大豆的生物学形态特征
- 格式:doc
- 大小:27.50 KB
- 文档页数:2
大豆的生物学形态特征2010-03-22 11:07:26作者:专家来源:农科院浏览次数:94简介:1、根和根瘤:大豆是直根系,由主根、侧根、不定根组成,主根入土可深达1米左右,但80%以上根系分布在5~10厘米的土层中。
在近地表茎基部,可发生须状不定根,中耕培土能促进不定根的增多。
大豆主根...关键字:大豆形态特征1、根和根瘤:大豆是直根系,由主根、侧根、不定根组成,主根入土可深达1米左右,但80%以上根系分布在5~10厘米的土层中。
在近地表茎基部,可发生须状不定根,中耕培土能促进不定根的增多。
大豆主根和侧根上生有许多根瘤。
分布在耕作层的根瘤菌,在大豆幼苗期,受大豆根系分泌物的影响,从根毛侵入根部,刺激细胞分裂而形成根瘤。
根瘤具有固定空气中的游离氮素的作用。
出苗两周后开始固氮,到开花期迅速增加,接近成熟时固氮能力下降。
2、茎和分枝:大豆茎秆强韧,茎上有节,一般主茎有节14~20个。
幼茎有紫、绿两种颜色,紫茎开紫花,绿茎开白色。
成熟后茎呈黄褐色。
茎高一般50~100厘米。
有限结荚习性品种植株矮壮,无限结荚习性品种植株高大。
茎上有分枝,分枝的多少与品种、环境、栽培条件有密切关系。
3、叶和花序:大豆的叶分为子叶、单叶和复叶。
子叶两片,富含养分。
子叶出土前为黄色或绿色,出土后经阳光照射变为绿色,能进行光合作用。
保护子叶是实现壮苗的重要条件。
子叶展开后2~3天即长出两片对生真叶,以后每节长出由3片小叶组成的复叶。
每一复叶由托叶、叶柄、小叶组成。
研究表明,大豆光合速率与小叶厚度、单位面积叶片干重的相关性极显著,这两个性状可以作为选育高光效太豆品种的间接根据。
1/ 2大豆为总状花序,着生于叶腋间或植株顶部。
花朵簇生在花柄上,每个花簇一般有15~20朵花。
大豆落花落荚率较高,一般达30%~40%。
每一单花由苞叶、花萼、花冠、雄蕊和雌蕊组成。
苞叶两片呈管状;花萼有5个萼片,下部联合成管状;花冠蝶形,位于花萼内部,由1枚旗瓣,二枚翼瓣,二枚龙骨瓣组成;雄蕊10枚,包在龙骨瓣内,9枚联合成管状,1枚分离;雌蕊1枚,位于雄蕊管内,花柱稍弯曲,柱头球形;子房扁平,内含1~4个胚珠,表面密被茸毛。
大豆栽培的生物学基础一、大豆的形态特征(一)根和根瘤1. 根2. 根瘤3. 固氮(二)茎茎包括主茎和分枝。
主茎高度在50~100cm之间,矮者只有30cm,高者可达150cm。
直径在6~15mm之间。
主茎一般有12~20节。
大豆幼茎有绿色与紫色两种。
绿茎开白花,紫茎开紫花。
按分枝的多少、强弱将株型分为主茎型、中间型、分枝型三种。
(三)叶大豆叶有子叶、单叶、复叶之分。
子叶展开后约3d,随着上胚轴伸长,第二节上先出现2片单叶,第三节上出生一片三出复叶。
叶片寿命30~70d不等,下部叶寿命最短。
(四)花和花序大豆的花序着生在叶腋间或茎顶端,为总状花序。
一个花序上的花朵通常是簇生的,俗称花簇。
花冠为蝴蝶形,雄蕊共10枚。
大豆是自花授粉作物,天然杂交率不到1%。
(五)荚和种子大豆荚由子房发育而成。
荚的表皮被茸毛,个别品种无茸毛。
荚色有黄、灰褐、褐、深褐。
大豆荚粒数各品种有一定的稳定性。
每荚多含 2~3粒种子。
种子形状可分为圆形、卵圆形、长卵圆形、扁圆形等。
百粒重5g以下为极小粒种,5~9.9g为小粒种,10~14.9g为中小粒种,15~19.9g为中粒种,20~24.9g为中大粒种,25~29.9g为大粒种,30g以上为特大粒种。
子粒大小与品种和环境条件有关。
胚由两片子叶、胚芽和胚轴组成。
二、大豆的结荚习性1. 无限结荚习性2. 有限结荚习性3. 亚有限结荚习性三、大豆的生长发育(一)大豆的一生1.子的萌发和出苗播种层温度稳定在10℃时,种子即可发芽。
发芽需要吸收相当于本身重量120%~140%的水分。
随着下胚轴伸长,子叶带着幼芽拱出地面。
子叶出土即为出苗。
2.幼苗生长子叶出土展开后,经过4~5d,原始真叶展开,已具有两个节。
真叶展开到第一复叶展平大约需10d。
此后,每隔3~4d出现一片复叶,出苗到分枝出现,叫做幼苗期。
3. 花芽分化早熟品种较早,晚熟品种较迟;无限性品种较早,有限性品种较迟。
4. 开花结荚大豆花蕾膨大到花朵开放需3~4d。
大豆遗传多样性与细胞学特征分析大豆是世界上广泛栽培的经济作物之一,具有重要的食品、饲料和工业应用价值。
随着人们对大豆资源的广泛利用,对其遗传多样性和细胞学特征的研究也日益受到重视。
遗传多样性是指物种内部生物个体间基因型和表现型的差异。
大豆作为典型的自花授粉作物,自然条件下其种群遗传多样性较低。
但是,随着人类对其种质资源的收集、保存、筛选和利用,大豆的遗传多样性得到了极大的丰富和提高,不同的种质资源之间表现出丰富的形态、生理和产量特征。
因此,评价和利用大豆遗传多样性对于选择育种材料、提高产量和优化种植结构具有重要的作用。
现代生物技术手段和分子标记技术的发展,为大豆遗传多样性的研究提供了强有力的工具。
分子标记技术是一种通过特定基因片段的变异或多态性与性状表现之间的关系来评价物种内部遗传多样性的一种方法。
PCR-RFLP、SSR和SNP等分子标记技术已经广泛应用于大豆遗传多样性的研究中,并且取得了令人瞩目的成果。
其中,SSR技术是目前应用最广泛的一种分子标记技术。
研究结果表明,大豆种子来源和生长环境等因素对其遗传多样性有着显著的影响,并且遗传多样性在不同品种和种群间的差异比单株内部差异更大。
细胞学特征是指大豆细胞形态、结构和功能等方面的表现。
对大豆细胞学特征的研究的主要目的是为了探讨大豆种质资源的分布规律、田间表现形态和遗传特性之间的关系,以及为大豆育种和种植管理提供依据。
目前,大豆细胞学特征主要以花粉学和染色体学两种类型进行研究。
花粉学是指对大豆花粉外形、萌发和发育过程的观察和研究。
大豆花粉是大豆基础繁殖学研究的一个重要组成部分,具有显著的形态特征。
研究表明,大豆花粉萌发过程的变异性和花粉数目的差异对种间杂交的效果产生重要影响。
因此,研究大豆花粉学特征具有重要的理论和应用价值。
染色体学是指对染色体形状、大小、数量和结构等方面的研究。
大豆染色体学研究主要集中在核型学、基因组大小计算和基因定位等方面。
近年来,随着分子标记技术的不断发展,大豆的遗传图谱已经逐渐建立,并且已经识别出数百个位于不同染色体上的QM基因。
大豆生物学与基础遗传学研究大豆,是一种极为重要的作物,是我们日常饮食中的重要来源之一。
然而,对于许多人来说,大豆只是一个食材,一个常见的食品原材料。
实际上,大豆在农业、生物学甚至人类历史上都有着极为重要的地位,尤其是在基础遗传学研究中,大豆也是一个极为重要的模式生物。
从生物学层面来说,大豆是一种十分特别的植物,作为固氮植物,大豆拥有着许多独特的生理特征。
固氮植物能够通过根瘤中的根瘤菌将空气中的氮转化为植物可用的氮素,从而为自身提供重要的养分。
这对于农业来说具有巨大的意义,在农业生产中,种植水稻与小麦等传统农作物的同时,通过种植大豆来提高土地的养分,一直是农业生产中的主要策略之一。
另外,大豆还是一种极为复杂的植物系统,其基因组大小为950Mb,是除了烟草外已知的与基因组大小最近似的植物。
大豆的基因组拥有40,000-50,000个基因,其中富含优良的农艺性状基因,有着广泛的应用前景。
这也是为什么大豆成为了基础遗传学研究的理想模式生物的原因之一。
基础遗传学研究是现代遗传学的基础研究,是研究生命的基本结构和功能等遗传基础的学科。
在基础遗传学的研究中,大豆是一种非常重要的模式生物。
首先,大豆是一种极为复杂的群体,其基因组表现出了显著的基因组重塑现象。
研究大豆的基因组重塑在深入理解物种进化、遗传演化和基因组进化等方面均具有重要意义。
另外,由于大豆拥有着丰富的遗传变异,这使得研究人员可以从大豆中挑选出具有特定性状的个体进行深入研究。
这对于遗传学研究来说具有重要的意义,使得研究人员可以深入理解不同基因对物种形成和进化过程的影响。
在大豆的基因研究中,许多经典遗传学实验方法都能够被很好地应用。
例如孟德尔守则的适用已经被多次证实。
此外,大豆还被广泛应用在等位基因分析、基因定位和基因克隆方面的研究中,并在这些方面都取得了重要的研究成果。
在国内,大豆研究得到了广泛的关注和支持。
例如,华南农业大学成立了“国家基础研究重点发展计划大豆分子育种创新团队”,有力地促进了大豆基因研究和育种工作的开展。
大豆实验报告摘要:本实验旨在研究大豆的生长和发育过程,并探讨其对环境因素的适应性。
通过观察大豆在不同条件下的生长情况,分析其生长速度、根系发育、叶片形态等特征,以及对光照、温度和水分等环境因素的响应。
实验结果表明,大豆在适宜的环境条件下能够健康生长,并对环境因素表现出一定的适应性。
引言:大豆是一种重要的农作物,具有丰富的营养价值和广泛的应用价值。
了解大豆的生长和发育规律,对于提高大豆的产量和质量具有重要意义。
因此,本实验旨在通过对大豆的观察和分析,深入了解其生长过程和对环境因素的响应。
材料与方法:1. 实验材料:大豆种子、培养皿、培养基、水、光源等。
2. 实验步骤:a. 将大豆种子浸泡在水中,使其充分吸水。
b. 在培养皿中铺一层湿润的培养基。
c. 将浸泡后的大豆种子均匀地撒在培养基上。
d. 将培养皿放置在适宜的光照条件下,并保持适宜的温度和湿度。
e. 每天观察大豆的生长情况,并记录相关数据。
f. 持续观察一段时间后,对大豆进行综合分析。
结果与讨论:1. 大豆的生长速度:经过一段时间的观察,我们发现大豆的生长速度较快,幼苗迅速出土,并逐渐长高。
2. 根系发育:大豆的根系发育良好,根系逐渐扩展并向下生长,为植物提供养分和水分。
3. 叶片形态:大豆的叶片呈羽状复叶,叶片表面光滑,叶色鲜绿。
4. 光照对大豆的影响:大豆对光照的需求较高,充足的光照能促进其光合作用,提高养分合成效率。
5. 温度对大豆的影响:适宜的温度有利于大豆的生长,过高或过低的温度会影响其生长速度和发育状况。
6. 水分对大豆的影响:适宜的水分条件是大豆生长的基础,过多或过少的水分都会对大豆的生长产生不利影响。
结论:通过本实验的观察和分析,我们得出以下结论:1. 大豆在适宜的环境条件下能够健康生长,生长速度较快。
2. 大豆的根系发育良好,为植物提供养分和水分。
3. 光照、温度和水分是影响大豆生长的重要环境因素。
4. 大豆对光照的需求较高,适宜的温度和水分条件有利于其生长和发育。
大豆的生物学形态特征
2010-03-22 11:07:26 作者:专家来源:农科院浏览次数:94
简介: 1、根和根瘤:大豆是直根系,由主根、侧根、不定根组成,主根入土可深达1米左右,但80%以上根系分布在5~10厘米的土层中。
在近地表茎基部,可发生须状不定根,中耕培土能促进不定根的增多。
大豆主根 ...
关键字:大豆形态特征
1、根和根瘤:大豆是直根系,由主根、侧根、不定根组成,主根入土可深达1米左右,但80%以上根系分布在5~10厘米的土层中。
在近地表茎基部,可发生须状不定根,中耕培土能促进不定根
的增多。
大豆主根和侧根上生有许多根瘤。
分布在耕作层的根瘤菌,在大豆幼苗期,受大豆根系分泌物的影响,从根毛侵入根部,刺激细胞分裂而形成根瘤。
根瘤具有固定空气中的游离氮素的作用。
出苗两周后开始固氮,到开花期迅速增加,接近成熟时固氮能力下降。
2、茎和分枝:大豆茎秆强韧,茎上有节,一般主茎有节14~20个。
幼茎有紫、绿两种颜色,紫茎开紫花,绿茎开白色。
成熟后茎呈黄褐色。
茎高一般50~100厘米。
有限结荚习性品种植株矮壮,无限结荚习性品种植株高大。
茎上有分枝,分枝的多少与品种、环境、栽培条件有密切关系。
3、叶和花序:大豆的叶分为子叶、单叶和复叶。
子叶两片,富含养分。
子叶出土前为黄色或
绿色,出土后经阳光照射变为绿色,能进行光合作用。
保护子叶是实现壮苗的重要条件。
子叶展开后2~3天即长出两片对生真叶,以后每节长出由3片小叶组成的复叶。
每一复叶由托叶、叶柄、小叶组成。
研究表明,大豆光合速率与小叶厚度、单位面积叶片干重的相关性极显著,这两个性状可以作为选育高光效太豆品种的间接根据。
大豆为总状花序,着生于叶腋间或植株顶部。
花朵簇生在花柄上,每个花簇一般有15~20朵
花。
大豆落花落荚率较高,一般达30%~40%。
每一单花由苞叶、花萼、花冠、雄蕊和雌蕊组成。
苞叶两片呈管状;花萼有5个萼片,下部联合成管状;花冠蝶形,位于花萼内部,由1枚旗瓣,二枚翼瓣,二枚龙骨瓣组成;雄蕊10枚,包在龙骨瓣内,9枚联合成管状,1枚分离;雌蕊1枚,位于雄蕊管内,花柱稍弯曲,柱头球形;子房扁平,内含1~4个胚珠,表面密被茸毛。
花为白色或紫色,自花授粉。