m 1m 2 ) g 和 1(m 1 m 2 )gk 1k 2故物块 2 的重力势能增加了1m2 (m1 m2 )g 2,物块 1 的重力势能增加了k2( 1 1)m1 (m1m2 ) g2k1 k2【答案】1m2 (m1 m2 ) g2(11)m1 (m1m2 )g 2 k2k1k2五、弹簧形变量能够代表物体的位移弹簧弹力知足胡克定律F kx ,此中x为弹簧的形变量,两头与物体相连时x 亦即物体的位移,所以弹簧能够与运动学知识联合起来编成习题.【例 6】如图3-7-7 所示,在倾角为的圆滑斜面上有两个用轻质弹簧相连结的物块A、B ,其质量分别为 m A、m B,弹簧的劲度系数为k , C为一固定挡板,系统处于静止状态, 现开始用一恒力 F 沿斜面方向拉A使之向上运动,求 B 刚要走开C时 A 的加快度 a 和从开始到此时 A 的位移 d (重力加快度为 g ).【分析】系统静止时 , 设弹簧压缩量为x1,弹簧弹力为 F1,分析A受力可知 : F1kx1 m A g sinm A g sin解得 : x1k在恒力 F 作用下物体 A 向上加快运动时,弹簧由压缩渐渐变成伸图 3-7-7长状态 . 设物体B刚要走开挡板 C 时弹簧的伸长量为x2,分析物体B 的受力有: kx2m B g sin, 解得 x2m B g sink设此时物体 A 的加快度为a,由牛顿第二定律有: F m A g sin kx2m A aF(m A m B )g sin解得 : a mA因物体 A 与弹簧连在一同,弹簧长度的改变量代表物体 A 的位移,故有 d x1x2,即(m A m B ) g sindk(m A m B )g sin【答案】 dk六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时辰要与当时的形变相对应 .一般应从弹簧的形变分析下手,先确立弹簧原长地点、现长地点及临界地点,找出形变量 x 与物体空间地点变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长地点对应的形变量有关.以此来分析计算物体运动状态的可能变化.联合弹簧振子的简谐运动,分析波及弹簧物体的变加快度运动,常常能达到事半功倍的效果.此时要先确立物体运动的均衡地点,差别物体的原长地点,进一步确立物体运动为简谐运动.联合与均衡地点对应的答复力、加快度、速度的变化规律,很简单分析物体的运动过程.【例 7】如图 3-7-8 所示,质量为m的物体A用一轻弹簧与下方地面上质量也为m 的物体B相连,开始时 A 和 B 均处于静止状态,此时弹簧压缩量为x0,一条不行伸长的轻绳绕过轻滑轮,一端连结物体 A 、另一端C握在手中,各段绳均恰巧处于挺直状态,物体 A 上方的一段绳索沿竖直方向且足够长 . 此刻 C 端施加水平恒力F使物体A从静止开始向上运动 .( 整个过程弹簧一直处在弹性限度之内).(1) 假如在 C 端所施加的恒力大小为3mg ,则在物体B刚要走开地面时物体 A 的速度为多大?(2) 若将物体B的质量增添到 2m,为了保证运动中物体 B 一直不走开地图 3-7-8面,则 F 最大不超出多少 ?【分析】 由题意可知,弹簧开始的压缩量x 0 mg ,k 物体 B 刚要走开地面时弹簧的伸长量也是x 0mg.(1)若F 3mg , 在弹簧伸长到kx 0 时,物体 B 走开地面, 此时弹簧弹性势能与施力前相等,F 所做的功等于物体 A 增添的动能及重力势能的和 .即: F 2x mg 2 x 0 1mv 2 得: v 2 2gx 0(2) 所施加的力为恒力 2F 0 时,物体 B 不走开地面, 类比竖直弹簧振子, 物体 A 在竖直方向上除了受变化的弹力外,再遇到恒定的重力和拉力. 故物体 A 做简谐运动 .在最低点有: F 0 mg kx 0 ma 1 , 式中 k 为弹簧劲度系数, a 1 为在最低点物体A 的加快度 .在最高点,物体 B 恰巧不走开地面, 此时弹簧被拉伸, 伸长量为 2x 0 ,则 : k(2 x 0 ) mg F 0ma 2而 kx 0mg ,简谐运动在上、下振幅处a 1 a 2 ,解得:3mg F 02也能够利用简谐运动的均衡地点求恒定拉力F 0 . 物体 A 做简谐运动的最低点压缩量为x 0 ,最高点伸长量为 2x 0 ,则上下运动中点为均衡地点,即伸长量为所在处. 由 mgkxF 0 , 解得:23mg .F 02【答案】 2 2 gx 03mg2说明 : 差别原长地点与均衡地点 .和原长地点对应的形变量与弹力大小、方向、弹性势能有关 ,和均衡地点对应的位移量与答复大小、方向、速度、加快度有关.七.与弹簧有关的临界问题经过弹簧相联系的物体,在运动过程中常常波及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰巧要走开地面;互相接触的物体恰巧要离开等 .此类问题的解题要点是利用好临界条件,获得解题实用的物理量和结论.【例 8】如图 3-7-9 所示, A 、B 两木块叠放在竖直轻弹簧上,已知木块 A 、B 的质量分别为 0.42kg 和 0.40kg ,弹簧的劲度系数 k 100N / m ,若在 A 上作用一个竖直向上的力 F ,使A 由静止开始以2 的加快度竖直向上做匀加快运动( g 10 m / s 2 )求:(1) 使木块 A 竖直做匀加快运动的过程中,力 F 的最大值 ; (2) 若木块由静止开始做匀加快运动, 直到 A 、B 分别的过程中, 弹簧的弹性 势能减少了 0.248J ,求这一过程中 F 对木块做的功 .【分析】 本题难点在于可否确立两物体分别的临界点. 当 F 0 ( 即不加竖直 图 3-7-9向上 F 力) 时,设木块 A 、B 叠放在弹簧上处于均衡时弹簧的压缩量为 x , 有 :kx (m A m B )g , 即 x(m A m B )g①k对木块 A 施加力 F , A 、 B 受力如图 3-7-10所示,对木块 A 有:F Nm A g m A a②对木块 B 有: kx 'Nm B g m B a ③可知,当 N 0 时,木块 A 、B 加快度相同,由②式知欲使木块 A 匀加快运动,随 N 减小 F 增大,当N 0 时 , F 获得了最大值 F m , 即 :F m m A (a又当 N0 时, A 、B 开始分别,由③式知,弹簧压缩量kx'm B (a g) ,则 x'm B (a g ) ④k木块 A 、 B 的共同速度: v 2 2a( x x ') ⑤ 由题知,此过程弹性势能减少了 W P E PJ图 3-7-10设F力所做的功为W F,对这一过程应用功能原理,得:W 1(mAm )v2(m m) g( x x ') EPF2B AB联立①④⑤⑥式,且PE J,得:W F10 2J【答案】( 1)F m W F102JN【例 9】如图 3-7-11所示,一质量为M 的塑料球形容器,在 A 处与水平面接触 . 它的内部有向来立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为 m 的小球在竖直方向振动,当加一直上的匀强电场后,弹簧正幸亏原长时,小球恰巧有最大速度. 在振动过程中球形容器对桌面的最小压力为0,求小球振动的最大加快度和容器对桌面的最大压力.图 3-7-11【分析】因为弹簧正幸亏原长时小球恰巧速度最大,所以有: qE mg①小球在最高点时容器对桌面的压力最小,有:kx Mg②此时小球受力如图 3-7-12所示,所受协力为 F mg kx qE③由以上三式得小球的加快度a Mg .m明显,在最低点容器对桌面的压力最大,由振动的对称性可知小球在最低点和最高点有相同的加快度,解以上式子得:kx Mg所以容器对桌面的压力为:图 3-7-12 F N Mg kx2Mg .【答案】Mg2Mg m八、弹力做功与弹性势能的变化问题弹簧伸长或压缩时会储藏必定的弹性势能,所以弹簧的弹性势能能够与机械能守恒规律综合应用,我们用公式E P 12kx2计算弹簧势能,弹簧在相等形变量时所拥有的弹性势能相等一般是考试热门 .弹簧弹力做功等于弹性势能的减少许.弹簧的弹力做功是变力做功,法求解 :(1) 因该变力为线性变化,能够先求均匀力,再用功的定义进行计算(2) 利用 F x 图线所包围的面积大小求解;(3) 用微元法计算每一小段位移做功,再累加乞降;(4) 依据动能定理、能量转变和守恒定律求解.一般能够用以下四种方;因为弹性势能仅与弹性形变量有关,弹性势能的公式高考取不作定量要求,所以,在求弹力做功或弹性势能的改变时,一般从能量的转变与守恒的角度来求解.特别是波及两个物理过程中的弹簧形变量相等时,常常弹性势能的改变能够抵消或代替求解.【例 10】如图3-7-13所示,挡板P 固定在足够高的水平桌面上,物块 A 和B 大小可忽视,它们分别带有Q A和Q B的电荷量,质量分别为m A和 m B . 两物块由绝缘的轻弹簧相连,一个不行伸长的轻绳越过滑轮,一端与 B 连结,另一端连结轻质小钩. 整个装置处于场强为 E 、方向水平向左的匀强电场中, A 、B开始时静止,已知弹簧的劲度系数为k ,不计全部摩擦及A、B 间的库仑力,A、B所带电荷量保持不变, B 不会遇到滑轮.(1) 若在小钩上挂质量为 M 的物块 C 并由静止开释,可使物块不会走开 P , 求物块 C 降落的最大距离 h .A 对挡板P 的压力恰为零,但(2) 若 C 的质量为 2M , 则当 A 刚走开挡板 P 时, B 的速度多大 ?【分析】 经过物理过程的分析可知,当物块A 刚走开挡板 P 时, 弹力恰巧与 A 所受电场力均衡,弹簧伸长量必定,前后两次改变物块 C 质量,在第 (2) 问对应的物理过程中, 弹簧长度的变化及弹性势能的改变相同,能够代替求解.图 3-7-13设开始时弹簧压缩量为x 1 ,由均衡条件kx 1 Q B E , 可得 x 1Q B Ek①设当 A 刚走开挡板时弹簧的伸长量为Q A E ②x 2 , 由 kx 2 Q A E ,可得 : x 2降落的最大距离为 :k故 C 12③h xx由①②③三式可得 :hE(Q A Q B )④k(2) 由能量守恒定律可知, 物块 C 着落过程中, C 重力势能的减少许等于物块B 电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和.当 C 的质量为 M 时,有: MgHQ B EhE 弹⑤当 C 的质量为 2M 时,设 A 刚走开挡板时 B 的速度为 v ,则有:2MgH Q B EhE 弹1(2 M m B )v 2 ⑥2由④⑤⑥三式可得A 刚走开 P 时B 的速度为 :v2MgE (Q A Q B ) ⑦k (2 M m B )【答案】( 1) h E (Q A Q B ) (2) v 2MgE (Q A Q B )kk (2 Mm B )【例 11】如图 3-7-14所示,质量为 m 1 的物体 A 经一轻质弹簧与下方地面上的质量为m 2 的物体 B 相连,弹簧的劲度系数为 k , 物体 A 、B 都处于静止状态 . 一不行伸长的轻绳一端绕过轻滑轮连结物体 A ,另一端连结一轻挂钩 . 开始时各段绳都处于挺直状态, 物体 A 上方的一段绳沿竖直方向 . 现给挂钩挂一质量为 m 2 的物体 C 并从静止开释,已知它恰巧能使物体 B 走开地面但不持续上涨 . 若将物体 C 换成另一质量为 (m m ) 的物体 D ,仍从上述初始地点由静止释1 2放,则此次物体 B 刚离地时物体 D 的速度大小是多少 ?已知重力加快度为 g【分析】 开始时物体 A 、B 静止,设弹簧压缩量为x 1 ,则有: kx 1 m 1g悬挂物体 C 并开释后,物体 C 向下、物体 A 向上运动,设物体B 刚要离地时弹簧伸长量为 x 2 ,有 kx 2m 2 gB 不再上涨表示此时物体A 、C 的速度均为零,物体 C 己降落到其最低点 , 与初 状态对比,由机械能守恒得弹簧弹性势能的增添量为:E m 2 g (x 1 x 2 ) m 1g (x 1 x 2 )物体 C 换成物体 D 后,物体 B 离地时弹簧势能的增量与前一次相同,由能量关 图 3-7-14系得:1( m 2 m 1 )v 21m 1v 2 ( m 2 m 1 )g ( x 1 x 2 ) m 1 g( x 1 x 2 )E联立上式解得题中所 求速度为:222m 1 (m 1 m 2 ) g22m 1 ( m 1m 2 )g 2【答案】 vv(2 m 1 m 2 )k(2 m 1 m 2 )k说明: 研究对象的选择、物理过程的分析、临界条件的应用、能量转变守恒的联合常常在一些题目中需要综合使用.九、弹簧弹力的双向性弹簧能够伸长也能够被压缩,所以弹簧的弹力拥有双向性,亦即弹力既可能是推力又可能是拉力,这种问题常常是一题多解.【例 12】如图3-7-15 所示,质量为 m 的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为 1200 ,已知弹簧 a 、 b 对证点的作使劲均为F ,则弹簧 c 对证点作使劲的大小可能为( ) A 、 0 B、 F mg C 、 F mg D 、 mg F 【分析】 因为两弹簧间的夹角均为图 3-7-151200,弹簧 a 、 b 对证点作使劲的协力 仍为 F ,弹簧 a 、b 对证点有可能是拉力,也有可能是推力 , 因 F 与 mg 的大小关系不确立,故 上述四个选项均有可能 . 正确答案 :ABCD【答案】 ABCD十、弹簧振子弹簧振子的位移、速度、加快度、动能和弹性势能之间存在着特别关系,弹簧振子类问题往常就是考察这些关系,各物理量的周期性变化也是考察的要点 .【例 13】如图 3-7-16 所示,一轻弹簧与一物体构成弹簧振子,物体在同一竖图 3-7-16直线上的 A 、B 间做简谐运动,O 点为均衡地点 ; C 为 AO 的中点,已知OC h ,弹簧振子周期为 T , 某时辰弹簧振子恰巧经过 C 点并向上运动 , 则此后时辰开始计时,以下说法中正确的选项是 ( )A 、 tT时辰,振子回到 C 点4B 、 t T时间内,振子运动的行程为4h2C 、 t3T时辰,振子的振动位移为8 D 、 t 3T8 时辰,振子的振动速度方向向下【分析】 振子在点 A 、 C 间的均匀速度小于在点 C 、O 间的均匀速度, 时间大于 T,选项 A 、C8 错误 ; 经 T振子运动 O 点以下与点 C 对称的地点,总行程为 4h,选项 B 正确 ; 经 t3T振子在28点 O 、B 间向下运动,选项 D 正确 .【答案】 B D十一、弹簧串、并联组合弹簧串连或并联后劲度系数会发生变化,弹簧组合的劲度系数能够用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特色要掌握 :弹簧串连时,每根弹簧的弹力相等;原长相同的弹簧并联时,每根弹簧的形变量相等.【例 14】 如图 3-7-17所示,两个劲度系数分别为k 1、k 2 的轻弹簧竖直悬挂,下端用圆滑细绳连结, 并有一圆滑的轻滑轮放在细线上; 滑轮下端挂一重为 G的物体后滑轮降落,求滑轮静止后重物降落的距离.【分析】 两弹簧从形式上看仿佛是并联,但因每根弹簧的弹力相等,故两弹簧实为串连; 两弹簧的弹力均G,可得两弹簧的伸长量分别为x 1G , 图 3-7-1722k 1x 2G ,两弹簧伸长量之和 xx 1 x 2 ,故重物降落的高度为x G( k 1 k 2 )2k 2 : h4k 1k 22【答案】 G(k1k2 )4k1k2。
专题一 弹簧类问题[重点难点提示]弹簧问题是高中物理中常见的题型之一,并且综合性强,是个难点。
分析这类题型对训练学生的分析综合能力很有好处。
1、在中学阶段,凡涉及的弹簧都不考虑其质量,称之为"轻弹簧"。
轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒。
2、弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.3、因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.4、在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解,同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值。
弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论。
因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
[]静力学问题中的弹簧如图所示,四处完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中的弹簧的左端固定在墙上②中的弹簧的左端也受到大小也为F 的拉力的作用③中的弹簧的左端拴一小物块,物块在光滑的桌面上滑动④中的弹簧的左端拴一个小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量为零,以L 1、L 2、L 3、L 4依次表示四个弹簧的伸长量,则有( )A .L 2>L 1B .L 4>L 3C .L 1>L 3D .L 2=L 4分析与解答:题中明确说了弹簧的质量为零,故弹簧为“轻弹簧”,合力肯定为零,则两端受到的拉力的大小在①②③④这四幅图中必然相等,否则系统将有无穷大的加速度,而由胡克定律可知,弹簧在这四种情况下的伸长量是一样的,即:L 1=L 2=L 3=L 4.. 答案为D变式1 如图所示,a 、b 、c 为三个物块,M 、N 为两个轻质弹簧,R 为跨过光滑定滑轮的轻绳,它们均处于平衡状态.则:( ) A.有可能N 处于拉伸状态而M 处于压缩状态 B.有可能N 处于压缩状态而M 处于拉伸状态C.有可能N 处于不伸不缩状态而M 处于拉伸状态D.有可能N 处于拉伸状态而M 处于不伸不缩状态4○2 ○1F F图一分析与解答:研究a 、N 、c 系统由于处于平衡状态,N 可能处于拉伸状态,而M 可能处于不伸不缩状态或压缩状态;研究a 、M 、b 系统由于处于平衡状态,M 可能处于压缩状态(或处于不伸不缩状态),而N 可能处于不伸不缩状态或拉伸状态. 答案为AD变式2 如图所示,重力为G 的质点M 与三根相同的轻质弹簧相连,静止时,相邻两弹簧间的夹角均为1200,已知弹簧A 、B 对质点的作用力均为2G,则弹簧C 对质点的作用力大小可能为( )A.2GB.GC.0D.3G 分析与解答:弹簧A 、B 对M 点的作用力有两种情况:一是拉伸时对M 的拉力,二是压缩时对M 的弹力. 若A 、B 两弹簧都被拉伸,两弹簧拉力与质点M 重力的合力方向一定竖直向下,大小为3G ,此时弹簧C 必被拉伸,对M 有竖直向上的大小为3G 的拉力,才能使M 处于平衡状态.若A 、B 两弹簧都被压缩,同理可知弹簧C 对M 有竖直向下的大小为G 的弹力.A 、B 两弹簧不可能一个被拉伸,一个被压缩,否则在题设条件下M 不可能平衡. 答案为BD变式3 如图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( ) A.11k g m B.12k g m C.21k g m D.22k gm 分析与解答:原来系统处于平衡态则下面弹簧被压缩x 1则有:()g m m x k 2112+=;当上面的木块刚离开上面的弹簧时,上面的弹簧显然为原长,此时对下面的木块m 2则有:g m x k 222=, 因此下面的木块移动的距离为2121k gm x x x =-=∆,答案为C. 变式4 如图所示,质量为m 和M 的两块木板由轻弹簧连接,置于水平桌面上.试分析:在m 上加多大的压力F ,才能在F 撤去后,上板弹起时刚好使下板对桌面无压力.分析与解答:设想用力F 竖直向上拉m ,使整个系统正好被提起,所用拉力大小为(m + M)g ,当上板弹起刚好使下板对桌面无压力时,弹簧弹力F '的大小也应等于(m + M)g .也就是说,在m 上加竖直向下的力F后,使m MF弹簧增加压缩量x ,若将F 撤去后,弹簧与未加力F 相比伸长了x ,产生的弹力F '为(m + M)g ,由弹簧的可逆性原理可知在m 上所加压力F = (m + M)g .变式5 如图所示,两物体重分别为G 1、G 2,两弹簧劲度分别为k 1、k 2,弹簧两端与物体和地面相连。
弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂.其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,就弹簧类问题分为以下几种类型进行分析。
一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态.2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值.弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。
例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N平衡类问题总结:这类问题一般把受力分析、胡克定律、弹簧形变的特点综合起来,考查学生对弹簧模型基本知识的掌握情况.只要学生静力学基础知识扎实,学习习惯较好,这类问题一般都会迎刃而解,此类问题相对较简单。
高中物理弹簧问题求解思路浅析弹簧问题是高考的一个重点内容,同时也是难点之一。
本文从(1)动力学分析;(2)弹性势能求法;(3)课本弹力概念;三部分进行分析。
在文章的最后,笔者给出了几道典型的弹簧问题专项练习题,大家可以去下载练练手。
弹簧的问题往往涉及到弹力做功及其对应的弹性势能,融入做功过程中位移的变化与原长综合起来决定了形变量的大小,进而决定了弹力的大小。
因此这里的分析比较复杂,很多学生感觉学习起来比较吃力。
一些高考试题或模拟考题中,弹簧竖直方向放置。
这类问题的考察,在弹力的基础上融入了重力的因素,往往有借助于两个物体相碰导致的振动情况分析,无疑增加了难度。
弹簧受力与运动分析切入点当题目中出现弹簧时,我们解决的首要出发点便是分析弹力的大小与方向。
一般的问题解决都是从弹力大小变化来进行分析的,因此在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置。
也就是说,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。
在分析物体具体运动状态的时候,我们大部分情况下侧重于分析和研究平衡位置的特点。
一般来说,平衡位置是合外力为零,运动速度最大,加速度为零所对应的状态点。
弹性势能的求法由于高中物理并没有要求大家理解弹性势能的定义,弹簧的弹性势能的计算大部分情况下是通过能量守恒或者功能关系来进行求解计算的,话句话来说,就是借助于外界功或者能的方法来进行分析。
高中数学微积分掌握比较好的学生,也可以通过积分的方法来求解。
从弹力的定义式(F弹=kΔx)来看,F弹随x的变化关系为一次线性函数,通过积分不难得出:E弹=1/2 k*Δx^2;这种数学微分思想在高中物理中的应用问题,在平时需要大家多去分析探究,这类结合的问题不仅仅是高考物理,同时也是近几年自主招生考试命题的一大趋势。
对于数学微积分知识掌握不是特别理想的学生也不用气馁,我们可以借助于图像阴影面积的求法来探究弹力所做的功。
高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。
如图7所示。
现让木板由静止开始以加速度a(a <g =匀加速向下移动。
求经过多长时间木板开始与物体分离。
分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。
据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。
2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。
现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。
.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。
此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。
在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。
物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。
弹簧类题型解题思路作者:王星琳来源:《理科考试研究·高中》2014年第10期轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见应引起足够重视搞清物体的运动情景,特别是弹簧所具有的一些特点,是正确解决弹簧问题的重要方法弹簧类问题,特别注意使用如下特点和规律:弹簧的弹力是一种由形变而决定大小和方向的力当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化3弹簧的弹力是变力,弹力的大小随弹簧的形变量发生变化,求弹力的冲量和弹力做功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算弹簧的弹力与形变量成正比例变化,故它引起的物体的加速度、速度、动量、动能等变化不是简单的单调关系,往往有临界值如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能4弹簧的弹力是一种由形变而决定大小和方向的力当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化5因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变6两端均有关联物的弹簧,弹簧伸长到最长或压缩到最短时,相关联物体的速度一定相同,弹簧具有最大的弹性势能;当弹簧恢复原长时,相关联物体的速度相差最大,弹簧对关联物体的作用力为零若物体再受阻力时,弹力与阻力相等时,物体速度最大弹簧问题通常有平衡、动力学、能量、振动、应用类等题型,下面主要以平衡类的题型进行简单的讲解分析例如图示,两木块的质量分别为和,两轻质弹簧的劲度系数分别为k和k,上面木块压在下面的弹簧上(但不拴接),整个系统处于平衡状态现缓慢向上提上面的木块,直到它刚离开上面弹簧该过程中下面木块移动的距离为()Ag/k Bg/kCg/kDg/k此题是共点力的平衡与胡克定律的综合题题中空间距离的变化,要通过弹簧形变量的计算求出注意缓慢上提,说明整个系统处于一动态平衡过程,直至离开上面的弹簧开始时,下面的弹簧被压缩,比原长短(+)g/k,而刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短g/k,因而移动Δx=(+)·g/k-g/k=g/k物理中涉及到的的弹簧不一定是我们认识中的那种弹簧,物理中,轻质绳同样也被当做弹簧,它和一般的弹簧最大的区别就在于轻质绳具有突变性,所以解这类题应特别注意这一性质例如图所示,一质量为的物体系于长度分别为L、L的两根细线上,L的一端悬挂在天花板上,与竖直方向夹角为θ,L水平拉直,物体处于平衡状态现将L线剪断,求剪断瞬时物体的加速度()下面是某同学对该题的一种解法:解设L线上拉力为T,L线上拉力为T,重力为g,物体在三力作用下保持平衡Tcosθ=g[Y]①Tsinθ=T[Y]②T=gtanθ[Y]③剪断线的瞬间,T突然消失,物体即在T反方向获得加速度因为gtanθ=a,所以加速度a=gtanθ,方向在T反方向你认为这个结果正确。
弹簧类问题的研究一、命题趋向与考点轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,引起足够重视。
二、知识概要与方法㈠弹簧问题的处理办法1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。
因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k = —(21kx 22 —21kx 12),弹力的功等于弹性势能增量的负值。
弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论。
因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
㈡弹簧类问题的分类1.弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2.弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f =kx 或△f =k △x 来求解。
3.弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4.弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。
高中物理重点经典力学问题----弹簧问题方法归类总结高考要求:轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,应引起足够重视.弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k =-(21kx 22-21kx 12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p =21kx 2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m 1g/k 1B.m 2g/k 2C.m 1g/k 2D.m 2g/k 2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m 1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m 1 + m 2)g /k 2,而m l 刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m 2g /k 2,因而m 2移动△x =(m 1 + m 2)·g /k 2 - m 2g /k 2=m l g /k 2.此题若求m l 移动的距离又当如何求解?参考答案:C2.(1996全国)如图所示,倔强系数为k 1的轻质弹簧两端分别与质量为m 1、m 2的物块1、2拴接,倔强系数为k 2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
高中物理弹簧问题求解思路浅析
弹簧问题是高考的一个重点内容,同时也是难点之一。
本文从(1)动力学分析;(2)弹性势能求法;(3)课本弹力概念;三部分进行分析。
在文章的最后,笔者给出了几道典型的弹簧问题专项练习题,大家可以去下载练练手。
弹簧的问题往往涉及到弹力做功及其对应的弹性势能,融入做功过程中位移的变化与原长综合起来决定了形变量的大小,进而决定了弹力的大小。
因此这里的分析比较复杂,很多学生感觉学习起来比较吃力。
一些高考试题或模拟考题中,弹簧竖直方向放置。
这类问题的考察,在弹力的基础上融入了重力的因素,往往有借助于两个物体相碰导致的振动情况分析,无疑增加了难度。
弹簧受力与运动分析切入点
当题目中出现弹簧时,我们解决的首要出发点便是分析弹力的大小与方向。
一般的问题解决都是从弹力大小变化来进行分析的,因此在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置。
也就是说,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态。
在分析物体具体运动状态的时候,我们大部分情况下侧重于分析和研究平衡位置的特点。
一般来说,平衡位置是合外力为零,运动速度最大,加速度为零所对应的状态点。
弹性势能的求法
由于高中物理并没有要求大家理解弹性势能的定义,弹簧的弹性势能的计算大部分情况下是通过能量守恒或者功能关系来进行求解计算的,话句话来说,就是借助于外界功或者能的方法来进行分析。
高中数学微积分掌握比较好的学生,也可以通过积分的方法来求解。
从弹力的定义式(F弹=kΔx)来看,F弹随x的变化关系为一次线性函数,通过积分不难得出:E弹=1/2k*Δx^2;这种数学微分思想在高中物理中的应用问题,在平时需要大家多去分析探究,这类结合的问题不仅仅是高考物理,同时也是近几年自主招生考试命题的一大趋势。
对于数学微积分知识掌握不是特别理想的学生也不用气馁,我们可以借助于图像阴影面积的求法来探究弹力所做的功。
这种求法得到的答案也是一致的:E 弹=1/2k*Δx^2;
在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均弹力大小,再用功的定义进行计算(很多题目是利用动能定理和功能关系,能量转化和守恒定律求解)。
在这里要提醒大家的是,一次线性关系可以这么来求,二次函数关系不能利用这种方法。
比如,当电流为变量的时候,求电热Q 时,利用公式Q=I*I*Rt ,对Q 的求法只能对I 进行积分。
同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值。
上面给出大家的弹性势能的公式,高考不作定量要求,可作定性讨论。
因此笔者在前文中讲到,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
课本上弹力的概念
弹簧的弹力是一种由形变而决定大小和方向的力。
在我们新课标必修1第55页有弹力的如下定义:发生弹性形变的物体,由于要恢复原长,对其接触的物体产生力的作用,这种力叫弹力。
定义中的弹性形变指的是能够恢复原状的形变。
弹力有很多,其中最典型的弹力就是弹簧的弹力。
因弹簧的形变改变过程需要一段时间积累,在瞬间内形变量可以认为不变。
因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
这一点在上海2001年的高考物理试题中有所考察。
从弹力定义来说,日常生活中的压力、支持力、绳子拉力都是弹力。
比如,一本书放在桌面上,桌面给其的支持力就是弹力,只不过桌面的弹性形变很小,我们肉眼观察不到罢了。
附例:
21.如图所示为一个竖直放置的弹簧振子物体沿竖直方向在A 、B 之间做简谐运动,O 点为平衡位置,A 点位置恰好为弹簧的原
长。
物体由C 点运动到D 点(C 、D 两点未在图上标出)的过程中,弹簧的弹性势能增加了3.0J ,重力势能减少了2.0J 。
对于这段过程有如下说法:
①物体的动能增加1.0J ②C 点的位置可能在平衡位置以上③D 点的位置可能在平衡位置以上④物体经过D 点时的运动方向可能指向平衡位置
以上说法正确的是
A .②和④
B .②和③
C .①和③
D .只有④
【A 】
21.固定在水平面上的竖直轻弹簧,上端与质量为M 的物块B 相连,整个装置处于静止状态时,物块B 位于P 处,如图所示。
另有一质量为m 的物块C,从Q 处自由下落,与B 相碰撞后,立即具有相同的速度,然后B、C 一起运动,将弹簧进一步压缩后,物块B、C 被反弹。
有下列几个结论:
①B,C 反弹过程中,在P 处物块C 与B 相分离
②B,C 反弹过程中,在P 处物C 与B 不分离
③C 可能回到Q 处
④C 不可能回到Q 处
其中正确的是:
A.①③B.①④
C.②③D.②④
A
O
B
乙甲【D 】20.如图所示,质量相同的木块A 、B ,用轻弹簧连接置于光滑水平面上,开始弹簧处于自然状态,现用水平恒力F 推木块A ,则弹簧在第一次被压缩到最短的过程中
A .当A 、
B 速度相同时,加速度a A =a B
B .当A 、B 速度相同时,加速度a A >a B
C .当A 、B 加速度相同时,速度v A <v B
D .当A 、B 加速度相同时,速度v A >v B
【D 】
18.如图所示,质量为m 的物体从竖直轻弹簧的正上方自由落下,落到弹簧上,将弹簧压缩。
已知物体下落h 高,经过时间为t ,物体压在弹簧上的速度为v ,在此过程中,地面对弹簧的支持力做功为W ,支持力的冲量大小为I ,则有()
A.
212W mgh mv =-B.
212W mv mgh =-C.
I mgt mv =-D.I mv mgt =-【C 】
20.如图所示,竖直放置在水平面上的轻质弹簧上端叠放着两个物
块A 、B ,它们的质量均为2.0kg ,并处于静止状态。
某时刻突然将一个大小为10N 的竖直向下的压力
加在A 上,则此时刻A 对B 的压力
大小为(g 取10m/s 2)
A .30N B.25N C.10N D.5N 【
B 】
20.如图所示,质量为m 的物块甲以3m/s 的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m 的物块乙以4m/s 的速度与甲相向运动。
则()
A .甲、乙两物块在弹簧压缩过程中,由于弹力作用,甲、乙(包括弹簧)构成的系统动量不守恒
B .当两物块相距最近时,甲物块的速率为零
C .当甲物块的速率为1m/s 时,乙物块的速率可能为2m/s ,也可能为0
D .甲物块的速率可能达到5m/s
【C 】
23.(18分)如图所示,一轻质弹簧竖直固定在地面上,自然长度l 0=0.50m ,上面连接一个质量m 1=1.0kg 的物体A ,平衡时物体距地面h 1=0.40m ,此时弹簧的弹性势能E P =0.50J 。
在距物体A 正上方高为h =0.45m 处有一个质量m 2=1.0kg 的物体B 自由下落后,与弹簧上面的物体A 碰撞并立即以相同的速度运动,已知两物体不粘连,且可视为质点。
g =10m/s 2。
求:(1)碰撞结束瞬间两物体的速度大小;
(2)两物体一起运动第一次具有竖直向上最大速度时弹簧的长度;(3)两物体第一次分离时物体B 的速度大小。
【v 1=1.5m/s ,
l =0.30m
v 2=2
3m/s=0.87m/s 】16.如图,质量都是m 的物体A 、B 用轻质弹簧相连,静置于水平地面上,此时弹簧压缩了∆l 。
如果
再给A 一个竖直向下的力,使弹簧再压缩∆l ,形变始终在弹性限度内,稳定后,突然撤去竖直向下的
力,在A 物体向上运动的过程中,下列说法中:①B 物体受到的弹簧的弹力大小等于mg 时,A 物体的
速度最大;②B 物体受到的弹簧的弹力大小等于mg 时,A 物体的加速度最大;③A 物体受到的弹簧的
弹力大小等于mg 时,A 物体的速度最大;④A 物体受到的弹簧的弹力大小等于mg 时,A 物体的加速
A B F h
m A B 图
h 1
h
A
B
度最大。
其中正确的是()
A.只有①③正确B.只有①④正确C.只有②③正确D.只有②④正确【A】。