2017年广西河池市中考数学试卷及答案解析(含答题卡)
- 格式:doc
- 大小:438.51 KB
- 文档页数:28
绝密★启用前2017年初中毕业升学考试(广西百色卷)数学(带解析)学校:___________姓名:___________班级:___________考号:___________注意事项.1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题(题型注释)1、化简等于( )A .15B .-15C .D .2、多边形的外角和等于( ) A .B .C .D .3、在以下一列数3,3,5,6,7,8中,中位数是( ) A .3 B .5 C .5.5 D .64、下列计算正确的是( ) A .B .C .D .5、如图,为的平分线,下列等式错误的是( )A .B .C .D .6、5月14-15日“一带一路”论坛峰会在北京隆重如开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人口约为44亿人,44亿这个数用科学记数法表示为( ) A .B .C .D .7、如图所示的正三棱术,它的主视图、俯视图、左视图的顺序是( )A .①②③B .②①③C .③①②D .①③②8、观察以下一列数的特点:0,1,-4,9,-16,25,┅,则第11个数是( ) A .-121 B .-100 C .100 D .1219、九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是( ) A .B .C .D .10、如图,在距离铁轨200米处的处,观察由南宁开往百色的“和谐号”动车,当动车车头在处时,恰好位于处的北偏东方向上,10秒钟后,动车车头到达处,恰好位于处西北方向上,则这时段动车的平均速度是( )米/秒.A .B .C .200D .30011、以坐标原点为圆心,作半径为2的圆,若直线与相交,则的取值范围是( ) A .B .C .D .12、关于的不等式组的解集中至少有5个整数解,则正数的最小值是( )A .3B .2C .1D .第II 卷(非选择题)二、填空题(题型注释)13、若分式有意义,则的取值范围是 .14、一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,随机抽取一张,抽中标号为奇数的卡片的概率是 .15、下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,基中假命题的有 (填序号).16、经过三点的抛物线解析式是 .17、阅读理解:用“十字相乘法”分解因式的方法.(1)二次项系数;(2)常数项验算:“交叉相乘之和”;(3)发现第③个“交叉相乘之和”的结果,等于一次项系数-1,即,则.像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:.三、解答题(题型注释)18、计算:19、已知,求代数式的值.20、已知反比例函数的图象经过点,点与点关于原点对称,轴于点,轴于点(1)求这个反比例函数的解析式;(2)求的面积.21、矩形中,分别是的中点,分别交于两点.求证:(1)四边形是平行四边形;(2)22、甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全): 12345甲 10 8 9 10 8 乙1099ab某同学计算出了甲的成绩平均数是9,方差是,请作答:(1)在图中用折线统计图将甲运动员的成绩表示出来; (2)若甲、乙的射击成绩平均数都一样,则;(3)在(2)的条件下,当甲比乙的成绩较稳定时,请列举出的所有可能取值,并说明理由.23、某校九年级10个班师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少4个. (1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?24、已知的内切圆与分别相切于点,若,如图1. (1)判断的形状,并证明你的结论; (2)设与相交于点,如图2,求的长.25、以菱形的对角线交点为坐标原点,所在的直线为轴,已知,,,为折线上一动点,内行轴于点,设点的纵坐标为(1)求边所在直线的解析式;(3)当为直角三角形,求点的坐标.参考答案1、A2、B3、C4、A5、C6、B7、D8、B9、C10、A11、D12、B13、x≠214、15、②16、y=﹣x2+x+3.17、(x+3)(3x﹣4).18、2.19、4036.20、(1)反比例函数的解析式为y=;(2)S△ACD=6.21、(1)证明见解析;(2)证明见解析.22、(1)画图见解析;(2)17;(3)a=8时,b=9;a=9时,b=8;理由见解析23、(1)九年级师生表演的歌唱类节目有12个,舞蹈类节目有8个;(2)参与的小品类节目最多能有3个.24、(1)△ABC为等腰三角形,证明见解析;(2)AM=.25、(1)直线BC的解析式为y=x﹣2;(2)当点P在边BC上时,y=10a2+24a+48;当点P在边CD上时,y= 10a2﹣40a+48;(3)点P的坐标为(,2﹣),(4,0).【解析】1、试题分析:∵负数的绝对值是它的相反数,∴|﹣15|等于15,故选A.考点:绝对值.2、试题分析:多边形的外角和是360°,故选B.考点:多边形内角与外角.3、试题分析:从小到大排列此数据为:3,3,5,6,7,8,第3个与第4个数据分别是5,6,所以这组数据的中位数是(5+6)÷2=5.5.故选C.考点:中位数.4、试题分析:A、积的乘方等于乘方的积,故A正确;B、幂的乘方底数不变指数相乘,故B错误;C、同底数幂的除法底数不变指数相减,故C错误;D、同底数幂的乘法底数不变指数相加,故D错误;故选A.考点:1.同底数幂的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.负整数指数幂.5、试题分析:∵AM为∠BAC的平分线,∴∠BAC=∠BAM,∠BAM=∠CAM,∠BAM=∠CAM,2∠CAM=∠BAC.故选C.考点:角平分线的定义.6、试题分析:44亿==4.4×109,故选B.考点:科学记数法—表示较大的数.7、试题分析:主视图是三角形,俯视图是两个矩形,左视图是一个矩形,故选D.考点:三视图.8、试题分析:0=﹣(1﹣1)2,1=(2﹣1)2,﹣4=﹣(3﹣1)2,9=(4﹣1)2,﹣16=﹣(5﹣1)2,∴第11个数是﹣(11﹣1)2=﹣100,故选B.考点:规律型:数字的变化类.9、试题分析:由题意可得,第一小组对应的圆心角度数是:×360°=72°,故选C.考点:1.扇形统计图;2.条形统计图.10、试题分析:作BD⊥AC于点D.∵在Rt△ABD中,∠ABD=60°,∴AD=BD•tan∠ABD="200" (米),同理,CD=BD=200(米).则AC=200+200(米).则平均速度是=20(+1)米/秒.故选A.考点:1.解直角三角形的应用﹣方向角问题;2.勾股定理的应用.11、试题分析:当直线y=﹣x+b与圆相切,且函数经过一、二、四象限时,如图.在y=﹣x+b中,令x=0时,y=b,则与y轴的交点是(0,b),当y=0时,x=b,则A的交点是(b,0),则OA=OB,即△OAB是等腰直角三角形.连接圆心O和切点C.则OC=2.则OB=OC=2.即b=2;同理,当直线y=﹣x+b与圆相切,且函数经过二、三、四象限时,b=﹣2.则若直线y=﹣x+b与⊙O相交,则b的取值范围是﹣2<b<2.故选D考点:1.直线与圆的位置关系;2.一次函数图象与系数的关系.12、试题分析:,解①得x≤a,解②得x>﹣a.则不等式组的解集是﹣a<x≤a.∵不等式至少有5个整数解,则a的范围是a≥2.a的最小值是2.故选B.考点:一元一次不等式组的整数解.13、试题分析:由题意,得x﹣2≠0.解得x≠2考点:分式有意义的条件.14、试题分析:∵共有5个数字,奇数有3个,∴随机抽取一张,抽中标号为奇数的卡片的概率是.考点:概率公式.15、试题分析:①对顶角相等是真命题;②同旁内角互补是假命题;③全等三角形的对应角相等是真命题;④两直线平行,同位角相等是真命题;故假命题有②.考点:命题与定理.16、试题分析:根据题意设抛物线解析式为y=a(x+2)(x﹣4),把C(0,3)代入得:﹣8a=3,即a=﹣,则抛物线解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+3.考点:待定系数法求二次函数解析式.17、试题分析:3x2+5x﹣12=(x+3)(3x﹣4).考点:因式分解﹣十字相乘法.18、试题分析:原式利用二次根式性质,零指数幂、负整数指数幂法则,以及绝对值的代数意义化简,计算即可得到结果.试题解析:原式=2 +2﹣1﹣2 +1=2.考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.19、试题分析:先化简代数式,然后将a=b+2018代入即可求出答案.试题解析:原式=﹒(a﹣b)(a+b)=2(a﹣b)∵a=b+2018,∴原式=2×2018=4036考点:分式的化简求值.20、试题分析:(1)根据待定系数法,可得函数解析式;(2)根据三角形的面积公式,可得答案.试题解析:(1)将B点坐标代入函数解析式,得=2,解得k=6,反比例函数的解析式为y=;(2)由B(3,2),点B与点C关于原点O对称,得C(﹣3,﹣2).由BA⊥x轴于点A,CD⊥x轴于点D,得A(3,0),D(﹣3,0).S△ACD=AD•CD=[3﹣(﹣3)]×|﹣2|=6.考点:1.反比例函数系数k的几何意义;2.反比例函数图象上点的坐标特征;3.坐标与图形变化﹣旋转.21、试题分析:(1)根据一组对边平行且相等的四边形是平行四边形证明即可;(2)可证明EG和FH所在的△DEG、△BFH全等即可.试题解析:(1)∵四边形ABCD是矩形,∴AD∥BC,AD=BC,∵E、F分别是AD、BC的中点,∴AE=AD,CF=BC,∴AE=CF,∴四边形AFCE是平行四边形;(2)∵四边形AFCE是平行四边形,∴CE∥AF,∴∠DGE=∠AHD=∠BHF,∵AB∥CD,∴∠EDG=∠FBH,在△DEG和△BFH中,∴△DEG≌△BFH(AAS),∴EG=FH.考点:1.矩形的性质;2.平行四边形的判定与性质.22、17试题分析:(1)根据表中数据描点、连线即可得;(2)根据平均数的定义列出算式,整理即可得;(3)由a+b=17得b=17﹣a,将其代入到S甲2<S乙2,即 [(10﹣9)2+(9﹣9)2+(9﹣9)2+(a﹣9)2+(b﹣9)2]<0.8,得到a2﹣17a+71<0,求出a的范围,根据a、b均为整数即可得出答案.试题解析:(1)如图所示:(2)由题意知,=9,∴a+b=17;(3)∵甲比乙的成绩较稳定,∴S甲2<S乙2,即 [(10﹣9)2+(9﹣9)2+(9﹣9)2+(a﹣9)2+(b﹣9)2]<0.8,∵a+b=17,∴b=17﹣a,代入上式整理可得:a2﹣17a+71<0,解得:<a<,∵a、b均为整数,∴a=8时,b=9;a=9时,b=8.考点:1.折线统计图;2.加权平均数;3.方差.23、试题分析:(1)设九年级师生表演的歌唱类节目有x个,舞蹈类节目有y个,根据“两类节目的总数为20个、唱歌类节目数比舞蹈类节目数的2倍少4个”列方程组求解可得;(2)设参与的小品类节目有a个,根据“三类节目的总时间+交接用时<150”列不等式求解可得.试题解析:(1)设九年级师生表演的歌唱类节目有x个,舞蹈类节目有y个,根据题意,得:,解得:,答:九年级师生表演的歌唱类节目有12个,舞蹈类节目有8个;(2)设参与的小品类节目有a个,根据题意,得:12×5+8×6+8a+15<150,解得:a<,由于a为整数,∴a=3,答:参与的小品类节目最多能有3个.考点:1.一元一次不等式的应用;2.二元一次方程组的应用.24、试题分析:(1)易证∠EOF+∠C=180°,∠DOE+∠B=180°和∠EOF=∠DOE,即可解题;(2)连接OB、OC、OD、OF,易证AD=AF,BD=CF可得DF∥BC,再根据AE长度即可解题.试题解析:(1)△ABC为等腰三角形,∵△ABC的内切圆⊙O与AB、BC、AC分别相切于点D、E、F,∴∠CFE=∠CEF=∠BDO=∠BEO=90°,∵四边形内角和为360°,∴∠EOF+∠C=180°,∠DOE+∠B=180°,∵,∴∠EOF=∠DOE,∴∠B=∠C,AB=AC,∴△ABC为等腰三角形;(2)连接OB、OC、OD、OF,如图,∵等腰三角形ABC中,AE⊥BC,∴E是BC中点,BE=CE,∵在Rt△AOF和Rt△AOD中,∴Rt△AOF≌Rt△AOD,∴AF=AD,同理Rt△COF≌Rt△COE,CF=CE=2,Rt△BOD≌Rt△BOE,BD=BE,∴AD=AF,BD=CF,∴DF∥BC,∴,∵AE==4,∴AM=4×=.考点:三角形的内切圆与内心.25、试题分析:(1)先确定出OA=4,OB=2,再利用菱形的性质得出OC=4,OD=2,最后用待定系数法即可确定出直线BC解析式;(2)分两种情况,先表示出点P的坐标,利用两点间的距离公式即可得出函数关系式;(3)分两种情况,利用勾股定理的逆定理建立方程即可求出点P的坐标.试题解析:(1)∵A(﹣4,0),B(0,﹣2),∴OA=4,OB=2,∵四边形ABCD是菱形,∴OC=OA=4,OD=OB=2,∴C(4,0),D(0,2),设直线BC的解析式为y=kx﹣2,∴4k﹣2=0,∴k=,∴直线BC的解析式为y=x﹣2;(2)由(1)知,C(4,0),D(0,2),∴直线CD的解析式为y=﹣x+2,由(1)知,直线BC的解析式为y=x﹣2,当点P在边BC上时,设P(2a+4,a)(﹣2≤a<0),∵M(0,4),∴y=MP2+OP2=(2a+4)2+(a﹣4)2+(2a+4)2+a2=2(2a+4)2+(a﹣4)2+a2=10a2+24a+48 当点P在边CD上时,∵点P的纵坐标为a,∴P(4﹣2a,a)(0≤a≤2),∵M(0,4),∴y=MP2+OP2=(4﹣2a)2+(a﹣4)2+(4﹣2a)2+a2=10a2﹣40a+48,(3)①当点P在边BC上时,即:0≤a≤2,由(2)知,P(2a+4,a),∵M(0,4),∴OP2=(2a+4)2+a2=5a2+16a+16,PM2=(2a+4)2+(a﹣4)2=5a2﹣8a+32,OM2=16,∵△POM是直角三角形,易知,PM最大,∴OP2+OM2=PM2,∴5a2+16a+16+16=5a2﹣8a+32,∴a=0(舍)②当点P在边CD上时,即:0≤a≤2时,由(2)知,P(4﹣2a,a),∵M(0,4),∴OP2=(4﹣2a)2+a2=5a2﹣16a+16,PM2=(4﹣2a)2+(a﹣4)2=5a2﹣24a+32,OM2=16,∵△POM是直角三角形,Ⅰ、当∠POM=90°时,∴OP2+OM2=PM2,∴5a2﹣16a+16+16=5a2﹣24a+32,∴a=0,∴P(4,0),Ⅱ、当∠MPO=90°时,OP2+PM2=5a2﹣16a+16+5a2﹣24a+32=10a2﹣40a+48=OM2=16,∴a=2+(舍)或a=2﹣,∴P(,2﹣),即:当△OPM为直角三角形时,点P的坐标为(,2﹣),(4,0).考点:四边形综合题.。
2017年广西河池市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列实数中,为无理数的是()A.﹣2 B.C.2 D.4【考点】26:无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣2是整数,是有理数,选项不符合题意;B、是无理数,选项符合题意;C、2是整数,是有理数,选项不符合题意;D、4是整数,是有理数,选项不符合题意.故选B.2.如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是()A.60°B.90°C.120°D.150°【考点】IF:角的概念.【分析】根据点O在直线AB上,∠BOC=60°,即可得出∠AOC的度数.【解答】解:∵点O在直线AB上,∴∠AOB=180°,又∵∠BOC=60°,∴∠AOC=120°,故选:C.3.若函数y=有意义,则()A.x>1 B.x<1 C.x=1 D.x≠1【考点】E4:函数自变量的取值范围.【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x﹣1≠0,解得x≠1,故选:D.4.如图是一个由三个相同正方体组成的立体图形,它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图是从正面看得到的视图解答.【解答】解:从正面看,从左向右共有2列,第一列是1个正方形,第二列是1个正方形,且下齐.故选D.5.下列计算正确的是()A.a3+a2=a5 B.a3•a2=a6 C.(a2)3=a6D.a6÷a3=a2【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】依据合并同类项法则、同底数幂的乘法法则、幂的乘方、同底数幂的除法法则进行判断即可.【解答】解:A.a3与a2不是同类项不能合并,故A错误;B.a3•a2=a5,故B错误;C.(a2)3=a6,故C正确;D.a6÷a3=a2,故D错误.故选:C.6.点P(﹣3,1)在双曲线y=上,则k的值是()A.﹣3 B.3 C.D.【考点】G6:反比例函数图象上点的坐标特征.【分析】根据反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k可得答案.【解答】解:∵点P(﹣3,1)在双曲线y=上,∴k=﹣3×1=﹣3,故选:A.7.在《数据分析》章节测试中,“勇往直前”学习小组7位同学的成绩分别是92,88,95,93,96,95,94.这组数据的中位数和众数分别是()A.94,94 B.94,95 C.93,95 D.93,96【考点】W5:众数;W4:中位数.【分析】先将数据重新排列,再根据中位数、众数的定义就可以求解.【解答】解:这组数据重新排列为:88、92、93、94、95、95、96,∴这组数据的中位数为94,众数为95,故选:B.8.如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A.18°B.36°C.54°D.72°【考点】M5:圆周角定理;M2:垂径定理.【分析】根据垂径定理推出=,推出∠CAB=∠BAD=36°,再由∠BCD=∠BAD即可解决问题.【解答】解:∵AB是直径,AB⊥CD,∴=,∴∠CAB=∠BAD=36°,∵∠BCD=∠BAD,∴∠BCD=36°,故选B.9.三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线【考点】K3:三角形的面积;K2:三角形的角平分线、中线和高.【分析】根据等底等高的三角形的面积相等解答.【解答】解:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.10.若关于x的方程x2+2x﹣a=0有两个相等的实数根,则a的值为()A.﹣1 B.1 C.﹣4 D.4【考点】AA:根的判别式.【分析】根据方程的系数结合根的判别式可得出关于a的一元一次方程,解方程即可得出结论.【解答】解:∵方程x2+2x﹣a=0有两个相等的实数根,∴△=22﹣4×1×(﹣a)=4+4a=0,解得:a=﹣1.故选A.11.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【考点】N2:作图—基本作图;L5:平行四边形的性质.【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.12.已知等边△ABC的边长为12,D是AB上的动点,过D作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是()A.3 B.4 C.8 D.9【考点】KK:等边三角形的性质;KO:含30度角的直角三角形.【分析】设AD=x,根据等边三角形的性质得到∠A=∠B=∠C=60°,由垂直的定义得到∠ADF=∠DEB=∠EFC=90°,解直角三角形即可得到结论.【解答】解:设AD=x,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥AC于点E,EF⊥BC于点F,FG⊥AB,∴∠ADF=∠DEB=∠EFC=90°,∴AF=2x,∴CF=12﹣2x,∴CE=2CF=24﹣4x,∴BE=12﹣CE=4x﹣12,∴BD=2BE=8x﹣24,∵AD+BD=AB,∴x+8x﹣24=12,∴x=4,∴AD=4.故选B.二、填空题(每题3分,满分18分,将答案填在答题纸上)13.分解因式:x2﹣25=(x+5)(x﹣5).【考点】54:因式分解﹣运用公式法.【分析】直接利用平方差公式分解即可.【解答】解:x2﹣25=(x+5)(x﹣5).故答案为:(x+5)(x﹣5).14.点A(2,1)与点B关于原点对称,则点B的坐标是(﹣2,﹣1).【考点】R6:关于原点对称的点的坐标.【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:∵点A(2,1)与点B关于原点对称,∴点B的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).15.在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是90.【考点】W1:算术平均数.【分析】根据算术平均数的计算公式,把这5个分数加起来,再除以5,即可得出答案.【解答】解:这位参赛选手在这次比赛中获得的平均分为:(92+93+88+87+90)÷5=90(分);故答案为:90.16.如图,直线y=ax与双曲线y=(x>0)交于点A(1,2),则不等式ax>的解集是x>1.【考点】G8:反比例函数与一次函数的交点问题.【分析】根据函数的图象即可得到结论.【解答】解:∵直线y=ax与双曲线y=(x>0)交于点A(1,2),∴不等式ax>的解集是x>1,故答案为:x>1.17.圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是10.【考点】MP:圆锥的计算.【分析】侧面展开后得到一个半圆就是底面圆的周长.依此列出方程即可.【解答】解:设该半圆的半径长为x,根据题意得:2πx÷2=2π×5,解得x=10.故答案为:10.18.如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.【考点】LB:矩形的性质.【分析】根据四边形ABCD是矩形,得到∠ABE=∠BAD=90°,根据余角的性质得到∠BAE=∠ADB,根据相似三角形的性质得到BE=1,求得BC=2,根据勾股定理得到AE==,BD==,根据三角形的面积公式得到BF==,过F作FG⊥BC于G,根据相似三角形的性质得到CG=,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是矩形,∴∠ABE=∠BAD=90°,∵AE⊥BD,∴∠AFB=90°,∴∠BAF+∠ABD=∠ABD+∠ADB=90°,∴∠BAE=∠ADB,∴△ABE∽△ADB,∴,∵E是BC的中点,∴AD=2BE,∴2BE2=AB2=2,∴BE=1,∴BC=2,∴AE==,BD==,∴BF==,过F作FG⊥BC于G,∴FG∥CD,∴△BFG∽△BDC,∴==,∴FG=,BG=,∴CG=,∴CF==.故答案为:.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.计算:|﹣1|﹣2sin45°+﹣20.【考点】2C:实数的运算;6E:零指数幂;T5:特殊角的三角函数值.【分析】首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|﹣1|﹣2sin45°+﹣20=1﹣2×+2﹣1=20.解不等式组:.【考点】CB:解一元一次不等式组.【分析】先求出每个不等式的解集,再找出不等式组的解集即可.【解答】解:∵解不等式①得:x>0.5,解不等式②得:x<2,∴不等式组的解集为0.5<x<2.21.直线l的解析式为y=﹣2x+2,分别交x轴、y轴于点A,B.(1)写出A,B两点的坐标,并画出直线l的图象;(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是y=﹣2x+6.(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan∠CAD=.【考点】F9:一次函数图象与几何变换;F3:一次函数的图象.【分析】(1)分别令x=0求得y、令y=0求得x,即可得出A、B的坐标,从而得出直线l的解析式;(2)将直线向上平移4个单位可得直线l1,根据“上加下减”的原则求解即可得出其解析式;(3)由旋转得出其函数图象及点B的对应点坐标,待定系数法求得直线l2的解析式,继而求得其与y轴的交点,根据tan∠CAD=tan∠EAO=可得答案.【解答】解:(1)当y=0时,﹣2x+2=0,解得:x=1,即点A(1,0),当x=0时,y=2,即点B(0,2),如图,直线AB即为所求;(2)如图,直线l1即为所求,直线l1的解析式为y=﹣2x+2+4=﹣2x+6,故答案为:y=﹣2x+6;(3)如图,直线l2即为所求,∵直线l绕点A顺时针旋转90°得到l2,∴由图可知,点B(0,2)的对应点坐标为(3,1),设直线l2解析式为y=kx+b,将点A(1,0)、(3,1)代入,得:,解得:,∴直线l2的解析式为y=x﹣,当x=0时,y=﹣,∴直线l2与y轴的交点E(0,﹣),∴tan∠CAD=tan∠EAO===,故答案为:.22.(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论.【考点】S9:相似三角形的判定与性质;KD:全等三角形的判定与性质;LE:正方形的性质.【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:AB=BC,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴=,∴AB=BC.23.九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”只是竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:60,90,63,99,67,99,99,68.频数分布表分数段频数(人数)60≤x<70a70≤x<801680≤x<902490≤x<100b请解答下列问题:(1)完成频数分布表,a=4,b=4.(2)补全频数分布直方图;(3)全校共有600名学生参加初赛,估计该校成绩90≤x<100范围内的学生有多少人?(4)九(1)班甲、乙、丙三位同学的成绩并列第一,现选两人参加决赛,求恰好选中甲、乙两位同学的概率.【考点】X6:列表法与树状图法;V7:频数(率)分布表;V8:频数(率)分布直方图.【分析】(1)将余下的8位同学按60≤x<70、90≤x<100分组可得a、b的值;(2)根据(1)中所得结果补全即可得;(3)将样本中成绩90≤x<100范围内的学生所占比例乘以总人数600可得答案;(4)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)由题意知,60≤x<70的有60、63、67、68这4个数,90≤x<100的有90、99、99、99这4个,即a=4、b=4,故答案为:4,4;(2)补全频数分布直方图如下:(3)600×=50(人),故答案为:估计该校成绩90≤x<100范围内的学生有50人.(4)画树状图得:∵共有6种等可能的结果,甲、乙被选中的有2种情况,∴甲、乙被选中的概率为=.24.某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.(1)排球和足球的单价各是多少元?(2)若恰好用去1200元,有哪几种购买方案?【考点】B7:分式方程的应用;95:二元一次方程的应用.【分析】(1)设排球单价是x元,则足球单价是(x+30)元,根据题意可得等量关系:500元购得的排球数量=800元购得的足球数量,由等量关系可得方程,再求解即可;(2)设恰好用完1200元,可购买排球m个和购买足球n个,根据题意可得排球的单价×排球的个数m+足球的单价×足球的个数n=1200,再求出整数解即可得出答案.【解答】解:设排球单价为x元,则足球单价为(x+30)元,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,则x+30=80.答:排球单价是50元,则足球单价是80元;(2)设设恰好用完1200元,可购买排球m个和购买足球n个,由题意得:50m+80n=1200,整理得:m=24﹣n,∵m、n都是正整数,∴①n=5时,m=16,②n=10时,m=8;∴有两种方案:①购买排球5个,购买足球16个;②购买排球10个,购买足球8个.25.如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO 的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.【考点】MC:切线的性质;KQ:勾股定理;M2:垂径定理.【分析】(1)利用切线长定理得到OC平分∠BCE,即∠ECO=∠BCO,利用切线的性质得OB⊥BC,则∠BCO+∠COB=90°,由于∠FEB+∠FOE=90°,∠COB=∠FOE,所以∠FEB=∠ECF;(2)连接OD,如图,利用切线长定理和切线的性质得到CD=CB=6,OD⊥CE,则CE=10,利用勾股定理可计算出BE=8,设⊙O的半径为r,则OD=OB=r,OE=8﹣r,在Rt△ODE中,根据勾股定理得r2+42=(8﹣r)2,解得r=3,所以OE=5,OC=3,然后证明△OEF∽△OCB,利用相似比可计算出EF的长.【解答】(1)证明:∵CB,CD分别切⊙O于点B,D,∴OC平分∠BCE,即∠ECO=∠BCO,OB⊥BC,∴∠BCO+∠COB=90°,∵EF⊥OG,∴∠FEB+∠FOE=90°,而∠COB=∠FOE,∴∠FEB=∠ECF;(2)解:连接OD,如图,∵CB,CD分别切⊙O于点B,D,∴CD=CB=6,OD⊥CE,∴CE=CD+DE=6+4=10,在Rt△BCE中,BE==8,设⊙O的半径为r,则OD=OB=r,OE=8﹣r,在Rt△ODE中,r2+42=(8﹣r)2,解得r=3,∴OE=8﹣3=5,在Rt△OBC中,OC==3,∵∠COB=∠FOE,∴△OEF∽△OCB,∴=,即=,∴EF=2.26.抛物线y=﹣x2+2x+3与x轴交于点A,B(A在B的左侧),与y轴交于点C.(1)求直线BC的解析式;(2)抛物线的对称轴上存在点P,使∠APB=∠ABC,利用图1求点P的坐标;(3)点Q在y轴右侧的抛物线上,利用图2比较∠OCQ与∠OCA的大小,并说明理由.【考点】HF:二次函数综合题.【分析】(1)由抛物线解析式可求得B、C的坐标,利用待定系数法可求得直线BC的解析式;(2)由直线BC解析式可知∠APB=∠ABC=45°,设抛物线对称轴交直线BC于点D,交x轴于点E,结合二次函数的对称性可求得PD=BD,在Rt△BDE中可求得BD,则可求得PE的长,可求得P点坐标;(3)设Q(x,﹣x2+2x+3),当∠OCQ=∠OCA时,利用两角的正切值相等可得到关于x的方程,可求得Q点的横坐标,再结合图形可比较两角的大小.【解答】解:(1)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,令x=0可得y=3,∴B(3,0),C(0,3),∴可设直线BC的解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=﹣1,∴直线BC解析式为y=﹣x+3;(2)∵OB=OC,∴∠ABC=45°,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线对称轴为x=1,设抛物线对称轴交直线BC于点D,交x轴于点E,当点P在x轴上方时,如图1,∵∠APB=∠ABC=45°,且PA=PB,∴∠PBA==67.5°,∠DPB=∠APB=22.5°,∴∠PBD=67.5°﹣45°=22.5°,∴∠DPB=∠DBP,∴DP=DB,在Rt△BDE中,BE=DE=2,由勾股定理可求得BD=2,∴PE=2+2,∴P(1,2+2);当点P在x轴下方时,由对称性可知P点坐标为(1,﹣2﹣2);综上可知P点坐标为(1,2+2)或(1,﹣2﹣2);(3)设Q(x,﹣x2+2x+3),当点Q在x轴下方时,如图2,过Q作QF⊥y轴于点F,当∠OCA=∠OCQ时,则△QEC∽△AOC,∴==,即=,解得x=0(舍去)或x=5,∴当Q点横坐标为5时,∠OCA=∠OCQ;当Q点横坐标大于5时,则∠OCQ逐渐变小,故∠OCA>∠OCQ;当Q点横坐标小于5且大于0时,则∠OCQ逐渐变大,故∠OCA<∠OCQ.。
广西河池市中考数学试卷一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)下列实数中,为无理数的是()A.﹣2 B.C.2 D.42.(3分)如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是()A.60°B.90°C.120° D.150°3.(3分)若函数y=有意义,则()A.x>1 B.x<1 C.x=1 D.x≠14.(3分)如图是一个由三个相同正方体组成的立体图形,它的主视图是()A.B.C.D.5.(3分)下列计算正确的是()A.a3+a2=a5 B.a3•a2=a6 C.(a2)3=a6D.a6÷a3=a26.(3分)点P(﹣3,1)在双曲线y=上,则k的值是()A.﹣3 B.3 C.D.7.(3分)在《数据分析》章节测试中,“勇往直前”学习小组7位同学的成绩分别是92,88,95,93,96,95,94.这组数据的中位数和众数分别是()A.94,94 B.94,95 C.93,95 D.93,968.(3分)如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A.18°B.36°C.54°D.72°9.(3分)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线10.(3分)若关于x的方程x2+2x﹣a=0有两个相等的实数根,则a的值为()A.﹣1 B.1 C.﹣4 D.411.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.1212.(3分)已知等边△ABC的边长为12,D是AB上的动点,过D作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是()A.3 B.4 C.8 D.9二、填空题(每题3分,满分18分,将答案填在答题纸上)13.(3分)分解因式:x2﹣25=.14.(3分)点A(2,1)与点B关于原点对称,则点B的坐标是.15.(3分)在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是.16.(3分)如图,直线y=ax与双曲线y=(x>0)交于点A(1,2),则不等式ax>的解集是.17.(3分)圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是.18.(3分)如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:|﹣1|﹣2sin45°+﹣20.20.(6分)解不等式组:.21.(8分)直线l的解析式为y=﹣2x+2,分别交x轴、y轴于点A,B.(1)写出A,B两点的坐标,并画出直线l的图象;(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是.(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan ∠CAD=.22.(8分)(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF 于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.23.(8分)九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”只是竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:60,90,63,99,67,99,99,68.频数分布表请解答下列问题:(1)完成频数分布表,a=,b=.(2)补全频数分布直方图;(3)全校共有600名学生参加初赛,估计该校成绩90≤x<100范围内的学生有多少人?(4)九(1)班甲、乙、丙三位同学的成绩并列第一,现选两人参加决赛,求恰好选中甲、乙两位同学的概率.24.(8分)某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.(1)排球和足球的单价各是多少元?(2)若恰好用去1200元,有哪几种购买方案?25.(10分)如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA 的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.26.(12分)抛物线y=﹣x2+2x+3与x轴交于点A,B(A在B的左侧),与y轴交于点C.(1)求直线BC的解析式;(2)抛物线的对称轴上存在点P,使∠APB=∠ABC,利用图1求点P的坐标;(3)点Q在y轴右侧的抛物线上,利用图2比较∠OCQ与∠OCA的大小,并说明理由.2017年广西河池市中考数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3分)(2017•河池)下列实数中,为无理数的是()A.﹣2 B.C.2 D.4【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、﹣2是整数,是有理数,选项不符合题意;B、是无理数,选项符合题意;C、2是整数,是有理数,选项不符合题意;D、4是整数,是有理数,选项不符合题意.故选B.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(3分)(2017•河池)如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是()A.60°B.90°C.120° D.150°【分析】根据点O在直线AB上,∠BOC=60°,即可得出∠AOC的度数.【解答】解:∵点O在直线AB上,∴∠AOB=180°,又∵∠BOC=60°,∴∠AOC=120°,故选:C.【点评】本题主要考查了角的概念以及平角的定义的运用,解题时注意:平角等于180°.3.(3分)(2017•河池)若函数y=有意义,则()A.x>1 B.x<1 C.x=1 D.x≠1【分析】根据分母不能为零,可得答案.【解答】解:由题意,得x﹣1≠0,解得x≠1,故选:D.【点评】本题考查了函数自变量的取值范围,利用分母不能为零得出不等式是解题关键.4.(3分)(2017•河池)如图是一个由三个相同正方体组成的立体图形,它的主视图是()A.B.C.D.【分析】根据主视图是从正面看得到的视图解答.【解答】解:从正面看,从左向右共有2列,第一列是1个正方形,第二列是1个正方形,且下齐.故选D.【点评】本题考查了三视图,主视图是从正面看得到的视图,要注意分清所看到的正方形的排列的列数与每一列的正方形的排列情况.5.(3分)(2017•河池)下列计算正确的是()A.a3+a2=a5 B.a3•a2=a6 C.(a2)3=a6D.a6÷a3=a2【分析】依据合并同类项法则、同底数幂的乘法法则、幂的乘方、同底数幂的除法法则进行判断即可.【解答】解:A.a3与a2不是同类项不能合并,故A错误;B.a3•a2=a5,故B错误;C.(a2)3=a6,故C正确;D.a6÷a3=a2,故D错误.故选:C.【点评】本题主要考查的是幂的运算性质,熟练掌握合并同类项法则、同底数幂的乘法法则、幂的乘方、同底数幂的除法法则是解题的关键.6.(3分)(2017•河池)点P(﹣3,1)在双曲线y=上,则k的值是()A.﹣3 B.3 C.D.【分析】根据反比例函数图象上的点(x,y)的横纵坐标的积是定值k,即xy=k 可得答案.【解答】解:∵点P(﹣3,1)在双曲线y=上,∴k=﹣3×1=﹣3,故选:A.【点评】此题主要考查了反比例函数图象上点的坐标特点,关键是掌握反比例函数y=图象上的点,横纵坐标的积是定值k.7.(3分)(2017•河池)在《数据分析》章节测试中,“勇往直前”学习小组7位同学的成绩分别是92,88,95,93,96,95,94.这组数据的中位数和众数分别是()A.94,94 B.94,95 C.93,95 D.93,96【分析】先将数据重新排列,再根据中位数、众数的定义就可以求解.【解答】解:这组数据重新排列为:88、92、93、94、95、95、96,∴这组数据的中位数为94,众数为95,故选:B.【点评】本题主要考查了众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数);众数是一组数据中出现次数最多的数,难度适中.8.(3分)(2017•河池)如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A.18°B.36°C.54°D.72°【分析】根据垂径定理推出=,推出∠CAB=∠BAD=36°,再由∠BCD=∠BAD 即可解决问题.【解答】解:∵AB是直径,AB⊥CD,∴=,∴∠CAB=∠BAD=36°,∵∠BCD=∠BAD,∴∠BCD=36°,故选B.【点评】本题考查垂径定理、圆周角定理等知识,解题的关键是熟练掌握垂径定理、圆周角定理,属于中考常考题型.9.(3分)(2017•河池)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线【分析】根据等底等高的三角形的面积相等解答.【解答】解:∵三角形的中线把三角形分成两个等底同高的三角形,∴三角形的中线将三角形的面积分成相等两部分.故选A.【点评】本题考查了三角形的面积,主要利用了“三角形的中线把三角形分成两个等底同高的三角形”的知识,本知识点是中学阶段解三角形的面积经常使用,一定要熟练掌握并灵活应用.10.(3分)(2017•河池)若关于x的方程x2+2x﹣a=0有两个相等的实数根,则a的值为()A.﹣1 B.1 C.﹣4 D.4【分析】根据方程的系数结合根的判别式可得出关于a的一元一次方程,解方程即可得出结论.【解答】解:∵方程x2+2x﹣a=0有两个相等的实数根,∴△=22﹣4×1×(﹣a)=4+4a=0,解得:a=﹣1.故选A.【点评】本题考查了根的判别式以及解一元一次方程,根据根的判别式找出关于a的一元一次方程是解题的关键.11.(3分)(2017•河池)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()A.6 B.8 C.10 D.12【分析】连接EG,由作图可知AD=AE,根据等腰三角形的性质可知AG是DE的垂直平分线,由平行四边形的性质可得出CD∥AB,故可得出∠2=∠3,据此可知AD=DG,由等腰三角形的性质可知OA=AG,利用勾股定理求出OA的长即可.【解答】解:连接EG,∵由作图可知AD=AE,AG是∠BAD的平分线,∴∠1=∠2,∴AG⊥DE,OD=DE=3.∵四边形ABCD是平行四边形,∴CD∥AB,∴∠2=∠3,∴∠1=∠3,∴AD=DG.∵AG⊥DE,∴OA=AG.在Rt△AOD中,OA===4,∴AG=2AO=8.故选B.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法和性质是解答此题的关键.12.(3分)(2017•河池)已知等边△ABC的边长为12,D是AB上的动点,过D 作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是()A.3 B.4 C.8 D.9【分析】设BD=x,根据等边三角形的性质得到∠A=∠B=∠C=60°,由垂直的定义得到∠BDF=∠DEA=∠EFC=90°,解直角三角形即可得到结论.【解答】解:如图,设BD=x,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵DE⊥AC于点E,EF⊥BC于点F,FG⊥AB,∴∠BDF=∠DEA=∠EFC=90°,∴BF=2x,∴CF=12﹣2x,∴CE=2CF=24﹣4x,∴AE=12﹣CE=4x﹣12,∴AD=2AE=8x﹣24,∵AD+BD=AB,∴8x﹣24+x=12,∴x=4,∴AD=8x﹣24=32﹣24=8.故选C.【点评】本题考查了等边三角形的性质,含30°角的直角三角形的性质,熟练掌握等边三角形的性质是解题的关键.二、填空题(每题3分,满分18分,将答案填在答题纸上)13.(3分)(2017•河池)分解因式:x2﹣25=(x+5)(x﹣5).【分析】直接利用平方差公式分解即可.【解答】解:x2﹣25=(x+5)(x﹣5).故答案为:(x+5)(x﹣5).【点评】本题主要考查利用平方差公式因式分解,熟记公式结构是解题的关键.14.(3分)(2017•河池)点A(2,1)与点B关于原点对称,则点B的坐标是(﹣2,﹣1).【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案.【解答】解:∵点A(2,1)与点B关于原点对称,∴点B的坐标是(﹣2,﹣1),故答案为:(﹣2,﹣1).【点评】此题主要考查了关于原点对称的点的坐标,关键是掌握点的坐标的变化规律.15.(3分)(2017•河池)在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是90.【分析】根据算术平均数的计算公式,把这5个分数加起来,再除以5,即可得出答案.【解答】解:这位参赛选手在这次比赛中获得的平均分为:(92+93+88+87+90)÷5=90(分);故答案为:90.【点评】此题考查了平均数的求法,平均数是指在一组数据中所有数据之和再除以数据的个数,熟记平均数的公式是解决本题的关键.16.(3分)(2017•河池)如图,直线y=ax与双曲线y=(x>0)交于点A(1,2),则不等式ax>的解集是x>1.【分析】根据函数的图象即可得到结论.【解答】解:∵直线y=ax与双曲线y=(x>0)交于点A(1,2),∴不等式ax>的解集是x>1,故答案为:x>1.【点评】本题考查了一次函数与反比例函数的交点问题,正确的识别图象是解题的关键.17.(3分)(2017•河池)圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是10.【分析】侧面展开后得到一个半圆就是底面圆的周长.依此列出方程即可.【解答】解:设该半圆的半径长为x,根据题意得:2πx÷2=2π×5,解得x=10.故答案为:10.【点评】本题考查了圆锥的计算,关键是明白侧面展开后得到一个半圆就是底面圆的周长.18.(3分)(2017•河池)如图,在矩形ABCD中,AB=,E是BC的中点,AE⊥BD于点F,则CF的长是.【分析】根据四边形ABCD是矩形,得到∠ABE=∠BAD=90°,根据余角的性质得到∠BAE=∠ADB,根据相似三角形的性质得到BE=1,求得BC=2,根据勾股定理得到AE==,BD==,根据三角形的面积公式得到BF==,过F作FG⊥BC于G,根据相似三角形的性质得到CG=,根据勾股定理即可得到结论.【解答】解:∵四边形ABCD是矩形,∴∠ABE=∠BAD=90°,∵AE⊥BD,∴∠AFB=90°,∴∠BAF+∠ABD=∠ABD+∠ADB=90°,∴∠BAE=∠ADB,∴△ABE∽△ADB,∴,∵E是BC的中点,∴AD=2BE,∴2BE2=AB2=2,∴BE=1,∴BC=2,∴AE==,BD==,∴BF==,过F作FG⊥BC于G,∴FG∥CD,∴△BFG∽△BDC,∴==,∴FG=,BG=,∴CG=,∴CF==.故答案为:.【点评】本题考查了矩形的性质,相似三角形的判定和性质,勾股定理,熟练掌握相似三角形的判定和性质是解题的关键.三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)(2017•河池)计算:|﹣1|﹣2sin45°+﹣20.【分析】首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|﹣1|﹣2sin45°+﹣20=1﹣2×+2﹣1=【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.(6分)(2017•河池)解不等式组:.【分析】先求出每个不等式的解集,再找出不等式组的解集即可.【解答】解:∵解不等式①得:x>0.5,解不等式②得:x<2,∴不等式组的解集为0.5<x<2.【点评】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,难度适中.21.(8分)(2017•河池)直线l的解析式为y=﹣2x+2,分别交x轴、y轴于点A,B.(1)写出A,B两点的坐标,并画出直线l的图象;(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是y=﹣2x+6.(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan∠CAD=.【分析】(1)分别令x=0求得y、令y=0求得x,即可得出A、B的坐标,从而得出直线l的解析式;(2)将直线向上平移4个单位可得直线l1,根据“上加下减”的原则求解即可得出其解析式;(3)由旋转得出其函数图象及点B的对应点坐标,待定系数法求得直线l2的解析式,继而求得其与y轴的交点,根据tan∠CAD=tan∠EAO=可得答案.【解答】解:(1)当y=0时,﹣2x+2=0,解得:x=1,即点A(1,0),当x=0时,y=2,即点B(0,2),如图,直线AB即为所求;(2)如图,直线l1即为所求,直线l1的解析式为y=﹣2x+2+4=﹣2x+6,故答案为:y=﹣2x+6;(3)如图,直线l2即为所求,方法一、∵直线l绕点A顺时针旋转90°得到l2,∴∠BAD=90°,∴∠CAD+∠OAB=90°,又∵∠OAB+∠ABO=90°,∴∠CAD=∠ABO,∴tan∠CAD=tan∠ABO==;方法二:∵直线l绕点A顺时针旋转90°得到l2,∴由图可知,点B(0,2)的对应点坐标为(3,1),设直线l2解析式为y=kx+b,将点A(1,0)、(3,1)代入,得:,解得:,∴直线l2的解析式为y=x﹣,当x=0时,y=﹣,∴直线l2与y轴的交点E(0,﹣),∴tan∠CAD=tan∠EAO===,故答案为:.【点评】本题主要考查一次函数图象与几何变换及一次函数图象,熟练掌握平移变换和旋转变换的性质及待定系数法求函数解析式是解题的关键.22.(8分)(2017•河池)(1)如图1,在正方形ABCD中,点E,F分别在BC,CD上,AE⊥BF于点M,求证:AE=BF;(2)如图2,将(1)中的正方形ABCD改为矩形ABCD,AB=2,BC=3,AE⊥BF 于点M,探究AE与BF的数量关系,并证明你的结论.【分析】(1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM 与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C,AB=BC.∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF.在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴AE=BF;(2)解:AE=BF,理由:∵四边形ABCD是矩形,∴∠ABC=∠C,∵AE⊥BF,∴∠AMB=∠BAM+∠ABM=90°,∵∠ABM+∠CBF=90°,∴∠BAM=∠CBF,∴△ABE∽△BCF,∴=,∴AE=BF.【点评】本题考查了相似三角形的判定和性质,全等三角形的判定和性质,矩形的性质,熟练掌握相似三角形的判定和性质是解题的关键.23.(8分)(2017•河池)九(1)班48名学生参加学校举行的“珍惜生命,远离毒品”只是竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:60,90,63,99,67,99,99,68.频数分布表请解答下列问题:(1)完成频数分布表,a=4,b=4.(2)补全频数分布直方图;(3)全校共有600名学生参加初赛,估计该校成绩90≤x<100范围内的学生有多少人?(4)九(1)班甲、乙、丙三位同学的成绩并列第一,现选两人参加决赛,求恰好选中甲、乙两位同学的概率.【分析】(1)将余下的8位同学按60≤x<70、90≤x<100分组可得a、b的值;(2)根据(1)中所得结果补全即可得;(3)将样本中成绩90≤x<100范围内的学生所占比例乘以总人数600可得答案;(4)画树状图列出所有等可能结果,根据概率公式求解可得.【解答】解:(1)由题意知,60≤x<70的有60、63、67、68这4个数,90≤x <100的有90、99、99、99这4个,即a=4、b=4,故答案为:4,4;(2)补全频数分布直方图如下:(3)600×=50(人),故答案为:估计该校成绩90≤x<100范围内的学生有50人.(4)画树状图得:∵共有6种等可能的结果,甲、乙被选中的有2种情况,∴甲、乙被选中的概率为=.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力及.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,也考查列表法或画树状图法求概率.24.(8分)(2017•河池)某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.(1)排球和足球的单价各是多少元?(2)若恰好用去1200元,有哪几种购买方案?【分析】(1)设排球单价是x元,则足球单价是(x+30)元,根据题意可得等量关系:500元购得的排球数量=800元购得的足球数量,由等量关系可得方程,再求解即可;(2)设恰好用完1200元,可购买排球m个和购买足球n个,根据题意可得排球的单价×排球的个数m+足球的单价×足球的个数n=1200,再求出整数解即可得出答案.【解答】解:设排球单价为x元,则足球单价为(x+30)元,由题意得:=,解得:x=50,经检验:x=50是原分式方程的解,则x+30=80.答:排球单价是50元,则足球单价是80元;(2)设设恰好用完1200元,可购买排球m个和购买足球n个,由题意得:50m+80n=1200,整理得:m=24﹣n,∵m、n都是正整数,∴①n=5时,m=16,②n=10时,m=8;∴有两种方案:①购买排球5个,购买足球16个;②购买排球10个,购买足球8个.【点评】此题主要考查了分式方程和二元一次方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.25.(10分)(2017•河池)如图,AB为⊙O的直径,CB,CD分别切⊙O于点B,D,CD交BA的延长线于点E,CO的延长线交⊙O于点G,EF⊥OG于点F.(1)求证:∠FEB=∠ECF;(2)若BC=6,DE=4,求EF的长.【分析】(1)利用切线长定理得到OC平分∠BCE,即∠ECO=∠BCO,利用切线的性质得OB⊥BC,则∠BCO+∠COB=90°,由于∠FEB+∠FOE=90°,∠COB=∠FOE,所以∠FEB=∠ECF;(2)连接OD,如图,利用切线长定理和切线的性质得到CD=CB=6,OD⊥CE,则CE=10,利用勾股定理可计算出BE=8,设⊙O的半径为r,则OD=OB=r,OE=8﹣r,在Rt△ODE中,根据勾股定理得r2+42=(8﹣r)2,解得r=3,所以OE=5,OC=3,然后证明△OEF∽△OCB,利用相似比可计算出EF的长.【解答】(1)证明:∵CB,CD分别切⊙O于点B,D,∴OC平分∠BCE,即∠ECO=∠BCO,OB⊥BC,∴∠BCO+∠COB=90°,∵EF⊥OG,∴∠FEB+∠FOE=90°,而∠COB=∠FOE,∴∠FEB=∠ECF;(2)解:连接OD,如图,∵CB,CD分别切⊙O于点B,D,∴CD=CB=6,OD⊥CE,∴CE=CD+DE=6+4=10,在Rt△BCE中,BE==8,设⊙O的半径为r,则OD=OB=r,OE=8﹣r,在Rt△ODE中,r2+42=(8﹣r)2,解得r=3,∴OE=8﹣3=5,在Rt△OBC中,OC==3,∵∠COB=∠FOE,∴△OEF∽△OCB,∴=,即=,∴EF=2.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了勾股定理和相似三角形的判定与性质.26.(12分)(2017•河池)抛物线y=﹣x2+2x+3与x轴交于点A,B(A在B的左侧),与y轴交于点C.(1)求直线BC的解析式;(2)抛物线的对称轴上存在点P,使∠APB=∠ABC,利用图1求点P的坐标;(3)点Q在y轴右侧的抛物线上,利用图2比较∠OCQ与∠OCA的大小,并说明理由.【分析】(1)由抛物线解析式可求得B、C的坐标,利用待定系数法可求得直线BC的解析式;(2)由直线BC解析式可知∠APB=∠ABC=45°,设抛物线对称轴交直线BC于点D,交x轴于点E,结合二次函数的对称性可求得PD=BD,在Rt△BDE中可求得BD,则可求得PE的长,可求得P点坐标;(3)设Q(x,﹣x2+2x+3),当∠OCQ=∠OCA时,利用两角的正切值相等可得到关于x的方程,可求得Q点的横坐标,再结合图形可比较两角的大小.【解答】解:(1)在y=﹣x2+2x+3中,令y=0可得0=﹣x2+2x+3,解得x=﹣1或x=3,令x=0可得y=3,∴B(3,0),C(0,3),∴可设直线BC的解析式为y=kx+3,把B点坐标代入可得3k+3=0,解得k=﹣1,∴直线BC解析式为y=﹣x+3;(2)∵OB=OC,∴∠ABC=45°,∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线对称轴为x=1,设抛物线对称轴交直线BC于点D,交x轴于点E,当点P在x轴上方时,如图1,∵∠APB=∠ABC=45°,且PA=PB,∴∠PBA==67.5°,∠DPB=∠APB=22.5°,∴∠PBD=67.5°﹣45°=22.5°,∴∠DPB=∠DBP,∴DP=DB,在Rt△BDE中,BE=DE=2,由勾股定理可求得BD=2,∴PE=2+2,∴P(1,2+2);当点P在x轴下方时,由对称性可知P点坐标为(1,﹣2﹣2);综上可知P点坐标为(1,2+2)或(1,﹣2﹣2);(3)设Q(x,﹣x2+2x+3),当点Q在x轴下方时,如图2,过Q作QF⊥y轴于点F,当∠OCA=∠OCQ时,则△QEC∽△AOC,∴==,即=,解得x=0(舍去)或x=5,∴当Q点横坐标为5时,∠OCA=∠OCQ;当Q点横坐标大于5时,则∠OCQ逐渐变小,故∠OCA>∠OCQ;当Q点横坐标小于5且大于0时,则∠OCQ逐渐变大,故∠OCA<∠OCQ.【点评】本题为二次函数的综合应用,涉及待定系数法、等腰三角形的判定和性质、勾股定理、相似三角形的判定和性质、方程思想和分类讨论思想等知识.在(1)中求得B、C坐标是解题的关键,在(2)中构造等腰三角形求得P到x轴的距离是解题的关键,在(3)中确定出两角相等时Q点的位置是解题的关键.本题考查知识点较多,综合性较强,难度适中.黑龙江省绥化市中考数学试卷一、选择题(每小题3分,共30分)1.(3分)如图,直线AB,CD被直线EF所截,∠1=55°,下列条件中能判定AB ∥CD的是()A.∠2=35° B.∠2=45°C.∠2=55°D.∠2=125°2.(3分)某企业的年收入约为700000元,数据“700000”用科学记数法可表示为()A.0.7×106B.7×105C.7×104D.70×1043.(3分)下列运算正确的是()A.3a+2a=5a2B.3a+3b=3abC.2a2bc﹣a2bc=a2bc D.a5﹣a2=a34.(3分)正方形的正投影不可能是()A.线段B.矩形C.正方形D.梯形5.(3分)不等式组的解集是()A.x≤4 B.2<x≤4 C.2≤x≤4 D.x>26.(3分)如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为()A.2:3 B.3:2 C.4:5 D.4:97.(3分)从一副洗匀的普通扑克牌中随机抽取一张,则抽出红桃的概率是()A.B.C.D.8.(3分)在同一平面直角坐标系中,直线y=4x+1与直线y=﹣x+b的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限9.(3分)某楼梯的侧面如图所示,已测得BC的长约为3.5米,∠BCA约为29°,则该楼梯的高度AB可表示为()A.3.5sin29°米B.3.5cos29°米C.3.5tan29°米D.米10.(3分)如图,在▱ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①=;②S△BCE=36;③S=12;④△AEF~△ACD,其中一定正确的是()△ABEA.①②③④B.①④C.②③④D.①②③二、填空题(每小题3分,共33分)11.(3分)﹣的绝对值是.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)一个多边形的内角和等于900°,则这个多边形是边形.14.(3分)因式分解:x2﹣9=.15.(3分)计算:(+)•=.16.(3分)一个扇形的半径为3cm,弧长为2πcm,则此扇形的面积为cm2(用含π的式子表示)17.(3分)在一次射击训练中,某位选手五次射击的环数分别为5,8,7,6,9,则这位选手五次射击环数的方差为.18.(3分)半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为.19.(3分)已知反比例函数y=,当x>3时,y的取值范围是.20.(3分)在等腰△ABC中,AD⊥BC交直线BC于点D,若AD=BC,则△ABC 的顶角的度数为.21.(3分)如图,顺次连接腰长为2的等腰直角三角形各边中点得到第1个小三角形,再顺次连接所得的小三角形各边中点得到第2个小三角形,如此操作下去,则第n个小三角形的面积为.三、解答题(本题共8小题,共57分)22.(5分)如图,A、B、C为某公园的三个景点,景点A和景点B之间有一条笔直的小路,现要在小路上建一个凉亭P,使景点B、景点C到凉亭P的距离之和等于景点B到景点A的距离,请用直尺和圆规在所给的图中作出点P.(不写作法和证明,只保留作图痕迹)23.(6分)某校为了解学生每天参加户外活动的情况,随机抽查了100名学生每天参加户外活动的时间情况,并将抽查结果绘制成如图所示的扇形统计图.请你根据图中提供的信息解答下列问题:(1)请直接写出图中a的值,并求出本次抽查中学生每天参加户外活动时间的中位数;(2)求本次抽查中学生每天参加户外活动的平均时间.24.(6分)已知关于x的一元二次方程x2+(2m+1)x+m2﹣4=0(1)当m为何值时,方程有两个不相等的实数根?(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.25.(6分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?26.(7分)如图,梯形ABCD中,AD∥BC,AE⊥BC于E,∠ADC的平分线交AE 于点O,以点O为圆心,OA为半径的圆经过点B,交BC于另一点F.(1)求证:CD与⊙O相切;(2)若BF=24,OE=5,求tan∠ABC的值.27.(8分)一辆轿车从甲城驶往乙城,同时一辆卡车从乙城驶往甲城,两车沿相同路线匀速行驶,轿车到达乙城停留一段时间后,按原路原速返回甲城;卡车到达甲城比轿车返回甲城早0.5小时,轿车比卡车每小时多行驶60千米,两车到达甲城后均停止行驶,两车之间的路程y(千米)与轿车行驶时间t(小时)的函数图象如图所示,请结合图象提供的信息解答下列问题:(1)请直接写出甲城和乙城之间的路程,并求出轿车和卡车的速度;(2)求轿车在乙城停留的时间,并直接写出点D的坐标;。
2017年中考真题 数学(广西百色卷)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.化简15-等于( )A .15B .-15C .15±D .115【答案】A 【解析】试题分析:∵负数的绝对值是它的相反数,∴|﹣15|等于15, 故选A . 考点:绝对值.2. 多边形的外角和等于( )A .180︒B .360︒C .720︒D .(2)180n -⋅︒ 【答案】B 【解析】试题分析:多边形的外角和是360°,故选B . 考点:多边形内角与外角.3. 在以下一列数3,3,5,6,7,8中,中位数是( ) A .3 B .5 C .5.5 D .6 【答案】C 【解析】考点:中位数.4. 下列计算正确的是( )A .33(3)27x x -=-B .224()x x -= C.222x x x -÷= D .122x x x --⋅=【答案】A 【解析】试题分析:A 、积的乘方等于乘方的积,故A 正确;B 、幂的乘方底数不变指数相乘,故B 错误;C 、同底数幂的除法底数不变指数相减,故C 错误;D 、同底数幂的乘法底数不变指数相加,故D 错误; 故选A .学科@网考点:1.同底数幂的除法;2.同底数幂的乘法;3.幂的乘方与积的乘方;4.负整数指数幂. 5. 如图,AM 为BAC ∠的平分线,下列等式错误的是( )A .12BAC BAM ∠=∠ B .BAM CAM ∠=∠ C.2BAM CAM ∠=∠ D .2CAM BAC ∠=∠ 【答案】C 【解析】考点:角平分线的定义.6. 5月14-15日“一带一路”论坛峰会在北京隆重如开,促进了我国与世界各国的互联互通互惠,“一带一路”地区覆盖总人口约为44亿人,44亿这个数用科学记数法表示为( ) A .84.410⨯ B .94.410⨯ C.9410⨯ D .84410⨯ 【答案】B 【解析】试题分析:44亿==4.4×109,故选B .考点:科学记数法—表示较大的数.7. 如图所示的正三棱术,它的主视图、俯视图、左视图的顺序是()A.①②③B.②①③ C.③①②D.①③②【答案】D【解析】试题分析:主视图是三角形,俯视图是两个矩形,左视图是一个矩形,故选D.考点:三视图.8. 观察以下一列数的特点:0,1,-4,9,-16,25,┅,则第11个数是()A.-121 B.-100 C.100 D.121【答案】B【解析】考点:规律型:数字的变化类.9. 九年级(2)班同学根据兴趣分成五个小组,各小组人数分布如图所示,则在扇形图中第一小组对应的圆心角度数是()A.45︒B.60︒ C. 72︒D.120︒【答案】C【解析】试题分析:由题意可得, 第一小组对应的圆心角度数是:12122013510++++ ×360°=72°,故选C .考点:1.扇形统计图;2.条形统计图.10. 如图,在距离铁轨200米处的B 处,观察由南宁开往百色的“和谐号”动车,当动车车头在A 处时,恰好位于B 处的北偏东60︒方向上,10秒钟后,动车车头到达C 处,恰好位于B 处西北方向上,则这时段动车的平均速度是( )米/秒.A .1)B .1) C. 200 D .300 【答案】A 【解析】考点:1.解直角三角形的应用﹣方向角问题;2.勾股定理的应用.11. 以坐标原点O 为圆心,作半径为2的圆,若直线y x b =-+与O 相交,则b 的取值范围是( )A .0b ≤<B .b -≤ C.b -<<D.b -<【答案】D【解析】试题分析:当直线y=﹣x+b与圆相切,且函数经过一、二、四象限时,如图.考点:1.直线与圆的位置关系;2.一次函数图象与系数的关系.12. 关于x的不等式组230x ax a-≤⎧⎨+>⎩的解集中至少有5个整数解,则正数a的最小值是()A.3 B.2 C. 1 D.2 3【答案】B 【解析】试题分析:230x ax a-≤⎧⎨+>⎩①②,解①得x≤a,解②得x>﹣32a.则不等式组的解集是﹣32a<x≤a.∵不等式至少有5个整数解,则a的范围是a≥2.a的最小值是2.故选B.考点:一元一次不等式组的整数解.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若分式12x有意义,则x的取值范围是.【答案】x≠2【解析】试题分析:由题意,得x﹣2≠0.解得x≠2考点:分式有意义的条件.14. 一个不透明的盒子里有5张完全相同的卡片,它们的标号分别为1,2,3,4,5,随机抽取一张,抽中标号为奇数的卡片的概率是.【答案】3 5【解析】考点:概率公式.15. 下列四个命题中:①对顶角相等;②同旁内角互补;③全等三角形的对应角相等;④两直线平行,同位角相等,基中假命题的有(填序号).【答案】②【解析】试题分析:①对顶角相等是真命题;②同旁内角互补是假命题;③全等三角形的对应角相等是真命题;④两直线平行,同位角相等是真命题;故假命题有②. 学&科@网考点:命题与定理.16. 如图,在正方形OABC中,O为坐标原点,点C在y轴正半轴上,点A的坐标为(2,0),将正方形OABC 沿着OB 方向平移12OB 个单位,则点C 的对应点坐标是 .【答案】(1,3). 【解析】考点:坐标与图形变化﹣平移.17. 经过(4,0),(2,0),(0,3)A B C -三点的抛物线解析式是 . 【答案】y=﹣38x 2+ 34x+3. 【解析】试题分析:根据题意设抛物线解析式为y=a (x+2)(x ﹣4), 把C (0,3)代入得:﹣8a=3,即a=﹣38, 则抛物线解析式为y=﹣38(x+2)(x ﹣4)=﹣38x 2+34x+3. 考点:待定系数法求二次函数解析式.18. 阅读理解:用“十字相乘法”分解因式223x x --的方法.(1)二次项系数212=⨯;(2)常数项 3131(3)-=-⨯=⨯-验算:“交叉相乘之和”;132(1)1⨯+⨯-= 1(1)235⨯-+⨯= 1(3)211⨯-+⨯=- 112(3)5⨯+⨯-=-(3)发现第③个“交叉相乘之和”的结果1(3)211⨯-+⨯=-,等于一次项系数-1,即22(1)(23)232323x x x x x x x +-=-+-=--,则223(1)(23)x x x x --=+-.像这样,通过十字交叉线帮助,把二次三项式分解因式的方法,叫做十字相乘法.仿照以上方法,分解因式:23512x x +-= . 【答案】(x+3)(3x ﹣4). 【解析】试题分析:3x 2+5x ﹣12=(x+3)(3x ﹣4).考点:因式分解﹣十字相乘法.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)19. 101(3)14cos302π-⎛⎫----︒ ⎪⎝⎭【答案】2. 【解析】试题分析:原式利用二次根式性质,零指数幂、负整数指数幂法则,以及绝对值的代数意义化简,计算即可得到结果.试题解析:原式+2﹣1﹣+1=2.学#科@网考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.20. 已知2018a b =+,求代数式222222212a b a b a ab b a b-⋅÷-++-的值. 【答案】4036. 【解析】考点:分式的化简求值. 21. 已知反比例函数(0)ky k x=≠的图象经过点(3,2)B ,点B 与点C 关于原点O 对称,BA x ⊥轴于点A ,CD x ⊥轴于点.D(1)求这个反比例函数的解析式; (2)求ACD 的面积.【答案】(1)反比例函数的解析式为y=6x;(2)S △ACD =6. 【解析】考点:1.反比例函数系数k 的几何意义;2.反比例函数图象上点的坐标特征;3.坐标与图形变化﹣旋转.22. 矩形ABCD 中,,E F 分别是,AD BC 的中点, ,CE AF 分别交BD 于,G H 两点. 求证:(1)四边形AFCE 是平行四边形; (2).EG FH【答案】(1)证明见解析;(2)证明见解析. 【解析】试题分析:(1)根据一组对边平行且相等的四边形是平行四边形证明即可;(2)可证明EG 和FH 所在的△DEG 、△BFH 全等即可.考点:1.矩形的性质;2.平行四边形的判定与性质.23. 甲、乙两运动员的射击成绩(靶心为10环)统计如下表(不完全):某同学计算出了甲的成绩平均数是9,方差是2222221[(109)(89)(99)(109)(89)]0.85S =-+-+-+-+-=甲,请作答:(1)在图中用折线统计图将甲运动员的成绩表示出来;(2)若甲、乙的射击成绩平均数都一样,则a b += ;(3)在(2)的条件下,当甲比乙的成绩较稳定时,请列举出,a b 的所有可能取值,并说明理由.【答案】(1)画图见解析;(2)17;(3)a=8时,b=9;a=9时,b=8;理由见解析【解析】17考点:1.折线统计图;2.加权平均数;3.方差.24. 某校九年级10个班师生举行毕业文艺汇演,每班2个节目,有歌唱与舞蹈两类节目,年级统计后发现歌唱类节目数比舞蹈类节目数的2倍少4个.(1)九年级师生表演的歌唱与舞蹈类节目数各有多少个?(2)该校七、八年级师生有小品节目参与,在歌唱、舞蹈、小品三类节目中,每个节目的演出平均用时分别是5分钟、6分钟、8分钟,预计所有演出节目交接用时共花15分钟.若从20:00开始,22:30之前演出结束,问参与的小品类节目最多能有多少个?【答案】(1)九年级师生表演的歌唱类节目有12个,舞蹈类节目有8个;(2)参与的小品类节目最多能有3个.【解析】试题分析:(1)设九年级师生表演的歌唱类节目有x 个,舞蹈类节目有y 个,根据“两类节目的总数为20∴a=3,学@科网答:参与的小品类节目最多能有3个.考点:1.一元一次不等式的应用;2.二元一次方程组的应用.25. 已知ABC 的内切圆O 与,,AB BC AC 分别相切于点,,D E F ,若 EFDE =,如图1.(1)判断ABC 的形状,并证明你的结论;(2)设AE 与DF 相交于点M ,如图2,24,AF FC ==求AM 的长.【答案】(1)△ABC 为等腰三角形,证明见解析;(2)AM=3. 【解析】试题分析:(1)易证∠EOF+∠C=180°,∠DOE+∠B=180°和∠EOF=∠DOE ,即可解题;(2)连接OB 、OC 、OD 、OF ,易证AD=AF ,BD=CF 可得DF ∥BC ,再根据AE 长度即可解题.试题解析:(1)△ABC 为等腰三角形,∵△ABC 的内切圆⊙O 与AB 、BC 、AC 分别相切于点D 、E 、F ,∴∠CFE=∠CEF=∠BDO=∠BEO=90°,∴DF ∥BC ,∴AM AF AE AC= ,∵,∴23=3. 考点:三角形的内切圆与内心.26. 以菱形ABCD 的对角线交点O 为坐标原点,AC 所在的直线为x 轴,已知(4,0)A -,(0,2)B -,(0,4)M ,P 为折线BCD 上一动点,内行PE y ⊥轴于点E ,设点P 的纵坐标为.a(1)求BC 边所在直线的解析式;(2)设22y MP OP =+,求y 关于a 的函数关系式;(3)当OPM 为直角三角形,求点P 的坐标.【答案】(1)直线BC的解析式为y=12x﹣2;(2)当点P在边BC上时,y=10a2+24a+48;当点P在边CD上时,y= 10a2﹣40a+48;(3)点P2,(4,0).【解析】∵M(0,4),∴y=MP2+OP2=(2a+4)2+(a﹣4)2+(2a+4)2+a2=2(2a+4)2+(a﹣4)2+a2=10a2+24a+48 当点P在边CD上时,∵点P的纵坐标为a,∴P(4﹣2a,a)(0≤a≤2),∵M(0,4),∴y=MP2+OP2=(4﹣2a)2+(a﹣4)2+(4﹣2a)2+a2=10a2﹣40a+48,(3)①当点P在边BC上时,即:0≤a≤2,由(2)知,P(2a+4,a),∵M(0,4),∴OP2=(2a+4)2+a2=5a2+16a+16,PM2=(2a+4)2+(a﹣4)2=5a2﹣8a+32,OM2=16,∵△POM是直角三角形,易知,PM最大,∴OP2+OM2=PM2,∴5a2+16a+16+16=5a2﹣8a+32,∴a=0(舍)②当点P在边CD上时,即:0≤a≤2时,由(2)知,P(4﹣2a,a),∵M(0,4),即:当△OPM为直角三角形时,点P2,(4,0).考点:四边形综合题.。
河池市初中毕业暨升学一致考试一试卷数 学(考试时间: 120 分钟,满分: 120 分 )得分评卷人一、填空题 (本大题共 10 小题 ,每题 2 分,共 20 分;请将正确答案填写在题中的横线上.)1.计算:2010.AB2.如图 1,在 □ ABCD 中,∠ A =120°,则∠ D =°.DC2 x存心义,则 x 须知足的条件为3.要使分式.图 1x34.分解因式 : 9a 2.5.在一个不透明的口袋中装有若干个只有颜色不一样的球,假如已知袋中只有 3 个红球,且一次摸出一个球是红球的概率为1,那么袋中的球共有个.36.方程 x x 1 0 的解为.7 .现有甲、乙两支排球队,每支球队队员身高的均匀数均为1.85 米,方差分别为22S 甲0.32 , S 乙0.26 ,则身高较齐整的球队是队.DEC 8.写出一个既有轴对称性质又有中心对称性质的图形名称:.9.如图 2,矩形 ABCD 中, AB = 8cm , BC = 4cm , E 是 DC 的FA 图 2 B中点, BF =1BC ,则四边形 DBFE 的面积为cm 2.y4C10.如图 3, Rt △ ABC 在第一象限, BAC 90 , AB=AC= 2,点 A 在直线 yx 上,此中点 A 的横坐标为 1,且 AB ∥ x 轴,BAC ∥ y 轴,若双曲线 yk k 0 与△ ABC 有交点,则 k 的A1xxO图 3.得分评卷人83,24,3 .11A5 B 3 C 0 D212A BCD123451344A B C D14A a 2 3 6B a2 3 5C 3a 2a 5aD a6a3a2 a a a15 8 2A 6 B6 C 2 D216Rt ABC C=90° AC=12 BC =5ABC ACA 25B 65C 90D130a2 9 a 3173 aa 3 aA aB aC a 3 2D 1yx图 518.如图 5 是用 4 个全等的直角三角形与 1 个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x ,y表示直角三角形的两直角边(x y ),以下四个说法:① x2y249 ,② x y 2 ,③ 2xy 4 49 ,④ x y9 .此中说法正确的选项是【】A.①② B.①②③ C. ①②④ D. ①②③④三、解答题(本大题共8 小题,满分 76 分;解答应写出文字说明、证明过程或演算步骤. )得分评卷人19.(本小题满分 9 分 )计算:31 20 2sin 60 22得分评卷人20.(本小题满分 9 分 )如图 6,点 B 和点 C 分别为∠ MAN 两边上的点,AB= AC.A (1)按以下语句画出图形:①AD⊥BC ,垂足为 D;② ∠BCN 的均分线CE 与 AD 的延伸线交于点E;③连接 BE.(2)在达成( 1)后不增添线段和字母的状况下,请你写出除△ ABD ≌△ ACD 外的两对全等三角形:B CM N图 6≌, ≌ ;并选择此中的一对全等三角形予以证明.得分评卷人21. (本小题满分 7 分 )如图 7,在平面直角坐标系中, 梯形 ABCD 的极点坐标分别为A 2, 2,B 3,2 ,C 5,0 ,D 1,0 ,将梯形 ABCD 绕点 D 逆时针旋转 90°获得梯形 A 1B 1C 1 D .( 1)在平面直角坐标系中画出梯形A 1B 1C 1D ,则 A 1 的坐标为, B 1 的坐标为 , C 1 的坐标为;( 2)点 C 旋转到点 C 1 的路线长为(结果保存 π).图 7得分 评卷人22. (本小题满分 8 分)河池市最近几年来鼎力发展旅行业, 吸引了众多外处旅客前来参观旅行, 某旅行社对2009年“十·一”国庆时期招待的外处旅客作了抽样检查.河池的首选旅行线路(五大黄金旅行线路)的检查结果以以下图表:(如图 8)人数100 线 路频数 频次9090 030%. 80长寿养生游 70 三姐故土游 75025%. 60 50 风俗风情游0.15% 4020 龙滩电站游36 012%. 10( 1)此次共抽样检查了人;( 2)请将以上图表增补完好;( 3)该旅行社估计五大黄金旅行线路今年“十·一”国庆时期招待外处旅客约20000 人,请你估计外处旅客首选三姐故土游的人数约有人 .得分评卷人23.(本小题满分 9 分 )李明骑自行车去上学途中,经过先上坡后下坡的一条路段,在这段路上所走的行程s (米)与时间t (分钟)之间的函数关系如图9 所示 . 依据图象,解答以下问题:( 1)求李明上坡时所走的行程s1(米)与时间 t(分钟)之间的函数关系式和下坡时所走的行程 s2(米)与时间t(分钟)之间的函数关系式;(2)若李明下学后按原路返回,且来回过程中,上坡的速度同样,下坡的速度也同样,问李明返回时走这段路所用的时间为多少分钟?s(米)2100900O 6 10t (分钟)图 9得分评卷人24.(本小题满分 12 分 )去冬今春,我市部分地域遭到了稀有的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320 件,此中饮用水比蔬菜多80 件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8 辆,一次性将这批饮用水和蔬菜所有..运往该乡中小学.已知每辆甲种货车最多可装饮用水40 件和蔬菜10 件,每辆乙种货车最多可装饮用水和蔬菜各20 件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;( 3)在( 2)的条件下,假如甲种货车每辆需付运费400 元,乙种货车每辆需付运费360元.运输部门应选择哪一种方案可使运费最少?最少运费是多少元?得分评卷人25.(本小题满分 10 分 )如图 10,AB为O 的直径,CD 为弦,且 CD AB ,垂足为 H .( 1)假如O 的半径为4,CD 4 3 ,求BAC 的度数;2 E为 ADB 的中点,连接OE,CE.求证:CE均分OCD;()若点( 3)在( 1)的条件下,圆周上到直线AC 距离为3的点有多少个?并说明原因.CA BO HED图 10得分评卷人26.(本小题满分 12 分 )如图 11,在直角梯形OABC中,CB∥OA,OAB 90 ,点O为坐标原点,点A 在x轴的正半轴上,对角线OB, AC订交于点 M ,OA AB 4, OA 2CB .( 1)线段OB的长为,点 C 的坐标为;( 2)求△OCM的面积;y( 3)求过O,A,C三点的抛物线的分析式;( 4)若点E在( 3)的抛物线的对称轴上,点 F 为该 C B抛物线上的点,且以 A , O , F , E 四点为极点的四边形为平行四边形,求点 F 的坐标.MO A x图 11参照答案及评分标准1.20102. 603. x 34. (3 a)(3 a)5. 96. x1 0, x2 17.8. 2n n9.10 10. 1 k 411. A 12. D 13. C 14. C 15. D 16. B 17. A 18. B:19.34381 22 25 920.1 1 32ABEACEBDECDE . 5 3ABEACE.AB=AC AD BC BAE= CAE 6ABE ACEAB ACBAE CAE8 AE AEABE ACE(SAS)9河池市初中毕业暨升学统一考试试卷数学试卷及答案BDE CDE.AB=AC AD BC BD =CD 6BDE CDEBD CDBDE CDE908 DE DEBDECDE (SAS)921.1 A1B1C1D 2A1 3,1 B1 3,2 C1 1,4 52 2 722. 1 300. 22: 45 63 5000. 8 23.1s1 k1t 0 t 6 16,900 900 6k1 2k1 150 s1 150t 0 t 6 3 s2 k2t b 6 t 10 46,900 , 10,21006k2 b 90010k2 b 52100k2 300s2 300t 900 6 t 10 6b90022100 900900 6 9002100 90010 68 3 118:11.9河池市初中毕业暨升学统一考试试卷数学试卷及答案24.1:x x 80 . 1x ( x 80) 320 3x 2 0 0 x 80 1204200120 5x y . 1x y 3203x y 80x 2004y 120200120 52 m 8 m . 640m 20(8 m) ≥2008 10m 20(8 m) ≥1202 m 4 9mm 23 4 3263544103 32×400+6 ×360 29603×400+5 ×360 30004×400+4 ×360 30402960 12 : 2 6 2960. 12251ABOCDABCH1CD 2312Rt COHsin COH = CH=3 COC2COH=60°2ABOA=OCBAC= 1COH =30°3OH22EADBOE AB4 OE CDECD = OEC5OEC= OCE OCE = DCE 6 CEOCD6ED3AC 32.8 AC AC 2ADCAC6 2 3 6ADCAC32.1026.1422,4 .22 OABCOA=AB=4OAB 90yCB OA OAMBCM3CBOA=2BCAM 2CMCM14MAC31 1 1 8 5S OCMS OAC4 4DAx3323O.3y ax 2bx c a 0O0,0,A4,0,C2,4.c 016a 4b c 0 64a 2b c 4a 1b 4c 0 7y x2 4x 84y x2 4x CD x 2E x CE OA OEACFCF C 2,4 9E xF x 2 AOEF OA EFOA EF F 6x 6y x2 4xy 12.F 6, 12 . 11F x 2 OAEF OA FEOA FE F 2x 2y x2 4xy 12 .F 2,12. 12F2,46,12, 2,12.12。
2017年河池市初中毕业升学考试数学试题卷第Ⅰ卷(共36分)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列实数中,为无理数的是()A .2-B .2C .2D .42.如图,点O 在直线AB 上,若60=∠BOC ,则AOC ∠的大小是()A . 60B . 90C . 120D . 1503.若函数11-=x y 有意义,则() A .1>x B .1<x C .1=x D .1≠x4.如图是一个由三个相同正方体组成的立体图形,它的主观图是()A .B . C. D .5.下列计算正确的是()A .523a a a =+B .623a a a =⋅ C. 632)(a a = D .236a a a =÷ 6.点)1,3(-P 在双曲线xk y =上,则k 的值是() A .3- B .3 C. 31- D .31 7.在《数据分析》章节测试中,“勇往直前”学习小组7位同学的成绩分别是94,95,96,93,95,88,92.这组数据的中位数和众数分别是()A .94,94B .95,94 C. 95,93 D .96,938.如图,⊙O 的直径AB 垂直于弦36,=∠CAB CD ,则BCD ∠的大小是()A . 18B . 36 C. 54 D .729.三角形的下列线段中,能将三角形分成面积相等的两部分是()A .中线B .角平分线 C.高 D .中位线10.若关于x 的一元二次方程022=-+a x x 的两个相等的实数根,则a 的值是()A .1-B .1 C. 4- D .411.如图,在 ABCD 中,用直尺和圆规作BAD ∠的平分线AG ,若6,5==DE AD ,则AG 的长是()A .6B .8 C. 10 D .1212.已知等边ABC ∆的边长为12,D 是AB 上的动点,过D 作AC DE ⊥于点E ,过E 作BC EF ⊥于点F ,过F 作AB FG ⊥于点G .当G 与D 重合时,AD 的长是()A .3B .4 C. 8 D .9第Ⅱ卷(共84分)二、填空题(每题3分,满分18分,将答案填在答题纸上)13.分解因式:=-252x .14.点)1,2(A 与点B 关于原点对称,则点B 的坐标是 .15.在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是90,87,88,93,92,则这位歌手的成绩是 .16.如图,直线ax y =与双曲线)0(>=x x k y 交于点)2,1(A ,则不等式xk ax >的解集是 .17.圆锥的底面半径长为5,将其侧面展开后得到一个半圆,则该半圆的半径长是 .18.如图,在矩形ABCD 中,2=AB ,E 是BC 的中点,BD AE ⊥于点F ,则CF 的长是 .三、解答题 (本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤.)19. 计算:02845sin 2|1|-+-- .20. 解不等式组:⎩⎨⎧<+>-31012x x .21. 直线l 的解析式为22+-=x y ,分别交x 轴、y 轴于点B A ,.⑴写出B A ,两点的坐标,并画出直线l 的图象;⑵将直线l 向上平移4个单位得到1l ,1l 交x 轴于点C .作出1l 的图象,1l 的解析式是 . ⑶将直线l 绕点A 顺时针旋转90得到2l ,2l 交1l 于点D .作出2l 的图象,=∠CAD tan .22. ⑴如图1,在正方形ABCD 中,点F E ,分别在CD BC ,上,BF AE ⊥于点M ,求证BF AE =; ⑵如图2,将⑴中的正方形ABCD 改为矩形ABCD ,,3,2==BC AB BF AE ⊥于点M ,探究AE 与BF 的数量关系,并证明你的结论.23. 九⑴班48名学生参加学校举行的“珍惜生命,远离毒品”只是竞赛初赛,赛后,班长对成绩进行分析,制作如下的频数分布表和频数分布直方图(未完成).余下8名学生成绩尚未统计,这8名学生成绩如下:68,99,99,67,99,63,90,60.频数分布表请解答下列问题:⑴完成频数分布表,=a ,=b .⑵补全频数分布直方图;⑶全校共有600名学生参加初赛,估计该校成绩10090<≤x 范围内的学生有多少人?⑷九⑴班甲、乙、丙三位同学的成绩并列第一,现选两人参加决赛,求恰好选中甲、乙两位同学的概率.24. 某班为满足同学们课外活动的需求,要求购排球和足球若干个.已知足球的单价比排球的单价多30元,用500元购得的排球数量与用800元购得的足球数量相等.⑴排球和足球的单价各是多少元?⑵若恰好用去1200元,有哪几种购买方案?25. 如图,AB 为⊙O 的直径,CD CB ,分别切⊙O 于点CD D B ,,交BA 的延长线于点E ,CO 的延长线交⊙O 于点OG EF G ⊥,于点F .⑴求证ECF FEB ∠=∠;⑵若46==DE BC ,,求EF 的长.26. 抛物线322++-=x x y 与x 轴交于点B A ,(A 在B 的左侧),与y 轴交于点C .⑴求直线BC 的解析式;⑵抛物线的对称轴上存在点P ,使ABC APB ∠=∠,利用图1求点P 的坐标;⑶点Q 在y 轴右侧的抛物线上,利用图2比较OCQ ∠与OCA ∠的大小,并说明理由.。
2017年广西南宁市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)如图,△ABC中,∠A=60°,∠B=40°,则∠C等于()A.100°B.80°C.60°D.40°2.(3分)在下列几何体中,三视图都是圆的为()A. B.C.D.3.(3分)根据习近平总书记在“一带一路”国际合作高峰论坛开幕式上的演讲,中国将在未来3年向参与“一带一路”建设的发展中国家和国际组织提供60000000000元人民币援助,建设更多民生项目,其中数据60 000 000 000用科学记数法表示为()A.0.6×1010B.0.6×1011C.6×1010D.6×10114.(3分)下列运算正确的是()A.﹣3(x﹣4)=﹣3x+12 B.(﹣3x)2•4x2=﹣12x4C.3x+2x2=5x3D.x6÷x2=x35.(3分)一元一次不等式组>的解集在数轴上表示为()A.B.C.D.6.(3分)今年世界环境日,某校组织的保护环境为主题的演讲比赛,参加决赛的6名选手成绩(单位:分)如下:8.5,8.8,9.4,9.0,8.8,9.5,这6名选手成绩的众数和中位数分别是()A.8.8分,8.8分B.9.5分,8.9分C.8.8分,8.9分D.9.5分,9.0分7.(3分)如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC8.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A.B.C.D.9.(3分)如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长等于()A.B.C.D.10.(3分)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为vkm/h,则可列方程为()A.= B.=C.= D.=11.(3分)如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B 处,这时,B处与灯塔P的距离为()A.60n mile B.60n mile C.30n mile D.30n mile12.(3分)如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C,D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E,F,则的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:|﹣6|=.14.(3分)红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有人.15.(3分)已知是方程组的解,则3a﹣b=.16.(3分)如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为.17.(3分)对于函数y=,当函数值y<﹣1时,自变量x的取值范围是.18.(3分)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为.三、解答题(本大题共8小题,共66分)19.(6分)计算:﹣(﹣2)+﹣2sin45°+(﹣1)3.20.(6分)先化简,再求值:1﹣÷,其中x=﹣1.21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.22.(8分)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.(1)求证:AE=CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.23.(8分)为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了名市民,扇形统计图中,C组对应的扇形圆心角是°;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.24.(10分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?25.(10分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:△ECF∽△GCE;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG=,AH=3,求EM的值.26.(10分)如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.2017年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•南宁)如图,△ABC中,∠A=60°,∠B=40°,则∠C等于()A.100°B.80°C.60°D.40°【考点】K7:三角形内角和定理.【分析】根据三角形内角和定理计算即可.【解答】解:由三角形内角和定理得,∠C=180°﹣∠A﹣∠B=80°,故选:B.【点评】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键.2.(3分)(2017•南宁)在下列几何体中,三视图都是圆的为()A. B.C.D.【考点】U1:简单几何体的三视图.【分析】根据常见几何体的三视图,可得答案.【解答】解:A圆锥的主视图是三角形,左视图是三角形,俯视图是圆,故A不符合题意;B、圆柱的主视图是矩形,左视图是矩形,俯视图是圆,故B不符合题意;C、圆锥的主视图是梯形,左视图是梯形,俯视图是同心圆,故C不符合题意;D、球的三视图都是圆,故D符合题意;故选:D.【点评】本题考查了常见几何体的三视图,熟记常见几何体的三视图是解题关键.3.(3分)(2017•南宁)根据习近平总书记在“一带一路”国际合作高峰论坛开幕式上的演讲,中国将在未来3年向参与“一带一路”建设的发展中国家和国际组织提供60000000000元人民币援助,建设更多民生项目,其中数据60 000 000 000用科学记数法表示为()A.0.6×1010B.0.6×1011C.6×1010D.6×1011【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将60000000000用科学记数法表示为:6×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•南宁)下列运算正确的是()A.﹣3(x﹣4)=﹣3x+12 B.(﹣3x)2•4x2=﹣12x4C.3x+2x2=5x3D.x6÷x2=x3【考点】4I:整式的混合运算.【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵﹣3(x﹣4)=﹣3x+12,故选项A正确,∵(﹣3x)2•4x2=9x2•4x2=36x4,故选项B错误,∵3x+2x2不能合并,故选项C错误,∵x6÷x2=x4,故选项D错误,故选A.【点评】本题考查整式的混合运算,解答本题的关键是明确整式的混合运算的计算方法.5.(3分)(2017•南宁)一元一次不等式组>的解集在数轴上表示为()A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】根据不等式解集的表示方法即可判断.>【解答】解:解不等式①得:x>﹣1,解不等式②得:x≤2,∴不等式组的解集是﹣1<x≤2,表示在数轴上,如图所示:.故选A.【点评】此题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.6.(3分)(2017•南宁)今年世界环境日,某校组织的保护环境为主题的演讲比赛,参加决赛的6名选手成绩(单位:分)如下:8.5,8.8,9.4,9.0,8.8,9.5,这6名选手成绩的众数和中位数分别是()A.8.8分,8.8分B.9.5分,8.9分C.8.8分,8.9分D.9.5分,9.0分【考点】W5:众数;W4:中位数.【分析】分别根据众数的定义及中位数的定义求解即可.【解答】解:由题中的数据可知,8.8出现的次数最多,所以众数为8.8;从小到大排列:8.5,8.8,8.8,9.0,9.4,9.5,故可得中位数是=8.9.故选C.【点评】此题考查了中位数及众数的定义,属于基础题,注意掌握众数及中位数的定义及求解方法.7.(3分)(2017•南宁)如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC【考点】N3:作图—复杂作图;JB:平行线的判定与性质;K8:三角形的外角性质.【分析】根据图中尺规作图的痕迹,可得∠DAE=∠B,进而判定AE∥BC,再根据平行线的性质即可得出结论.【解答】解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,∴AE∥BC,故C选项正确,∴∠EAC=∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选:D.【点评】本题主要考查了复杂作图,平行线的判定与性质以及三角形外角性质的运用,解题时注意:同位角相等,两直线平行;两直线平行,内错角相等.8.(3分)(2017•南宁)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号之和等于5的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于5的有4种情况,∴两次摸出的小球标号之和等于5的概率是:=.故选:C.【点评】此题考查了列表法或树状图法求概率.当有两个元素时,可用树形图列举,也可以列表列举.解题时注意:概率=所求情况数与总情况数之比.9.(3分)(2017•南宁)如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长等于()A.B.C.D.【考点】MN:弧长的计算;M5:圆周角定理.【分析】连接OB、OC,利用圆周角定理求得∠BOC=60°,属于利用弧长公式l=来计算劣弧的长.【解答】解:如图,连接OB、OC,∵∠BAC=30°,∴∠BOC=2∠BAC=60°,又OB=OC,∴△OBC是等边三角形,∴BC=OB=OC=2,∴劣弧的长为:=.故选:A.【点评】本题考查了圆周角定理,弧长的计算以及等边三角形的判定与性质.根据圆周角定理得到∠BOC=60°是解题的关键所在.10.(3分)(2017•南宁)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为vkm/h,则可列方程为()A.= B.=C.= D.=【考点】B6:由实际问题抽象出分式方程.【分析】根据题意可得顺水速度为(35+v)km/h,逆水速度为(35﹣v)km/h,根据题意可得等量关系:以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等,根据等量关系列出方程即可.【解答】解:设江水的流速为vkm/h,根据题意得:=,故选:D.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,表示出顺水和逆水行驶速度,找出题目中等量关系,然后列出方程.11.(3分)(2017•南宁)如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为()A.60n mile B.60n mile C.30n mile D.30n mile【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】如图作PE⊥AB于E.在Rt△PAE中,求出PE,在Rt△PBE中,根据PB=2PE 即可解决问题.【解答】解:如图作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60n mile,∴PE=AE=×60=30n mile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=60n mile,故选B【点评】本题考查方向角、直角三角形、锐角三角函数的有关知识.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.12.(3分)(2017•南宁)如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x ≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y 轴和抛物线C2交于点C,D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E,F,则的值为()A.B.C.D.【考点】H5:二次函数图象上点的坐标特征.【分析】可以设A、B横坐标为a,易求得点E、F、D的坐标,即可求得OE、CE、AD、BF的长度,即可解题.【解答】解:设点A、B横坐标为a,则点A纵坐标为a2,点B的纵坐标为,∵BE∥x轴,∴点F纵坐标为,∵点F是抛物线y=x2上的点,∴点F横坐标为x==,∵CD∥x轴,∴点D纵坐标为a2,∵点D是抛物线y=上的点,∴点D横坐标为x==2a,∴AD=a,BF=a,CE=a2,OE=a2,∴则==×=,故选D.【点评】本题考查了抛物线上点的计算,考查了三角形面积的计算,本题中求得点E、F、D的坐标是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•南宁)计算:|﹣6|=6.【考点】15:绝对值.【专题】11 :计算题.【分析】根据绝对值的化简,由﹣6<0,可得|﹣6|=﹣(﹣6)=6,即得答案.【解答】解:﹣6<0,则|﹣6|=﹣(﹣6)=6,故答案为6.【点评】本题考查绝对值的化简求值,即|a|=<.14.(3分)(2017•南宁)红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有680人.【考点】V5:用样本估计总体.【分析】用样本中最喜欢的项目是跳绳的人数所占比例乘以全校总人数即可得.【解答】解:由于样本中最喜欢的项目是跳绳的人数所占比例为,∴估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有1600×=680,故答案为:680.【点评】本题主要考查样本估计总体,掌握总体中所占比值与样本中的所占比值近似相等是解题的关键.15.(3分)(2017•南宁)已知是方程组的解,则3a﹣b=5.【考点】97:二元一次方程组的解.【分析】首先把方程组的解代入方程组,即可得到一个关于a,b的方程组,①+②即可求得代数式的值.【解答】解:∵是方程组的解,∴,①+②得,3a﹣b=5,故答案为:5.【点评】本题主要考查了方程组的解的定义,正确解方程组求得3a﹣b的值是解题的关键.16.(3分)(2017•南宁)如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为7.【考点】PB:翻折变换(折叠问题);L8:菱形的性质.【分析】根据菱形的性质得到∠ABO=∠CBO,AC⊥BD,得到∠ABC=60°,由折叠的性质得到EF⊥BO,OE=BE,∠BEF=∠OEF,推出△BEF是等边三角形,得到∠BEF=60°,得到△AEO是等边三角形,推出EF是△ABC的中位线,求得EF=AC=1,AE=OE=1,同理CF=OF=1,于是得到结论.【解答】解:∵四边形ABCD是菱形,AC=2,BD=2,∴∠ABO=∠CBO,AC⊥BD,∵AO=1,BO=,∴tan∠ABO==,∴∠ABO=30°,AB=2,∴∠ABC=60°,由折叠的性质得,EF⊥BO,OE=BE,∠BEF=∠OEF,∴BE=BF,EF∥AC,∴△BEF是等边三角形,∴∠BEF=60°,∴∠OEF=60°,∴∠AEO=60°,∴△AEO是等边三角形,∴AE=OE,∴BE=AE,∴EF是△ABC的中位线,∴EF=AC=1,AE=OE=1,同理CF=OF=1,∴五边形AEFCD的周长为=1+1+1+2+2=7.故答案为:7.【点评】本题考查了翻折变换﹣折叠问题,菱形的性质,等边三角形的判定和性质,解直角三角形,正确的识别图形是解题的关键.17.(3分)(2017•南宁)对于函数y=,当函数值y<﹣1时,自变量x的取值范围是﹣2<x<0.【考点】G4:反比例函数的性质.【分析】先求出y=﹣1时x的值,再由反比例函数的性质即可得出结论.【解答】解:∵当y=﹣1时,x=﹣2,∴当函数值y<﹣1时,﹣2<x<0.故答案为:﹣2<x<0.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.18.(3分)(2017•南宁)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为(1517,1).【考点】R7:坐标与图形变化﹣旋转;D2:规律型:点的坐标.【分析】首先求出P1~P5的坐标,探究规律后,利用规律解决问题.【解答】解:第一次P1(5,2),第二次P2(5,1),第三次P3(7,1),第四次P4(10,2),第五次P5(14,2),…发现点P的位置4次一个循环,∵2017÷4=504余1,P2017的纵坐标与P1相同为1,横坐标为5+3×504=1517,∴P2017(1517,1),故答案为(1517,1).【点评】本题考查坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.三、解答题(本大题共8小题,共66分)19.(6分)(2017•南宁)计算:﹣(﹣2)+﹣2sin45°+(﹣1)3.【考点】2C:实数的运算;T5:特殊角的三角函数值.【分析】首先利用二次根式的性质以及特殊角的三角函数值分别化简得出答案.【解答】解:原式=2+2﹣2×﹣1=1+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(6分)(2017•南宁)先化简,再求值:1﹣÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:1﹣÷=1﹣=1﹣==,当x=﹣1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.(8分)(2017•南宁)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.【考点】P7:作图﹣轴对称变换;FA:待定系数法求一次函数解析式;Q4:作图﹣平移变换.【分析】(1)根据图形平移的性质画出△A1B1C1并写出点B1的坐标即可;(2)连接AA2,作线段AA2的垂线l,再作△ABC关于直线l对称的△A2B2C2即可.【解答】解:(1)如图,△A1B1C1即为所求,B1(﹣2,﹣1);(2)如图,△A2B2C2即为所求,直线l的函数解析式为y=﹣x.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.22.(8分)(2017•南宁)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.(1)求证:AE=CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】(1)由矩形的性质得出OA=OC,OB=OD,AC=BD,∠ABC=90°,证出OE=OF,由SAS证明△AOE≌△COF,即可得出AE=CF;(2)证出△AOB是等边三角形,得出OA=AB=6,AC=2OA=12,在Rt△ABC中,由勾股定理求出BC==6,即可得出矩形ABCD的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∠ABC=90°,∵BE=DF,∴OE=OF,在△AOE和△COF中,,∴△AOE≌△COF(SAS),∴AE=CF;(2)解:∵OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=∠COD=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=12,在Rt△ABC中,BC==6,∴矩形ABCD的面积=AB•BC=6×6=36.【点评】本题考查了矩形的性质、全等三角形的判定与性质、等边三角形的判定与性质、勾股定理;熟练掌握矩形的性质,证明三角形全等和求出BC是解决问题的关键.23.(8分)(2017•南宁)为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了2000名市民,扇形统计图中,C组对应的扇形圆心角是108°;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)根据B组的人数以及百分比,即可得到被调查的人数,进而得出C 组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)根据C组的人数,补全条形统计图;(3)根据甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率.【解答】解:(1)被调查的人数为:800÷40%=2000(人),C组的人数为:2000﹣100﹣800﹣200﹣300=600(人),∴C组对应的扇形圆心角度数为:×360°=108°,故答案为:2000,108;(2)条形统计图如下:(3)画树状图得:∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为:=.【点评】此题考查了条形统计图、扇形统计图和概率公式的运用,解题的关键是仔细观察统计图并从中整理出进一步解题的有关信息,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(10分)(2017•南宁)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?【考点】AD:一元二次方程的应用;C9:一元一次不等式的应用.【分析】(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7500(1+x)2本,即可列方程求解;(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.【解答】解:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7500(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去)答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1350=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.5%.故a的值至少是12.5.【点评】本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,增长率问题的数量关系的运用,解答时根据增长率问题的数量关系建立方程是关键.25.(10分)(2017•南宁)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:△ECF∽△GCE;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG=,AH=3,求EM的值.【考点】MR:圆的综合题.【分析】(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得=,由此即可解决问题;【解答】(1)证明:如图1中,∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE,∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC.设⊙O的半径为r.在Rt△AHC中,tan∠ACH=tan∠G==,∵AH=3,∴HC=4,在Rt△HOC中,∵OC=r,OH=r﹣3,HC=4,∴(r﹣3)2+(4)2=r2,∴r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴=,∴=,∴EM=.【点评】本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.26.(10分)(2017•南宁)如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.【考点】HF:二次函数综合题.【分析】(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D 的坐标.设点P的坐标为(,a).依据两点的距离公式可求得AD、AP、DP 的长,然后分为AD=PA、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN 的长代入化简即可.【解答】解:(1)∵C(0,3).∴﹣9a=3,解得:a=﹣.令y=0得:ax2﹣2 x﹣9a=0,∵a≠0,∴x2﹣2 x﹣9=0,解得:x=﹣或x=3.∴点A的坐标为(﹣,0),B(3,0).∴抛物线的对称轴为x=.(2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60°.∵AE为∠BAC的平分线,∴∠DAO=30°.∴DO=AO=1.∴点D的坐标为(0,1)设点P的坐标为(,a).依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.当AD=PA时,4=12+a2,方程无解.当AD=DP时,4=3+(a﹣1)2,解得a=2或a=0,∴点P的坐标为(,2)或(,0).当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4.∴点P的坐标为(,﹣4).综上所述,点P的坐标为(,2)或(,0)或(,﹣4).(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣m+3=0,解得:m=,∴直线AC的解析式为y=x+3.设直线MN的解析式为y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=﹣,∴点N的坐标为(﹣,0).∴AN=﹣+=.将y=x+3与y=kx+1联立解得:x=.∴点M的横坐标为.过点M作MG⊥x轴,垂足为G.则AG=+.∵∠MAG=60°,∠AGM=90°,。
2017年广西南宁市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)如图,△ABC中,∠A=60°,∠B=40°,则∠C等于()A.100°B.80°C.60°D.40°2.(3分)在下列几何体中,三视图都是圆的为()A. B.C.D.3.(3分)根据习近平总书记在“一带一路”国际合作高峰论坛开幕式上的演讲,中国将在未来3年向参与“一带一路”建设的发展中国家和国际组织提供60000000000元人民币援助,建设更多民生项目,其中数据60 000 000 000用科学记数法表示为()A.0.6×1010B.0.6×1011C.6×1010D.6×10114.(3分)下列运算正确的是()A.﹣3(x﹣4)=﹣3x+12 B.(﹣3x)2•4x2=﹣12x4C.3x+2x2=5x3D.x6÷x2=x35.(3分)一元一次不等式组>的解集在数轴上表示为()A.B.C.D.6.(3分)今年世界环境日,某校组织的保护环境为主题的演讲比赛,参加决赛的6名选手成绩(单位:分)如下:8.5,8.8,9.4,9.0,8.8,9.5,这6名选手成绩的众数和中位数分别是()A.8.8分,8.8分B.9.5分,8.9分C.8.8分,8.9分D.9.5分,9.0分7.(3分)如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC8.(3分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A.B.C.D.9.(3分)如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长等于()A.B.C.D.10.(3分)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为vkm/h,则可列方程为()A.= B.=C.= D.=11.(3分)如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B 处,这时,B处与灯塔P的距离为()A.60n mile B.60n mile C.30n mile D.30n mile12.(3分)如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C,D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E,F,则的值为()A.B.C.D.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)计算:|﹣6|=.14.(3分)红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有人.15.(3分)已知是方程组的解,则3a﹣b=.16.(3分)如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为.17.(3分)对于函数y=,当函数值y<﹣1时,自变量x的取值范围是.18.(3分)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为.三、解答题(本大题共8小题,共66分)19.(6分)计算:﹣(﹣2)+﹣2sin45°+(﹣1)3.20.(6分)先化简,再求值:1﹣÷,其中x=﹣1.21.(8分)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.22.(8分)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.(1)求证:AE=CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.23.(8分)为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了名市民,扇形统计图中,C组对应的扇形圆心角是°;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.24.(10分)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?25.(10分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:△ECF∽△GCE;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG=,AH=3,求EM的值.26.(10分)如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.2017年广西南宁市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)(2017•南宁)如图,△ABC中,∠A=60°,∠B=40°,则∠C等于()A.100°B.80°C.60°D.40°【考点】K7:三角形内角和定理.【分析】根据三角形内角和定理计算即可.【解答】解:由三角形内角和定理得,∠C=180°﹣∠A﹣∠B=80°,故选:B.【点评】本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180°是解题的关键.2.(3分)(2017•南宁)在下列几何体中,三视图都是圆的为()A. B.C.D.【考点】U1:简单几何体的三视图.【分析】根据常见几何体的三视图,可得答案.【解答】解:A圆锥的主视图是三角形,左视图是三角形,俯视图是圆,故A不符合题意;B、圆柱的主视图是矩形,左视图是矩形,俯视图是圆,故B不符合题意;C、圆锥的主视图是梯形,左视图是梯形,俯视图是同心圆,故C不符合题意;D、球的三视图都是圆,故D符合题意;故选:D.【点评】本题考查了常见几何体的三视图,熟记常见几何体的三视图是解题关键.3.(3分)(2017•南宁)根据习近平总书记在“一带一路”国际合作高峰论坛开幕式上的演讲,中国将在未来3年向参与“一带一路”建设的发展中国家和国际组织提供60000000000元人民币援助,建设更多民生项目,其中数据60 000 000 000用科学记数法表示为()A.0.6×1010B.0.6×1011C.6×1010D.6×1011【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将60000000000用科学记数法表示为:6×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•南宁)下列运算正确的是()A.﹣3(x﹣4)=﹣3x+12 B.(﹣3x)2•4x2=﹣12x4C.3x+2x2=5x3D.x6÷x2=x3【考点】4I:整式的混合运算.【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】解:∵﹣3(x﹣4)=﹣3x+12,故选项A正确,∵(﹣3x)2•4x2=9x2•4x2=36x4,故选项B错误,∵3x+2x2不能合并,故选项C错误,∵x6÷x2=x4,故选项D错误,故选A.【点评】本题考查整式的混合运算,解答本题的关键是明确整式的混合运算的计算方法.5.(3分)(2017•南宁)一元一次不等式组>的解集在数轴上表示为()A.B.C.D.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】根据不等式解集的表示方法即可判断.>【解答】解:解不等式①得:x>﹣1,解不等式②得:x≤2,∴不等式组的解集是﹣1<x≤2,表示在数轴上,如图所示:.故选A.【点评】此题考查了解一元一次不等式,解一元一次不等式组的应用,解此题的关键是求出不等式组的解集.6.(3分)(2017•南宁)今年世界环境日,某校组织的保护环境为主题的演讲比赛,参加决赛的6名选手成绩(单位:分)如下:8.5,8.8,9.4,9.0,8.8,9.5,这6名选手成绩的众数和中位数分别是()A.8.8分,8.8分B.9.5分,8.9分C.8.8分,8.9分D.9.5分,9.0分【考点】W5:众数;W4:中位数.【分析】分别根据众数的定义及中位数的定义求解即可.【解答】解:由题中的数据可知,8.8出现的次数最多,所以众数为8.8;从小到大排列:8.5,8.8,8.8,9.0,9.4,9.5,故可得中位数是=8.9.故选C.【点评】此题考查了中位数及众数的定义,属于基础题,注意掌握众数及中位数的定义及求解方法.7.(3分)(2017•南宁)如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC【考点】N3:作图—复杂作图;JB:平行线的判定与性质;K8:三角形的外角性质.【分析】根据图中尺规作图的痕迹,可得∠DAE=∠B,进而判定AE∥BC,再根据平行线的性质即可得出结论.【解答】解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,∴AE∥BC,故C选项正确,∴∠EAC=∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选:D.【点评】本题主要考查了复杂作图,平行线的判定与性质以及三角形外角性质的运用,解题时注意:同位角相等,两直线平行;两直线平行,内错角相等.8.(3分)(2017•南宁)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A.B.C.D.【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的小球标号之和等于5的情况,再利用概率公式求解即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于5的有4种情况,∴两次摸出的小球标号之和等于5的概率是:=.故选:C.【点评】此题考查了列表法或树状图法求概率.当有两个元素时,可用树形图列举,也可以列表列举.解题时注意:概率=所求情况数与总情况数之比.9.(3分)(2017•南宁)如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长等于()A.B.C.D.【考点】MN:弧长的计算;M5:圆周角定理.【分析】连接OB、OC,利用圆周角定理求得∠BOC=60°,属于利用弧长公式l=来计算劣弧的长.【解答】解:如图,连接OB、OC,∵∠BAC=30°,∴∠BOC=2∠BAC=60°,又OB=OC,∴△OBC是等边三角形,∴BC=OB=OC=2,∴劣弧的长为:=.故选:A.【点评】本题考查了圆周角定理,弧长的计算以及等边三角形的判定与性质.根据圆周角定理得到∠BOC=60°是解题的关键所在.10.(3分)(2017•南宁)一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为vkm/h,则可列方程为()A.= B.=C.= D.=【考点】B6:由实际问题抽象出分式方程.【分析】根据题意可得顺水速度为(35+v)km/h,逆水速度为(35﹣v)km/h,根据题意可得等量关系:以最大航速沿江顺流航行120km所用时间,与以最大航速逆流航行90km所用时间相等,根据等量关系列出方程即可.【解答】解:设江水的流速为vkm/h,根据题意得:=,故选:D.【点评】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,表示出顺水和逆水行驶速度,找出题目中等量关系,然后列出方程.11.(3分)(2017•南宁)如图,一艘海轮位于灯塔P的南偏东45°方向,距离灯塔60n mile的A处,它沿正北方向航行一段时间后,到达位于灯塔P的北偏东30°方向上的B处,这时,B处与灯塔P的距离为()A.60n mile B.60n mile C.30n mile D.30n mile【考点】TB:解直角三角形的应用﹣方向角问题;KU:勾股定理的应用.【分析】如图作PE⊥AB于E.在Rt△PAE中,求出PE,在Rt△PBE中,根据PB=2PE 即可解决问题.【解答】解:如图作PE⊥AB于E.在Rt△PAE中,∵∠PAE=45°,PA=60n mile,∴PE=AE=×60=30n mile,在Rt△PBE中,∵∠B=30°,∴PB=2PE=60n mile,故选B【点评】本题考查方向角、直角三角形、锐角三角函数的有关知识.解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.12.(3分)(2017•南宁)如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x ≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y 轴和抛物线C2交于点C,D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E,F,则的值为()A.B.C.D.【考点】H5:二次函数图象上点的坐标特征.【分析】可以设A、B横坐标为a,易求得点E、F、D的坐标,即可求得OE、CE、AD、BF的长度,即可解题.【解答】解:设点A、B横坐标为a,则点A纵坐标为a2,点B的纵坐标为,∵BE∥x轴,∴点F纵坐标为,∵点F是抛物线y=x2上的点,∴点F横坐标为x==,∵CD∥x轴,∴点D纵坐标为a2,∵点D是抛物线y=上的点,∴点D横坐标为x==2a,∴AD=a,BF=a,CE=a2,OE=a2,∴则==×=,故选D.【点评】本题考查了抛物线上点的计算,考查了三角形面积的计算,本题中求得点E、F、D的坐标是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)(2017•南宁)计算:|﹣6|=6.【考点】15:绝对值.【专题】11 :计算题.【分析】根据绝对值的化简,由﹣6<0,可得|﹣6|=﹣(﹣6)=6,即得答案.【解答】解:﹣6<0,则|﹣6|=﹣(﹣6)=6,故答案为6.【点评】本题考查绝对值的化简求值,即|a|=<.14.(3分)(2017•南宁)红树林中学共有学生1600人,为了解学生最喜欢的课外体育运动项目的情况,学校随机抽查了200名学生,其中有85名学生表示最喜欢的项目是跳绳,则可估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有680人.【考点】V5:用样本估计总体.【分析】用样本中最喜欢的项目是跳绳的人数所占比例乘以全校总人数即可得.【解答】解:由于样本中最喜欢的项目是跳绳的人数所占比例为,∴估计该校学生中最喜欢的课外体育运动项目为跳绳的学生有1600×=680,故答案为:680.【点评】本题主要考查样本估计总体,掌握总体中所占比值与样本中的所占比值近似相等是解题的关键.15.(3分)(2017•南宁)已知是方程组的解,则3a﹣b=5.【考点】97:二元一次方程组的解.【分析】首先把方程组的解代入方程组,即可得到一个关于a,b的方程组,①+②即可求得代数式的值.【解答】解:∵是方程组的解,∴,①+②得,3a﹣b=5,故答案为:5.【点评】本题主要考查了方程组的解的定义,正确解方程组求得3a﹣b的值是解题的关键.16.(3分)(2017•南宁)如图,菱形ABCD的对角线相交于点O,AC=2,BD=2,将菱形按如图方式折叠,使点B与点O重合,折痕为EF,则五边形AEFCD的周长为7.【考点】PB:翻折变换(折叠问题);L8:菱形的性质.【分析】根据菱形的性质得到∠ABO=∠CBO,AC⊥BD,得到∠ABC=60°,由折叠的性质得到EF⊥BO,OE=BE,∠BEF=∠OEF,推出△BEF是等边三角形,得到∠BEF=60°,得到△AEO是等边三角形,推出EF是△ABC的中位线,求得EF=AC=1,AE=OE=1,同理CF=OF=1,于是得到结论.【解答】解:∵四边形ABCD是菱形,AC=2,BD=2,∴∠ABO=∠CBO,AC⊥BD,∵AO=1,BO=,∴tan∠ABO==,∴∠ABO=30°,AB=2,∴∠ABC=60°,由折叠的性质得,EF⊥BO,OE=BE,∠BEF=∠OEF,∴BE=BF,EF∥AC,∴△BEF是等边三角形,∴∠BEF=60°,∴∠OEF=60°,∴∠AEO=60°,∴△AEO是等边三角形,∴AE=OE,∴BE=AE,∴EF是△ABC的中位线,∴EF=AC=1,AE=OE=1,同理CF=OF=1,∴五边形AEFCD的周长为=1+1+1+2+2=7.故答案为:7.【点评】本题考查了翻折变换﹣折叠问题,菱形的性质,等边三角形的判定和性质,解直角三角形,正确的识别图形是解题的关键.17.(3分)(2017•南宁)对于函数y=,当函数值y<﹣1时,自变量x的取值范围是﹣2<x<0.【考点】G4:反比例函数的性质.【分析】先求出y=﹣1时x的值,再由反比例函数的性质即可得出结论.【解答】解:∵当y=﹣1时,x=﹣2,∴当函数值y<﹣1时,﹣2<x<0.故答案为:﹣2<x<0.【点评】本题考查的是反比例函数的性质,熟知反比例函数的增减性是解答此题的关键.18.(3分)(2017•南宁)如图,把正方形铁片OABC置于平面直角坐标系中,顶点A的坐标为(3,0),点P(1,2)在正方形铁片上,将正方形铁片绕其右下角的顶点按顺时针方向依次旋转90°,第一次旋转至图①位置,第二次旋转至图②位置…,则正方形铁片连续旋转2017次后,点P的坐标为(1517,1).【考点】R7:坐标与图形变化﹣旋转;D2:规律型:点的坐标.【分析】首先求出P1~P5的坐标,探究规律后,利用规律解决问题.【解答】解:第一次P1(5,2),第二次P2(5,1),第三次P3(7,1),第四次P4(10,2),第五次P5(14,2),…发现点P的位置4次一个循环,∵2017÷4=504余1,P2017的纵坐标与P1相同为1,横坐标为5+3×504=1517,∴P2017(1517,1),故答案为(1517,1).【点评】本题考查坐标与图形的变化、规律型:点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法,属于中考常考题型.三、解答题(本大题共8小题,共66分)19.(6分)(2017•南宁)计算:﹣(﹣2)+﹣2sin45°+(﹣1)3.【考点】2C:实数的运算;T5:特殊角的三角函数值.【分析】首先利用二次根式的性质以及特殊角的三角函数值分别化简得出答案.【解答】解:原式=2+2﹣2×﹣1=1+.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(6分)(2017•南宁)先化简,再求值:1﹣÷,其中x=﹣1.【考点】6D:分式的化简求值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:1﹣÷=1﹣=1﹣==,当x=﹣1时,原式=.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.21.(8分)(2017•南宁)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.【考点】P7:作图﹣轴对称变换;FA:待定系数法求一次函数解析式;Q4:作图﹣平移变换.【分析】(1)根据图形平移的性质画出△A1B1C1并写出点B1的坐标即可;(2)连接AA2,作线段AA2的垂线l,再作△ABC关于直线l对称的△A2B2C2即可.【解答】解:(1)如图,△A1B1C1即为所求,B1(﹣2,﹣1);(2)如图,△A2B2C2即为所求,直线l的函数解析式为y=﹣x.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.22.(8分)(2017•南宁)如图,矩形ABCD的对角线AC,BD相交于点O,点E,F在BD上,BE=DF.(1)求证:AE=CF;(2)若AB=6,∠COD=60°,求矩形ABCD的面积.【考点】LB:矩形的性质;KD:全等三角形的判定与性质.【分析】(1)由矩形的性质得出OA=OC,OB=OD,AC=BD,∠ABC=90°,证出OE=OF,由SAS证明△AOE≌△COF,即可得出AE=CF;(2)证出△AOB是等边三角形,得出OA=AB=6,AC=2OA=12,在Rt△ABC中,由勾股定理求出BC==6,即可得出矩形ABCD的面积.【解答】(1)证明:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∠ABC=90°,∵BE=DF,∴OE=OF,在△AOE和△COF中,,∴△AOE≌△COF(SAS),∴AE=CF;(2)解:∵OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=∠COD=60°,∴△AOB是等边三角形,∴OA=AB=6,∴AC=2OA=12,在Rt△ABC中,BC==6,∴矩形ABCD的面积=AB•BC=6×6=36.【点评】本题考查了矩形的性质、全等三角形的判定与性质、等边三角形的判定与性质、勾股定理;熟练掌握矩形的性质,证明三角形全等和求出BC是解决问题的关键.23.(8分)(2017•南宁)为调查广西北部湾四市市民上班时最常用的交通工具的情况,随机抽取了四市部分市民进行调查,要求被调查者从“A:自行车,B:电动车,C:公交车,D:家庭汽车,E:其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:(1)在这次调查中,一共调查了2000名市民,扇形统计图中,C组对应的扇形圆心角是108°;(2)请补全条形统计图;(3)若甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种,则甲、乙两人恰好选择同一种交通工具上班的概率是多少?请用画树状图或列表法求解.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)根据B组的人数以及百分比,即可得到被调查的人数,进而得出C 组的人数,再根据扇形圆心角的度数=部分占总体的百分比×360°进行计算即可;(2)根据C组的人数,补全条形统计图;(3)根据甲、乙两人上班时从A、B、C、D四种交通工具中随机选择一种画树状图或列表,即可运用概率公式得到甲、乙两人恰好选择同一种交通工具上班的概率.【解答】解:(1)被调查的人数为:800÷40%=2000(人),C组的人数为:2000﹣100﹣800﹣200﹣300=600(人),∴C组对应的扇形圆心角度数为:×360°=108°,故答案为:2000,108;(2)条形统计图如下:(3)画树状图得:∵共有16种等可能的结果,甲、乙两人选择同一种交通工具的有4种情况,∴甲、乙两人选择同一种交通工具上班的概率为:=.【点评】此题考查了条形统计图、扇形统计图和概率公式的运用,解题的关键是仔细观察统计图并从中整理出进一步解题的有关信息,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(10分)(2017•南宁)为响应国家全民阅读的号召,某社区鼓励居民到社区阅览室借阅读书,并统计每年的借阅人数和图书借阅总量(单位:本),该阅览室在2014年图书借阅总量是7500本,2016年图书借阅总量是10800本.(1)求该社区的图书借阅总量从2014年至2016年的年平均增长率;(2)已知2016年该社区居民借阅图书人数有1350人,预计2017年达到1440人,如果2016年至2017年图书借阅总量的增长率不低于2014年至2016年的年平均增长率,那么2017年的人均借阅量比2016年增长a%,求a的值至少是多少?【考点】AD:一元二次方程的应用;C9:一元一次不等式的应用.【分析】(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果.设这两年的年平均增长率为x,则经过两次增长以后图书馆有书7500(1+x)2本,即可列方程求解;(2)先求出2017年图书借阅总量的最小值,再求出2016年的人均借阅量,2017年的人均借阅量,进一步求得a的值至少是多少.【解答】解:(1)设该社区的图书借阅总量从2014年至2016年的年平均增长率为x,根据题意得7500(1+x)2=10800,即(1+x)2=1.44,解得:x1=0.2,x2=﹣2.2(舍去)答:该社区的图书借阅总量从2014年至2016年的年平均增长率为20%;(2)10800(1+0.2)=12960(本)10800÷1350=8(本)12960÷1440=9(本)(9﹣8)÷8×100%=12.5%.故a的值至少是12.5.【点评】本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,增长率问题的数量关系的运用,解答时根据增长率问题的数量关系建立方程是关键.25.(10分)(2017•南宁)如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连结AC,过上一点E作EG∥AC交CD的延长线于点G,连结AE交CD于点F,且EG=FG,连结CE.(1)求证:△ECF∽△GCE;(2)求证:EG是⊙O的切线;(3)延长AB交GE的延长线于点M,若tanG=,AH=3,求EM的值.【考点】MR:圆的综合题.【分析】(1)由AC∥EG,推出∠G=∠ACG,由AB⊥CD推出=,推出∠CEF=∠ACD,推出∠G=∠CEF,由此即可证明;(2)欲证明EG是⊙O的切线只要证明EG⊥OE即可;(3)连接OC.设⊙O的半径为r.在Rt△OCH中,利用勾股定理求出r,证明△AHC∽△MEO,可得=,由此即可解决问题;【解答】(1)证明:如图1中,∵AC∥EG,∴∠G=∠ACG,∵AB⊥CD,∴=,∴∠CEF=∠ACD,∴∠G=∠CEF,∵∠ECF=∠ECG,∴△ECF∽△GCE.(2)证明:如图2中,连接OE,∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线.(3)解:如图3中,连接OC.设⊙O的半径为r.在Rt△AHC中,tan∠ACH=tan∠G==,∵AH=3,∴HC=4,在Rt△HOC中,∵OC=r,OH=r﹣3,HC=4,∴(r﹣3)2+(4)2=r2,∴r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴=,∴=,∴EM=.【点评】本题考查圆综合题、垂径定理、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题,正确寻找相似三角形,构建方程解决问题吗,属于中考压轴题.26.(10分)(2017•南宁)如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.【考点】HF:二次函数综合题.【分析】(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D 的坐标.设点P的坐标为(,a).依据两点的距离公式可求得AD、AP、DP 的长,然后分为AD=PA、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN 的长代入化简即可.【解答】解:(1)∵C(0,3).∴﹣9a=3,解得:a=﹣.令y=0得:ax2﹣2 x﹣9a=0,∵a≠0,∴x2﹣2 x﹣9=0,解得:x=﹣或x=3.∴点A的坐标为(﹣,0),B(3,0).∴抛物线的对称轴为x=.(2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60°.∵AE为∠BAC的平分线,∴∠DAO=30°.∴DO=AO=1.∴点D的坐标为(0,1)设点P的坐标为(,a).依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.当AD=PA时,4=12+a2,方程无解.当AD=DP时,4=3+(a﹣1)2,解得a=2或a=0,∴点P的坐标为(,2)或(,0).当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4.∴点P的坐标为(,﹣4).综上所述,点P的坐标为(,2)或(,0)或(,﹣4).(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣m+3=0,解得:m=,∴直线AC的解析式为y=x+3.设直线MN的解析式为y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=﹣,∴点N的坐标为(﹣,0).∴AN=﹣+=.将y=x+3与y=kx+1联立解得:x=.∴点M的横坐标为.过点M作MG⊥x轴,垂足为G.则AG=+.∵∠MAG=60°,∠AGM=90°,。
2017年广西河池市中考数学试卷
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(3分)下列实数中,为无理数的是()
A.﹣2 B.C.2 D.4
2.(3分)如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是()
A.60°B.90°C.120° D.150°
3.(3分)若函数y=有意义,则()
A.x>1 B.x<1 C.x=1 D.x≠1
4.(3分)如图是一个由三个相同正方体组成的立体图形,它的主视图是()
A.B.C.D.
5.(3分)下列计算正确的是()
A.a3+a2=a5 B.a3•a2=a6 C.(a2)3=a6D.a6÷a3=a2
6.(3分)点P(﹣3,1)在双曲线y=上,则k的值是()
A.﹣3 B.3 C.D.
7.(3分)在《数据分析》章节测试中,“勇往直前”学习小组7位同学的成绩分别是92,88,95,93,96,95,94.这组数据的中位数和众数分别是()A.94,94 B.94,95 C.93,95 D.93,96
8.(3分)如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是
()
A.18°B.36°C.54°D.72°
9.(3分)三角形的下列线段中能将三角形的面积分成相等两部分的是()A.中线B.角平分线C.高D.中位线
10.(3分)若关于x的方程x2+2x﹣a=0有两个相等的实数根,则a的值为()A.﹣1 B.1 C.﹣4 D.4
11.(3分)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是()
A.6 B.8 C.10 D.12
12.(3分)已知等边△ABC的边长为12,D是AB上的动点,过D作DE⊥AC于点E,过E作EF⊥BC于点F,过F作FG⊥AB于点G.当G与D重合时,AD的长是()
A.3 B.4 C.8 D.9
二、填空题(每题3分,满分18分,将答案填在答题纸上)
13.(3分)分解因式:x2﹣25=.
14.(3分)点A(2,1)与点B关于原点对称,则点B的坐标是.15.(3分)在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是.
16.(3分)如图,直线y=ax与双曲线y=(x>0)交于点A(1,2),则不等式。