2017届中考数学重要知识点复习:圆基本定理(图片版)
- 格式:doc
- 大小:225.50 KB
- 文档页数:2
20171、圆的定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 随之旋转形成的图形叫做圆,固定的端点叫 ,线段OA 叫做2、弦与弧:弦:连接圆上任意两点的 叫做弦弧:圆上任意两点间的 叫做弧,弧可分为 、 、 三类 相等的弧:能够 的圆弧称为相等的弧3、过一点可作 个圆。
过两点可作 个圆,以这两点之间的线段的 上任意一点为圆心即可。
过三点可作 个圆。
过四点可作 个圆。
4、旋转与旋转中心的概念一般地,一个图形变为另一个图形,在运动的过程中,原图形上的所有点都绕一个固定的点,按同一个方向,转圆圆的相关计算 圆的相关证明概 念5、图形旋转的性质(1)图形旋转所得到的图形和原图形全等 (2)对应点到旋转中心的距离相等。
(3)任何一对对应点与旋转中心连线所成的角度等于旋转的角度6、垂径定理:垂直于弦的直径 ,并且平分 垂径定理的逆定理1:平分弦()的直径垂直于弦,并且平分垂径定理的逆定理2:平分弧的直径 7、圆心角定理:在同圆或等圆中,相等的圆心角所对的 ,所对的圆心角定理的关系定理(为了便于记忆,我个人这样称呼的):在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对量相等,那么 都相等。
注解:在由“弦相等,得出弧相等”或由“弦心距相等,得出弧相等”时,这里的“弧相等”是指对应的劣弧与劣弧相等,优弧与优弧相等。
在题目中,若让你求⌒AB ,那么所求的是弧长 8、圆周角定理:一条弧所对的圆周角等于它所对的圆周角定理推论1:半圆(或直径)所对的圆周角是 ;90°的圆周角所对的弦是圆周角定理推论2:在同圆或等圆中, 所对的圆周角相等;相等的圆周角所对 的也相等9、如果一个四边形的的各个顶点在同一个圆上,那么这个四边形叫做圆的内接四边形,这个圆叫做四边形的外接圆。
圆内接四边形有以下的性质定理:圆内接四边形的对角互补 【圆内接平行四边形是 】10、① 我们把各边相等,各内角也相等的多边形叫做正多边形② 我们把经过一个正多边形的各个顶点的圆叫做这个正多边形的外接圆,这个正多边形也就叫做圆内接多边形。
九年级数学圆知识点总结图在九年级数学学习中,圆是一个重要的概念。
掌握圆的相关知识点,不仅有助于解决各种实际问题,还为进一步学习几何学打下基础。
本文将从圆的定义开始,逐步展开对圆的相关知识点进行总结。
一、圆的定义圆是指平面上到一个定点距离相等的点的集合。
其中,定点称为圆心,距离称为半径。
如图所示,圆心为O,半径为r。
二、圆的性质1. 圆的周长圆的周长等于2π乘以半径r,即C = 2πr。
2. 圆的面积圆的面积等于π乘以半径r的平方,即A = πr²。
3. 切线与圆的关系如果一条直线与圆相切,那么这条直线与半径的夹角是直角。
三、圆的相关线段1. 直径直径是通过圆心的两个点之间的线段。
直径的长度等于半径的两倍。
2. 弧圆上两个点之间的部分称为弧。
弧可看作是一段弧度所确定的圆周,弧度即圆心角(以弧长与半径相等的夹角)所对应的弧长占整个圆周的比例。
3. 弦弦是连接圆上两点的线段。
四、圆与直线的位置关系1. 判断圆与直线的位置关系若直线与圆有且仅有一个交点,则直线与圆相切;若直线不与圆相交,则直线与圆相离;若直线与圆相交于两个点,则直线与圆相交。
2. 判断圆与直线的相交情况判断圆与直线的相交情况,可通过判别式进行计算。
设直线方程为Ax + By + C = 0,圆的方程为(x - a)² + (y - b)² = r²,则判别式为D = Aa + Bb + C² - r²(A² + B²)。
- 若D > 0,圆与直线相离;- 若D < 0,圆与直线相交于两个不重合的交点;- 若D = 0,圆与直线相切于一个交点。
五、圆的投影1. 圆在平面上的投影当圆在平面上进行投影时,投影为一个椭圆。
投影的长轴与圆垂直,短轴平行于圆的平面。
2. 圆柱的投影圆柱的投影为一个矩形,当圆柱与投影面垂直时,矩形的两边等长。
六、圆的旋转1. 圆的旋转如果一个圆绕着一条与其所在平面垂直的轴旋转,那么旋转后的图形仍然是一个圆。
数学圆知识点总结图文圆是平面上到定点的距离不大于定长的点的集合,其中定点称为圆心,定长称为半径。
圆的直径是由圆心穿过圆上一点并且与圆相交的线段的两端点组成,直径的长度等于半径长度的两倍。
圆的性质:1. 圆的周长公式:C=2πr,其中 r 为圆的半径,C 为圆周的长度。
2. 圆的面积公式:A=πr²,其中 r 为圆的半径,A 为圆的面积。
3. 弧长与扇形面积:圆的周长也称为圆的弧长,根据圆的性质,圆的周长与圆的面积之间存在一定的比例关系:一个圆的圆心角所对的弧所对应的圆是圆的周长的多少分之多少,所以圆的弧长也可以用来求圆的扇形面积。
4. 弧度制:圆的周长等于2πr,我们可以用圆的半径作为角度的一个单位,定义一个完整圆的周长等于圆周的角度为 360°,所以我们定义一个弧度=半径的长度。
5. 切线和切点:在圆上的一点上可以作至多两个切线,同时,在同一个圆上,两个切点构成一对对称轴。
6. 直径和半径的关系:直径的长度等于半径的长度的两倍。
7. 弦和弦长:圆上的弦是圆上两个点之间的线段,而这段线段的长度就是弦长。
8. 内接四边形:内切于圆的四边形称为内接四边形,在内接四边形中,相邻两条边的和等于另外两条边的和,也就是说,相邻两条边相等。
9. 弧与圆心角:一个圆的周长也可以称为圆的弧长,一条切线与半径所夹的角就是等于它所对应的圆弧的角,这个角称为圆心角。
10. 圆锥曲线:圆锥曲线是一种经常被用来描述物理定律的曲线,其中圆是最简单的一种。
圆的定义可以被一组关于圆心和半径的方程来描述,其中的点被定义为满足这组方程的点。
11. 圆锥截线:直线直接经过球面内部一点并且与球面相交的弧的两端点构成,这个线段就称为圆锥截线,一个圆锥截线具有和球面具有相同圆心和半径。
12. 弧度与角度:弧度是圆周上的弧与圆心所夹得的角。
13. 切线和切点:在圆上的一点上可以作至多两个切线,同时,在同一个圆上,两个切点构成一对对称轴。
圆的知识点总结图圆的知识点总结圆是几何学中的一种二维图形,其定义为一个平面上的所有点到一个固定点的距离都相等。
圆由固定点称为圆心和以圆心为中心的固定距离称为半径构成。
1. 圆的性质- 所有点到圆心的距离相等,这个距离就是圆的半径。
所有的半径长度相等。
- 圆的直径是通过圆心的线段,且直径长度等于半径的两倍。
- 圆的周长是圆周上所有点连成的线段的总长度,公式为周长= 2πr,其中r为半径。
- 圆的面积是圆内部所有点围成的区域的大小,公式为面积 =πr^2。
2. 圆的相关概念- 弧:圆上的一段弧是指两个点之间的弧度所对应的弧长。
- 弦:连接圆上两个点的线段称为弦,它可以是圆内的一段弦,也可以是直径。
- 弦长:弦的长度称为弦长。
- 弧长:弧所对应的弧长是指圆上的两个点之间的直线距离。
- 弧度:弧度是弧所对应的圆心角的大小,一个弧度等于圆的半径长对应的弧长。
- 扇形:由圆心和圆上的两个点所围成的区域称为扇形,它包括一段弧和两个弧所对的的半径组成。
- 相交圆:两个圆相交于两个点。
- 切圆:一个圆与另一个圆相切,意味着两个圆只有一个公共点。
3. 圆的定位和画法- 圆心和半径确定一个圆,圆心可以用点的坐标表示。
- 圆可以用半径和圆心的坐标表示。
- 圆可以通过画一个圆心和围绕圆心画一个为半径的圆周来画出。
4. 圆与其他几何图形的关系- 圆与直线的关系:直线可以穿过圆,可以与圆相切,也可以完全在圆内或圆外。
- 圆与多边形的关系:正多边形的外接圆即为将多边形的顶点都放置在一个圆上的圆。
- 圆与三角形的关系:圆可以与三角形的顶点相连形成三角形的内切圆或外接圆。
5. 圆的应用- 圆的应用广泛,特别是在建筑、设计和工程领域中。
- 圆形物体的表面积可以通过计算圆的面积来求解。
- 圆形物体的周长可以通过计算圆的周长来求解。
- 圆的几何性质在数学的解题中也经常被使用。
总结:圆在几何学中占据重要的位置,具有许多独特的性质和应用。
对圆的认识和理解,不仅可以帮助我们解决与圆相关的问题,还能增强我们对几何学的理解和应用能力。
一张图让你看透中考数学有关圆的知识点!一张图让你看透中考数学有关圆的知识点!安徽中考考试通05-20 11:27关注数学在中考中占了一席之地,而圆又是数学必考的一部分,学生必须对圆的知识点掌握熟练。
一张图让你纵观一切有关的圆的知识点,对中考的你一定有所裨益!展开全文热门评论哈利波波94409002你这是用的哪个版本的教材?展开打开今日头条查看更多评论精彩推荐小学生作业:老师看得脸羞红,爸爸很尴尬?妈妈拿扫把打?打开头条阅读浪花一朵10小时前2017高考录取分数线 2017年各省高考录取分数线预测打开头条阅读深圳之窗10小时前挤痘痘出脓液,痘还没好,那是没用对方法试这个看颜肌广告2017事业单位工资标准表(最新)打开头条阅读江西华图02-23一年级数学速算题目,家长来看看打开头条阅读茵苗教育02-06一道小学应用题,考哭了100万家长!2017年最难应用题!打开头条阅读志强的农村生活故事01-222017中考时间表,家长考生请收好!打开头条阅读最高分03-03初中生背下这8大公式,中考数学分分钟考145分!打开头条阅读围棋快手小江03-13孩子中考后,一位母亲的后悔独白,点醒了无数家长!打开头条阅读小玉搞笑专业户01-12教师资格证面试全真模拟打开头条观看恒智教师04-1709:312017全国各省份高考录取分数线预测!建议收藏!打开头条阅读叛逆的自我05-03会计证不再取消,即日起会计从业资格证改为打开头条阅读话题03-12其实科二考试一点也不难做好这些细节准过关!打开头条阅读驾驶员考试03-24只拿死工资没有出路,六个值钱的证书,值得你奋斗下去打开头条阅读文娱多宝阁02-28一个班37人进清华北大,班主任的短信让家长无言打开头条阅读忠犬无二01-29小学1~6年级所有数学公式!给孩子打印出来,不用再去翻书了!打开头条阅读王雷的良师益友04-26加载更多精彩推荐...捕蜓郎一直在努力,从未停止过,你们的陪伴是我最大的动力!记得点赞评论哦!订阅、关注不迷路!打开今日头条,查看精彩内容 >广告【劲爆】99%不知道为什么佩戴这款貔貅手链?--点击揭秘。
初三圆的知识点总结图一、圆的基本定义1. 圆的定义- 圆心- 半径- 直径- 圆周2. 圆的表示方法- 用圆心坐标和半径表示- 用方程式表示二、圆的性质1. 圆的对称性- 轴对称- 中心对称2. 圆的内接图形- 弦- 直径- 切线3. 圆的外切图形- 外切正多边形- 外切圆三、圆的计算公式1. 圆的周长计算公式- 周长与直径的关系- 周长与半径的关系2. 圆的面积计算公式- 面积与半径的关系 - 环形面积的计算四、圆的应用1. 圆在几何中的应用- 圆与直线的关系- 圆与圆的关系2. 圆在实际生活中的应用 - 建筑设计- 机械制造- 日常生活中的圆五、圆的相关定理1. 垂径定理- 定理内容- 定理的应用2. 圆周角定理- 定理内容- 定理的应用3. 圆的切线定理- 切线与半径的关系 - 切线与弦的关系六、圆的作图方法1. 用圆规画圆- 步骤说明- 注意事项2. 圆的五等分- 方法介绍- 应用实例七、圆的方程1. 标准圆方程- 方程形式- 参数解释2. 一般圆方程- 方程形式- 参数解释八、圆与坐标系1. 圆的坐标方程- 圆心和半径的坐标表示- 圆与坐标轴的关系2. 圆与直线的交点- 解析方法- 交点求解九、圆的进阶知识1. 圆锥曲线- 椭圆- 双曲线- 抛物线2. 非欧几何中的圆- 球面几何- 双曲几何请根据上述框架在Word文档中创建内容,并添加适当的图表、公式和示例以增强文档的可读性和实用性。
您可以根据实际需要调整各个部分的内容和顺序。
记得在编辑时使用清晰、专业的语言,并确保文档的格式规范、逻辑清晰。
《圆》知识点及定理一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;内含(图5)⇒无交点⇒d R r<-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。
推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB是直径②AB CD⊥③CE DE=④弧BC=弧BD⑤弧AC=弧AD中任意2个条件推出其他3个结论。
初中数学中考圆的知识点:初三数学圆知识点
圆的知识:平面上一条线段,绕它的一端旋转360°,留下的轨迹叫圆。
圆心:
(1)如定义(1)中,该定点为圆心
(2)如定义(2)中,绕的那一端的端点为圆心。
(3)圆任意两条对称轴的交点为圆心。
(4) 垂直于圆内任意一条弦且两个端点在圆上的线段的二分点为圆心。
注:圆心一般用字母O表示
直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。
直径一般用字母d表示。
半径:连接圆心和圆上任意一点的线段,叫做圆的半径。
半径一般用字母r表示。
圆的直径和半径都有无数条。
圆是轴对称图形,每条直径所在的直线是圆的对称轴。
在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。
圆的半径或直径决定圆的大小,圆心决定圆的位置。
圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
圆的周长与直径的比值叫做圆周率。
圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。
计算时,通常取它的近似值,π≈3.14。
直径所对的圆周角是直角。
90°的圆周角所对的弦是直径。
圆的面积公式:圆所占平面的大小叫做圆的面积。
πr,用字母S表示。
一条弧所对的圆周角是圆心角的二分之一。
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
知识必备10圆(公式、定理、结论图表)考点一、圆的有关概念1.圆的定义如图所示,有两种定义方式:①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆.固定的端点O叫做圆心,以O为圆心的圆记作⊙O,线段OA叫做半径;②圆是到定点的距离等于定长的点的集合.要点诠释:圆心确定圆的位置,半径确定圆的大小.2.与圆有关的概念①弦:连接圆上任意两点的线段叫做弦;如上图所示线段AB,BC,AC都是弦.②直径:经过圆心的弦叫做直径,如AC是⊙O的直径,直径是圆中最长的弦.③弧:圆上任意两点间的部分叫做圆弧,简称弧,如曲线BC、BAC都是⊙O中的弧,分别记作 BC,BAC.④半圆:圆中任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆,如AC是半圆.⑤劣弧:像BC这样小于半圆周的圆弧叫做劣弧.⑥优弧:像BAC这样大于半圆周的圆弧叫做优弧.⑦同心圆:圆心相同,半径不相等的圆叫做同心圆.⑧弓形:由弦及其所对的弧组成的图形叫做弓形.⑨等圆:能够重合的两个圆叫做等圆.⑩等弧:在同圆或等圆中,能够互相重合的弧叫做等弧.�圆心角:顶点在圆心的角叫做圆心角,如上图中∠AOB,∠BOC是圆心角.�圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角,如上图中∠BAC、∠ACB都是圆周角.要点诠释:圆周角等于它所对的弧所对的圆心角的一半.圆外角度数等于它所夹弧的度数的差的一半.圆内角度数等于它所夹弧的度数的和的一半.典例1:如图,AB是⊙O的弦,OC⊥AB,垂足为C,OD∥AB,OC=OD,则∠ABD的度数为()A.90°B.95°C.100°D.105°【分析】连接OB,则OC=OB,由OC⊥AB,则∠OBC=30°,再由OD∥AB,即可求出答案.【解答】解:如图:连接OB,则OB=OD,∵OC=OD,∴OC=OB,∵OC⊥AB,∴∠OBC=30°,∵OD∥AB,∴∠BOD=∠OBC=30°,∴∠OBD=∠ODB=75°,∠ABD=30°+75°=105°.故选:D.【点评】本题考查了圆,平行线的性质,解直角三角形,等腰三角形的有关知识;正确作出辅助线、利用圆的半径相等是解题的关键.考点二、圆的有关性质1.圆的对称性圆是轴对称图形,经过圆心的直线都是它的对称轴,有无数条.圆是中心对称图形,圆心是对称中心,又是旋转对称图形,即旋转任意角度和自身重合.2.垂径定理①垂直于弦的直径平分这条弦,且平分弦所对的两条弧.②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.如图所示.要点诠释:在图中(1)直径CD,(2)CD⊥AB,(3)AM=MB,(4)C CA B=,(5)AD BD=.若上述5个条件有2个成立,则另外3个也成立.因此,垂径定理也称“五二三定理”.即知二推三.注意:(1)(3)作条件时,应限制AB不能为直径.3.弧、弦、圆心角之间的关系①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等;②在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,它们所对应的其余各组量也相等.4.圆周角定理及推论①圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.②圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:圆周角性质的前提是在同圆或等圆中.典例2:石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长)AB=26m,设所在圆的圆心为O,半径OC⊥AB,垂足为D.拱高(弧的中点到弦的距离)CD=5m.连接OB.(1)直接判断AD与BD的数量关系;(2)求这座石拱桥主桥拱的半径(精确到1m).【分析】(1)根据垂径定理便可得出结论;(2)设主桥拱半径为R,在Rt△OBD中,根据勾股定理列出R的方程便可求得结果.【解答】解:(1)∵OC⊥AB,∴AD=BD;(2)设主桥拱半径为R,由题意可知AB=26,CD=5,∴BD=AB=13,OD=OC﹣CD=R﹣5,∵∠ODB=90°,∴OD2+BD2=OB2,∴(R﹣5)2+132=R2,解得R=19.4≈19,答:这座石拱桥主桥拱的半径约为19m.【点评】此题考查了垂径定理,勾股定理.此题难度不大,解题的关键是方程思想的应用.典例3:牂牁江“余月郎山,西陵晚渡”的风景描绘中有半个月亮挂在山上,月亮之上有个“齐天大圣”守护洞口的传说.真实情况是老王山上有个月亮洞,洞顶上经常有猴子爬来爬去,如图是月亮洞的截面示意图.(1)科考队测量出月亮洞的洞宽CD约是28m,洞高AB约是12m,通过计算截面所在圆的半径可以解释月亮洞像半个月亮,求半径OC的长(结果精确到0.1m);(2)若∠COD=162°,点M在上,求∠CMD的度数,并用数学知识解释为什么“齐天大圣”点M在洞顶上巡视时总能看清洞口CD的情况.【分析】(1)设OA=OC=Rm,利用勾股定理求出R即可;(2)补全⊙O,在CD的下方取一点N,连接CN,DN,CM,DM,利用圆周角定理,圆内接四边形的性质求解即可.【解答】解:(1)设OA=OC=Rm,∵OA⊥CD,∴CB=BD=CD=14m,在Rt△COB中,OC2=OB2+CB2,∴R2=142+(R﹣12)2,∴R=,∴OC=≈14.2m.(2)补全⊙O,在CD的下方取一点N,连接CN,DN,CM,DM,∵∠N=∠COD=81°,∵∠CMD+∠N=180°,∴∠CMD=99°.∵∠CMD=99°不变,是定值,∴“齐天大圣”点M在洞顶上巡视时总能看清洞口CD的情况.【点评】本题考查垂径定理的应用,圆周角定理,圆内接四边形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.典例4:如图,圆中扇子对应的圆心角α(α<180°)与剩余圆心角β的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则β﹣α的度数是90°.【分析】根据已知,列出关于α,β的方程组,可解得α,β的度数,即可求出答案.【解答】解:根据题意得:,解得,∴β﹣α=225°﹣135°=90°,故答案为:90°.【点评】本题考查圆心角,解题的关键是根据周角为360°和已知,列出方程组.典例5:如图,四边形ABCD内接于⊙O,BD为⊙O的直径,AC平分∠BAD,CD=2,点E在BC的延长线上,连接DE.(1)求直径BD的长;(2)若BE=5,计算图中阴影部分的面积.【分析】(1)由BD为⊙O的直径,得到∠BCD=90°,AC平分∠BAD,得到∠BAC=∠DAC,所以BC=DC,△BDC是等腰直角三角形,即可求出BD的长;(2)因为BC=DC,所以阴影的面积等于三角形CDE的面积.【解答】解:(1)∵BD为⊙O的直径,∴∠BCD=∠DCE=90°,∵AC平分∠BAD,∴∠BAC=∠DAC,∴BC=DC=2,∴BD=2×=4;(2)∵BE=5,∴CE=3,∵BC=DC,∴S阴影=S△CDE=×2×=6.【点评】本题考查了圆的性质,等腰直角三角形的判定和性质,三角形的面积的计算,熟练掌握圆周角定理是解题的关键.考点三、与圆有关的位置关系1.点与圆的位置关系如图所示.d表示点到圆心的距离,r为圆的半径.点和圆的位置关系如下表:点与圆的位置关系d与r的大小关系点在圆内d<r点在圆上d=r点在圆外d>r要点诠释:(1)圆的确定:①过一点的圆有无数个,如图所示.②过两点A、B的圆有无数个,如图所示.③经过在同一直线上的三点不能作圆.④不在同一直线上的三点确定一个圆.如图所示.(2)三角形的外接圆经过三角形三个顶点可以画一个圆,并且只能画一个.经过三角形三个顶点的圆叫做三角形的外接圆.三角形外接圆的圆心叫做这个三角形的外心.这个三角形叫做这个圆的内接三角形.三角形的外心就是三角形三条边的垂直平分线交点.它到三角形各顶点的距离相等,都等于三角形外接圆的半径.如图所示.2.直线与圆的位置关系①设r为圆的半径,d为圆心到直线的距离,直线与圆的位置关系如下表.②圆的切线.切线的定义:和圆有唯一公共点的直线叫做圆的切线.这个公共点叫切点.切线的判定定理:经过半径的外端.且垂直于这条半径的直线是圆的切线.友情提示:直线l是⊙O的切线,必须符合两个条件:①直线l经过⊙O上的一点A;②OA⊥l.切线的性质定理:圆的切线垂直于经过切点的半径.切线长定义:我们把圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角.③三角形的内切圆:与三角形各边都相切的圆叫三角形的内切圆,三角形内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形,三角形的内心就是三角形三个内角平分线的交点.要点诠释:找三角形内心时,只需要画出两内角平分线的交点.三角形外心、内心有关知识比较3.圆与圆的位置关系在同一平面内两圆作相对运动,可以得到下面5种位置关系,其中R、r为两圆半径(R ≥r).d为圆心距.要点诠释:①相切包括内切和外切,相离包括外离和内舍.其中相切和相交是重点.②同心圆是内含的特殊情况.③圆与圆的位置关系可以从两个圆的相对运动来理解.④“r 1-r 2”时,要特别注意,r 1>r 2.典例6:如图,△ABC 是⊙O 的内接三角形,∠ACB =60°,AD 经过圆心O 交⊙O 于点E ,连接BD ,∠ADB =30°.(1)判断直线BD 与⊙O 的位置关系,并说明理由;(2)若AB =4,求图中阴影部分的面积.【分析】(1)连接BE ,根据圆周角定理得到∠AEB =∠C =60°,连接OB ,根据等边三角形的性质得到∠BOD =60°,根据切线的判定定理即可得到结论;(2)根据圆周角定理得到∠ABE =90°,解直角三角形得到OB ,根据扇形和三角形的面积公式即可得到结论.【解答】解:(1)直线BD 与⊙O 相切,理由:连接BE ,∵∠ACB =60°,∴∠AEB =∠C =60°,连接OB ,∵OB =OE ,∴△OBE是等边三角形,∴∠BOD=60°,∵∠ADB=30°,∴∠OBD=180°﹣60°﹣30°=90°,∴OB⊥BD,∵OB是⊙O的半径,∴直线BD与⊙O相切;(2)∵AE是⊙O的直径,∴∠ABE=90°,∵AB=4,∴sin∠AEB=sin60°===,∴AE=8,∴OB=4,∴BD=OB=4,﹣S扇形BOE=4×﹣=8﹣.∴图中阴影部分的面积=S△OBD【点评】本题考查了直线与圆的位置关系,等边三角形的判定和性质,解直角三角形,扇形面积的计算,正确地作出辅助线是解题的关键.典例7:如图,AB是⊙O的直径,C为⊙O上一点,过点C的切线与AB的延长线交于点P,若AC=PC=3,则PB的长为()A.B.C.D.3【分析】连结OC,根据切线的性质得到∠PCO=90°,根据OC=OA,得到∠A=∠OCA,根据AC=PC,得到∠P=∠A,在△APC中,根据三角形内角和定理求得∠P=30°,根据含30度角的直角三角形的性质得到OP=2OC=2r,在Rt△POC中,根据tan P=求出⊙O的半径r即可得出答案.【解答】解:如图,连结OC,∵PC是⊙O的切线,∴∠PCO=90°,∵OC=OA,∴∠A=∠OCA,∵AC=PC,∴∠P=∠A,设∠A=∠OCA=∠P=x°,在△APC中,∠A+∠P+∠PCA=180°,∴x+x+90+x=180,∴x=30,∴∠P=30°,∵∠PCO=90°,∴OP=2OC=2r,在Rt△POC中,tan P=,∴=,∴r=3,∴PB=OP﹣OB=2r﹣r=r=3.故选:D.【点评】本题考查了切线的性质,体现了方程思想,在△APC中,根据三角形内角和定理求得∠P=30°是解题的关键.典例8:如图,以线段AB为直径作⊙O,交射线AC于点C,AD平分∠CAB交⊙O于点D,过点D作直线DE⊥AC于点E,交AB的延长线于点F.连接BD并延长交AC于点M.(1)求证:直线DE是⊙O的切线;(2)求证:AB=AM;(3)若ME=1,∠F=30°,求BF的长.【分析】(1)连接OD,由∠ODA=∠OAD=∠DAC证明OD∥AC,得∠ODF=∠AED =90°,即可证明直线DE是⊙O的切线;(2)由线段AB是⊙O的直径证明∠ADB=90°,再根据等角的余角相等证明∠M=∠ABM,则AB=AM;(3))由∠AEF=90°,∠F=30°证明∠BAM=60°,则△ABM是等边三角形,所以∠M=60°,则∠EDM=30°,所以BD=MD=2ME=2,再证明∠BDF=∠F,得BF =BD=2.【解答】(1)证明:连接OD,则OD=OA,∴∠ODA=∠OAD,∵AD平分∠CAB,∴∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AC,∵DE⊥AC,∴∠ODF=∠AED=90°,∵OD是⊙O的半径,且DE⊥OD,∴直线DE是⊙O的切线.(2)证明:∵线段AB是⊙O的直径,∴∠ADB=90°,∴∠ADM=180°﹣∠ADB=90°,∴∠M+∠DAM=90°,∠ABM+∠DAB=90°,∵∠DAM=∠DAB,∴∠M=∠ABM,∴AB=AM.(3)解:∵∠AEF=90°,∠F=30°,∴∠BAM=60°,∴△ABM是等边三角形,∴∠M=60°,∵∠DEM=90°,ME=1,∴∠EDM=30°,∴MD=2ME=2,∴BD=MD=2,∵∠BDF=∠EDM=30°,∴∠BDF=∠F,∴BF=BD=2.【点评】此题重点考查切线的判定、直径所对的圆周角是直角、等角的余角相等、等腰三角形的判定与性质、等边三角形的判定与性质、平行线的判定与性质、直角三角形中30°角所对的直角边等于斜边的一半等知识,正确地作出所需要的辅助线是解题的关键.典例9:如图,在Rt△ABC中,∠ACB=90°,O是BC边上一点,以O为圆心,OB为半径的圆与AB相交于点D,连接CD,且CD=AC.(1)求证:CD是⊙O的切线;(2)若∠A=60°,AC=2,求的长.【分析】(1)连接OD.由等腰三角形的性质及圆的性质可得∠A=∠ADC,∠B=∠BDO.再根据余角性质及三角形的内角和定理可得∠ODC=180°﹣(∠ADC+∠BDO)=90°.最后由切线的判定定理可得结论;(2)根据等边三角形的判定与性质可得∠DCO=∠ACB﹣∠ACD=30°.再由解直角三角形及三角形内角和定理可得∠BOD的度数,最后根据弧长公式可得答案.【解答】(1)证明:连接OD.∵AC=CD,∴∠A=∠ADC.∵OB=OD,∴∠B=∠BDO.∵∠ACB=90°,∴∠A+∠B=90°.∴∠ADC+∠BDO=90°.∴∠ODC=180°﹣(∠ADC+∠BDO)=90°.又∵OD是⊙O的半径,∴CD是⊙O的切线.(2)解:∵AC=CD=,∠A=60°,∴△ACD是等边三角形.∴∠ACD=60°.∴∠DCO=∠ACB﹣∠ACD=30°.在Rt△OCD中,OD=CD tan∠DCO=tan30°=2.∵∠B=90°﹣∠A=30°,OB=OD,∴∠ODB=∠B=30°.∴∠BOD=180°﹣(∠B+∠BDO)=120°.∴的长=.【点评】此题考查的是切线的判定与性质、直角三角形的性质、弧长公式,正确作出辅助线是解决此题的关键.考点四、正多边形和圆1.正多边形的有关概念正多边形的外接圆(或内切圆)的圆心叫正多边形的中心.外接圆的半径叫正多边形的半径,内切圆的半径叫正多边形的边心距,正多边形各边所对的外接圆的圆心角都相等,这个角叫正多边形的中心角,正多边形的每一个中心角都等于360n°.要点诠释:通过中心角的度数将圆等分,进而画出内接正多边形,正六边形边长等于半径.2.正多边形的性质任何一个正多边形都有一个外接圆和一个内切圆,这两圆是同心圆.正多边形都是轴对称图形,偶数条边的正多边形也是中心对称图形,同边数的两个正多边形相似,其周长之比等于它们的边长(半径或边心距)之比.3.正多边形的有关计算定理:正n 边形的半径和边心距把正n 边形分成2n 个全等的直角三角形.正n 边形的边长a、边心距r、周长P 和面积S 的计算归结为直角三角形的计算.360n a n =°,1802sin n a R n = °,180cos n r R n= °,2222n n a R r ⎛⎫=+ ⎪⎝⎭,n n P n a = ,1122n n n n n S a r n P r == .典例10:(2022•黔东南州)(1)请在图1中作出△ABC 的外接圆⊙O (尺规作图,保留作图痕迹,不写作法);(2)如图2,⊙O 是△ABC 的外接圆,AE 是⊙O 的直径,点B 是的中点,过点B 的切线与AC 的延长线交于点D .①求证:BD ⊥AD ;②若AC =6,tan ∠ABC =,求⊙O 的半径.【分析】(1)利用尺规作图分别作出AB 、AC 的垂直平分线交于点O ,以O 为圆心、OA 为半径作圆即可;(2)①连接OB ,根据切线的性质得到OB ⊥BD ,证明OB ∥AD ,根据平行线的性质证明结论;②连接EC,根据圆周角定理得到∠AEC=∠ABC,根据正切的定义求出EC,根据勾股定理求出AE,得到答案.【解答】(1)解:如图1,⊙O即为△ABC的外接圆;(2)①证明:如图2,连接OB,∵BD是⊙O的切线,∴OB⊥BD,∵点B是的中点,∴=,∴∠CAB=∠EAB,∵OA=OB,∴∠OBA=∠EAB,∴∠CAB=∠OBA,∴OB∥AD,∴BD⊥AD;②解:如图2,连接EC,由圆周角定理得:∠AEC=∠ABC,∵tan∠ABC=,∴tan∠AEC=,∵AE是⊙O的直径,∴∠ACE=90°,∴=,∵AC=6,∴EC=8,∴AE==10,∴⊙O的半径为5.【点评】本题考查的是切线的性质、圆周角定理、解直角三角形,掌握圆的切线垂直于经过切点的半径是解题的关键.典例11:如图,在△ABC中,∠A=80°,半径为3cm的⊙O是△ABC的内切圆,连接OB、OC,则图中阴影部分的面积是cm2.(结果用含π的式子表示)【分析】根据角A的度数和内切圆的性质,得出圆心角DOE的度数即可得出阴影部分的面积.【解答】解:∵∠A=80°,⊙O是△ABC的内切圆,∴∠DOE=180°﹣()=180°﹣(180°﹣∠A)=130°,==(cm2),∴S扇形DOE故答案为:.【点评】本题主要考查三角形内切圆的知识,熟练掌握三角形内切圆的性质及扇形面积的计算是解题的关键.典例12:如图,正六边形ABCDEF内接于⊙O,点M在上,则∠CME的度数为()A .30°B .36°C .45°D .60°【分析】由正六边形的性质得出∠COE =120°,由圆周角定理求出∠CME =60°.【解答】解:连接OC ,OD ,OE ,∵多边形ABCDEF 是正六边形,∴∠COD =∠DOE =60°,∴∠COE =2∠COD =120°,∴∠CME =∠COE =60°,故选:D .【点评】本题考查了正六边形的性质、圆周角定理;熟练掌握正六边形的性质,由圆周角定理求出∠COM =120°是解决问题的关键.考点五、圆中的计算问题1.弧长公式:180n R l π=,其中l 为n°的圆心角所对弧的长,R 为圆的半径.2.扇形面积公式:2360n R S π=扇,其中12S lR =扇.圆心角所对的扇形的面积,另外12S lR =扇.3.圆锥的侧面积和全面积:圆锥的侧面展开图是扇形,这个扇形的半径等于圆锥的母线长,弧长等于圆锥底面圆的周长.圆锥的全面积是它的侧面积与它的底面积的和.要点诠释:(1)在计算圆锥的侧面积时要注意各元素之间的对应关系,千万不要错把圆锥底面圆半径当成扇形半径.(2)求阴影面积的几种常用方法(1)公式法;(2)割补法;(3)拼凑法;(4)等积变形法;(5)构造方程法.典例13:如图,在△ABC 中,CA =CB =4,∠BAC =α,将△ABC 绕点A 逆时针旋转2α,得到△AB ′C ′,连接B ′C 并延长交AB 于点D ,当B ′D ⊥AB 时,的长是()A.πB.πC.πD.π【分析】证明α=30°,根据已知可算出AD的长度,根据弧长公式即可得出答案.【解答】解:∵CA=CB,CD⊥AB,∴AD=DB=AB′.∴∠AB′D=30°,∴α=30°,∵AC=4,∴AD=AC•cos30°=4×=2,∴,∴的长度l==π.故选:B.【点评】本题主要考查了弧长的计算及旋转的性质,熟练掌握弧长的计算及旋转的性质进行求解是解决本题的关键.典例14:如图,等腰Rt△ABC中,AB=AC=,以A为圆心,以AB为半径作;以BC为直径作.则图中阴影部分的面积是π﹣2.(结果保留π)【分析】如图,取BC的中点O,连接OA.根据S阴=S半圆﹣S△ABC+S扇形ACB﹣S△ACB,求解即可.【解答】解:如图,取BC的中点O,连接OA.∵∠CAB=90°,AC=AB=,∴BC=AB=2,∴OA=OB=OC=1,∴S阴=S半圆﹣S△ABC+S扇形ACB﹣S△ACB=•π×12﹣××+﹣××=π﹣2.故答案为:π﹣2.【点评】本题考查扇形的面积,等腰直角三角形的性质等知识,解题的关键是学会利用割补法求阴影部分的面积.典例15:蒙古包可以近似地看作由圆锥和圆柱组成.下图是一个蒙古包的示意图,底面圆半径DE=2m,圆锥的高AC=1.5m,圆柱的高CD=2.5m,则下列说法错误的是()A.圆柱的底面积为4πm2B.圆柱的侧面积为10πm2C.圆锥的母线AB长为2.25mD.圆锥的侧面积为5πm2【分析】利用圆的面积公式对A选项进行判断;利用圆柱的侧面积=底面圆的周长×高可对B选项进行判断;根据勾股定理可对C选项进行判断;由于圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则利用扇形的面积公式可对D选项进行判断.【解答】解:∵底面圆半径DE=2m,∴圆柱的底面积为4πm2,所以A选项不符合题意;∵圆柱的高CD=2.5m,∴圆柱的侧面积=2π×2×2.5=10π(m2),所以B选项不符合题意;∵底面圆半径DE=2m,即BC=2m,圆锥的高AC=1.5m,∴圆锥的母线长AB==2.5(m),所以C选项符合题意;∴圆锥的侧面积=×2π×2×2.5=5π(m2),所以D选项不符合题意.故选:C.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.也考查了圆柱的计算.典例16:某餐厅为了追求时间效率,推出一种液体“沙漏”免单方案(即点单完成后,开始倒转“沙漏”,“沙漏”漏完前,客人所点的菜需全部上桌,否则该桌免费用餐).“沙漏”是由一个圆锥体和一个圆柱体相通连接而成.某次计时前如图(1)所示,已知圆锥体底面半径是6cm,高是6cm;圆柱体底面半径是3cm,液体高是7cm.计时结束后如图(2)所示,求此时“沙漏”中液体的高度为()A.2cm B.3cm C.4cm D.5cm【分析】由圆锥体底面半径是6cm,高是6cm,可得CD=DE,根据圆锥、圆柱体积公式可得液体的体积为63πcm3,圆锥的体积为72πcm3,即知计时结束后,圆锥中没有液体的部分体积为9πcm3,设计时结束后,“沙漏”中液体的高度AD为xcm,可得π•(6﹣x)2•(6﹣x)=9π,即可解得答案.【解答】解:如图:∵圆锥体底面半径是6cm,高是6cm,∴△ABC是等腰直角三角形,∴△CDE也是等腰直角三角形,即CD=DE,由已知可得:液体的体积为π×32×7=63π(cm3),圆锥的体积为π×62×6=72π(cm3),∴计时结束后,圆锥中没有液体的部分体积为72π﹣63π=9π(cm3),设计时结束后,“沙漏”中液体的高度AD为xcm,则CD=DE=(6﹣x)cm,∴π•(6﹣x)2•(6﹣x)=9π,∴(6﹣x)3=27,解得x=3,∴计时结束后,“沙漏”中液体的高度为3cm,故选:B.【点评】本题考查圆柱体、圆锥体体积问题,解题的关键是掌握圆柱体、圆锥体体积公式,列出方程解决问题.考点六、四点共圆1.四点共圆的定义四点共圆的定义:如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”.2.证明四点共圆一些基本方法:1.从被证共圆的四点中先选出三点作一圆,然后证另一点也在这个圆上,若能证明这一点,即可肯定这四点共圆.或利用圆的定义,证各点均与某一定点等距.2.如果各点都在某两点所在直线同侧,且各点对这两点的张角相等,则这些点共圆.(若能证明其两张角为直角,即可肯定这四个点共圆,且斜边上两点连线为该圆直径.)3.把被证共圆的四点连成四边形,若能证明其对角互补或能证明其一个外角等于其邻补角的内对角时,即可肯定这四点共圆.4.把被证共圆的四点两两连成相交的两条线段,若能证明它们各自被交点分成的两线段之积相等,即可肯定这四点共圆;或把被证共圆的四点两两连结并延长相交的两线段,若能证明自交点至一线段两个端点所成的两线段之积等于自交点至另一线段两端点所成的两线段之积,即可肯定这四点也共圆.即利用相交弦、切割线、割线定理的逆定理证四点共圆.典例17:综合与实践“善思”小组开展“探究四点共圆的条件”活动,得出结论:对角互补的四边形四个顶点共圆.该小组继续利用上述结论进行探究.提出问题:如图1,在线段AC同侧有两点B,D,连接AD,AB,BC,CD,如果∠B=∠D,那么A,B,C,D四点在同一个圆上.探究展示:如图2,作经过点A,C,D的⊙O,在劣弧AC上取一点E(不与A,C重合),连接AE,CE,则∠AEC+∠D=180°(依据1)∵∠B=∠D∴∠AEC+∠B=180°∴点A,B,C,E四点在同一个圆上(对角互补的四边形四个顶点共圆)∴点B,D在点A,C,E所确定的⊙O上(依据2)∴点A,B,C,D四点在同一个圆上反思归纳:(1)上述探究过程中的“依据1”、“依据2”分别是指什么?依据1:圆内接四边形对角互补;依据2:过不在同一直线上的三个点有且只有一个圆.(2)如图3,在四边形ABCD中,∠1=∠2,∠3=45°,则∠4的度数为45°.拓展探究:(3)如图4,已知△ABC是等腰三角形,AB=AC,点D在BC上(不与BC的中点重合),连接AD.作点C关于AD的对称点E,连接EB并延长交AD的延长线于F,连接AE,DE.①求证:A,D,B,E四点共圆;②若AB=2,AD•AF的值是否会发生变化,若不变化,求出其值;若变化,请说明理由.【分析】(1)根据圆内接四边形的性质、过三点的圆解答即可;(2)根据四点共圆、圆周角定理解答;(3)①根据轴对称的性质得到AE=AC,DE=DC,∠AEC=∠ACE,∠DEC=∠DCE,进而得到∠AED=∠ABC,证明结论;②连接CF,证明△ABD∽△AFB,根据相似三角形的性质列出比例式,计算即可.【解答】(1)解:依据1:圆内接四边形对角互补;依据2:过不在同一直线上的三个点有且只有一个圆,故答案为:圆内接四边形对角互补;过不在同一直线上的三个点有且只有一个圆;(2)解:∵∠1=∠2,∴点A,B,C,D四点在同一个圆上,∴∠3=∠4,∵∠3=45°,∴∠4=45°,故答案为:45°;(3)①证明:∵AB=AC,∴∠ABC=∠ACB,∵点E与点C关于AD的对称,∴AE=AC,DE=DC,∴∠AEC=∠ACE,∠DEC=∠DCE,∴∠AED=∠ACB,∴∠AED=∠ABC,∴A,D,B,E四点共圆;②解:AD•AF的值不会发生变化,理由如下:如图4,连接CF,∵点E与点C关于AD的对称,∴FE=FC,∴∠FEC=∠FCE,∴∠FED=∠FCD,∵A,D,B,E四点共圆,∴∠FED=∠BAF,∴∠BAF=∠FCD,∴A,B,F,C四点共圆,∴∠AFB=∠ACB=∠ABC,∵∠BAD=∠FAB,∴△ABD∽△AFB,∴=,∴AD•AF=AB2=8.【点评】本题考查的是四点共圆、相似三角形的判定和性质、轴对称的性质,正确理解四点共圆的条件是解题的关键.考点七、与圆有关的比例线段(补充知识)1.相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.2.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.3.割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.圆幂定理(相交弦定理、切割线定理及其推论(割线定理)统一归纳为圆幂定理)定理图形已知结论证法相交弦定理⊙O 中,AB、CD 为弦,交于P.PA·PB=PC·PD.连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O 中,AB 为直径,CD⊥AB 于P.PC 2=PA·PB.用相交弦定理.切割线定理⊙O 中,PT 切⊙O 于T,割线PB 交⊙O 于APT 2=PA·PB连结TA、TB,证:△PTB∽△PAT 切割线定理推论PB、PD 为⊙O 的两条割线,交⊙O 于A、C PA·PB=PC·PD过P 作PT 切⊙O 于T,用两次切割线定理。
初中《圆》知识点及定理
《圆》知识点
一、定义
1、圆是平面上一种特殊的曲线,它满足以下两个条件:
(1)任意两点到圆心的距离相等;
(2)圆上的任意一点,可以以圆心为中心,过这一点作圆的圆周,且这个圆周上的任意一点都等距离圆心。
2、定义:圆:平面上一点为圆心,到圆心的距离一定的曲线叫圆,这个固定的距离叫圆的半径。
二、圆的相关概念
1、圆心:圆的中心点。
2、半径:指从圆心出发,连接圆上任意一点的线段的长度。
3、圆弧:圆上的一段弧形,可以看作是圆的一部分。
4、圆周:圆的一周的弧形,也叫圆的周长。
5、圆心角:圆上的任意两点连接的线段所形成的角,叫圆心角。
6、切线:切圆弧的线段,叫做切线。
7、圆心的夹角:圆上任意两条切线所成的夹角。
8、切点:切线与圆弧公共的一点,叫做切点。
三、圆的性质
1、任意一点到圆心的距离相等,半径r=OC=OD。
2、圆上,任意两点之间的距离相等。
3、圆上任意两点的连线,其长度都等于直径的2倍。
4、圆周的周长等于圆的直径的2倍乘以π,公式:C=2πr。
5、圆的面积A=πr²。
6、圆心角是任意一点到圆心的连线和圆的直径的线段的所成的角,它的度数与圆的弧长满足:圆心角的角度=弧长/半径。
四、圆的有关定理。