高中数学选修模块教学中的重点知识内容及解析
- 格式:doc
- 大小:36.00 KB
- 文档页数:3
数学选修部分知识点总结1. 高级代数高级代数是数学选修课中的重要内容,包括多项式、不等式、函数、方程组等知识点。
其中,多项式是一个常见的数学对象,它是一种形式为f(x) = a0 + a1x + a2x^2 + ... + anxn的函数,其中a0, a1, ..., an是常数,x是变量,n是一个非负整数。
多项式可以进行加法、减法和乘法运算,还可以进行整除运算,根据多项式的性质和运算规则可以求出多项式的零点、系数和导数等信息。
不等式是一个包含不等号的数学表达式,它可以表示变量之间的大小关系,比如x < y、x > y、x <= y、x >= y等。
解不等式时需要考虑不等式的性质和运算规则,通常可以通过变换形式、直接求解、图像法等方法来求解不等式的解集。
函数是一个常见的数学对象,它描述了一个自变量和一个因变量之间的关系。
函数可以用符号、公式、图像等形式来表示,包括线性函数、二次函数、指数函数、对数函数等不同类型的函数。
在学习函数的过程中,需要掌握函数的性质、函数的图像、函数的运算、函数的变换等内容。
方程组是由若干个方程组成的数学对象,它描述了多个未知数之间的关系。
方程组可以分为线性方程组和非线性方程组,根据方程组的性质和数量可以采用不同的解法,比如代入法、相消法、换元法等。
2. 几何几何是数学选修课中的另一个重要内容,包括向量、平面几何和立体几何等知识点。
向量是一个常见的数学对象,它描述了空间中的方向和大小,可以进行加法、减法和数乘等运算,具有平移和方向性等特点。
平面几何是关于平面图形的性质和运算的数学分支,它包括直线、圆、多边形等内容。
在学习平面几何时,需要了解平面几何的基本概念、定理和方法,比如点、直线、线段、角、全等、相似、圆等内容。
立体几何是关于立体图形的性质和运算的数学分支,它包括球、柱、锥、台等内容。
在学习立体几何时,需要了解立体几何的基本概念、定理和方法,比如体积、表面积、平行截面剖面等内容。
高中数学选修知识点归纳
高中数学选修知识点包括以下内容:
1. 数列与数列极限:常数列、等差数列、等比数列、等差数列的前n项和、等比数列
的前n项和、数列极限、递推关系式。
2. 排列与组合:排列的定义、全排列、圆排列、组合的定义、二项式系数、二项式定理、组合数的性质。
3. 概率与统计:事件、概率的定义、概率的性质、条件概率、独立事件、贝叶斯公式、期望、方差、频率分布、参数估计。
4. 三角函数与图像:弧度制、角度制、正弦函数、余弦函数、正切函数、三角函数的
周期性、三角函数的图像和性质。
5. 平面向量与立体几何:平面向量的定义、向量的运算(加法、数乘、数量积、向量积)、向量的坐标表示、平面向量的共线性与垂直性、立体几何的基本概念(点、直线、平面、球面)。
6. 导数与微分:导数的定义、基本导数公式、导数的四则运算、导数的应用(切线与
法线、函数的单调性与极值、函数的凹凸性与拐点、变化率与边际效应)。
7. 不等式与线性规划:不等式的性质、不等式组的解法(图解法、代入法、分段讨论法)、线性规划的基本概念、线性规划的图解法和算法解法。
8. 微分方程:微分方程的定义、微分方程的求解方法(可分离变量法、齐次方程法、
一阶线性微分方程法)。
这些知识点是高中数学选修课程的主要内容,通过学习这些知识点,可以更深入地了解数学的应用与推导,为后续的学习和研究提供坚实的基础。
高三数学选修知识点一、概率与统计1. 排列与组合- 排列:对给定的元素进行有序的选取,可以考虑顺序。
- 组合:对给定的元素进行无序的选取,不考虑顺序。
2. 随机事件与概率- 随机事件:不确定性事件的结果。
- 概率:事件发生的可能性大小,用数字表示。
3. 事件的独立性与互斥性- 独立事件:前一事件发生与否,对后一事件发生的概率没有影响。
- 互斥事件:两事件不能同时发生,互为对立事件。
4. 事件的全概率公式与贝叶斯公式- 全概率公式:利用样本空间元素的划分,给出事件的概率计算方式。
- 贝叶斯公式:通过已知信息,计算条件概率。
5. 随机变量与概率分布- 随机变量:将随机试验的结果与实数对应的变量。
- 概率分布:随机变量在各个取值上的概率。
6. 离散型随机变量的概率分布- 二项分布:固定次数的独立重复实验中成功次数的概率分布。
- 泊松分布:在单位时间或单位面积内随机事件发生次数的概率分布。
7. 连续型随机变量的概率分布- 均匀分布:取值范围内的概率密度函数为常数的分布。
- 正态分布:钟形曲线状的分布,符合中心极限定理。
8. 统计量与抽样分布- 统计量:利用样本数据计算的一些特征指标,如均值、方差等。
- 抽样分布:样本统计量的概率分布。
9. 参数估计与假设检验- 参数估计:利用样本数据对总体参数进行估计。
- 假设检验:判断总体参数是否满足某种假设。
二、解析几何1. 点、向量和坐标- 点:在二维坐标系或三维坐标系上表示一个位置。
- 向量:有大小和方向的量,可以表示从一个点到另一个点的位移。
- 坐标:表示点的位置的有序数组。
2. 直线和平面方程- 直线方程:一般式、斜截式、点斜式等不同表示方式。
- 平面方程:点法式、一般式等不同表示方式。
3. 空间中的位置关系- 点与直线的位置关系:在线上、在线上延长线上或在线的两侧。
- 点与平面的位置关系:在平面上、在平面上延长线上或在平面的两侧。
4. 直线和平面的交点问题- 直线与直线的交点:联立直线方程求解。
高中数学选修模块教学中的重点知识内容及内容解析第一部分简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.真命题:判断为真的语句.假命题:判断为假的语句.2、“若,则”形式的命题中的“若”称为命题的条件,“则”称为命题的结论.3、原命题:逆命题:否命题:逆否命题:4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.5、若p,则q,p是q的充分条件,q是p的必要条件.若p,则q;若q则p,那么p是q的充要条件(充分必要条件).6、逻辑联结词:⑴且(and) :命题形式;⑵或(or):命题形式;⑶非(not):命题形式.7、⑴全称量词——“所有的”、“任意一个”等,用“”表示;全称命题p:;全称命题p的否定p:。
⑵存在量词——“存在一个”、“至少有一个”等,用“”表示;特称命题p:;特称命题p的否定p:;第二部分圆锥曲线1、平面内与两个定点的距离之和等于常数(大于)的点的轨迹称为椭圆.两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.23、平面内与两个定点的距离之差的绝对值等于常数(小于)的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.45、实轴和虚轴等长的双曲线称为等轴双曲线.6、平面内与一个定点和一条定直线的距离相等的点的轨迹称为抛物线.定点称为抛物线的焦点,定直线称为抛物线的准线.78、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”.9、焦半径公式:第三部分导数及其应用1、函数从到的平均变化率:2、导数定义:在点处的导数记作;.3、函数在点处的导数的几何意义是曲线在点处的切线的斜率.4、常见函数的导数公式:①;②;③;④;⑤;⑥;⑦;⑧5、导数运算法则:6、在某个区间内,若,则函数在这个区间内单调递增;若,则函数在这个区间内单调递减.求函数的极值的方法是:解方程如果在附近的左侧,右侧,那么是极大值;如果在附近的左侧,右侧,那么是极小值.8、求函数在上的最大值与最小值的步骤是:求函数在内的极值;将函数的各极值与端点处的函数值,比较,其中最大的一个是最大值,最小的一个是最小值.9、导数在实际问题中的应用:最优化问题。
高三数学选修知识点总结在高三数学选修课中,我们学习了许多重要的知识点,这些知识点在考试中占据了重要的比重。
为了帮助同学们更好地复习和总结这些知识,本文将针对高三数学选修课程进行知识点的总结和归纳,希望对大家的考试备考有所帮助。
1. 极限与导数在高三数学选修课的开始,我们首先学习了极限与导数,这是数学分析中的基础知识。
对于极限的概念,我们需要了解极限的定义、性质和计算方法,还要掌握函数在某一点处的极限值的求解。
而导数则是对函数局部变化率的度量,我们需要熟练掌握导数的定义、性质和计算法则,能够应用导数求函数的极值、最值以及函数图象的特点。
2. 函数与方程高三数学选修课程中,我们学习了各种类型的函数与方程。
主要包括三角函数、指数函数、对数函数、幂函数等。
对于每种函数,我们需要了解其定义域、值域、图象以及性质,并能够灵活运用不同类型的函数进行问题求解。
此外,还需熟悉解一元二次方程、高次方程以及不等式的方法,能够根据题目的给定条件建立对应的方程或不等式,并求解出满足条件的解。
3. 几何变换与解析几何在高三数学选修课程中,我们学习了几何变换和解析几何的知识。
几何变换主要包括平移、旋转、对称和放缩等,我们需要了解每种变换的定义、性质、作用规律以及应用。
对于解析几何,我们需要熟练掌握平面坐标系和空间坐标系的建立,了解点、直线、平面的方程表示,还需能够通过解析几何的方法分析和解决几何问题。
4. 概率与统计高三数学选修课中,我们还学习了概率与统计的基本知识。
概率主要包括基本概率公式、条件概率、随机变量的概率分布等内容,我们需要了解每种概率的计算方法以及应用场景,并能够根据题目的给定条件进行概率的计算和分析。
统计学则是对大量数据进行收集、整理和分析,并进行合理推断的科学方法。
我们需要熟悉统计学的基本概念和方法,能够根据给定的数据集进行数据分析和推理。
综上所述,高三数学选修课的知识点主要涵盖了极限与导数、函数与方程、几何变换与解析几何以及概率与统计。
高中数学知识点总结选修高中数学选修包括了微积分、概率论与数理统计、数学分析等多个部分,下面就这些部分进行详细的知识点总结:一、微积分:1.导数与微分:导数的定义、导数的计算、导数的应用;微分的定义、微分的计算、微分中值定理。
2.函数的极限与连续性:函数的极限、函数的极限性质、函数的极限运算法则;函数的连续性、连续函数的性质、闭区间上连续函数的性质。
3.微分中值定理:罗尔定理、拉格朗日中值定理、柯西中值定理。
4.不定积分与定积分:不定积分的定义与性质、不定积分的计算、不定积分的应用;定积分的定义与性质、定积分的计算、定积分的应用。
5.常微分方程:常微分方程的基本概念、解的存在唯一性定理、一阶线性微分方程、可分离变量方程、齐次方程、一阶线性方程、可降阶的高阶方程。
二、概率论与数理统计:1.随机事件与概率:基本概念、事件的运算、事件的概率、频率与概率的关系。
2.随机变量与概率分布:随机变量的定义与分类、分布函数、离散型随机变量、连续型随机变量、随机变量的数学期望与方差。
3.随机事件的概率分布与数理统计:二项分布、泊松分布、正态分布、统计量的分布、大数定律、中心极限定理。
4.参数估计与假设检验:参数估计的方法、点估计与区间估计、假设检验的基本思想、假设检验的步骤。
三、数学分析:1.序列与极限:数列的性质、数列的极限、极限的性质与运算、单调数列、数列极限存在的判定准则。
2.函数极限与连续:函数的极限、极限性质与运算、函数的连续性与间断点的分类、闭区间上连续函数的性质、间断点的判定方法。
3.一元函数导数:函数导数的定义、导数的运算法则、函数的单调性与极值、函数的凹凸性与拐点。
4.不定积分与定积分:不定积分的定义与性质、基本积分法、换元积分法、分部积分法、定积分的定义与性质、牛顿-莱布尼茨公式、定积分的计算。
5.泰勒公式与函数的展开:泰勒公式的定义、泰勒公式的误差估计、泰勒展开式、函数的局部近似与全局近似。
数学选修知识点总结数学作为一门科学学科,在高中阶段进行了较全面系统的学习,包括了数学的基础知识和拓展内容。
在高中数学选修课中,学生将进一步拓宽和深化数学知识,为将来的学习和应用打下坚实的基础。
下面将对高中数学选修课中的一些重要知识点进行总结。
几何选修部分:1.平面向量:平面向量是指带有大小和方向的线段。
学生需了解向量的定义、平移、负向量、等模向量、共线向量、平方模和线段中点公式等。
此外,还需熟练掌握向量的运算:向量加减法、数量积、向量积、向量模长和方向角的计算。
2.空间向量:空间向量是指带有大小和方向的箭头。
学生需了解空间向量的定义、共线向量、共面向量等概念。
此外,还需掌握空间向量的模长计算、向量的投影、向量的夹角、空间直线与平面的关系等内容。
3.三角形的计算:学生需熟悉三角形的边角关系、面积公式、三角函数等内容。
此外,还需了解三角形的内心、外心、垂心、重心等特点及相关定理。
4.圆锥曲线:圆锥曲线包括椭圆、抛物线和双曲线。
学生需了解圆锥曲线的定义、性质、参数方程以及与直线、平面的关系等。
5.空间几何体:学生需掌握空间几何体的表面积和体积的计算,如球、圆柱、圆锥、棱锥、棱台等。
此外,还需了解相关的性质和性质。
函数与导数选修部分:1.函数与方程:学生需了解函数的概念、函数的分类、函数的表示方法等。
此外,还需了解一次函数、二次函数、三次函数、反比例函数、复合函数等的特点及图像。
2.数列与级数:学生需掌握数列的概念、项数、公式和通项公式的计算等。
此外,还需了解等差数列、等比数列、等差数列的通项公式、前n项和等差数列、等比数列的首项、项与和的关系等。
3.导数与微分:学生需了解导数的概念、导数的计算方法、导数的性质等。
此外,还需学习函数的极值、最值、函数图像的画法、函数的单调性等相关内容。
4.函数与导数的应用:学生需掌握函数与导数的应用,如函数极值的问题、函数图像的拐点、函数所代表的物理意义等。
概率与统计选修部分:1.概率的基础知识:学生需了解事件、样本空间、随机变量、概率等基本概念,并掌握概率计算的方法,如加法定理、乘法定理等。
高中数学选修知识点总结一、函数1.函数的概念:自变量和因变量的关系。
2.函数的运算:函数的四则运算、复合运算和反函数运算。
3.函数的图像与性质:函数的图像、定义域、值域、单调性、奇偶性等。
4.常见函数类型:一次函数、二次函数、幂函数、指数函数、对数函数等。
5.函数的应用:函数在实际问题中的应用,如函数模型的建立和问题的解决。
二、数列与数列极限1.数列的概念:有序数的无穷序列。
2.等差数列和等比数列:求和公式、通项公式等。
3.数列的极限:数列的收敛、发散,以及极限的计算方法与性质。
4.级数:部分和的极限。
三、概率与统计1.事件与概率:事件的概念、概率的计算方法与性质。
2.条件概率与独立事件:条件概率的计算、事件的独立性判定。
3.排列与组合:对一组元素进行排列和组合的方法和性质。
4.统计学:数据的收集与整理、统计量(均值、中位数、众数等)的计算与性质。
5.正态分布:正态分布的定义、性质和应用。
四、解析几何1.平面与空间几何:平面与空间几何中的基本概念和性质。
2.直线与曲线:直线方程与曲线方程的求解与应用。
3.空间图形与方程:常见的空间图形和它们的方程。
4.参数方程与向量:参数方程的表示和应用、向量的概念和运算。
五、数论1.数论基本概念:因数与倍数、最大公约数和最小公倍数等。
2.同余与模运算:同余方程与模运算的基本性质。
3.线性同余方程组:线性同余方程组的求解、中国剩余定理。
4.费马小定理和欧拉定理:费马小定理和欧拉定理的应用。
六、离散数学1.图论:图的基本概念、树与网络。
2.数学归纳法:数学归纳法的应用与思维方法。
3.布尔代数:布尔代数的基本运算、推理与应用。
七、数学建模1.问题建模:将实际问题转化为数学问题的方法与思路。
2.模型分析与求解:选择合适的数学模型和求解方法,对问题进行分析和求解。
3.结果评价与优化:对数学模型的结果进行评价和分析,优化解决方案。
以上是对高中数学选修知识点的一个总结,其中涉及了很多不同的内容。
作业:请总结高中数学选修模块教学中的重点知识内容,并做好内容解析。
选修2-1、2-2、2-3重点知识及内容分析选修2-1第一章 常用逻辑用语 1. 命题及其关系① 四种命题相互间关系: ② 逆否命题同真同假 2. 充分条件与必要条件p 是q 的充要条件:p q ⇔ p 是q 的充分不必要条件 p 是q 的必要不充分条件 p 是q 的既充分不必要条件3. 逻辑联结词 “或”“且”“非”4. 全称量词与存在量词 注意命题的否定形式(联系反证法的反设),主要是量词的变化. 例:“a=1”是“0,21ax x x∀>+≥”的( ) A .充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 第二章 圆锥曲线与方程 1.2. “回归定义” 是一种重要的解题策略。
如:(1)在求轨迹时,若所求的轨迹符合某种圆锥曲线的定义,则根据圆锥曲线的方程,写出所求的轨迹方程;(2)涉及椭圆、双曲线上的点与两个焦点构成的焦点三角形问题时,常用定义结合解三角形(一般是余弦定理)的知识来解决;(3)在求有关抛物线的最值问题时,常利用定义把到焦点的距离转化为到准线的距离,结合几何图形利用几何意义去解决。
3. 直线与圆锥曲线的位置关系(1)有关直线与圆锥曲线的公共点的个数问题,直线与圆锥曲线的位置关系有三种情况:相交、相切、相离.联立直线与圆锥曲线方程,经过消元得到一个一元二次方程(注意在和双曲线和抛物线方程联立时二次项系数是否为0),直线和圆锥曲线相交、相切、相离的充分必要条件分别是0∆>、0∆=、0∆<.应注意数形结合(例如双曲线中,利用直线斜率与渐近线的斜率之间的关系考查直线与双曲线的位置关系)常见方法:①联立直线与圆锥曲线方程,利用韦达定理等;②点差法 (主要适用中点问题,设而不求,注意需检验,化简依据:12122100212,2,22x x y y y yx y k x x ++-===-)(2)有关弦长问题,应注意运用弦长公式及韦达定理来解决;(注意斜率是否存在)① 直线具有斜率k ,两个交点坐标分别为1122(,),(,)A x y B x y1212AB x y =-=- ② 直线斜率不存在,则12AB y y =-.(3)有关对称垂直问题,要注意运用斜率关系及韦达定理,设而不求,简化运算。
高中数学选修模块教学中的重点知识内容及解析
松原市实验高中李冬清
1.选修1-1
本模块中,学生将学习常用逻辑用语、圆锥曲线与方程、导数及其应用。
(1)常用逻辑用语
对“命题的逆命题、否命题与逆否命题”只要求作一般性了解,重点关注四种命题的相互关系和命题的必要条件、充分条件、充要条件。
对逻辑联结词“或”“且”“非”的含义,只要求通过数学实例加以了解,使学生正确地表述相关的数学内容。
对于量词,重在理解它们的含义,不要追求它们的形式化定义。
另外,要特别注意引导学生在使用常用逻辑用语的过程中,掌握常用逻辑用语的用法,体会运用常用逻辑用语表述数学内容的准确性、简洁性。
(2)圆锥曲线与方程
在引入圆锥曲线时,应通过丰富的实例使学生了解圆锥曲线的背景与应用,应向学生展示平面截圆锥得到椭圆的过程,使学生加深对圆锥曲线的理解,应向学生展现圆锥曲线在实践中的应用。
(3)导数及其应用
通过研究增长率、膨胀率、效率、密度、速度等反映导数应用的实例,引导学生经历由平均变化率到瞬时变化率的过程,理解瞬时变化率就是导数。
通过感受导数在研究函数和解决实际问题中的作用,体会导数的思想及其内涵。
在教学中,要防止将导数仅仅作为一些规则和步骤来学习,而忽视它的思想和价值。
2.选修1-2
本模块中,学生将学习统计案例、推理与证明、数系的扩充与复数的引入、框图
(1)统计案例
通过经历数据处理的过程,培养学生对数据的直观感觉,认识统计方法的特点,体会统计方法应用的广泛性。
对于统计案例内容,只要求学生了解几种统计方法的基本思想及其初步应用,对于其理论基础不作要求,避免学生单纯记忆和机械套用公式进行计算。
在教学中,应鼓励学生使用计算器、计算机等现代技术手段来处理数据。
(2)推理与证明
通过实例引导学生运用合情推理去探索、猜测一些数学结论,并用演绎推理确认所得结论的正确性,或者用反例推翻错误的猜想。
本模块中设置的证明内容是对学生已学过的基本证明方法的总结,对证明的技巧性不宜作过高的要求。
(3)数系的扩充与复数的引入
在复数概念与运算的教学中,应注意避免繁琐的计算与技巧训练。
(4)框图
从分析实例入手,引导学生运用框图表示数学计算与证明过程中的主要思路与步骤、实际问题中的工序流程、某一数学知识系统的结构关系等,使学生在运用框图的过程中理解流程图和结构图的特征,掌握框图的用法,体验用框图表示解决问题过程的优越性。
3.选修2-1
本模块中,学生将学习常用逻辑用语、圆锥曲线与方程、空间中的向量与立体几何
(1)常用逻辑用语
同“1(1)”中的建议。
(2)圆锥曲线与方程
在“1(2)”中建议的基础上,增加“在曲线与方程的教学应注重使学生体会曲线与方程的对应关系,感受数形结合的基本思想。
对于感兴趣的学生,教师也可以引导学生了解圆锥曲线的离心率与统一方程”的教学建议。
(3)空间向量与立体几何
空间向量的教学应引导学生运用类比的方法,经历向量及其运算由平面向空间推广的过程;鼓励学生灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题。
4.选修2-2
本模块中,学生将学习导数及其应用、推理与证明、数系的扩充与复数的引入
(1)导数及其应用
在“1(2)”中建议的基础上,增加“引导学生在解决具体问题的过程中,将研究函数的导数方法与初等方法作比较,以体会导数方法在研究函数性质中的一般性和有效性”的教学建议。
(2)推理与证明
在“2(2)”中建议的基础上,增加“借助具体实例让学生了解数学归纳法的原理,对证明的问题要控制难度”的教学建议。
(3)数系的扩充与复数的引入
同“2(3)”中的建议。
5.选修2-3
本模块中,学生将学习计数原理、随机变量及其分布、统计案例
(1)计数原理
引导学生根据计数原理分析、处理问题,而不应机械地套用公式;在二项式定理中介绍我国古代数学成就“杨辉三角”,以丰富学生对数学文化价值的认识。
(2)随机变量及其分布
研究一个随机现象,就是要了解它所有可能出现的结果和每一个结果出现的概率,分布列就是描述离散型随机变量取值的概率规律,二项分布和超几何分布是两个应用广泛的概率模型,要求通过实例引入这两个概率模型。
教学中,应引导学生利用所学知识解决一些实际问题。
(3)统计案例
在“2(1)”的教学建议的基础上,增加“介绍所学统计方法在社会生活中的广泛应用,以丰富学生对数学文化价值的认识”的教学建议。
6.选修4-1
本模块中,学生将学习几何证明选讲
鼓励学生独立思考,主动尝探究,进一步学习如何通过合情推理发现结论,再利用演绎推理证明结论。
通过推理证明进一步发展学生的逻辑推理能力,通过对圆锥曲线性质的进一步探索,提高学生的空间想象能力、几何直观能力和综合运用几何方法解决问题的能力。
7.选修4-4
本模块中,学生将学习坐标系与参数方程
让学生理解平面和空间中点的位置都可以用有序数组(坐标)来刻画,在不同坐标系中,这些数所体现的几何含义不同。
因为选择适当的坐标系可以使表示图形的方程具有更简便的形式,所以要引导学生自己尝试建立坐标系,并通过具体实例说明这样建立坐标系有哪些方便之处。
参数方程的教学中,要通过对具体物理现象的分析引入参数方程,使学生了解参数的作用。
要鼓励学生运用已有的平面向量、三角函数等知识,选择适当的参数建立曲线的参数方程;组织学生成立兴趣小组,合作研究摆线的性质,收集摆线应用的实例;应用计算机展现心脏线、螺线、玫瑰线、叶形线、摆线、渐开线等,使学生感受这些曲线的美。
8.选修4-5
本模块中,学生将学习不等式选讲
引导学生了解重要的不等式都有深刻的数学意义和背景,教学中应通过几何背景,理解这些不等式的实质;使学生善于运用代数恒等变换以及放大、缩小方法是证明不等式,例如比较法、综合法、分析法、反证法、放缩法等;通过对一些简单问题的分析,帮助学生掌握数学归纳法的思维方式和技能。