一元一次不等式组的解法作业
- 格式:doc
- 大小:59.00 KB
- 文档页数:3
一元一次不等式(组)求字母系数综合练习1.若不等式组的解集是2<x<3.则a.b的值是()A.2;﹣3 B.3;﹣2 C.3;2 D.2;32.不等式ax>b的解集是x<.则a的取值范围是.3.若a≠0.则不等式ax>b的解集是.4.若关于x的不等式组的解集为﹣1<x<1.那么代数式ab 的值是.5.若a>b>0.关于x的不等式组的解集是.6.不等式组的解集为x>2.则a的取值范围是.7.若不等式组的解集是空集.则a的取值范围是.8.不等式组的解集是0<x<2.则a+b的值等于.9.如果不等式组的解集是0≤x<1.那么a+b的值为.10.如果不等式组的解集是0≤x≤1.那么a+b的值为.11.若不等式组的解集是0≤x<1.则代数式a﹣b的值是.12.若不等式组的解集是﹣1<x<1.则2a+b的值为.13.如果不等式组的解集是0≤x≤1.那么a+b的值为.14.如果不等式组的解集是0≤x<1.那么a+b的值为.15.已知a>b>0.不等式组的解集是.16.不等式(a﹣2)x>b的解集是x<.求a的取值范围.17.已知直线y=3x+b经过点A(2.7).求不等式组3x+b≤0的解集.18.已知a是自然数.关于x的不等式组的解集是x>2.求a的值.19.若不等式组:的解集是5<x<22.求a.b的值.20.如果不等式组的解集是1<x<2.求:a+b的值21.若不等式组的解集是﹣1<x<1.求(a+b)2012的值.22.若不等式组的解集是0≤x<1.求a、b的值.23.已知不等式组的解集为﹣1<x<1.求a、b的值.24.若不等式组的解集为1<x<3.求a+b的值.25.若不等式组的解集为1<x<2.求a.b的值.26.若不等式组的解集为1<x<6.求a.b的值.27.已知关于x的一元一次不等式组的整数解是0和1.求a、b的取值范围.28.已知不等式组的解集是3<x<a+2.求a的取值范围.29.如果不等式组的解集是x>4.求a的取值范围.一元一次不等式(组)求字母系数综合练习一.选择题(共1小题)1.(2015•伊春模拟)若不等式组的解集是2<x<3.则a.b的值是()A.2;﹣3 B.3;﹣2 C.3;2 D.2;3解答:解:∵不等式组的解集是2<x<3.∴a=2.b=3.故选:D.点评:本题考查了一元一次不等式组的解集.解题的关键是:正确理解不等式组的解集的表示.2.(2009春•天长市期末)不等式ax>b的解集是x<.则a的取值范围是a<0 .考点:不等式的解集.专题:计算题.分析:不等式的两边同时除以一个数.不等号的方向改变.则这个数为负数.解答:解:∵ax>b的解集是x<.方程两边除以a时不等号的方向发生了变化.∴a<0.故答案为a<0.点评:本题考查了不等式的性质:不等式两边同乘以(或除以)同一个负数.不等号的方向改变.3.若a≠0.则不等式ax>b的解集是x>或x<.考点:解一元一次不等式.专题:计算题.分析:不等式ax>b的解集即是求x的取值范围.因为x等于0时不等式ax>b不成立.所以x的解集是x>或x<.解答:解:∵a≠0.∴当a>0时.不等式ax>b的解集是:x>;当a<0时.不等式ax>b的解集是:x<;所以.不等式的解为x>或x<.点评:解不等式依据不等式的基本性质.在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.特别是在系数化为1这一个过程中要注意不等号的方向的变化.4.(2009春•北京期中)若关于x的不等式组的解集为﹣1<x<1.那么代数式ab的值是15 .考点:解一元一次不等式组.专题:计算题.分析:先用字母a、b表示出不等式组的解集为<x<.然后再根据已知解集是﹣1<x<1.对应得到相等关系=﹣1.=1.求出a、b的值再代入所求代数式中即可求解.解答:解:解不等式组的可得解集为<x<.因为不等式组的解集为﹣1<x<1.所以=﹣1.=1.解得a=5.b=3代入ab=3×5=15.点评:主要考查了已知一元一次不等式解集求不等式中的字母的值.同样也是利用口诀求解.注意:当符号方向不同.数字相同时(如:x>a.x<a).没有交集也是无解但是要注意当两数相等时.在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大.同小取小.大小小大中间找.大大小小找不到(无解).5.若a>b>0.关于x的不等式组的解集是<x<.考点:不等式的解集.分析:先解答组成不等式组的两个不等式的解集.然后再取两个不等式的解集的交集.即为不等式组的解集.解答:解:①∵a>b>0.∴由不等式ax>b的两边同时除以a.得x>;②∵a>b>0.∴由不等式bx<a的两边同时除以b.得x<;综合①②.故原不等式组的解集为:<x<.故答案是:<x<.点评:解答本题的难点是:不等式的两边同时除以小于0的数时.不等号的方向要发生改变.6.(2009春•榕江县校级期末)不等式组的解集为x>2.则a的取值范围是a≤2.考点:解一元一次不等式组.专题:计算题.分析:求解规律是:大大取较大.小小取较小.大小小大中间找.大大小小无解.解答:解:因为不等式组的解集为x>2.所以a≤2.点评:本题考查了不等式组解集表示.注意.这里的a可以等于2的.7.(2012春•城区校级期末)若不等式组的解集是空集.则a的取值范围是a≤1.考点:不等式的解集.分析:根据不等式组解集是空集.可得出a的取值范围.解答:解:∵不等式组解集是空集.∴a≤1.故答案为:≤1.点评:本题考查了不等式的解集.注意掌握“大大取大.小小取小.大小中间找.大大小小找不到”.8.不等式组的解集是0<x<2.则a+b的值等于 1 .考点:解一元一次不等式组.专题:计算题.分析:先求得不等式组中两个不等式的解集.由已知条件求出a.b的值即可.解答:解:解第一个不等式得.x<.解第二个不等式得.x>4﹣2a.∵不等式组的解集是0<x<2.∴4﹣2a=0.=2.解得a=2.b=﹣1.∴a+b=1故答案为1.点评:本题考查了一元一次不等式组的解法.求不等式组解集的口诀:同大取大.同小取小.大小小大中间找.大大小小找不到(无解).9.(2009•烟台)如果不等式组的解集是0≤x<1.那么a+b的值为 1 .考点:解一元一次不等式组.专题:计算题;压轴题.分析:先用含有a、b的代数式把每个不等式的解集表示出来.然后根据已告知的解集.进行比对.得到两个方程.解方程求出a、b.解答:解:由得:x≥4﹣2a由2x﹣b<3得:故原不等式组的解集为:4﹣2a≤又因为0≤x<1所以有:4﹣2a=0.解得:a=2.b=﹣1于是a+b=1.故答案为:1.点评:本题既考查不等式的解法.又考查学生如何逆用不等式组的解集构造关于a、b的方程.从而求得a、b.10.如果不等式组的解集是0≤x≤1.那么a+b的值为﹣3 .考点:解一元一次不等式组.专题:计算题.分析:由题意分别解出不等式组中的两个不等式.由题意不等式的解集为0≤x≤1.再根据求不等式组解集的口诀:大小小大中间找.用a.b表示出不等式的解集.再由不等式解集是0≤x≤1.代入求出a.b的值.解答:解:由a﹣得.2a﹣x≤﹣4.∴x≥2a+4.由2x﹣b≤3得.2x≤b+3.∴x≤.∵不等式组的解集是0≤x≤1.∴2a+4=0..解得a=﹣2.b=﹣1.∴a+b=﹣3.点评:主要考查了一元一次不等式组解集的求法.将不等式组解集的口诀:同大取大.同小取小.大小小大中间找.大大小小找不到(无解)逆用.已知不等式解集反过来求a.b的值.11.(2011•成华区二模)若不等式组的解集是0≤x<1.则代数式a﹣b的值是 3 .考点:解一元一次不等式组.专题:计算题.分析:先求出两个不等式的解集.再根据已知解集与求出的解集是同一个解集.列式求出a、b的值.然后代入代数式进行计算即可得解.解答:解:.解不等式①得.x≥4﹣2a.解不等式②得.a<+.∴不等式组的解集为4﹣2a≤x<+.∵不等式组的解集是0≤x<1.∴4﹣2a=0.+=1.解得a=2.b=﹣1.a﹣b=2﹣(﹣1)=2+1=3.故答案为:3.点评:本题主要考查了一元一次不等式组解集的求法.根据所求不等式组的解集与已知解集是同一个解集列出关于a、b的等式是解题的关键.12.(2012春•新罗区校级月考)若不等式组的解集是﹣1<x<1.则2a+b 的值为0 .考点:解一元一次不等式组.分析:求出不等式组的解集.根据已知得出3+2b=﹣1.=1.求出a b的值代入即可.解答:解:∵解不等式①得:x<.解不等式②得:x>3+2b.∴不等式组的解集为:3+2b<x<.∵不等式组的解集是﹣1<x<1.∴3+2b=﹣1.=1.∴b=﹣2.a=1.∴2a+b=2×1﹣2=0.故答案为:0.点评:本题考查了一元一次不等式组.解一元一次方程的应用.关键是能求出3+2b=﹣1.=1.13.(2014春•金坛市校级月考)如果不等式组的解集是0≤x≤1.那么a+b 的值为 1 .考点:解一元一次不等式组.分析:先用字母a、b表示出不等式组的解集为4﹣2a≤x<.然后再根据已知解集是0≤x≤1.对应得到相等关系4﹣2a=0.=1.求出a、b的值再代入所求代数式中即可求解.解答:解:∵不等式组的解集为4﹣2a≤x<.是0≤x≤1.∴4﹣2a=0.=1.解得:a=2.b=﹣1.∴a+b=1.故答案为:1.点评:本题主要考查了一元一次不等式组解集的求法.其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大.同小取小.大小小大中间找.大大小小找不到(无解).14.如果不等式组的解集是0≤x<1.那么a+b的值为 1 .考点:解一元一次不等式组.专题:计算题.分析:先分别解两个不等式得到x≥4﹣2a和x<.再利用不等式组的解集是0≤x<1得到4﹣2a=0.=1.解方程求出a和b的值.然后计算a+b.解答:解:.解①得x≥4﹣2a.解②得x<.而不等式组的解集是0≤x<1.所以4﹣2a=0.=1.解得a=2.b=﹣1.所以a+b=2﹣1=1.故答案为1.点评:本题考查了解一元一次不等式组:解一元一次不等式组时.一般先求出其中各不等式的解集.再求出这些解集的公共部分.利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.已知a>b>0.不等式组的解集是﹣a<x<﹣b .考点:不等式的解集.专题:计算题.分析:由原题可知﹣a<﹣b<0.根据“小大大小中间找”原则求不等式组的解即可.解答:解:∵a>b>0.∴﹣a<﹣b<0.不等式组的解集是﹣a<x<﹣b.点评:求不等式的解集须遵循以下原则:同大取较大.同小取较小.小大大小中间找.大大小小解不了.三.解答题(共14小题)16.不等式(a﹣2)x>b的解集是x<.求a的取值范围.考点:不等式的性质.分析:根据不等式的性质3.可得答案.解答:解:由不等式(a﹣2)x>b的解集是x<.得a﹣2<0.解得a<2.点评:本题考查了不等式的性质.不等式的两边都乘以或除以同一个负数.不等号的方向改变.17.(2014•硚口区一模)已知直线y=3x+b经过点A(2.7).求不等式组3x+b≤0的解集.考点:一次函数与一元一次不等式.专题:计算题.分析:先根据一次函数图象上点的坐标特征得到6+b=7.解得b=1.然后解不等式3x+1≤0即可.解答:解:∵一次函数y=3x+b图象过点A(2.7).∴6+b=7.解得b=1.∴一次函数解析式为y=3x+1.解不等式3x+1≤0得x≤﹣.即不等式kx+2≤0的解集为x≤﹣.点评:本题考查了一次函数与一元一次不等式的关系:从函数的角度看.就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看.就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.18.已知a是自然数.关于x的不等式组的解集是x>2.求a的值.考点:解一元一次不等式组.分析:先把a当作已知条件表示出不等式组的解集.再与已知解集相比较即可得出a的值.解答:解:.由①得.x≥.由②得.x>2.∵不等式组的解集是x>2.∴≤2.解得a≤2.∵a是自然数.∴a=0或a=1或a=2.点评:本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.若不等式组:的解集是5<x<22.求a.b的值.考点:解一元一次不等式组.专题:计算题.分析:先用字母a.b表示出不等式组的解集(6b﹣5a)<x<(3a+7b).然后再根据已知解集是5<x<22.对应得到相等关系联立成方程组.求出a.b的值.解答:解:原不等式组可化为依题意得(6b﹣5a)<x<(3a+7b).由题意知:5<x<22.∴解得.点评:主要考查了一元一次不等式组的解定义.解此类题是要先用字母a.b表示出不等式组的解集.然后再根据已知解集.对应得到相等关系.解关于字母a.b的一元一次方程求出字母a.b的值.再代入所求代数式中即可求解.20.(2014秋•万州区校级期末)如果不等式组的解集是1<x<2.求:a+b 的值考点:解一元一次不等式组.分析:解出不等式组的解集.根据不等式组的解集是1<x<2.可以求出a、b的值.解答:解:(3分)∵1<x<2∴(4分)∴(5分)∴=(6分)点评:本题是反向考查不等式组的解集.也就是在已知不等式组解集的情况下确定不等式中字母的取值范围.21.(2012春•启东市校级期末)若不等式组的解集是﹣1<x<1.求(a+b)2012的值.考点:解一元一次不等式组.分析:分别解出每个不等式的解集.得到不等式组的解集.再根据不等式组解集的唯一性求出a、b的值.从而得到(a+b)2012的值.解答:解:.由①得.x>a+2;由②得.x<;不等式的解集为a+2<x<.由于不等式解集是﹣1<x<1.可见a+2=﹣1.=1.解得.a=﹣3;b=2.则(a+b)2012=(﹣3+2)2012=1.点评:本题考查了一元一次不等式组的解集.知道不等式组的唯一性是解题的关键.22.(2012春•丰县校级月考)若不等式组的解集是0≤x<1.求a、b的值.考点:不等式的解集.专题:计算题.分析:将a与b看做已知数.表示出不等式组的解集.根据已知解集即可求出a与b的值.解答:解:.由①得:x≥4﹣2a.由②得:x<(b+3).则不等式组的解集为4﹣2a≤x<(b+3).∴4﹣2a=0.(b+3)=1.解得:a=2.b=﹣1.点评:此题考查了不等式的解集.熟练掌握不等式组取解集的方法是解本题的关键.23.已知不等式组的解集为﹣1<x<1.求a、b的值.考点:解一元一次不等式组.分析:解出不等式组的解集.根据不等式组的解集为﹣1<x<1.可以求出a、b的值.解答:解:由得.∵﹣1<x<1.∴=1.3+2b=﹣1.解得.a=1.b=﹣2.点评:本题考查了解一元一次不等式组.解此类题是要先用字母a.b表示出不等式组的解集.然后再根据已知解集.对应得到相等关系.解关于字母a.b的一元一次方程求出字母m.n的值.再代入所求代数式中即可求解.24.若不等式组的解集为1<x<3.求a+b的值.考点:解一元一次不等式组.分析:先求出每个不等式的解集.再求出不等式组的解集.即可得出关于a、b的方程.求出即可.解答:解:∵解不等式①得:x>a+6.解不等式②得:x<b﹣2.∴不等式组的解集是a+6<x<b﹣2.∵不等式组的解集为1<x<3.∴a+6=1.b﹣2=3.解得:a=﹣5.b=5.∴a+b=0.点评:本题考查了解一元一次不等式组.一元一次方程的应用.解此题的关键是得出关于a、b的方程.25.(2014春•颍上县校级月考)若不等式组的解集为1<x<2.求a.b的值.考点:解一元一次不等式组.分析:根据已知不等式组的解集得出方程组.求出方程组的解即可.解答:解:∵不等式组的解集为1<x<2.∴a+b=2.a﹣b=1.即.解方程组得:a=1.5.b=0.5.点评:本题考查了解一元一次不等式组合解二元一次方程组的应用.解此题的关键是能根据题意得出关于a、b的方程组.26.若不等式组的解集为1<x<6.求a.b的值.考点:解一元一次不等式组.分析:先把a、b当作已知把x的取值范围用a、b表示出来.再与已知解集相比较得到关于a、b的二元一次方程组.再用加减消元法或代入消元法求出a、b的值.解答:解:原不等式组可化为.∵它的解为1<x<6.∴.解得.点评:本题考查的是解一元一次不等式组及二元一次方程组.根据题意得到关于a、b的二元一次方程组是解答此题的关键.27.已知关于x的一元一次不等式组的整数解是0和1.求a、b的取值范围.考点:一元一次不等式组的整数解.分析:先求出不等式组中每个不等式的解集.然后求出其公共解集.最后根据其整数解来求a、b的取值范围.解答:解:由原不等式组.得.解得 a﹣3<x<1+b.∵关于x的一元一次不等式组的整数解是0和1.∴a﹣3=﹣1.1+b=2.解得 a=2.b=1.点评:本题考查了一元一次不等式组的整数解.解决此类问题的关键在于正确解得不等式组或不等式的解集.然后再根据题目中对于解集的限制得到下一步所需要的条件.再根据得到的条件进而求得不等式组的整数解.28.已知不等式组的解集是3<x<a+2.求a的取值范围.考点:解一元一次不等式组.专题:计算题.分析:解第一个不等式得到a﹣1<x<a+2.由于等式组的解集为3<x<a+2.根据不等式解集的确定方法得到a﹣1≤3且a+2≤5.然后解关于a的不等式组即可.解答:解:.解①得a﹣1<x<a+2.∵不等式组的解集为3<x<a+2.∴a﹣1≤3且a+2≤5.∴a≤3.点评:本题考查了解一元一次不等式组:求不等式组的解集的过程叫解不等式组.解一元一次不等式组时.一般先求出其中各不等式的解集.再求出这些解集的公共部分.利用数轴可以直观地表示不等式组的解集.29.如果不等式组的解集是x>4.求a的取值范围.考点:解一元一次不等式组.分析:分别求出各不等式的解集.再根据不等式的解集是x>4求出a的取值范围即可.解答:解:.由①得.x>4.∵不等式组的解集是x>4.∴a≤4.点评:本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。
一元一次不等式求解练习题题目::1. 求解不等式:3x + 4 > 102. 解方程:2x - 5 ≤ 73. 解不等式:3 - x < 94. 解方程组:x + 2 ≤ -1, x - 3 > 4解答::1. 第一题:求解不等式 3x + 4 > 10。
首先,我们需要将不等式中的x系数与常数项分开。
将常数项移到不等式的右侧:3x > 10 - 4化简得到:3x > 6然后,将不等式两边同时除以系数3:x > 2所以,不等式3x + 4 > 10的解集为x > 2。
2. 第二题:解方程 2x - 5 ≤ 7。
首先,我们需要将方程中的x系数与常数项分开。
将常数项移到方程的右侧:2x ≤ 7 + 5化简得到:2x ≤ 12然后,将方程两边同时除以系数2:x ≤ 6所以,方程2x - 5 ≤ 7的解集为x ≤ 6。
3. 第三题:解不等式 3 - x < 9。
首先,我们需要将不等式中的x系数与常数项分开。
将常数项移到不等式的右侧:-x < 9 - 3化简得到:-x < 6注意到不等号方向与x系数的符号相反,所以需要将不等式两边的符号取反:x > -6所以,不等式3 - x < 9的解集为x > -6。
4. 第四题:解方程组x + 2 ≤ -1, x - 3 > 4。
首先,我们分别求解两个方程。
第一个方程x + 2 ≤ -1:首先将常数项移到方程的右侧:x ≤ -3所以,第一个方程的解集为x ≤ -3。
第二个方程 x - 3 > 4:首先将常数项移到方程的右侧:x > 7所以,第二个方程的解集为x > 7。
由于要求解方程组,所以我们需要找到两个方程解集的交集:x ≤ -3 且 x > 7由于这两个不等式条件是互斥的,所以方程组x + 2 ≤ -1, x - 3 > 4 没有解集。
以上就是题目中的四道一元一次不等式求解练习题的解答。
⑴找关键词——不等量⑵找对比(两种情况),设未知数⑶找总量⑷总量已知:两种情况各自与总量比较(两个不等式)【习题1】某旅游团有48人到某宾馆住宿,若全安排住宾馆的底层,每间住4人,房间不够;每间住5人,有一个房间没有住满5人。
问该宾馆底层有客房多少间?【例2】把一些书分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本。
问这些书有多少本?学生有多少人?⑴找关键词——不等量⑵找对比(两种情况),设未知数⑶找总量⑷总量未知:两种情况相互比较(其中一种情况可计算总量,另一种情况有上下限)【习题2】某中学为八年级寄宿学生安排宿舍,如果每间4人,那么有20人无法安排,如果每间8人,那么有一间不空也不满,求宿舍间数和寄宿学生人数。
【例3】某校校长暑假将带领该校“市级三好学生”去三峡旅游,甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。
已知两家旅行社的全票价都是240元,哪家旅行社比较好?解两种“方案比较”应用题的方法⑴找出两种方案的,设未知数⑵分别列出两种方案的费用⑶分情况讨论(结合人数)【习题3】某单位计划10月份组织员工到H地旅游人数估计在10~25人之间,甲、乙两旅行社的服务质量相同,且组织到H地旅游的价格都是每人200元.该单位联系时,甲旅行社表示可给予每位游客七五折优惠;乙旅行社表示可先免去一位游客的旅游费用,其余游客八折优惠;问该单位应怎样选择,使其支付的旅游总费用较少?【练习】1、用若干辆载重量为8吨的汽车运一批货物,若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不满也不空。
请问:有多少辆汽车?2、用每分钟抽1.1吨水的A型抽水机来抽池水,半小时可以抽完;如果改用B型抽水机,估计20分钟到22分可以抽完。
B型抽水机比A型抽水机每分钟约多抽多少吨水?3、A城有化肥200吨,B城有化肥300吨,现要把化肥运往C、D两农村,如果从A城运往C、D两地运费分别是20元/吨与25元/吨,从B城运往C、D两地运费分别是15元/吨与22元/3吨,现已知C地需要220吨,D地需要280吨,如果个体户承包了这项运输任务,请帮他算一算,怎样调运花钱最小?练习题:1.爆破施工时,导火索燃烧的速度是0.8cm/s,人跑开的速度是5m/s,为了使点火的战士在施工时能跑到100m以外的安全地区,导火索至少需要多长?2.一个工程队规定要在6天内完成300土方的工程,第一天完成了60土方,现在要比原计划至少提前两天完成,则以后平均每天至少要比原计划多完成多少方土?3.已知李红比王丽大3岁,又知李红和王丽年龄之和大于30且小于33,求李红的年龄。
课程要点:一元一次不等式(组)一元一次不等式(组)的解法及其应用题题型一:整数解例1 (2011江苏苏州,6,3分)不等式组30,32x x-⎧⎪⎨<⎪⎩≥的所有整数解之和是( )A 、9B 、12C 、13D 、15考点:一元一次不等式组的整数解.分析:首先求出不等式的解集,再找出符合条件的整数,求其和即可得到答案.解答:由①得:x≥3,由②得:x <6,∴不等式的解集为:3≤x <6,∴整数解是:3,4,5, 所有整数解之和:3+4+5=12.故选B .点评:此题主要考查了一元一次不等式组的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.练习 1.(2011山东泰安,18 ,3分)不等式组⎩⎨⎧3-x >04x 3+32 >- x 6的最小整数解为( ).A.0B.1C.2D.-1【答案】A(2011•南通)求不等式组的解集,并写出它的整数解.专题:探究型。
分析:分别求出各不等式的解集,再求出其公共解集,并找出其公共解集内x 的整数解即可. 解答:【解】解不等式3x -6≥x -4,得x ≥1.解不等式2x +1>3(x -1),得x <4.所以原不等式组的解集为1≤x <4. 它的整数解为1,2,3.点评:本题考查的是求一元一次不等式组的整数解,熟知解一元一次不等式遵循的法则是解答此题的关键.例2 ①(2011•恩施州14,3分)若不等式x <a 只有4个正整数解,则a 的取值范围是 4<a≤5 .364213(1)x x x x -≥-⎧⎨+>-⎩考点:一元一次不等式的整数解。
分析:首先根据题意确定四个正整数解,然后再确定a 的范围. 解答:解:∵不等式x <a 只有四个正整数解, ∴四个正整数解为:1,2,3,4, ∴4<a≤5,故答案为:4<a≤5,点评:此题主要考查了一元一次不等式的整数解,做此题的关键是确定好四个正整数解.②已知关于x 的不等式x -2a <3的最大整数解-5,求a 的取值范围. 解:x <2a +3,由题意,有-5<2a +3≤-4,-8<2a ≤-7,742a >≥.③关于x 的不等式组2(1)3(2)6,1, 2x x x a--+>-⎧⎪⎨+>⎪⎩①②恰好有两个整数解,求a 的取值范围. 解:由①,得2x -2-3x -6>-6,-x >2,x <-2,由②得x >2-a ,因为恰好有两个整数解-5≤2-a <-4,所以-7≤-a <-6,-7≥a >6.练习 1.关于x 的不等式组121,232,x x x a -+⎧-≤⎪⎨⎪->⎩只有3个整数解,求a 的取值范围.2.关于x 的不等式组2135,20,x x x a -<-⎧⎨-<⎩恰好有4个整数解,求a 的取值范围.题型二:不等式(组)的解集例3 已知不等式13a x ->的每一个解都是21122x -<的解,求a 的取值范围;解:由13a x ->,得x <a -3,由21122x -<得x <1,由题意有:a -3≤1,得a ≤4.点评:注意二者之区别.练习 1.若不等式132x a x a --->的解集与x <6的解集相同,求a 的取值范围.解:由132x a x a --->,得2x -2a -3x +3a >6,-x >6-a ,x <a -6,由题意,有a -6=6,所以a =12.2.(2011山东日照,6,3分)若不等式2x <4的解都能使关于x 的一次不等式(a ﹣1)x <a+5成立,则a 的取值范围是( )A .1<a≤7B .a≤7C .a <1或a≥7D .a=7 考点:解一元一次不等式组;不等式的性质。
解一元一次不等式(组)(真题10道+模拟30道)【方法归纳】题型概述,方法小结,有的放矢1.解一元一次不等式(组)是近几年北京中考的第二道大题,属于基本计算找中的容易题,常见的考法有:解一元一次不等式、解一元一次不等式组、不等式或不等式组的整数解、在数轴上表示不等式或不等式组的解集.在平时要熟练掌握不等式或不等式组的解法步骤.2.根据不等式的性质解一元一次不等式,基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.注意:符号“≥”和“≤”分别比“>”和“<”各多了一层相等的含义,它们是不等号与等号合写形式.3.一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.【典例剖析】典例精讲,方法提炼,精准提分【例1】(2021·北京·中考真题)解不等式组:{4x −5>x +13x−42<x【答案】2<x <4【解析】【分析】根据一元一次不等式组的解法可直接进行求解.【详解】解:{4x −5>x +1①3x−42<x② 由①可得:x >2,由②可得:x <4,∴原不等式组的解集为2<x <4.【点睛】本题主要考查一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解题的关键.【例2】(2022·北京·中考真题)解不等式组:{2+x >7−4x,x <4+x 2. 【答案】1<x <4【解析】【分析】分别解两个一元一次不等式,再求交集即可.【详解】解:{2+x >7−4x①x <4+x2②解不等式①得x >1,解不等式②得x <4,故所给不等式组的解集为:1<x <4.【点睛】本题考查解一元一次不等式组,属于基础题,正确计算是解题的关键.【真题再现】必刷真题,关注素养,把握核心1.(2013·北京·中考真题)解不等式组:{3x >x −2x+13>2x【答案】−1<x <15【解析】【分析】求出每个不等式的解集,再求出解集的公共部分即可.【详解】由3x >x −2解得,x >−1; 由x+13>2x 解得,x <15. ∴原不等式组的解集为:−1<x <15.【点睛】本题考查了解一元一次不等式组,求出不等式组中每一个不等式的解集是关键,常常利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).2.(2014·北京·中考真题)解不等式12x −1≤23x −12,并把它的解集在数轴上表示出来.【答案】x≥-3,数轴见解析.【解析】【分析】去分母得:3x -6≤4x -3,移项合并得x≥-3,正确在数轴上表示即可.【详解】解:3x -6≤4x -3∴x≥-3【点睛】本题考查解一元一次不等式.3.(2015·北京·中考真题)解不等式组:{4(x +1)≤7x +10x −5<x−83,并写出它的所有非负整数解. 【答案】不等式组的所有非负整数解为:0,1,2,3.【解析】【分析】先解不等式组求出x 的取值范围,然后找出符合范围的非负整数解.【详解】解:{4(x +1)≤7x +10①x −5<x−83 ② 由不等式①得:x ≥-2,由不等式②得:,x <72,∴不等式组的解集为:−2≤x <72,∴x 的非负整数解为:0,1,2,3.【点睛】 本题考查的是解一元一次不等式组及求一元一次不等式组的非负整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.(2016·北京·中考真题)解不等式组:{2x +5>3(x −1)4x >x+72. 【答案】1<x <8.【解析】【详解】试题分析:根据不等式性质分别求出每一个不等式的解集,再根据口诀:大小小大中间找可得不等式组的解集.试题解析:解不等式2x+5>3(x ﹣1),得:x <8,解不等式4x >x+72,得:x >1,∴不等式组的解集为:1<x <8.考点:解一元一次不等式组.5.(2017·北京·中考真题)解不等式组: {2(x +1)>5x −7x+103>2x . 【答案】x<2.【解析】【详解】试题分析 :由不等式性质分别求出每一个不等式的解集,找出它们的公共部分即可.试题解析:{2(x +1)>5x −7①x+103>2x② , 由①得:x<3,由②得:x<2,∴不等式组的解集为:x<2.6.(2018·北京·中考真题)解不等式组:{3(x +1)>x −1x+92>2x . 【答案】−2<x <3.【解析】【详解】分析:分别解不等式,找出解集的公共部分即可.详解:{3(x +1)>x −1①x+92>2x② 由①得,x >−2,由②得,x <3,∴不等式的解集为−2<x <3.点睛:考查解一元一次不等式组,比较容易,分别解不等式,找出解集的公共部分即可.7.(2019·北京·中考真题)解不等式组:{4(x −1)<x +2,x+73>x. 【答案】不等式组的解集为x <2.【解析】【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【详解】解:解不等式①得:4x −4<x +2,4x −x <4+2,3x <6,∴x <2解不等式②得:x +7>3x,x −3x >−7,−2x >−7,∴x <72∴不等式组的解集为x <2【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.(2020·北京·中考真题)解不等式组:{5x −3>2x 2x−13<x 2【答案】1<x <2【解析】【分析】分别解每一个不等式,然后即可得出解集.【详解】解:{5x −3>2x①2x−13<x 2② 解不等式①得:x >1,解不等式②得:x <2,∴此不等式组的解集为1<x <2.【点睛】本题考查了解一元一次不等式组,掌握不等式的解法是解题关键.【模拟精练】押题必刷,巅峰冲刺,提分培优一、解答题1.(2022·北京朝阳·二模)解不等式x −5<x−123,并写出它的所有非负整数解. 【答案】x <32,不等式的所有非负整数解为0,1【解析】【分析】去分母,移项、合并同类项,系数化为1即可,根据不等式的解集即可求得所有非负整数解.【详解】解:3(x −5)<x −12,3x −15<x −12,2x <3,x <32.∴原不等式的所有非负整数解为0,1.【点睛】本题考查了解一元一次不等式及求其非负整数解,正确求解不等式是解题的关键.2.(2022·北京东城·二模)解不等式6−4x ≥3x −8,并写出其正整数解.【答案】x ≤2,正整数解为1,2.【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数解即可.【详解】解:6−4x ≥3x −8,移项得:−4x −3x ≥−8−6,合并同类项得:−7x ≥−14,系数化为1得:x ≤2,∴不等式的正整数解为1,2.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.3.(2022·北京平谷·二模)解不等式组:{5x +3>4x 6−x 2≥x .【解析】【分析】先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集.【详解】解:{5x +3>4x①6−x 2≥x② , 解不等式①得:x >−3,解不等式②得:x ≤2,则不等式组的解集为−3<x ≤2.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.4.(2022·北京北京·二模)解不等式组:{5x +3>2x x−22<6−3x .【答案】−1<x <2【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:{5x +3>2x①x−22<6−3x② 解不等式①,得x >−1.解不等式②,得x <2.∴原不等式组的解集为−1<x <2.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5.(2022·北京丰台·二模)解不等式组:{2x −3>x −23x−22<x +1 .【解析】【分析】先求出每个不等式的解集,然后取公共部分即可得到答案.【详解】解:原不等式组为{2x −3>x −2①3x−22<x +1② , 由①得:x >1,由②得:x <4,所以原不等式组的解集为:1<x <4.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解不等式6.(2022·北京密云·二模)解不等式组:{2x −1≤−x +2x−12<1+2x 3,并写出它的非负整数解.【答案】−5<x ≤1;非负整数解为:0,1【解析】【分析】首先解两个一元一次不等式,然后求两个不等式解集的公共部分,最后写出不等式组的整数解.【详解】解不等式2x -1≤-x +2,得,x ≤1, 解不等式x−12<1+2x3,得,x >-5,∴该不等式组的解集为-5<x ≤1,∴该不等式组的非负整数解是:0,1.【点睛】本题主要考查了解一元一次不等式组,解决问题的关键是熟练解答一元一次不等式和确定一元一次不等式组的解集,在一元一次不等式组解集里确定非负整数解.7.(2022·北京西城·二模)解不等式:5x−26<x2+1,并写出它的正整数解. 【答案】x =1,2,3,【解析】【分析】先解不等式,求出不等式解集,再根据解集,写出正整数解即可.【详解】 解:5x−26<x2+1, 5x -2<3x +6,5x -3x <6+2,2x <8,x <4,∵x 为正整数,∴x =1,2,3,【点睛】本题考查求不等式正整数解,熟练掌握解不等式是解题的关键.8.(2022·北京顺义·二模)解不等式组:{5x +2≥4x −1,x+14>x−32+1. 【答案】−3≤x <3【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】{5x +2≥4x −1①x +14>x −32+1② 解不等式①得:x ≥−3解不等式②得:x <3∴不等式的解集为:−3≤x <3【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键.9.(2022·北京市十一学校模拟预测)解不等式组:{4(x +1)≥x +73x+24<x ,并将不等式组的解集在数轴上表示出来.【答案】x >2,见解析【解析】【分析】先解不等式组中的每一个不等式,再取其解集的公共部分即得不等式组的解集,然后即可在数轴上表示其解集.【详解】对不等式:{4(x +1)≥x +7①3x+24<x② 解不等式①得:x ≥1解不等式②得:x >2所以不等式的解集为:x >2【点睛】本题考查了一元一次不等式组的解法,属于基本题型,熟练掌握解一元一次不等式组的方法是解题的关键.10.(2022·北京海淀·二模)解不等式组:{5x −2>2x +4,x−12>x 3. 【答案】原不等式组的解集为x >3【解析】【分析】分别解不等式组中的两个不等式,再确定两个不等式解集的公共部分即可.【详解】解:原不等式组为{5x −2>2x +4,①x−12>x 3.② 解不等式①,得x >2.解不等式②,得x >3.∴ 原不等式组的解集为x >3.【点睛】本题考查的是不等式组的解法,掌握“解一元一次不等式组的步骤”是解本题的关键.11.(2022·北京东城·一模)解不等式组{x−32<1,2(x+1)≥x−1.【答案】−3≤x<5【解析】【分析】先分别求出不等式的解集,然后求出不等式组的解集即可.【详解】解:{x−32<12(x+1)≥x−1,解不等式x−32<1得,x<5;解不等式2(x+1)≥x−1得,x≥−3;∴不等式组的解集为−3≤x<5.【点睛】本题考查了解一元一次不等式组.解题的关键在于正确的计算.12.(2022·北京市十一学校二模)在平面直角坐标系xOy中,已知点P(1,2),Q(−2,2),函数y=mx.(1)当函数y=mx的图象经过点Q时,求m的值并画出直线y=-x-m.(2)若P,Q两点中恰有一个点的坐标(x,y)满足不等式组{y>mxy<−x−m(m<0),求m的取值范围.【答案】(1)m=-4,画图见解析(2)-3≤m<0或m≤-4【解析】【分析】(1)根据待定系数法,将Q点坐标代入y=mx即可求值,进而画出直线的图象;(2)不等式组表达含义为P、Q中的一点位于反比例函数图象上方,位于一次函数图象下方,根据m<0的条件,数形结合即可求出m的取值范围.(1)解:∵函数y=mx的图象经过点Q,∴m=-2×2=-4,一次函数的解析式为:y=-x+4,图象如下.(2)解:由题意知,P、Q中的一点位于反比例函数图象上方,位于一次函数图象下方,∵m<0,∴反比例函数经过二、四象限,故P点在反比例函数图象上方,∴存在两种情况,①Q在反比例函数图象上方,在一次函数图象下方,P在一次函数图象上或上方,即:{2>m−2 2<2−m−1−m≤2,解得:-3≤m<0;②Q在反比例函数图象上或下方,P在一次函数图象下方,即:{2≤m−2−1−m>2,解得:m≤-4;综上所述,m 的取值范围为:-3≤m <0或m ≤-4.【点睛】本题考查了待定系数法求反比例函数解析式,解决本题难点是分析出反比例函数、一次函数的图象与P 、Q 两点的位置关系,得到关于m 的不等式组.13.(2022·北京市十一学校二模)解不等式组:{x −3(x −1)≥11+3x 2>x −1 ,并把它的解集在数轴上表示出来. 【答案】−3<x ≤1,数轴见解析【解析】【分析】分别求出两个不等式的解集,即可求解.【详解】解:{x −3(x −1)≥1①1+3x2>x −1② ,解不等式①得:x ≤1,解不等式②得:x >−3,∴不等式组的解集为−3<x ≤1,把解集在数轴上表示出来,如下:【点睛】本题主要考查了解一元一次不等式组,熟练掌握解一元一次不等式组的方法是解题的关键.14.(2022·北京石景山·一模)解不等式组:{3(x +1)<x −1x+92>2x 并写出它的最大整数解.【答案】﹣3【解析】【分析】分别求出每一个不等式的解集,根据口诀同大取大;同小取小;大小小大中间找;大大小小找不到,确定不等式组的解集.【详解】{3(x +1)<x −1①x +92>2x② 由①得,x <﹣2,由②得,x <3,∴不等式组的解集为x <﹣2,最大的整数解是﹣3.【点睛】本题考查的是一元一次不等式组的整数解,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(2022·北京房山·二模)解不等式组:{3(x −1)<2x +1x−12≤x +2 . 【答案】−5≤x <4【解析】【分析】分别求出两不等式的解集,根据:“大小小大中间找”确定不等式组解集.【详解】解:{3(x −1)<2x +1①x−12≤x +2② 由①得3x −3<2x +1,即x <4由②得x −1≤2x +4,即x ≥−5∴不等式组的解集为:−5≤x <4【点睛】本题考查了解一元一次不等式组:求解出两个不等式的解集,然后按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.16.(2022·北京平谷·一模)解不等式组:{x +2>2x 5x+32≥x .【答案】−1≤x <2【解析】【分析】先分别求出两个不等式的解集,然后求出不等式组的解集即可.【详解】解:{x+2>2x 5x+32≥x解不等式x+2>2x移项合并得−x>−2系数化为1得x<2∴不等式的解集为x<2;解不等式5x+32≥x去分母得5x+3≥2x移项合并得3x≥−3系数化为1得x≥−1∴不等式的解集为x≥−1;∴不等式组的解集为−1≤x<2.【点睛】本题考查了解一元一次不等式组.解题的关键在于正确的计算.17.(2022·北京·东直门中学模拟预测)解不等式组:{3x>x−2 x+13≥2x【答案】−1<x≤15【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:{3x>x−2①x+13≥2x②,∵解不等式①得:x>-1,解不等式②得:x≤15,∴不等式组的解集是−1<x≤15.【点睛】此题考查了解一元一次不等式组,熟练掌握不等式组的解法是解本题的关键.18.(2022·北京市第一六一中学分校一模)解不等式组{x+2(−2x)≥-4 3+5x2>x−1【答案】−53<x≤2【解析】【分析】按照解一元一次不等式的方法分别求出各不等式的解,进而得到不等式组的解集.【详解】解:{x+2(1−2x)≥−4⋯①3+5x2>x−1⋯②由①式去括号,得:x+2−4x≥−4移项、合并同类项,得:x≤2由②式去分母,得:3+5x>2x−2移项、合并同类项,得:x>−53所以不等式组的解集为:−53<x≤2.【点睛】本题考查解一元一次不等式组,熟练掌握相关知识是解题的关键.19.(2022·北京房山·一模)解不等式组:{x-2≤1 x+15<x−1【答案】32<x≤3【解析】【分析】先求得每个不等式的解集,后根据口诀确定不等式组的解集.【详解】解:{x-2≤1①x+15<x−1②由①得:x≤3,由②得:x>32,∴不等式组的解集为32<x≤3.【点睛】本题考查了一元一次不等式组的解法,熟练掌握解不等式组的基本步骤是解题的关键.20.(2022·北京朝阳·一模)解不等式组:{x −3(x −2)≥4x −1<1+2x 3【答案】不等式组的解集为x ≤1【解析】【分析】先根据不等式的基本性质分别解两个不等式,再确定不等式组的解集即可.【详解】{x −3(x −2)≥4①x −1<1+2x 3② 解①得x ≤1解②得x <4所以,不等式组的解集为x ≤1.【点睛】本题考查了解不等式组,根据不等式的基本性质解不等式是解题的关键.21.(2022·北京顺义·一模)解不等式组{2(x +1)≤5x +82x −5<x−12,并写出它的所有整数解. 【答案】-2≤x <3,它的整数解为-2、-1、0、1、2.【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:{2(x +1)≤5x +82x −5<x−12由第一个不等式得2x +2≤5x +8,解得x ≥-2,由第二个得4x -10<x -1解得x <3∴不等式组的解集为-2≤x <3,它的整数解为-2、-1、0、1、2.【点睛】本题考查解一元一次不等式组,求符合条件的整数解.正确掌握一元一次不等式解集确定方法是解题的关键.22.(2022·北京西城·一模)解不等式组{5x +1>3(x −1)8x+29>x :【答案】−2<x <2【解析】【分析】分别求出两个不等式的解集,即可求解.【详解】解:{5x +1>3(x −1)①8x+29>x② , 解不等式①得:x >−2,解不等式②得:x <2,∴不等式组的解集为−2<x <2.【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组解集的口诀:同大取大,同小取小大小小大中间找,大大小小找不到(无解)是解题的关键.23.(2022·北京通州·一模)解不等式组{3x −1>x +14x−53≤x【答案】1<x ≤5【解析】【分析】先分别解出两个不等式,再确定不等式组解集即可.【详解】{3x −1>x +1①4x −53≤x② 解①得x >1解②得x ≤5所以,不等式组的解集为1<x ≤5.【点睛】本题考查了一元一次不等式组的解法,熟练掌握解题步骤是解题的关键.24.(2022·北京海淀·一模)解不等式组:{4(x −1)<3x,5x+32>x. 【答案】−1<x <4【解析】【分析】先求出各不等式的解集,再求其公共解集即可.【详解】解:解不等式4(x −1)<3x ,得:x <4, 解不等式5x+32>x ,得:x >−1,所以原不等式组的解集是−1<x <4.【点睛】本题主要考查了解一元一次不等式组,熟练掌握解不等式组的基本步骤是解题的关键.25.(2022·北京市第五中学分校模拟预测)解不等式组:{4(x +1)≥x +73x+24<x . 【答案】x >2【解析】【分析】分别求出两个不等式的解集,即可得到不等式组的解集.【详解】解:{4(x +1)≥x +7①3x+24<x②解不等式①得:x ≥1,解不等式②得:x >2,所以不等式组的解集为:x >2.【点睛】本题考查了解一元一次不等式组,熟练掌握一元一次不等式的解法是解题的关键.26.(2022·北京市三帆中学模拟预测)解不等式组{2x−7<3(1−x)43x+3≥1−23x,并写出它的非负整数解.【答案】−1≤x<2,0和1【解析】【分析】首先解每一个不等式,再求不等式组的解集,据此即可解答.【详解】解:{2x−7<3(1−x)①43x+3≥1−23x②由①解得x<2由②解得x≥−1故不等式组的解集为−1≤x<2所以,它的非负整数解有:0和1.【点睛】本题考查了一元一次不等式组的解法及整数解问题,熟练掌握和运用一元一次不等式组的解法及求整数解的方法是解决本题的关键.27.(2022·北京十一学校一分校模拟预测)在平面直角坐标系xOy中,一次函数y=−x+b经过点(0,2).(1)求这个一次函数的解析式:(2)当x<4时,对于x的每一个值,函数y=−x+b的值与函数y=kx−k的值之和都大于0,求k的取值范围.【答案】(1)y=−x+2(2)23≤k<1【解析】【分析】(1)根据待定系数法求解即可;(2)根据题意解不等式组即可.(1)解:∵一次函数y=−x+b经过点(0,2)∴2=b ,∴这个一次函数的解析式为y =−x +2.(2)由y =kx −k =k (x −1)则y =kx −k 过定点(1,0),依题意,kx −k −x +2>0的解集为x <4∴ x <k−2k−1,且k −1<0 ∴k−2k−1≤4,且k <1∴k −2≥4(k −1)即k −2≥4k −4−3k ≥−2当k <0时,k ≤23,则k <0当0≤k <1时,k ≥23,则23≤k <1 综上所述,23≤k <1【点睛】本题考查了待定系数法求一次函数解析式,解不等式组,理解题意是解题的关键.28.(2022·北京昌平·模拟预测)解不等式组{2x +7<3x −1x−25≥0 ,并把解集在数轴上表示出来. 【答案】x >8,作图见解析【解析】【分析】先分别计算不等式,然后求解集,将解集在数轴上表示出来即可.【详解】解:{2x +7<3x −1①x−25≥0②解不等式①得x >8,解不等式②得x ≥2,∴不等式组的解集为x >8,在数轴上表示如图所示:【点睛】本题考查了求不等式组的解集,在数轴上表示解集.解题的关键在于正确的计算.29.(2022·北京朝阳·模拟预测)解下列不等式,并把解在数轴上表示出来.(1)5x﹣5<2(2+x);(2)4x−13−x>1;(3)32>x2−2x−38;(4)x(x+4)≤(x+1)2+9.【答案】(1)x>3,数轴见解析(2)x>4,数轴见解析(3)x≤4.5,数轴见解析(4)x≤5,数轴见解析【解析】【分析】(1)根据去括号、移项、合并同类项和系数化为1即可求出不等式的解集;(2)根据去分母、移项、合并同类项和系数化为1即可求出不等式的解集.(3)根据去分母、去括号、移项、合并同类项和系数化为1即可求出不等式的解集.(4)去括号、移项、合并同类项和系数化为1即可求出不等式的解集.(1)解:5x﹣5<2(2+x)去括号得,5x﹣5<4+2x,移项得,5x﹣2x>4+5,合并同类项,3x>9,∴x>3.在数轴上表示此不等式的解集如下:(2)解:4x−13−x>1去分母,得4x﹣1﹣3x>3,移项,得4x﹣3x>3+1,合并同类项,得x>4,∴x>4.在数轴上表示此不等式的解集如下:(3)解:32>x2−2x−38去分母,得12≥4x﹣(2x﹣3),去括号,得12≥4x﹣2x+3,移项,得﹣4x+2x≥3﹣12,合并同类项,得﹣2x≥﹣9,∴x≤4.5.在数轴上表示此不等式的解集如下:(4)解:x(x+4)≤(x+1)2+9去括号,得x2+4x≤x2+2x+1+9,移项,得x2﹣x2+4x﹣2x≤1+9,合并同类项,得2x≤10,∴x≤5.在数轴上表示此不等式的解集如下:【点睛】本题考查了解一元一次不等式,能正确运用不等式的基本性质进行计算是解此题的关键.30.(2022·北京·二模)解不等式组:{3(x −1)≥2x −5,①2x <x+32,②并写出它的所有整数解. 【答案】−2≤x <1;−2,−1,0【解析】【分析】分别解不等式①,②,进而求得不等式组的解集,根据不等式组的解集写出所有整数解即可.【详解】{3(x −1)≥2x −5,①2x <x +32,② 解不等式①得:x ≥−2解不等式②得:x <1∴不等式组的解集为:−2≤x <1它的所有整数解为:−2,−1,0【点睛】 本题考查了解一元一次不等式组,求不等式组的整数解,正确的计算是解题的关键.。
一元一次不等式组的解法步骤一元一次不等式组是数学中常见的一类问题,它可以通过一定的方法和步骤得到解决。
在本文中,我们将针对一元一次不等式组的解法步骤进行全面评估,并提供例题来帮助读者更深入理解。
解法步骤:1. 确定不等式组的条件:我们需要明确所给出不等式组的条件。
不等式组通常包括多个不等式,我们需要确保每个不等式都满足一元一次不等式的标准形式,即ax+b>c或ax+b<c。
2. 求出每个不等式的解集:针对每个不等式,我们需要求出其解集。
这一步骤需要运用代数式的加减乘除法,并结合不等式的性质来确定不等式的解集。
3. 得出整体的解集:在求出每个不等式的解集之后,我们需要将这些解集合并起来,求得整体的解集。
在合并解集的过程中,需要注意考虑每个不等式的关系,以确保得出正确的整体解集。
下面我们通过一个具体的例题来展示以上的解法步骤:例题:求解不等式组 {2x+1>5, 3x-2<7}解法步骤:1. 确定不等式组的条件:给出的不等式组已经满足一元一次不等式的标准形式,因此不需要进行进一步的调整。
2. 求出每个不等式的解集:分别对每个不等式进行求解,得到2x>4和3x<9。
通过简单的代数运算,我们可以得到x>2和x<3。
3. 得出整体的解集:通过整合每个不等式的解集,我们可以得到最终的解集为2<x<3。
个人观点和理解:从上面的例题中可以看出,解决一元一次不等式组主要是通过逐步求解各个不等式,然后再将它们的解集合并起来,得到最终的整体解集。
在这个过程中,需要注意准确地运用代数运算,同时也要考虑不等式之间的关系,确保最终的解集是正确的。
总结回顾:通过本文的讲解和例题,我们对一元一次不等式组的解法步骤有了更深入的了解。
从确定条件、求解各个不等式到得出整体的解集,这些步骤是解决一元一次不等式组问题的关键。
我们也注意到在解题的过程中,需要不断地练习和总结,才能更熟练地应对各种类型的不等式组问题。
第11练不等式(组)及其解法知识点一、不等式组的概念定义:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组.如2562010xx->⎧⎨-<⎩,7021163159xxx->⎧⎪+>⎨⎪+<⎩等都是一元一次不等式组.注:(1)这里的“几个”不等式是两个、三个或三个以上.(2)这几个一元一次不等式必须含有同一个未知数.知识点二、解一元一次不等式组1.一元一次不等式组的解集:一元一次不等式组中几个不等式的解集的公共部分叫做这个一元一次不等式组的解集.注:(1)找几个不等式的解集的公共部分的方法是先将几个不等式的解集在同一数轴上表示出来,然后找出它们重叠的部分.(2)有的一元一次不等式组中的各不等式的解集可能没有公共部分,也就是说有的不等式组可能出现无解的情况.2.一元一次不等式组的解法解不等式组就是求它的解集,解一元一次不等式组的方法步骤:(1)分别求出不等式组中各个不等式的解集.(2)利用数轴求出这些不等式的解集的公共部分即这个不等式组的解集.知识点三、一元一次不等式组的应用列一元一次不等式组解应用题的步骤为:审题→设未知数→找不等关系→列不等式组→解不等式组→检验→答.注:(1)利用一元一次不等式组解应用题的关键是找不等关系.(2)列不等式组解决实际问题时,求出不等式组的解集后,要结合问题的实际背景,从解集中联系实际找出符合题意的答案,比如求人数或物品的数目、产品的件数等,只能取整数.一、单选题1.不等式组12511xx-⎧⎨-⎩<<的解集是()A.x>2 B.﹣3<x<2 C.﹣1<x<2 D.﹣2<x<2【解析】【分析】先求出两个不等式的解集,然后再写出不等式组的解集即可.【详解】12511x x -⎧⎨-⎩<①<②, 解①得:x >﹣2,解②得:x <2,故不等式组的解集是:﹣2<x <2,故D 正确.故选:D .【点睛】本题主要考查了解一元一次不等式组,正确解出两个不等式的解集,是解题的关键. 2.若不等式组的解集为22x -≤<,则以下数轴表示中正确的是( )A .B .C .D . 【答案】C【解析】【分析】根据在数轴上表示解集的方法判断即可.【详解】解:若不等式组的解集为22x -≤<,在数轴上表示解集为:,故选:C .【点睛】本题主要考查了在数轴上表示不等式的解集,掌握在数轴上表示不等式解集的方法是解题的关键. 3.不等式组213417x x +≥⎧⎨-<⎩的解集是( ) A .1≥xB .2x <C .12x ≤<D .12x < 【答案】C【分析】求一元一次不等式组的解集即可;【详解】解:213x +≥,解得:1≥x ;417x -<,解得:2x <;∴不等式组的解集为:12x ≤<;故选:C .【点睛】本题主要考查求一元一次不等组的解集,正确计算是解本题的关键.4.若关于x 的不等式组325x m x ≤+⎧⎨>⎩无解,则m 的取值范围是( ) A .1mB .1m <C .m 1≥D .1m【答案】A【解析】【分析】首先解每一个不等式,然后根据不等式组无解确定m 的范围.【详解】 解:325x m x ≤+⎧⎨>⎩①② ∵不等式组无解,∵325m +≤解得,1m ,故选:A【点睛】本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.5.关于x 的不等式组()1233111222x x x a ⎧->-⎪⎪⎨⎪-<-⎪⎩有且只有三个整数解,则a 的最大值是( ) A .3B .4C .5D .6【答案】C【解析】分别对两个不等式进行求解,得到不等式组的解集为1x a <<,根据不等式组有且只有三个整数解的条件计算出a 的最大值.【详解】 解不等式1233x x ->-, 1233x x -+>, ∴2233x >, ∴1x >, 解不等式111(2)22x a -<-, 得11(2)122x a <-+, ∴x a <, ∴1233111(2)22x x x a ⎧->-⎪⎪⎨⎪-<-⎪⎩的解集为1x a <<, ∵不等式组有且只有三个整数解,∴不等式组的整数解应为:2,3,4,∴a 的最大值应为5故选:C .【点睛】本题考查不等式组的整数解,解题的关键是熟练掌握不等式组的相关知识.6.如果关于x 的不等式组301x a x b -≥⎧⎨-<⎩的整数解仅有2和3,那么适合这个不等式组的两整数a ,b 组成的有序数对()a b ,的个数为( )A .3个B .4个C .5个D .6个【答案】A【解析】【分析】 求出不等式组的解集,根据已知求出1<3a ≤2,3<b +1≤4,解得:36a ≤<,23b ≤<,即可得出答案.【详解】解:解不等式3x −a ≥0,得:x ≥3a , 解不等式x −b <1,得:1x b +<,∵不等式组的整数解仅有x =2、x =3,∴1<3a ≤2,3<b +1≤4, 解得:36a ≤<,23b ≤<,则a =4时,b =3;当a =5时,b =3;当a =6时,b =3;∴适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有3个,故A 正确. 故选:A .【点睛】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的关键是求出a 、b 的取值范围.二、填空题7.不等式组325,212x x -≥⎧⎪⎨+>-⎪⎩的解集为______. 【答案】41x -<≤-【解析】【分析】先分别求出不等式组中每一个不等式的解集,再根据确定不等式组解集原则“大大取较大,小小取较小,大小小大,中间找,大大小小无处找”确定出不等式组的公共解集即可.【详解】 解:325212x x -≥⎧⎪⎨+>-⎪⎩①②, 解①得:x ≤–1,解②得:x >-4,∴-4<x ≤-1.故答案为:-4<x ≤-1.【点睛】本题考查解不等式组,掌握确定不等式组解集原则“大大取较大,小小取较小,大小小大,中间找,大大小小无处找”是解题的关键.8.若不等式组12x x k<≤⎧⎨>⎩无解,则k 的取值范围是______. 【答案】k ≥2【解析】【分析】根据不等式组的解集口诀:大大小小没有解得出k 的取值范围即可.【详解】解:∵不等式组12x x k <≤⎧⎨>⎩无解, ∴k ≥2,故答案为:k ≥2.【点睛】本题考查一元一次不等式组的解集,解答的关键是熟知不等式组的解集口诀:同大取大,同小取小,大小小大取中间,大大小小没有解,注意端点值的取舍.9.已知关于x 的一元一次不等式()24m x +>的解集是42x m <+,如图,数轴上的A ,B ,C ,D 四个点中,实数m 对应的点可能是______.【答案】A【解析】【分析】根据解一元一次不等式步骤中化系数为1中不等号变号,可得20m +<,进而得到m 的取值范围,结合数轴即可得到答案.【详解】由题意()24m x +>的解集为42x m <+, 则20m +<即2m <-则根据数轴中A ,B ,C ,D 位置,小于-2的只有A 点.故答案为A .【点睛】本题主要考查了解一元一次不等式,数轴,熟练掌握解一元一次不等式是解题的关键.10.定义运算:*2a b a b =-,例如3*42342=⨯-=,则不等式组()*242*17x x ≥⎧⎨-<⎩的解集是________.【答案】34x ≤<【解析】【分析】根据所给的定义运算,不等式组*242*(1)7x x ≥⎧⎨-<⎩为22437x x -≥⎧⎨+<⎩,进行计算即可得. 【详解】解:根据题意不等式组*242*(1)7x x ≥⎧⎨-<⎩为2244(1)7x x -≥⎧⎨--<⎩, 即22437x x -≥⎧⎨+<⎩, 解得34x x ≥⎧⎨<⎩, 即34x ≤<,故答案为:34x ≤<.【点睛】本题考查了求不等式组的解集,解题的关键是理解题意,掌握题中的定义运算. 11.某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价_________元.【答案】32【解析】【分析】设该商品最多可降价x 元,列不等式32024020%240x --≥,求解即可; 【详解】解:设该商品最多可降价x 元;由题意可得,32024020%240x --≥, 解得:32x ≤;答:该护眼灯最多可降价32元.故答案为:32.【点睛】本题主要考查一元一次不等式的应用,正确理解题意列出不等式是解题的关键.12.若关于x ,y 的二元一次方程组52121,45,x y k x y -=-⎧⎨-+=⎩的解满足0x y ->,则k 的取值范围是______. 【答案】12k >【解析】【分析】解关于x 、y 的二元一次方程组,再代入不等式x -y >0,解不等式即可.【详解】 解: 5212145x y k x y -=-⎧⎨-+=⎩①②, ①-②有66126x y k -=-,即21x y k -=-,∵x -y >0,∴2k -1>0, 解得12k >.【点睛】本题考查二元一次方程组和一元一次不等式的解法,掌握相关知识点是解题的关键.三、解答题13.解不等式组:421122x x x x ->+⎧⎪⎨--≤⎪⎩. 【答案】3x ≤1<【解析】【分析】先分别求出两个不等式的解集,再找这两个解集的公共部分即是不等式组的解集.【详解】421122x x x x -+⎧⎪⎨--≤⎪⎩>①②, 解不等式①得:x >1;解不等式②得:3x ≤;即不等式组的解集为:13x ≤<.【点睛】本题考查了求解一元一次不等式组的解集,解题的关键是准确解答出每一个不等式的解集.14.整式133m ⎛⎫- ⎪⎝⎭的值为P .(1)当m =2时,求P 的值;(2)若P 的取值范围如图所示,求m 的负整数值.【答案】(1)5-(2)2,1--【解析】【分析】(1)将m =2代入代数式求解即可,(2)根据题意7P ≤,根据不等式,然后求不等式的负整数解.(1)解:∵133m P ⎛⎫- ⎪⎝⎭= 当2m =时,1323P ⎛⎫=⨯- ⎪⎝⎭533⎛⎫=⨯- ⎪⎝⎭5=-;(2)133m P ⎛⎫- ⎪⎝⎭=,由数轴可知7P ≤, 即1373m ⎛⎫-≤ ⎪⎝⎭, 1733m ∴-≤,解得2m ≥-,∴m 的负整数值为2,1--.【点睛】本题考查了代数式求值,解不等式,求不等式的整数解,正确的计算是解题的关键.15.(1)解方程组:33814x y x y -=⎧⎨-=⎩; (2)解不等式组51222113x x +≥⎧⎪-⎨<⎪⎩,并把解集在数轴上表示出来. 【答案】(1)21x y =⎧⎨=-⎩(2)22x -≤< 【解析】【分析】(1)运用加减消元法解二元一次方程组,即可得出答案.(2)将不等式组中的两个一元一次不等式分别解出,再通过数轴确定公共解集,即可得出答案.【详解】(1)解:33814x y x y -=⎧⎨-=⎩①② 3⨯①得:339x y -=③③-②得:33(38)914x y x y ---=-55y =-∴1y =-把1y =-代入①:(1)3x --=∴2x =∴原方程组的解为:21x y =⎧⎨=-⎩; (2)解:51222113x x +≥⎧⎪⎨-<⎪⎩①② 解不等式①得:2x ≥-解不等式②得:2x <数轴上表示为:∴原不等式组的解集为:22x -≤<【点睛】本题考查知识点为,二元一次方程组的解法以及一元一次不等式组的解法.熟练掌握二元一次方程组和一元一次不等式组的解法,是解决本题的关键.16.解不等式组()5131212x x x x ⎧+>-⎨-≤+⎩①②.请结合题意完成本题的解答(每空只需填出最后结果). 解:解不等式①,得______.解不等式②,得______.把不等式①和②的解集在数轴上表示出来.所以原不等式组解集为______.【答案】2x >-;3x ≤;见详解;23x -<≤【解析】【分析】分别解两个不等式,然后在数轴上表示解集,再根据公共部分确定不等式组的解集.【详解】解:解不等式①,得2x >-,解不等式②,得3x ≤,把不等式①和②的解集在数轴上表示出来为:所以原不等式组解集为:23x -<≤.【点睛】本题考查了解一元一次不等式组并把解集在数轴上表示,熟练掌握一元一次不等式的解法是解决本题的关键.17.已知方程组713x y m x y m +=--⎧⎨-=+⎩的解满足x 为非正数,y 为负数. (1)求m 的取值范围;(2)当m 为何整数时,不等式2mx +x <4m +2的解集为x >2.【答案】(1)23m -<≤【解析】【分析】(1)解方程组,再根据x 、y 的范围列出关于m 的不等式组,解不等式组即可得到答案; (2)由不等式2mx +x <4m +2,即()()21221m x m ++<的解集为x >2,可知2m +1<0, 求出此不等式解集,再从-2<m ≤3中找到符合此条件的m 的整数值即可.(1)解:解方程组得324x m y m =-⎧⎨=--⎩, ∵x 为非正数,y 为负数,∴30240m m -≤⎧⎨--<⎩, 解得-2<m ≤3.∴m 的取值范围为-2<m ≤3.(2)解:∵不等式2mx +x <4m +2,即()()21221m x m ++<的解集为x >2,∴2m +1<0,解得m <-12,在-2<m ≤3中符合m <-12的整数为-1.∴m 为-1时,不等式2mx +x <4m +2的解集为x >2.【点睛】本题考查解二元一次方程组和一元一次不等式组,熟练掌握“同大取大,同小取小,大小小大中间找,大大小小找不到”的原则是解本题的关键.18.先阅读理解下列例题,再按要求完成作业.例题:解一元二次不等式(3x ﹣6)(2x +4)>0. 由有理数的乘法法则“两数相乘,同号得正”有①360240x x ->⎧⎨+>⎩或②360240x x -<⎧⎨+<⎩. 解不等式组①得x >2,解不等式组②得x <﹣2.所以一元二次不等式(3x ﹣6)(2x +4)>0的解集是x >2或x <﹣2.(1)求不等式(2x +6)(2﹣x )<0的解集;(2)求不等式51542x x+-≥0的解集. 【答案】(1)x ﹥2或x <-3(2)32x -≤<【解析】(1)由有理数的乘法法则“两数相乘,异号得负”得出两个不等式组,求出每个不等式组的解集即可;(2)由有理数的除法法则“两数相除,同号得正”得出两个不等式组,求出每个不等式组的解集即可.(1)解:由有理数的乘法法则“两数相乘,异号得负”,得①26020xx+>⎧⎨-<⎩或②26020xx+⎧⎨-⎩<>,解不等组①得:x>2,解不等组②得:x<-3,∴不等式(2x+6)(2﹣x)<0的解集x﹥2或x<-3;(2)解:由有理数的除法法则“两数相除,同号得正”,得①5150420xx+≥⎧⎨-⎩>或②5150420xx+≤⎧⎨-⎩<,解不等组①得:-3≤x<2,解不等组②得:不等式组无解,∴不等式51542xx+-≥0的解集为-3≤x<2.【点睛】本题考查了解一元一次不等式组的应用,能根据题意得出两个不等式组是解此题的关键.1.已知关于x的不等式组320230a xa x-≥⎧⎨+>⎩恰有3个整数解,则a的取值范围是()A.2332a≤≤B.4332a≤≤C.4332a<<D.4332a≤<【答案】B 【解析】首先确定不等式组的解集,先利用含a 的式子表示,根据题意得到必定有整数解0,再根据恰有3个整数解分类讨论,根据解的情况可以得到关于a 的不等式,从而求出a 的范围.【详解】解:320230a x a x -≥⎧⎨+>⎩①② 解不等式①得32a x ≤,解不等式②得23a x ->, 由于不等式组有解,则2332a a x -<≤,必定有整数解0, ∵32||||23a a >-, ∴三个整数解不可能是﹣2,﹣1,0.若三个整数解为﹣1,0,1,则不等式组无解;若三个整数解为0,1,2,则32323102a a ⎧≤<⎪⎪⎨⎪-≤-<⎪⎩; 解得4332a ≤≤. 故选:B【点睛】本题考查不等式组的解法及整数解的确定.难度较大,理解题意,根据已知条件得到必定有整数解0,再分类讨论是解题关键.2.整数m 满足关于x ,y 的二元一次方程组214x y m x y m +=⎧⎨-=-⎩的解是正整数,且关于x 的不等式组54028x m x ->⎧⎨+≤⎩有且仅有2个整数解,则m 的值为______. 【答案】5【解析】【分析】根据题意先解二元一次方程组,根据解是正整数列出一元一次不等式组,解关于x 的不等式,进而根据是正整数的条件求得m 的范围,解一元一次不等式组54028x m x ->⎧⎨+≤⎩,根据有且仅有2个整数解,确定m 的范围,最后根据x ,y 为整数,舍去不符合题意的m 的值即可求解.【详解】解:214x y m x y m +=⎧⎨-=-⎩①② ①+②得,2213x m =-2132m x -∴= 将2132m x -=代入①,得5212m y -= x ,y 是正整数,21305210m m ->⎧∴⎨->⎩, 解得2175m <<, 54028x m x ->⎧⎨+≤⎩③④ 解不等式③得:45m x > 解不等式④得:6x ≤465m x ∴<≤ 有且仅有2个整数解,4455m ∴≤< 解得2554m ≤< 2175m << 212554m ∴≤< m 是整数5m ∴=或6当6m =时,21321183222m x --===,不合题意,故舍去 5m ∴=故答案为:5【点睛】本题考查了二元一次方程组与一元一次不等式组结合,解一元一次不等式组,求不等式的整数解,正确的计算是解题的关键.3.新定义:若一元一次方程的解在一元一次不等式组解集范围内,则称该一元一次方程为该不等式组的“相依方程”,例如:方程13x -=的解为4x =,而不等式组1123x x ->⎧⎨-<⎩的解集为25x <<,不难发现4x =在25x <<的范围内,所以方程13x -=是不等式组1123x x ->⎧⎨-<⎩的“相依方程”.(1)在方程①6(2)(4)23x x +-+=;②930x -=;③230x -=中,不等式组2113(2)4x x x x ->+⎧⎨--≤⎩的“相依方程”是________;(填序号)(2)若关于x 的方程36x k -=是不等式组312121123x x x x +⎧>⎪⎪⎨-+⎪≥-⎪⎩的“相依方程”,求k 的取值范围; (3)若关于x 的方程322x m -=-是关于x 的不等式组121x m x m m 的“相依方程”,且此时不等式组有5个整数解,试求m 的取值范围.【答案】(1)①(2)9 3.k(3)35.23m 【解析】【分析】(1)分别解三个一元一次方程与不等式组,再根据新定义作判断即可;(2)分别解不等式组与方程,再根据新定义列不等式组611,3k 解不等式组可得答案; (3)先解不等式组可得131,m x m 再根据此时不等式组有5个整数解,令整数的值为:,1,2,3,4,n n n n n 再求解02,n 而n 为整数,则1,n = 可得45,33m 再解方程可得34,x m 可得134,3431m m m m 解得3,2m 从而可得答案. (1)解:①6(2)(4)23x x +-+=,整理得:515,x = 解得:3,x =②930x -=,解得:1,3x = ③230x -=,解得:3.2x =2113(2)4x x x x ->+⎧⎨--≤⎩解不等式211x x ->+可得:2,x >解不等式324x x 可得:5,x ≤所以不等式组的解集为:2 5.x根据新定义可得:方程①是不等式组的“相依方程”.故答案为:①(2) 解:312121123x xx x ①②由①得:1,x >-由②得:1,x ≤所以不等式组的解集为:11,x36x k -=,63k x根据“相依方程”的含义可得:611,3k363,k 解得:9 3.k(3)解:121x m x m m ①②由①得:1,x m由②得:31,x m∴不等式组的解集为:131,m x m此时不等式组有5个整数解,令整数的值为:,1,2,3,4,n n n n n 11,4315n m nn m n∴1,3433n m n n n m 则43,313n n n n 解得:02,n 而n 为整数,则1,n = 12,4533m m 45,33m 因为322x m -=-, 解得:34,x m 根据“相依方程”的含义可得:134,3431m m m m 解134m m 可得:3,2m而3431m m 恒成立,所以不等式组的解集为:3,2m综上:35.23m 【点睛】本题考查了解一元一次不等式组,一元一次方程的解,理解材料中的不等式组的“相依方程”是解题的关键.4.【提出问题】已知2x y -=,且1x >,0y <,试确定x y +的取值范围.【分析问题】先根据已知条件用y 去表示x ,然后根据题中已知x 的取值范围,构建y 的不等式,从而确定y 的取值范围,同理再确定x 的取值范围,最后利用不等式的性质即可解决问题.【解决问题】解:2x y -=,2x y ∴=+.1x >,21y ∴+>,1y ∴>-.0y <,10y ∴-<<,①同理,得12x <<.②由+①②,得1102y x -+<+<+,x y ∴+的取值范围是02x y <+<.【尝试应用】(1)已知3x y -=-,且1x <-,1y >,求x y +的取值范围;(2)已知1y >,1x <-,若x y a -=成立,求x y +的取值范围(结果用含a 的式子表示).【答案】(1)11x y -<+<;(2)当2a <-时,22a x y a +<+<--【解析】【分析】(1)仿照例子,运算求解即可;(2)仿照例子,注意确定不等式有解集时a 的取值范围即当2a <-时,关于x 、y 的不等式存在解集,然后运算求解即可.【详解】(1)解:∵3x y -=-,∴3x y =-,∵1x <-,∴31y -<-,∴2y <,∵1y >,∴12y <<,①同理,得21x -<<-,②由①+②,得2112x y -+<+<-+,∴x y +的取值范围是11x y -<+<.(2)解:∵x y a -=,∴x y a =+,∵1x <-,∴1y a +<-,∴1y a <--,∵1y >,∴当2a <-时,11y a <<--,①同理,得11a x +<<-,②由①+②,得22a x y a +<+<--,∴x y +的取值范围是22a x y a +<+<--.【点睛】本题考查了不等式的性质,解一元一次不等式.能够仿照例子结合不等式的基本性质作答是解题的关键.。
初中数学一元一次不等式组解法练习1.求不等式组的整数解.解不等式组:.2.求不等式组:的整数解.3.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).4.解不等式组,并将它的解集在数轴上表示出来.5.试确定实数a的取值范围,使不等式组恰有两个整数解.6.求不等式组的正整数解.7.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).8.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)9..10.解不等式组:,并在数轴上表示出不等式组的解集.11.若关于x的不等式组恰有三个整数解,求实数a的取值范围.12.解不等式组:.13.解不等式组并把它的解集在数轴上表示出来.14.解不等式组:15.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.16.解不等式组.17.解不等式组,并写出该不等式组的整数解.18.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).19.解不等式组:,并把解集在数轴上表示出来.20.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.21.满足不等式-1≤3-2x<6的所有x的整数的和是多少?22.(1)解方程组:(2)解不等式组:23.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.24.解不等式组:.25.解下列不等式和不等式组(1)-1(2)26.解不等式组(注:必须通过画数轴求解集)27.解不等式组:并写出它的所有整数解.28.解不等式组,并把解集在数轴上表示出来.29.解不等式组:30.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)31.若不等式组的解集为,求a,b的值.32.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.33.解不等式组:34.解不等式组35.解不等式组:并写出它的所有的整数解.36.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.37.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.38.若关于x,y的方程组的解满足x<0且y<0,求m的范围.39.解不等式组:并写出它的所有整数解.40.解不等式组:并写出它的所有整数解.初中数学一元一次不等式组解法练习答案1.求不等式组的整数解.【答案】解:由①,解得:x≥-2;由②,解得:x<3,∴不等式组的解集为-2≤x<3,则不等式组的整数解为-2、-1、0、1、2.【解析】求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了一元一次不等式组的整数解,熟练掌握不等式的解法是解本题的关键.2.解不等式组:.【答案】解:,由①得,x>-1,由②得,x≤2,所以,原不等式组的解集是-1<x≤2.【解析】先求出两个不等式的解集,再求其公共解.本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).3.求不等式组:的整数解.【答案】解:由x-3(x-2)≤8得x≥-1由5-x>2x得x<2∴-1≤x<2∴不等式组的整数解是x=-1,0,1.【解析】先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.解答此题要先求出不等式组的解集,求不等式组的解集要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.4.解下列不等式组并将不等式组的解集在数轴上表示出来.(1);(2).【答案】解:(1),解①得x<1,解②得x≤-2,所以不等式组的解集为x≤-2,用数轴表示为:;(2),解①得x>-2,解②得x≤2,所以不等式组的解集为-2<x≤2,用数轴表示为:.【解析】(1)分别解两个不等式得到x<1和x≤-2,然后根据同小取小确定不等式组的解集,再利用数轴表示解集;(2)分别解两个不等式得到x>-2和x≤2,然后根据大于小的小于大的取中间确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.5.解不等式组,并将它的解集在数轴上表示出来.【答案】解:由①得:-2x≥-2,即x≤1,由②得:4x-2<5x+5,即x>-7,所以-7<x≤1.在数轴上表示为:【解析】先解不等式组中的每一个不等式,再根据大大取较大,小小取较小,大小小大取中间,大大小小无解,把它们的解集用一条数轴表示出来.本题考查不等式组的解法和解集在数轴上的表示法,如果是表示大于或小于号的点要用空心,如果是表示大于等于或小于等于号的点用实心.6.试确定实数a的取值范围,使不等式组恰有两个整数解.【答案】解:由>0,两边同乘以6得3x+2(x+1)>0,解得x>-,由x+>(x+1)+a,两边同乘以3得3x+5a+4>4(x+1)+3a,解得x<2a,∴原不等式组的解集为-<x<2a.又∵原不等式组恰有2个整数解,即x=0,1;则2a的值在1(不含1)到2(含2)之间,∴1<2a≤2,∴0.5<a≤1.【解析】先求出不等式组的解集,再根据x的两个整数解求出a的取值范围即可.此题考查的是一元一次不等式的解法,得出x的整数解,再根据x的取值范围求出a的值即可.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.7.求不等式组的正整数解.【答案】解:由①得4x+4+3>x解得x>- ,由②得3x-12≤2x-10,解得x≤2,∴不等式组的解集为- <x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.8.解不等式(组),并把它们的解集在数轴上表示出来(1)2x-1<3x+2;(2).【答案】解:(1)移项得,2x-3x<2+1,合并同类项得,-x<3,系数化为1得,x>-3 (4分)在数轴上表示出来:(6分)(2),解①得,x<1,解②得,x≥-4.5在数轴上表示出来:不等式组的解集为-4.5≤x<1,【解析】本题考查了不等式与不等式组的解法,是基础知识要熟练掌握.(1)先移项,再合并同类项、系数化为1即可;(2)先求两个不等式的解集,再求公共部分即可.9.解下列不等式(组):(1)2(x+3)>4x-(x-3)(2)【答案】解:(1)去括号,得:2x+6>4x-x+3,移项,得:2x-4x+x>3-6,合并同类项,得:-x>-3,系数化为1,得:x<3;(2),解不等式①,得:x<2,解不等式②,得:x≥-1,则不等式组的解集为-1≤x<2.【解析】本题考查的是解一元一次不等式和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解来确定不等式组的解集.10. ..【答案】解:,由①得:x≥1,由②得:x<-7,∴不等式组的解集是空集.【解析】根据不等式性质求出不等式的解集,根据找不等式组解集的规律找出即可.本题主要考查对不等式的性质,解一元一次不等式(组)等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.11.解不等式组:,并在数轴上表示出不等式组的解集.【答案】解:解①得:x>3,解②得:x≥1,则不等式组的解集是:x>3;在数轴上表示为:【解析】分别解两个不等式得到x>3和x≥1,然后利用同大取大确定不等式组的解集,再利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.若关于x的不等式组恰有三个整数解,求实数a的取值范围.【答案】解:,由①得:x>-,由②得:x<2a,则不等式组的解集为:-<x<2a,∵不等式组只有3个整数解为0、1、2,∴2<2a≤3,∴1<a≤,故答案为:1<a≤.【解析】首先利用a表示出不等式组的解集,根据解集中的整数恰好有3个,即可确定a的值.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.解不等式组:.【答案】解:由(1)得:x>-2把(2)去分母得:4(x+2)≥5(x-1)去括号整理得:x≤13∴不等式组的解集为-2<x≤13.【解析】先解不等式组中的每一个不等式,再求其公共解集即可.解不等式组应遵循的原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.解不等式组并把它的解集在数轴上表示出来.【答案】解:解不等式①得x>-2,解不等式②得x≤3,数轴表示解集为:所以不等式组的解集是-2<x≤3.【解析】分别解两个不等式得到x>-2和x≤3,再利用数轴表示解集,然后根据大小小大中间找确定不等式组的解集.本题考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.15.解不等式组:【答案】解:解不等式2x+9<5x+3,得:x>2,解不等式-≤0,得:x≤7,则不等式组的解集为2<x≤7.【解析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.已知关于x、y的方程组a为常数.(1)求方程组的解;(2)若方程组的解x>y>0,求a的取值范围.【答案】解:(1),①+②,得:3x=6a+3,解得:x=2a+1,把x=2a+1代入②,得:y=a-2,所以方程组的解为;(2)∵x>y>0,∴,解得:a>2.【解析】本题主要考查解一元一次不等式组和二元一次方程组,解题的关键是熟练掌握消元法解二元一次方程和解一元一次不等式组的能力.(1)两方程相加求出x、两方程相减可求得y;(2)由(1)中所求x、y结合x>y>0可得关于k的不等式组,解之可得.17.解不等式组.【答案】解:解不等式①得x<1解不等式②得x>-3所以原不等式组的解集为-3<x<1.【解析】把不等式组的不等式在数标轴上表示出来,看两者有无公共部分,从而解出解集.此题考查解不等式的一般方法,移项、合并同类项、系数化为1等求解方法,较为简单.18.解不等式组,并写出该不等式组的整数解.【答案】解:由得x≤1,由1-3(x-1)<8-x得x>-2,所以-2<x≤1,则不等式组的整数解为-1,0,1.【解析】首先把两个不等式的解集分别解出来,再根据大大取大,小小取小,比大的小比小的大取中间,比大的大比小的小无解的原则,求得不等式的解集,再求其整数解.本题主要考查不等式组的解集,以及在这个范围内的整数解.同时,一元一次不等式(组)的解法及不等式(组)的应用是一直是各省市中考的考查重点.19.解下列不等式(组),并把它们的解集在数轴上表示出来.(1);(2).【答案】解:(1)15-3x≥14-2x,-3x+2x≥14-15,-x≥-1,解得:x≤1,数轴表示如下:(2)解不等式①得:x≥-1,解不等式②得:x<3,∴不等式组的解集为-1≤x<3,数轴表示如下:.【解析】这是一道考查一元一次不等式与不等式组的解法的题目,解题关键在于正确解出不等式,并在数轴上表示出解集.(1)先去分母,移项,合并同类项,注意要改变符号;(2)求出每个不等式的解集,再求出公共部分,即可求出答案.20.解不等式组:,并把解集在数轴上表示出来.【答案】解:,解①得x>-3,解②得x≤2,所以不等式组的解集为-3<≤2,用数轴表示为:【解析】先分别解两个不等式得到x>-3和x≤2,再根据大小小大中间找得到不等式组的解集,然后利用数轴表示解集.本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.21.已知方程组的解x、y都是正数,且x的值小于y的值,求m的取值范围.【答案】解:方程组解得:,根据题意得:且2m-1<m+8,解得:<m<9.【解析】将m看做已知数,表示出x与y,根据题意列出不等式,求出不等式的解集即可得到m的范围.此题考查了解一元一次不等式组,以及解二元一次方程组,弄清题意是解本题的关键.22.满足不等式-1≤3-2x<6的所有x的整数的和是多少?【答案】解:根据题意得:,解①得:x≤2,解②得:x>-,则不等式组的解:-<x≤2,则整数解是:-1,0,1,2.则整数和是:-1+0+1+2=2.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解,然后求和即可.本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.(1)解方程组:(2)解不等式组:【答案】解:(1),整理得,解得 .(2),解①得:,解②得:.则不等式组的解集为.【解析】本题考查了一元一次不等式的解法及解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.(1)方程组整理后,利用加减消元法求出解即可;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.24.已知关于x,y的方程组,其中-3≤a≤1.(1)当a=-2时,求x,y的值;(2)若x≤1,求y的取值范围.【答案】解:(1),①-②,得:4y=4-4a,解得:y=1-a,将y=1-a代入②,得:x-1+a=3a,解得:x=2a+1,则,∵a=-2,∴x=-4+1=-3,y=1+2=3;(2)∵x=2a+1≤1,即a≤0,∴-3≤a≤0,即1≤1-a≤4,则1≤y≤4.【解析】(1)先解关于x、y的方程组,再将a的值代入即可得;(2)由x≤1得出关于a≤0,结合-3≤a≤1知-3≤a≤0,从而得出1≤1-a≤4,据此可得答案.此题考查了解二元一次方程组与一元一次不等式组,解题的关键是根据题意得出用a表示的x、y.25.解不等式组:.【答案】解:解不等式2x+1≥x-1,得:x≥-2,解不等式<3-x,得:x<2,∴不等式组的解集为-2≤x<2.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.26.解下列不等式和不等式组(1)-1(2)【答案】解:(1)3(x+3)≤5(2x-5)-15,3x+9≤10x-25-15,3x-10x≤-25-15-9,-7x≤-49,x≥7;(2)解不等式1-2(x-1)≤5,得:x≥-1,解不等式<x+1,得:x<4,则不等式组的解集为-1≤x<4.【解析】(1)依据解一元一次不等式的步骤依次计算可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.此题考查一元一次不等式解集的求法,切记同乘负数时变号;一元一次不等式组的解集求法,其简单的求法就是利用口诀求解,“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”.27.解不等式组(注:必须通过画数轴求解集)【答案】解:解不等式①,得:x≥2,解不等式②,得:x<4,在数轴上表示两解集如下:所以,原不等式组的解集为2≤x<4.【解析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.28.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得x<1,解不等式②,得x≥-2,所以不等式组的解集为-2≤x<1,所以它的所有整数解为-2,-1,0.【解析】本题主要考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.先求出每个不等式的解集,再确定其公共解,得到不等式组的解集,然后求其整数解.29.解不等式组,并把解集在数轴上表示出来.【答案】解:,解不等式①得,x≤2,解不等式②得,x>-1,∴不等式组的解集是-1<x≤2.用数轴表示如下:【解析】根据一元一次不等式组的解法,求出两个不等式的解集,然后求出公共解集即可.本题主要考查了一元一次不等式组的解法,注意在数轴上表示时,有等号的用实心圆点表示,没有等号的用空心圆圈表示.30.解不等式组:【答案】解:解不等式1-x>3,得:x<-2,解不等式<,得:x>12,所以不等式组无解.【解析】先分别求出各不等式的解集,再求出其公共解集即可.主要考查了一元一次不等式解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).31.解下面的不等式组,并把它们的解集在数轴上表示出来:(1)(2)【答案】解:(1),解不等式①,得x≤4,解不等式②,得x>-1,不等式①②的解集在数轴上表示如下:(2),解不等式①,得,解不等式②,得x>1,不等式①②的解集在数轴上表示如下:【解析】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.(1)分别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可;(2)别求出各不等式的解集,再求出其公共解集,然后在数轴上表示出来即可.32.若不等式组的解集为,求a,b的值.【答案】解:解第一个不等式,得:,解第二个不等式,得:,∵不等式组的解集为1≤x≤6,∴,2b=1,解得:a=12,b=.【解析】此题考查的是含有待定字母的一元一次不等式的解法,解决此题要先求出每个不等式的解集,再找出它们的公共部分,根据给出的解集转化为关于a和b的方程求解即可.33.(1)解不等式-1(2)解不等式,并将解集在数轴上表示.【答案】解:(1)去分母,得:4(x+1)<5(x-1)-6,去括号,得:4x+4<5x-5-6,移项,得:4x-5x<-5-6-4,合并同类项,得:-x<-15,系数化为1,得:x>15;(2)解不等式2x-1≥x,得:x≥1,解不等式4-5(x-2)>8-2x,得:x<2,∴不等式组的解集为1≤x<2,将解集表示在数轴上如下:【解析】(1)根据解不等式的基本步骤求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.34.解不等式组:【答案】解:由(1)得,x>3由(2)得,x≤4故原不等式组的解集为3<x≤4.【解析】分别求出各不等式的解集,再求其公共解集即可.求不等式组的解集应遵循以下原则:“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则.35.解不等式组【答案】解:解不等式-2x+1>-11,得:x<6,解不等式-1≥x,得:x≥1,则不等式组的解集为1≤x<6.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.36.解不等式组:并写出它的所有的整数解.【答案】解:,解不等式①得,x≥1,解不等式②得,x<4,所以,不等式组的解集是1≤x<4,所以,不等式组的所有整数解是1、2、3.【解析】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).先求出两个不等式的解集,再求其公共解,然后写出整数解即可.37.解不等式组把它的解集在数轴上表示出来,并写出不等式组的非负整数解.【答案】解:,由①得:x≥-1,由②得:x<3,∴不等式组的解集为-1≤x<3,在数轴上表示,如图所示,则其非负整数解为0,1,2.【解析】求出不等式组的解集,表示在数轴上,确定出非负整数解即可.此题考查了一元一次不等式组的整数解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.38.(1)解方程组(2)解不等式组并把解集在数轴上表示出来.【答案】解:(1),①+②,得:6x=18,解得:x=3,②-①,得:4y=4,解得:y=1,所以方程组的解为;(2)解不等式x-4≤(2x-1),得:x;解不等式2x-<1,得:x<3,则不等式组的解集为-≤x<3,将解集表示在数轴上如下:【解析】(1)利用加减消元法求解可得;(2)分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则及加减消元法解二元一次方程组是解答此题的关键.39.若关于x,y的方程组的解满足x<0且y<0,求m的范围.【答案】解:,①+②,得:6x=3m-18,解得:x=,②-①,得:10y=-m-18,解得:y=,∵x<0且y<0,∴,解得:-18<m<6.【解析】先解出方程组,然后根据题意列出不等式组即可求出m的范围.本题考查学生的计算能力,解题的关键是熟练运用方程组与不等式组的解法,本题属于基础题型.40.解不等式组:并写出它的所有整数解.【答案】解:,解不等式①,得,解不等式②,得x<2,∴原不等式组的解集为,它的所有整数解为0,1.【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.第21页,共21页。
一元一次不等式的解法专题训练一元一次不等式(组)的解法专题训练专题一:解一元一次不等式例题1:解:将不等式化简得:5x-3≤2x+3 或者 5x-3≥3x+5化简得:3x≥-6 或者2x≥8化XXX:x≥-2 或者x≥4因此,解集为x≥4.练题:1、-2x+6≥7x化XXX:9x≤6因此,解集为x≤2/3. 2、2x/3-2x+1/6≥1化简得:2x/3-2x≥5/6化简得:-4x/3≥5/6因此,解集为x≤-5/8.3、40-5(3x-7)≤-4(x+17) 化简得:55-15x≤-4x-68 化简得:11x≥123因此,解集为x≥11.4、x-10x-6/3≤4化简得:-7x-6/3≤4化XXX:-7x≤10因此,解集为x≥-10/7.5、(2x/3-2x+1/6)/6≥1/4化简得:2x/3-2x+1/6≥6/4化简得:2x/3-2x≥11/6化简得:-4x/3≥11/6因此,解集为x≤-11/8.6、3x/5+5x/4≤4化简得:12x/20+25x/20≤4化XXX:37x/20≤4因此,解集为x≤80/37.7、5-3x^3+5x^2≤6化简得:-3x^3+5x^2-1≤0因此,解集为-1≤x≤1.8、2x/6-1/6-5x/8+1/8≥1化简得:4x/24-3x/24-15/24+3/24≥1化XXX:x/24≥4/24因此,解集为x≥16.9、5-3x^3-5x^2≥6化简得:-3x^3-5x^2+1≥0因此,解集为x≤-1或者x≥1.10、x+2/2x-3/4-6≤1/4化简得:8x+16-6(2x-3)/8x-3≤1化简得:8x+16-12x+18/8x-3≤1化简得:-4x+34/8x-3≤1化简得:-4x+34≤8x-3化简得:12x≥37因此,解集为x≥37/12.11、x^2+xy+173y-7≤0因为不等式左边是关于x的二次函数,所以可以使用配方法将其化简为(x+y)^2+(172y-7)≤0,因此,解集为y≤7/172.专题二:解一元一次不等式组例题:解:将不等式组化XXX:x-3x+4≤0 或者 x-3x+4>0,且x+1≥0 或者 x+1<0.化简得:-2x+4≤0 或者 -2x+4>0,且x≥-1 或者 x<-1.因此,解集为x≤2且x≥-1/2.练题:1、x-3x+4<0,x+1≥0化XXX:-2x+4<0,x≥-1 因此,解集为-1<x<2. 2、x+2x-5≤0,3x-2≥0化简得:3x≤5,x≥2/3因此,解集为2/3≤x≤5/3.3、x+2x-5>0,3x-2<0化XXX:3x>5,x<2/3 因此,解集为x5/3.4、x+8m化XXX:3x>9,x>m因此,解集为x>m。
中考数学专题练习-解一元一次不等式组(含解析)一、单选题1.如果不等式组有解,那么m的取值范围是()A.m>7B.m≥7C.m<7D.m≤72.不等式组的解集在数轴上表示为()A. B.C. D.3.若不等式组无解,则实数a的取值范围是()A.a≥-1B.a<-1C.a≤1D.a≤-14.不等式组的解集是()A.x>﹣9B.x≤2C.﹣9<x≤2D.x≥25.若不等式组有解,则k的取值范围是()A.k<2B.k≥2C.k<1D.1≤k <26.不等式组的解集为x<4,则a满足的条件是()A.a<4B.a=4C.a≤4D.a≥47.不等式组的解集是()A. -1<x≤2B. -2≤x<1C.x<-1或x≥2D.2≤x <-18.如图,数轴上表示的是某一不等式组的解集,则这个不等式组可能是()A. B. C. D.9.若一元一次不等式组有解,则m的取值范围是()A.m≤6B.m≥6C.m<6D.m >610.不等式组的解集是()A.x>﹣1B.x≤2C.﹣1<x<2D.﹣1<x≤211.若关于x的一元一次不等式组有解,则m的取值范围为()A. B. C. D.12.若关于x的一元一次不等式组有解,则m的取值范围为()A. B.m≤ C.D.m≤-13.已知不等式组,其解集正确的是()A.﹣1≤x<3B.﹣1<x≤3C.x>3D.x≤﹣114.不等式组的解集是()A.x≤1B.x>﹣7C. -7<x≤1D.无解二、填空题15.若不等式组的解集为,那么的值等于________.16.若不等式组的解集是﹣1<x<1,则(a+b)2019________17.已知不等式组的解集为﹣1<x<2,则(m+n)2019________.18.不等式组的解集为________.19.不等式组的解集是________.20.若不等式组的解集是﹣1<x<1,那么(a+b)2019=________.21.已知关于x的不等式组无解,则a的取值范围为________.三、计算题22.解不等式组.23.24.解不等式组.25.解不等式组.26.解方程(1)解方程:(x﹣4)2=x﹣4;(2)解不等式组:.四、解答题27.解不等式组:.28.解不等式组:,并把解集在数轴上表示出来.五、综合题29.解方程与不等式组(1)解方程:x2+4x﹣5=0;(2)解不等式组.答案解析部分一、单选题1.如果不等式组有解,那么m的取值范围是()A.m>7B.m≥7C.m<7D.m≤7【答案】C【考点】解一元一次不等式组【解析】【分析】解出不等式组的解集,与不等式组有解相比较,得到m的取值范围.【解答】由(1)得x<7,由(2)得x>m,∵不等式组有解,∵m<x<7;∵m<7,故选C.【点评】本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集与已知解集比较,进而求得另一个未知数.2.不等式组的解集在数轴上表示为()A. B.C. D.【答案】B【考点】解一元一次不等式组【解析】【解答】解不等式∵得:x>-1,解不等式∵得:x1,∵原不等式组的解集为:-1<x 1.故答案为:B.【分析】依次解出不等式∵及不等式∵的解集,再在数轴上分别表示出来,找到解集的公共部分即可.3.若不等式组无解,则实数a的取值范围是()A.a≥-1B.a<-1C.a≤1D.a≤-1【答案】C【考点】解一元一次不等式组【解析】【解答】解:由∵得:x≥4-a由∵得:-3x>-9解之:x<3∵原不等式组无解∵4-a≥3解之:a≤1故答案为:C【分析】先求出不等式组中的每一个不等式的解集,再根据原不等式组无解,列出关于a的不等式,解不等式即可。