2019年数学中考真题知识点汇编47 新定义型(含解析).docx
- 格式:docx
- 大小:528.13 KB
- 文档页数:10
知识点47 新定义型一、选择题1.(2019·岳阳)对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是() A .c <-3 B .c <-2 C .14c <D .c <1 【答案】B【解析】 当y =x 时,x =x 2+2x +c ,即为x 2+x +c =0,由题意可知:x 1,x 2是该方程的两个实数根,所以12121x x x x c+=-⎧⎨⋅=⎩∵x 1<1<x 2,∴(x 1-1)(x 2-1)<0, 即x 1x 2-(x 1+x 2) +1<0, ∴c -(-1)+1<0, ∴c <-2.又知方程有两个不相等的实数根,故Δ>0, 即12-4c >0, 解得:c <14.∴c 的取值范围为c <-2 .2.(2019·济宁)−1,-1的差类推,那么a 1+a 2+…+a 100的值是() A .-7.5 B .7.5 C .5.5 D .-5.5 【答案】A【解析】3.4. 5. 6. 7. 8. 9. 10.二、填空题18.(2019·娄底) 已知点P ()00,x y 到直线y kx b =+的距离可表示为d =例如:点(0,1)到直线y =2x+6的距离d ==y x =与4y x =-之间的距离为___________.【答案】【解析】在直线y x =上任取点,不妨取(0,0),根据两条平行线之间距离的定义可知,(0,0)到直线4y x =-的距离就是两平行直线y x =与4y x =-之间的距离.d ===. 16.(2019·常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二次函数y =x 2的图象上在第一象限内的任意一点,PQ 垂直直线y =-1于点Q ,则四边形PMNQ 是广义菱形.其中正确的是 .(填序号)【答案】①④【解析】正方形和菱形满足一组对边平行,一组邻边相等,故都是广义菱形,故①正确;平行四边形虽然满足一组对边平行,但是邻边不一定相等,因此不是广义菱形,故②错误;对角线互相垂直,且两组邻边分别相等的四边形的对边不一定平行,邻边也不一定相等,因此不是广义菱形,故③错误;④中的四边形PMNQ 满足MN ∥PQ ,设P (m ,0)(m >0),∵PM+1,PQ =-(-1)=+1,∴PM =PQ ,故四边形PMNQ 是广义菱形.综上所述正确的是①④.17.(2019·陇南)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k = . 【答案】85或14. 【解析】当∠A 是顶角时,底角是50°,则k=808505=o o ;当∠A 是底角时,则底角是20°,k=201804=o o ,故答案为:85或14.2. 3. 4. 5.三、解答题1.(2019·重庆A 卷)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义:对于自然数n ,在计算n +(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“纯14214m 214m 214m数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由; (2)求出不大于100的“纯数”的个数.解:(1)2019不是“纯数”,2020是“纯数”,理由如下:∵在计算2019+2020+2021时,个位产生了进位,而计算2020+2021+2022时,各数位都不产生进位, ∴2019不是“纯数”,2020是“纯数”.(2)由题意可知,连续三个自然数的个位不同,其他位都相同,并且连续的三个自然数个位为0、1、2时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位.现分三种情况讨论如下:①当这个数为一位自然数时,只能是0、1、2,共3个;②当这个数为二位自然数时,十位只能为1、2、3,个位只能为0、1、2,即10、11、12、20、21、22、30、31、32共9个; ③当这个数为100时,易知100是“纯数”.综上,不大于100的“纯数”的个数为3+9+1=13.2.(2019·重庆B 卷)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等. 现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数n ,在通过列竖式进行()()21++++n n n 的运算时各位都不产生进位现象,则称这个自然数n 为“纯数”.例如:32是“纯数”,因为343332++在列竖式计算时各位都不产生进位现象; 23不是“纯数”,因为252423++在列竖式计算时个位产生了进位. ⑴请直接写出1949到2019之间的“纯数”;⑵求出不大于100的“纯数”的个数,并说明理由. 解:(1)1949到2019之间的“纯数”为2000、2001、2002、2010、2011、2012 . (2)由题意:不大于100的“纯数”包含:一位数、两位数和三位数100若n 为一位数,则有n +(n +1)+(n +2)<10,解得:n <3,所以:小于10的“纯数数”有0、1、2,共3个.两位数须满足:十位数可以是1、2、3,个位数可以是0、1、2,列举共有9个分别是10、11、12、20、21、22、30、31、32;三位数为100,共1个所以:不大于100的“纯数”共有13个.3.(2019·衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满是x =3a c +,y =3b d +,那么称点T 是点A ,B 的融合点。
2019年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)下列各题中均有四个备选答案,其中有且只有一个是正确的,请在答题卡上将正确答案的代号涂黑.1.(3分)(2019•武汉)在实数﹣3,0,5,3中,最小的实数是() A.﹣3 B.0 C. 5 D.3考点:实数大小比较.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解答:解:根据实数比较大小的方法,可得﹣3<0<3<5,所以在实数﹣3,0,5,3中,最小的实数是﹣3.故选:A.点评:此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.(3分)(2019•武汉)若代数式在实数范围内有意义,则x 的取值范围是()A.x≥﹣2B.x>﹣2C.x≥2D.x≤2考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于等于0,就可以求解.解答:解:根据题意得:x﹣2≥0,解得x≥2.故选:C.点评:本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.3.(3分)(2019•武汉)把a2﹣2a分解因式,正确的是()A.a(a﹣2)B.a(a+2)C.a(a2﹣2)D.a(2﹣a)考点:因式分解-提公因式法.专题:计算题.分析:原式提取公因式得到结果,即可做出判断.解答:解:原式=a(a﹣2),故选A.点评:此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.4.(3分)(2019•武汉)一组数据3,8,12,17,40的中位数为()A. 3 B.8 C.12 D.17考点:中位数.分析:首先把这组数据3,8,12,17,40从小到大排列,然后判断出中间的数是多少,即可判断出这组数据的中位数为多少.解答:解:把3,8,12,17,40从小到大排列,可得3,8,12,17,40,所以这组数据3,8,12,17,40的中位数为12.故选:C.点评:此题主要考查了中位数的含义和求法的应用,要熟练掌握,解答此题的关键是要明确:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.(3分)(2019•武汉)下列计算正确的是()A.2a2﹣4a2=﹣2B.3a+a=3a2C.3a•a=3a2D.4a6÷2a3=2a2解:A、原式=﹣2a2,错误;B、原式=4a,错误;C、原式=3a2,正确;D、原式=2a3,错误.故选C.6.(3分)(2019•武汉)如图,在直角坐标系中,有两点A(6,3),B(6,0),以原点O位似中心,相似比为,在第一象限内把线段AB 缩小后得到线段CD,则点C的坐标为()A.(2,1)B.(2,0)C.(3,3)D.(3,1)解:由题意得,△ODC∽△OBA,相似比是,∴=,又OB=6,AB=3,∴OD=2,CD=1,∴点C的坐标为:(2,1),故选:A.7.(3分)(2019•武汉)如图,是由一个圆柱体和一个长方体组成的几何体.其主视图是()A.B.C.D.解:从正面看下面是一个比较长的矩形,上面是一个比较宽的矩形.故选:B.8.(3分)(2019•武汉)下面的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是()A.4:00气温最低B.6:00气温为24℃C.14:00气温最高D.气温是30℃的时刻为16:00解:A、由横坐标看出4:00气温最低是24℃,故A正确;B、由纵坐标看出6:00气温为24℃,故B正确;C、由横坐标看出14:00气温最高31℃;D、由横坐标看出气温是30℃的时刻是12:00,16:00,故D错误;故选:D.9.(3分)(2019•武汉)在反比例函数y=图象上有两点A(x1,y1),B (x2,y2),x1<0<x2,y1<y2,则m的取值范围是()A.m>B.m<C.m≥D.m≤解:∵x1<0<x2时,y1<y2,∴反比例函数图象在第一,三象限,∴1﹣3m>0,解得:m<.故选B.10.(3分)(2019•武汉)如图,△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M.当△EFG 绕点D旋转时,线段BM长的最小值是()A.2﹣B.+1C.D.﹣1解:连接AD、DG、BO、OM,如图.∵△ABC,△EFG均是边长为2的等边三角形,点D是边BC、EF的中点,∴AD⊥BC,GD⊥EF,DA=DG,DC=DF,∴∠ADG=90°﹣∠CDG=∠FDC,=,∴△DAG∽△DCF,∴∠DAG=∠DCF.∴A、D、C、M四点共圆.根据两点之间线段最短可得:BO≤BM+OM,即BM≥BO﹣OM,当M在线段BO与该圆的交点处时,线段BM最小,此时,BO===,OM=AC=1,则BM=BO﹣OM=﹣1.故选D.二、填空题(共6小题,每小题3分,共18分)请将答案填在答题卡对应题号的位置上.11.(3分)(2019•武汉)计算:﹣10+(+6)= ﹣4 .考点:有理数的加法.专题:计算题.分析:原式利用异号两数相加的法则计算即可得到结果.解答:解:原式=﹣(10﹣6)=﹣4.故答案为:﹣4.点评:此题考查了有理数的加法,熟练掌握运算法则是解本题的关键.12.(3分)(2019•武汉)中国的领水面积约为370 000km2,将数370 000用科学记数法表示为×105.解:370 000=×105,故答案为:×105.13.(3分)(2019•武汉)一组数据2,3,6,8,11的平均数是 6 .解:(2+3+6+8+11)÷5=30÷5=6所以一组数据2,3,6,8,11的平均数是6.故答案为:6.14.(3分)(2019•武汉)如图所示,购买一种苹果,所付款金额y (元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2 元.解:由线段OA的图象可知,当0<x<2时,y=10x,1千克苹果的价钱为:y=10,设射线AB的解析式为y=kx+b(x≥2),把(2,20),(4,36)代入得:,解得:,∴y=8x+4,当x=3时,y=8×3+4=28.当购买3千克这种苹果分三次分别购买1千克时,所花钱为:10×3=30(元),30﹣28=2(元).则一次购买3千克这种苹果比分三次每次购买1千克这种苹果可节省2元.15.(3分)(2019•武汉)定义运算“*”,规定x*y=ax2+by,其中a、b为常数,且1*2=5,2*1=6,则2*3= 10 .解:根据题中的新定义化简已知等式得:,解得:a=1,b=2,则2*3=4a+3b=4+6=10,故答案为:10.16.(3分)(2019•武汉)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是.解:作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,M′N′==.故答案为.三、解答题(共8小题,共72分)下列各题解答应写出文字说明,证明过程或演算过程.17.(8分)(2019•武汉)已知一次函数y=kx+3的图象经过点(1,4).(1)求这个一次函数的解析式;(2)求关于x的不等式kx+3≤6的解集.解:(1)∵一次函数y=kx+3的图象经过点(1,4),∴4=k+3,∴k=1,∴这个一次函数的解析式是:y=x+3.(2)∵k=1,∴x+3≤6,∴x≤3,即关于x的不等式kx+3≤6的解集是:x≤3.18.(8分)(2019•武汉)如图,点B、C、E、F在同一直线上,BC=EF,AC⊥BC于点C,DF⊥EF于点F,AC=DF.求证:(1)△ABC≌△DEF;(2)AB∥DE.证明:(1)∵AC⊥BC于点C,DF⊥EF于点F,∴∠ACB=∠DFE=90°,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)∵△ABC≌△DEF,∴∠B=∠DEF,∴AB∥DE.19.(8分)(2019•武汉)一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4.(1)随机摸取一个小球,直接写出“摸出的小球标号是3”的概率;(2)随机摸取一个小球然后放回,再随机摸出一个小球,直接写出下列结果:①两次取出的小球一个标号是1,另一个标号是2的概率;②第一次取出标号是1的小球且第二次取出标号是2的小球的概率.解:(1)∵一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4,∴随机摸取一个小球,直接写出“摸出的小球标号是3”的概率为:;(2)画树状图得:则共有16种等可能的结果;①∵两次取出的小球一个标号是1,另一个标号是2的有2种情况,∴两次取出的小球一个标号是1,另一个标号是2的概率为:=;②∵第一次取出标号是1的小球且第二次取出标号是2的小球的只有1种情况,∴第一次取出标号是1的小球且第二次取出标号是2的小球的概率为:.20.(8分)(2019•武汉)如图,已知点A(﹣4,2),B(﹣1,﹣2),平行四边形ABCD的对角线交于坐标原点O.(1)请直接写出点C、D的坐标;(2)写出从线段AB到线段CD的变换过程;(3)直接写出平行四边形ABCD的面积.解:(1)∵四边形ABCD是平行四边形,∴四边形ABCD关于O中心对称,∵A(﹣4,2),B(﹣1,﹣2),∴C(4,﹣2),D(1,2);(2)线段AB到线段CD的变换过程是:线段AB向右平移5个单位得到线段CD;(3)由(1)得:A到y轴距离为:4,D到y轴距离为:1,A到x轴距离为:2,B到x轴距离为:2,∴S ABCD的可以转化为边长为;5和4的矩形面积,∴S ABCD=5×4=20.21.(8分)(2019•武汉)如图,AB是⊙O的直径,∠ABT=45°,AT=AB.(1)求证:AT是⊙O的切线;(2)连接OT交⊙O于点C,连接AC,求tan∠TAC.解:(1)∵∠ABT=45°,AT=AB.∴∠TAB=90°,∴TA⊥AB,∴AT是⊙O的切线;(2)作CD⊥AT于D,∵TA⊥AB,TA=AB=2OA,设OA=x,则AT=2x,∴OT=x,∴TC=(﹣1)x,∵CD⊥AT,TA⊥AB∴CD∥AB,∴==,即==,∴CD=(1﹣)x,TD=2(1﹣)x,∴AD=2x﹣2(1﹣)x=x,∴tan∠TAC===﹣1.22.(10分)(2019•武汉)已知锐角△ABC中,边BC长为12,高AD 长为8.(1)如图,矩形EFGH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K.①求的值;②设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S 的最大值;(2)若AB=AC,正方形PQMN的两个顶点在△ABC一边上,另两个顶点分别在△ABC的另两边上,直接写出正方形PQMN的边长.解:(1)①∵EF∥BC,∴,∴=,即的值是.②∵EH=x,∴KD=EH=x,AK=8﹣x,∵=,∴EF=,∴S=EH•EF=x(8﹣x)=﹣+24,∴当x=4时,S的最大值是24.(2)设正方形的边长为a,①当正方形PQMN的两个顶点在BC边上时,,解得a=.②当正方形PQMN的两个顶点在AB或AC边上时,∵AB=AC,AD⊥BC,∴BD=CD=12÷2=6,∴AB=AC=,∴AB或AC边上的高等于:AD•BC÷AB=8×12÷10=∴,解得a=.综上,可得正方形PQMN的边长是或.23.(10分)(2019•武汉)如图,△ABC中,点E、P在边AB上,且AE=BP,过点E、P作BC的平行线,分别交AC于点F、Q,记△AEF的面积为S1,四边形EFQP的面积为S2,四边形PQCB的面积为S3.(1)求证:EF+PQ=BC;(2)若S1+S3=S2,求的值;(3)若S3+S1=S2,直接写出的值.(1)证明:∵EF∥BC,PQ∥BC,∴,,∵AE=BP,∴AP=BE,∴==1,∴=1,∴EF+PQ=BC;(2)解:过点A作AH⊥BC于H,分别交PQ于M、N,如图所示:设EF=a,PQ=b,AM=h,则BC=a+b,∵EF∥PQ,∴△AEF∽△APQ,∴=,∴AN=,MN=(﹣1)h,∴S1=ah,S2=(a+b)(﹣1)h,S3=(b+a+b)h,∵S1+S3=S2,∴ah+(a+b+b)h=(a+b)(﹣1)h,解得:b=3a,∴=3,∴=2;(3)解:∵S3﹣S1=S2,∴(a+b+b)h﹣ah=(a+b)(﹣1)h,解得:b=(1±)a(负值舍去),∴b=(1+)a,∴=1+,∴=.24.(12分)(2019•武汉)已知抛物线y=x2+c与x轴交于A(﹣1,0),B两点,交y轴于点C.(1)求抛物线的解析式;(2)点E(m,n)是第二象限内一点,过点E作EF⊥x轴交抛物线于点F,过点F作FG⊥y轴于点G,连接CE、CF,若∠CEF=∠CFG.求n的值并直接写出m的取值范围(利用图1完成你的探究).(3)如图2,点P是线段OB上一动点(不包括点O、B),PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,BQ交直线PM于点Q,设点P的横坐标为t,求△PBQ的周长.解:(1)把A(﹣1,0)代入得c=﹣,∴抛物线解析式为(2)如图1,过点C作CH⊥EF于点H,∵∠CEF=∠CFG,FG⊥y轴于点G∴△EHC∽△FGC∵E(m,n)∴F(m,)又∵C(0,)∴EH=n+,CH=﹣m,FG=﹣m,CG=m2又∵,则∴n+=2∴n=(﹣2<m<0)(3)由题意可知P(t,0),M(t,)∵PM⊥x轴交抛物线于点M,∠OBQ=∠OMP,∴△OPM∽△QPB.∴.其中OP=t,PM=,PB=1﹣t,∴PQ=.BQ=∴PQ+BQ+PB=.∴△PBQ的周长为2.。
数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前湖北省襄阳市2019年初中毕业生学业水平考试数 学本试卷满分120分,考试时间120分钟.一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算3-的结果是( )A .3B .13C .3-D .3±2.下列运算正确的是( )A . 32a a a -= B .236a a a⋅=C .623a a a ÷=D .236()a a --=3.如图,直线BC AE ∥,CD AB ⊥于点D ,若40BCD =︒∠,则1∠的度数是 ( )第3题图A .60oB .50oC .40oD .30o4.某正方体的平面展开图如图所示,则原正方体中与“春”字所在的面相对的面上的字是( )第4题图A .青B .来C .斗D .奋5.下列图形中,既是轴对称图形,又是中心对称图形的是( )A B CD6.不等式组24339x x x x +⎧⎨++⎩<≥的解集在数轴上用阴影表示正确的是( )A B C D7.如图,分别以线段AB 的两个端点为圆心,大于AB 的一半的长为半径画弧,两弧分别交于C ,D 两点,连接AC ,BC ,AD ,BD ,则四边形ADBC 一定是 ( )第7题图A .正方形B .矩形C .梯形D .菱形8.下列说法错误的是( )A .必然事件发生的概率是1B .通过大量重复试验,可以用频率估计概率C .概率很小的事件不可能发生D .投一枚图钉,“钉尖朝上”的概率不能用列举法求得9.《九章算术》是我国古代数学名著,卷七“盈不足”中有题译文如下:今有人合伙买羊,每人出5钱,会差45钱;每人出7钱,会差3钱.问合伙人数、羊价各是多少?设合伙人数为x 人,所列方程正确的是 ( )A .54573x x -=-B .54573x x +=+C .45357x x ++=D .45357x x --= 10.如图,AD 是O e 的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB 相交于点P ,下列结论错误的是 ()毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共22页) 数学试卷 第4页(共22页)第10题图A .2AP OP =B .2CD OP =C .OB AC ⊥D .AC 平分OB二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上)11.习总书记指出,善于学习,就是善于进步.“学习强国”平台上线后的某天,全国大约有1.2亿人在平台上学习.1.2亿这个数用科学记数法表示为 .12.定义:*aa b b =,则方程2*(3)1*(2)x x +=的解为 .13.从2,3,4,6中随机选取两个数记作a 和b (a b <),那么点(,)a b 在直线2y x =上的概率是 .14.如图,已知ABC DCB =∠∠,添加下列条件中的一个:①A D =∠∠,②AC DB =,③AB DC =,其中不能确定ABC DCB △≌△的是 (只填序号).第14题图15.如图,若被击打的小球飞行高度h (单位:m )与飞行时间t (单位:s )之间具有的关系为2205h t t =-,则小球从飞出到落地所用的时间为 s .第15题图16.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C ,点D 在AB 上,30BAC DEC ==︒∠∠,AC 与DE 交于点F ,连接AE ,若1BD =,5AD =,则CFEF= .第16题图三、解答题(本大题共9小题,共72分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分)先化简,再求值:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭,其中1x =.18.(本小题满分6分)今年是中华人民共和国建国70周年,襄阳市某学校开展了“我和我的祖国”主题学习竞赛活动.学校3 000名学生全部参加了竞赛,结果所有学生成绩都不低于60分(满分100分).为了了解成绩分布情况,学校随机抽取了部分学生的成绩进行统计,得到(1)表中a = ,b = ; (2)这组数据的中位数落在 范围内;(3)判断:这组数据的众数一定落在7080x ≤<范围内,这个说法 (填“正确”或“错误”);(4)这组数据用扇形统计图表示,成绩在8090x ≤<范围内的扇形圆心角的大小为 ;(5)若成绩不小于80分为优秀,则全校大约有 名学生获得优秀成绩.19.(本小题满分6分)数学试卷 第5页(共22页) 数学试卷 第6页(共22页)改善小区环境,争创文明家园.如图所示,某社区决定在一块长(AD )16m ,宽(AB )9m 的矩形场地ABCD 上修建三条同样宽的小路,其中两条与AB 平行,另一条与AD平行,其余部分种草.要使草坪部分的总面积为2112m ,则小路的宽应为多少?第19题图20.(本小题满分6分)襄阳卧龙大桥横跨汉江,是我市标志性建筑之一.某校数学兴趣小组在假日对竖立的索塔在桥面以上的部分(上塔柱BC 和塔冠BE )进行了测量.如图所示,最外端的拉索AB 的底端A 到塔柱底端C 的距离为121m ,拉索AB 与桥面AC 的夹角为37︒,从点A 出发沿AC 方向前进23.5m ,在D 处测得塔冠顶端E 的仰角为45︒.请你求出塔冠BE 的高度(结果精确到0.1m .参考数据sin370.60︒≈,cos370.80︒≈,tan370.75︒≈,1.41).第20题图21.(本小题满分7分)如图,已知一次函数1y kx b =+与反比例函数2my x=的图象在第一、第三象限分别交于(3,4)A ,(,2)B a -两点,直线AB 与y 轴,x 轴分别交于C ,D 两点.(1)求一次函数和反比例函数的解析式;(2)比较大小:AD ______BC (填“>”或“<”或“=”); (3)直接写出12y y <时x 的取值范围.第21题图22.(本小题满分7分)如图,点E 是ABC △的内心,AE 的延长线和△ABC 的外接圆O e 相交于点D ,过D 作直线DG BC ∥.(1)求证:DG 是O e 的切线;(2)若6DE =,BC =¼BAC的长.第22题图23.(本小题满分10分)襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、(1)该超市购进甲种蔬菜10kg 和乙种蔬菜5kg 需要170元;购进甲种蔬菜6kg 和乙-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________数学试卷 第7页(共22页) 数学试卷 第8页(共22页)种蔬菜10kg 需要200元.求m ,n 的值;(2)该超市决定每天购进甲、乙两种蔬菜共100kg 进行销售,其中甲种蔬菜的数量不少于20kg ,且不大于70kg .实际销售时,由于多种因素的影响,甲种蔬菜超过60kg 的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额y (元)与购进甲种蔬菜的数量x (kg )之间的函数关系式,并写出x 的取值范围;(3)在(2)的条件下,超市在获得的利润额y (元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a 元,乙种蔬菜每千克捐出a 元给当地福利院,若要保证捐款后的盈利率不低于20%,求a 的最大值.24.(本小题满分10分)(1)证明推断:如图(1),在正方形ABCD 中,点E ,Q 分别在边BC ,AB 上,DQ AE ⊥于点O ,点G ,F 分别在边CD ,AB 上,GF AE ⊥. ①求证:DQ AE =;②推断:GFAE的值为 ;(2)类比探究:如图(2),在矩形ABCD 中,BCk AB=(k 为常数).将矩形ABCD 沿GF 折叠,使点A 落在BC 边上的点E 处,得到四边形FEPG ,EP 交CD 于点H ,连接AE 交GF 于点O .试探究GF 与AE 之间的数量关系,并说明理由;(3)拓展应用:在(2)的条件下,连接CP ,当23k =时,若3tan 4CGP ∠=,GF =求CP 的长.第24题图(1) 第24题图(2)25.(本小题满分13分)如图,在直角坐标系中,直线132y x =-+与x 轴,y 轴分别交于点B ,点C ,对称轴为1x =的抛物线过B ,C 两点,且交x 轴于另一点A ,连接AC . (1)直接写出点A ,点B ,点C 的坐标和抛物线的解析式;(2)已知点P 为第一象限内抛物线上一点,当点P 到直线BC 的距离最大时,求点P的坐标;(3)抛物线上是否存在一点Q (点C 除外),使以点Q ,A ,B 为顶点的三角形与ABC △相似?若存在,求出点Q 的坐标;若不存在,请说明理由.第25题图数学试卷 第9页(共22页) 数学试卷 第10页(共22页)湖北省襄阳市2019年初中毕业生学业水平考试数学答案解析一、选择题 1.【答案】A【解析】解:33-=. 故选:A .根据绝对值的性质进行计算. 【考点】绝对值的性质 2.【答案】D【解析】解:A .32a a -,无法计算,故此选项错误; B .235a a a ⋅=,故此选项错误; C .624a a a ÷=,故此选项错误; D .()326a a --=,正确.故选:D .直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案. 【考点】合并同类项,同底数幂的乘除运算 3.【答案】B【解析】解:∵CD AB ⊥于点D ,40BCD =︒∠, ∴90CDB =︒∠.∴90BCD DBC +=︒∠∠,即4090BCD +︒=︒∠. ∴50DBC =︒∠. ∵直线BC AE ∥,∴150DBC ==︒∠∠. 故选:B .先在直角CBD △中可求得DBC ∠的度数,然后平行线的性质可求得1∠的度数. 【考点】平行线的性质,垂线的定义,直角三角形两锐角互余的性质 4.【答案】D【解析】解:由:“Z ”字型对面,可知春字对应的面上的字是奋; 故选:D .正方体展开图的“Z ”字型找对面的方法即可求解; 【考点】正方体的展开图 5.【答案】B【解析】解:A .是轴对称图形,不是中心对称图形,故此选项错误; B .是轴对称图形,也是中心对称图形,故此选项正确; C .不是轴对称图形,是中心对称图形,故此选项错误; D .不是轴对称图形,是中心对称图形,故此选项错误. 故选:B .根据轴对称图形与中心对称图形的概念求解.【考点】中心对称图形与轴对称图形的概念 6.【答案】C【解析】解:不等式组整理得:43x x ⎧⎨-⎩<≤,∴不等式组的解集为3x -≤,故选:C .求出不等式组的解集,表示出数轴上即可. 【考点】解一元一次方程组 7.【答案】D【解析】解:由作图可知:AC AD BC BD ===, ∴四边形ACBD 是菱形, 故选:D .根据四边相等的四边形是菱形即可判断. 【考点】基本作图,菱形的判定 8.【答案】C【解析】解:A .必然事件发生的概率是1,正确; B .通过大量重复试验,可以用频率估计概率,正确; C .概率很小的事件也有可能发生,故错误;D .投一枚图钉,“钉尖朝上”的概率不能用列举法求得,正确, 故选:C .不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1.【考点】本题考查了概率的意义 9.【答案】B【解析】解:设合伙人数为x 人, 依题意,得:54573x x +=+. 故选:B .设合伙人数为x 人,根据羊的总价钱不变,即可得出关于x 的一元一次方程,此题得解. 【考点】由实际问题抽象出一元一次方程 10.【答案】A【解析】解:∵AD 为直径, ∴90ACD =︒∠,∵四边形OBCD 为平行四边形, ∴CD OB ∥,CD OB =,在Rt ACD △中,1sin 2CD A AD ==, ∴30A =︒∠,在Rt AOP △中,AP ,所以A 选项的结论错误; ∵OP CD ∥,CD AC ⊥,数学试卷 第11页(共22页) 数学试卷 第12页(共22页)∴OP AC ⊥,所以C 选项的结论正确; ∴AP CP =,∴OP 为ACD △的中位线,∴2CD OP =,所以B 选项的结论正确; ∴2OB OP =,∴AC 平分OB ,所以D 选项的结论正确. 故选:A .利用圆周角定理得到90ACD =︒∠,再根据平行四边形的性质得到CD OB ∥,CD OB =,则可求出30A =︒∠,在Rt AOP △中利用含30度的直角三角形三边的关系可对A 选项进行判断;利用OP CD ∥,CD AC ⊥可对C 选项进行判断;利用垂径可判断OP 为ACD △的中位线,则2CD OP =,原式可对B 选项进行判断;同时得到2OB OP =,则可对D 选项进行判断.【考点】圆周角定理,垂径定理,平行四边形的性质. 二、填空题11.【答案】81.210⨯【解析】解:81.2 1.210=⨯亿. 故答案为:81.210⨯.科学记数法就是将一个数字表示成(10a ⨯的n 次幂的形式),其中110a ≤<,n 表示整数,即从左边第一位开始,在首位非零的后面加上小数点,再乘以10的n 次幂. 【考点】科学记数法的理解和运用,单位的换算 12.【答案】1x =【解析】解:2*(3)1*(2)x x +=, 2132x x =+, 43x x =+, 1x =,经检验:1x =是原方程的解, 故答案为:1x =.根据新定义列分式方程可得结论. 【考点】解分式方程,新定义的理解 13.【答案】13【解析】解:画树状图如图所示,一共有6种情况,2b a =的有(2,4)和(3,6)两种,所以点(,)a b 在直线2y x =上的概率是2163=, 故答案为:13.画出树状图,找到2b a =的结果数,再根据概率公式解答 【考点】列表法与树状图法 14.【答案】②【解析】解:∵已知ABC DCB ∠=∠,且BC CB =∴若添加①A D ∠=∠,则可由AAS 判定ABC DCB △≌△;若添加②AC DB =,则属于边边角的顺序,不能判定ABC DCB △≌△; 若添加③AB DC =,则属于边角边的顺序,可以判定ABC DCB △≌△. 故答案为:②.一般三角形全等的判定方法有SSS ,SAS ,AAS ,ASA ,据此可逐个对比求解. 【考点】全等三角形的几种基本判定方法 15.【答案】4【解析】解:依题意,令0h =得 20205t t =- 得(205)0t t -=解得0t =(舍去)或4t =即小球从飞出到落地所用的时间为4s 故答案为4.根据关系式,令0h =即可求得t 的值为飞行的时间 【考点】二次函数的性质在实际生活中的应用 16.【答案】3【解析】解:如图,过点C 作CM DE ⊥于点M ,过点E 作EN AC ⊥于点N , ∵1BD =,5AD =, ∴6AB BD AD =+=,∵在Rt ABC △中,30BAC ∠=︒,9060B BAC ∠=︒-∠=︒,∴132BC AB ==,AC =在Rt BCA △与Rt DCE △中, ∵30BAC DEC =∠=︒, ∴tan tan BAC DEC ∠=∠, ∴BC DCAC EC=, ∵90BCA DCE =∠=︒,∴BCA DCA DCE DCA -∠=∠-∠∠, ∴BCD ACE ∠=∠,数学试卷 第13页(共22页) 数学试卷 第14页(共22页)∴BCD ACE △∽△, ∴60CAE B ∠=∠=︒, ∴BC BDAC AE=, ∴306090DAE DAC CAE ∠=∠+∠=︒+︒=︒1AE,∴AE , 在Rt ADE △中,DE = 在Rt DCE △中,30DEC ∠=︒,∴60EDC ∠=︒,12DC DE ==,在Rt DCM △中,22MC DC ==, 在Rt AEN △中,32NE AE ==,∵MFC NFE ∠=∠,90FMC FNE ∠=∠=, ∴MFC NFE △∽△+,∴2332CF MC EF NE ==,过点C 作CM DE ⊥于点M ,过点E 作EN AC ⊥于点N ,先证BCD ACE △∽△,求出AE 的长及60CAE ∠=︒,推出90DAE ∠=︒,在Rt DAE △中利用勾股定理求出DE 的长,进一步求出CD 的长,分别在Rt DCM △和Rt AEN △中,求出MC 和NE 的长,再证MFC NFE △∽△,利用相似三角形对应边的比相等即可求出CF 与EF 的比值.【考点】相似三角形的判定与性质,勾股定理,解直角三角形 三、解答题17.【答案】解:2221111x x x x x ++⎛⎫-÷ ⎪--⎝⎭22121111xx x x x x x -++⎛⎫=-÷⎪---⎝⎭21(1)(1)1(1)x x x x +-=⨯-+ 11x =+,当1x =时,原式2==.【解析】根据分式的混合运算法则把原式化简,代入计算即可. 【考点】分式的化简求值 18.【答案】(1)20︒ 0.2︒(2)7080x ︒≤< (3)正确 (4)72︒ (5)900【解析】解:(1)调查学生总数:150.350÷=(名), 7080x ≤<的频数:501510520---=,即20a =。
专题知识突破二新定义型问题一、中考专题诠释所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力二、解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.三、中考典例剖析考点一:规律题型中的新定义例1 (2019•济南)现定义一种变换:对于一个由有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,例如序列S0:(4,2,3,4,2),通过变换可生成新序列S1:(2,2,1,2,2),若S0可以为任意序列,则下面的序列可作为S1的是()A.(1,2,1,2,2)B.(2,2,2,3,3)C.(1,1,2,2,3)D.(1,2,1,1,2)思路分析:根据题意可知,S1中2有2的倍数个,3有3的倍数个,据此即可作出选择.考点二:运算题型中的新定义例2 (2019•铜仁)定义一种新运算:a⊗b=b2-ab,如:1⊗2=22-1×2=2,则(-1⊗2)⊗3=_______.思路分析:先根据新定义计算出-1⊗2=6,然后计算再根据新定义计算6⊗3即可.考点三:探索题型中的新定义例3 (2019•钦州)定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1、l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”,根据上述定义,“距离坐标”是(1,2)的点的个数是()A.2 B.3 C.4 D.5思路分析:“距离坐标”是(1,2)的点表示的含义是该点到直线l1、l2的距离分别为1、2.由于到直线l1的距离是1的点在与直线l1平行且与l1的距离是1的两条平行线a1、a2上,到直线l2的距离是2的点在与直线l2平行且与l2的距离是2的两条平行线b1、b2上,它们有4个交点,即为所求.考点四:开放题型中的新定义例4 (2019•北京)对某一个函数给出如下定义:若存在实数M>0,对于任意考点五:阅读材料题型中的新定义例5 (2019•乐山)对于平面直角坐标系中任意两点P1(x1,y1)、P2(x2,y2),称|x1-x2|+|y1-y2|为P1、P2两点的直角距离,记作:d(P1,P2).若P0(x0,y0)是一定点,Q(x,y)是直线y=kx+b上的一动点,称d(P0,Q)的最小值为P0到直线y=kx+b的直角距离.令P0(2,-3),O为坐标原点.则:(1)d(O,P0)=_________;(2)若P(a,-3)到直线y=x+1的直角距离为6,则a=__________.思路分析:(1)根据题中所给出的两点的直角距离公式即可得出结论;(2)先根据题意得出关于x的式子,再由绝对值的几何意义即可得出结论.四、中考真题演练一、选择题1.(2019•大庆)对坐标平面内不同两点A(x1,y1)、B(x2,y2),用|AB|表示A、B两点间的距离(即线段AB的长度),用‖AB‖表示A、B两点间的格距,定义A、B两点间的格距为‖AB‖=|x1-x2|+|y1-y2|,则|AB|与‖AB‖的大小关系为()A.|AB|≥‖AB‖ B.|AB|>‖AB‖ C.|AB|≤‖AB‖ D.|AB|<‖AB‖2.(2019•龙岩)定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a <b时min{a,b}=a.如:min{1,-3}=-3,min{-4,-2}=-4.则min{-x2+1,-x}的最大值是()A .12B .12C .1D .0 3.(2019•泰州)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )A .1,2,3B .1,1C .1,1D .1,24.(2019•常德)阅读理解:如图1,在平面内选一定点O ,引一条有方向的射线Ox ,再选定一个单位长度,那么平面上任一点M 的位置可由∠MOx 的度数θ与OM 的长度m 确定,有序数对(θ,m )称为M 点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA 在射线Ox 上,则正六边形的顶点C 的极坐标应记为( )A .(60°,4)B .(45°,4)C .(50°,5.(2019•绍兴)若圆锥的轴截图为等边三角形,则称此圆锥为正圆锥,则正圆锥的侧面展开图的圆心角是( )A .90°B .120°C .150°D .180°6.4.(2019•乌鲁木齐)对平面上任意一点(a ,b ),定义f ,g 两种变换:f (a ,b )=(a ,-b ).如f (1,2)=(1,-2);g (a ,b )=(b ,a ).如g (1,2)=(2,1).据此得g (f (5,-9))=( )A .(5,-9)B .(-9,-5)C .(5,9)D .(9,5)7.5.(2019•常德)连接一个几何图形上任意两点间的线段中,最长的线段称为这个几何图形的直径,根据此定义,图(扇形、菱形、直角梯形、红十字图标)中“直径”最小的是( )A .B .C .D .二、填空题8.(2019•临沂)一般地,我们把研究对象统称为元素,把一些元素组成的总体称为集合.一个给定集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的.如一组数1,1,2,3,4就可以构成一个集合,记为A={1,2,3,4}.类比实数有加法运算,集合也可以“相加”.定义:集合A 与集合B 中的所有元素组成的集合称为集合A 与集合B 的和,记为A+B .若A={-2,0,1,5,7},B={-3,0,1,3,5},则A+B=___________.910.(2019•北京)在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P (-y+1,x+1)叫做点P ′伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(3,1),则点A 3的坐标为______,点A 2019的坐标为_______;若点A 1的坐标为(a ,b ),对于任意的正整数n ,点A n 均在x 轴上方,则a ,b 应满足的条件为 __________.11.(2019•荆州)我们知道,无限循环小数都可以转化为分数.例如:将0.3∙12. (2019•塘沽区二模)如图1,把一张标准纸一次又一次对开,得到“2开”纸、“4开”纸、“8开”纸、“16开”纸、…,已知标准纸的短边长为a .(说明:①标准纸“2开”纸、“4开”纸、“8开”纸、“16开”纸、…都是矩形;②本题中所求边长或面积都用含a 的代数式表示.)(Ⅰ)如图2,把上面对开得到的“16开”纸按如下步骤折叠:第一步:将矩形的短边AB 与长边AD 对齐折叠,点B 落在AD 上的点B ′处,铺平后得折痕AE ;第二步:将长边AD 与折痕AE 对齐折叠,点D 正好与点E 重合,铺平后得折痕AF .则AD :AB 的值是 ;(Ⅱ)求“2开”纸长与宽的比 ;(Ⅲ)如图3,由8个大小相等的小正方形构成“L ”型图案,它的四个顶点E ,F ,G ,H 分别在“16开”纸的边AB ,BC ,CD ,DA 上,则DG 的长 .13. (2019•连云港)如图1,折线段AOB 将面积为S 的⊙O 分成两个扇形,大扇形、小扇形的面积分别为S 1、S 2,若 121S S S S ==0.618,则称分成的小扇形为“黄金扇形”.生活中的折扇(如图2)大致是“黄金扇形”,则“黄金扇形”的圆心角约为 _______.(精确到0.1)14.(2019•上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为.三、解答题15.(2019•厦门)当m,n是正实数,且满足m+n=mn时,就称点P(m,mn)为“完美点”,已知点A(0,5)与点M都在直线y=-x+b上,点B,C是“完美点”,且点B在线段AM上,若,求△MBC的面积.16.(2019•白银)阅读理解:17.(2019•漳州)如图,△ABC中,AB=AC,∠A=36°,称满足此条件的三角形为黄金等腰三角形.请完成以下操作:(画图不要求使用圆规,以下问题所指的等腰三角形个数均不包括△ABC)(1)在图1中画1条线段,使图中有2个等腰三角形,并直接写出这2个等腰三角形的顶角度数分别是_____度和______度;(2)在图2中画2条线段,使图中有4个等腰三角形;(3)继续按以上操作发现:在△ABC中画n条线段,则图中有____个等腰三角形,其中有________个黄金等腰三角形.18.(2019•北京)对于平面直角坐标系xOy中的点P和⊙C,给出如下的定义:若⊙C上存在两个点A、B,使得∠APB=60°,则称P为⊙C的关联点.已知点D(12,12),E(0,-2),F(0).(1)当⊙O的半径为1时,①在点D、E、F中,⊙O的关联点是.②过点F作直线l交y轴正半轴于点G,使∠GFO=30°,若直线l上的点P(m,n)是⊙O 的关联点,求m的取值范围;(2)若线段EF上的所有点都是某个圆的关联点,求这个圆的半径r的取值范围.(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:①顶点都在格点上;②所涉及的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都图上阴影(建议用一系列平行斜线表示阴影).20.(2019•黔西南州)已知点P (x 0,y 0)和直线y=kx+b ,则点P 到直线y=kx+b 例如:求点P (-2,1)到直线y=x+1的距离.解:因为直线y=x+1可变形为x-y+1=0,其中k=1,b=1.根据以上材料,求:(1)点P(1,1)到直线y=3x-2的距离,并说明点P与直线的位置关系;(2)点P(2,-1)到直线y=2x-1的距离;(3)已知直线y=-x+1与y=-x+3平行,求这两条直线的距离.21.(2019•抚州)【试题背景】已知:l∥m∥n∥k,平行线l与m、m与n、n与k之间的距离分别为d1、d2、d3,且d1=d3=1,d2=2.我们把四个顶点分别在l、m、n、k这四条平行线上的四边形称为“格线四边形”.【探究1】(1)如图1,正方形ABCD为“格线四边形”,BE⊥l于点E,BE的反向延长线交直线k于点F,求正方形ABCD的边长.【探究2】(2)矩形ABCD为“格线四边形”,其长:宽=2:1,则矩形ABCD的宽为.(直接写出结果即可)【探究3】如图2,菱形ABCD为“格线四边形”且∠ADC=60°,△AEF是等边三角形,AE⊥k于点E,∠AFD=90°,直线DF分别交直线l、k于点G、点M.求证:EC=DF.【拓展】(4)如图3,l∥k,等边△ABC的顶点A、B分别落在直线l、k上,AB⊥k于点B,且AB=4,∠ACD=90°,直线CD分别交直线l、k于点G、点M、点D、点E分别是线段GM、BM上的动点,且始终保持AD=AE,DH⊥l于点H.猜想:DH在什么范围内,BC∥DE?并说明此时BC∥DE的理由.22.(2019•顺义区一模)设p,q都是实数,且p<q.我们规定:满足不等式p≤x≤q的实数x的所有取值的全体叫做闭区间,表示为[p,q].对于一个函数,如果它的自变量x 与函数值y满足:当p≤x≤q时,有p≤y≤q,我们就称此函数是闭区间[p,q]上的“闭函数”.(1)反比例函数y=2014x是闭区间[1,2019]上的“闭函数”吗?请判断并说明理由;(2)若一次函数y=kx+b(k≠0)是闭区间[m,n]上的“闭函数”,求此函数的解析式;(3)若实数c,d满足c<d,且d>2,当二次函数y=12x2-2x是闭区间[c,d]上的“闭函数”时,求c,d的值.23.(2019•佛山)我们把“按照某种理想化的要求(或实际可能应用的标准)来反映或概括的表现某一类或一种事物关系结构的数学形式”看作是一个数学中的一个“模式”(我国著名数学家徐利治).如图是一个典型的图形模式,用它可测底部可能达不到的建筑物的高度,用它可测河宽,用它可解决数学中的一些问题.等等.(1)如图,若B1B=30米,∠B1=22°,∠ABC=30°,求AC(精确到1);(2)如图2,若∠ABC=30°,B 1B=AB ,计算tan15°的值(保留准确值);24.(2019•安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”. (1)请写出两个为“同簇二次函数”的函数;(2)已知关于x 的二次函数y 1=2x 2-4mx+2m 2+1和y 2=ax 2+bx+5,其中y 1的图象经过点A (1,1),若y 1+y 2与y 1为“同簇二次函数”,求函数y 2的表达式,并求出当0≤x ≤3时,y 2的最大值.25.(2019•绵阳)我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:(1)若O 是△ABC 的重心(如图1),连结AO 并延长交BC 于D ,证明:23AO AD =; (2)若AD 是△ABC 的一条中线(如图2),O 是AD 上一点,且满足23AO AD =,试判断O 是△ABC 的重心吗?如果是,请证明;如果不是,请说明理由;(3)若O 是△ABC 的重心,过O 的一条直线分别与AB 、AC 相交于G 、H (均不与△ABC 的顶点重合)(如图3),S 四边形BCHG ,S △AGH 分别表示四边形BCHG 和△AGH 的面积,试探究 BCHG AGHS S V 四边形的最大值.专题二 新定义型问题参考答案 三、中考典例剖析考点一:规律题型中的新定义例1解:A 、∵2有3个,∴不可以作为S 1,故选项错误;B 、∵2有3个,∴不可以作为S 1,故选项错误;C 、3只有1个,∴不可以作为S 1,故选项错误D 、符合定义的一种变换,故选项正确.故选:D .考点二:运算题型中的新定义例2解:-1⊗2=22-(-1)×2=6,6⊗3=32-6×3=-9.所以(-1⊗2)⊗3=-9.故答案为-9.考点三:探索题型中的新定义例3解:如图,∵到直线l 1的距离是1的点在与直线l 1平行且与l 1的距离是1的两条平行线a 1、a 2上, 到直线l 2的距离是2的点在与直线l 2平行且与l 2的距离是2的两条平行线b 1、b 2上, ∴“距离坐标”是(1,2)的点是M 1、M 2、M 3、M 4,一共4个.故选C .当x=b 时,y=-b+1.则2b 12b a a 1-≤-+≤⎧⎪⎨⎪-⎩>=,∴-1<b ≤3;(3)若m >1,函数向下平移m 个单位后,x=0时,函数值小于-1,此时函数的边界t ≥1,与题意不符,故m ≤1.当x=-1时,y=1 即过点(-1,1)四、中考真题演练一、选择题1.C2.A3.D4.A5.D6.D7.C二、填空题8. {-3,-2,0,1,3,5,7}9.210.(-3,1),(0,4);-1<a<1且0<b<211.45 9912:113.137.5 14.30°三、解答题15.解:∵m+n=mn且m,n是正实数,∴mn+1=m,即mn=m-1,∴P(m,m-1),即“完美点”P在直线y=x-1上,∵点A(0,5)在直线y=-x+b上,∴b=5,∴直线AM:y=-x+5,∵“完美点”B在直线AM上,∴由y x1 y x5==-⎧⎨-+⎩解得x3y2==⎧⎨⎩,∴B(3,2),∵一、三象限的角平分线y=x垂直于二、四象限的角平分线y=-x,而直线y=x-1与直线y=x 平行,直线y=-x+5与直线y=-x平行,∴直线AM与直线y=x-1垂直,∵点B是直线y=x-1与直线AM的交点,∴垂足是点B,∵点C是“完美点”,∴点C在直线y=x-1上,∴△MBC是直角三角形,∵B(3,2),A(0,5),∴,∵,∴,又∵∴BC=1,∴S △MBC =12 16.解:由题意得2x-(3-x )>0, 去括号得:2x-3+x >0,移项合并同类项得:3x >3, 把x 的系数化为1得:x >1.17.解:(1)如图1所示:∵AB=AC ,∠A=36°,∴当AE=BE ,则∠A=∠ABE=36°,则∠AEB=108°,则∠EBC=36°,∴这2个等腰三角形的顶角度数分别是108度和36度;故答案为:108,36;(2)如图2所示:(3)如图3所示:当1条直线可得到2个等腰三角形;当2条直线可得到4个等腰三角形;当3条直线可得到6个等腰三角形;…∴在△ABC 中画n 条线段,则图中有2n 个等腰三角形,其中有n 个黄金等腰三角形.故答案为:2n ,n .18.解:(1)①如图1所示,过点E 作⊙O 的切线设切点为R ,∵⊙O 的半径为1,∴RO=1,∵EO=2,∴∠OER=30°,根据切线长定理得出⊙O 的左侧还有一个切点,使得组成的角等于30°,∴E 点是⊙O 的关联点,∵D (12,12),E (0,-2),F (0), ∴OF >EO ,DO <EO ,∴D 点一定是⊙O 的关联点,而在⊙O 上不可能找到两点使得组成的角度等于60°, 故在点D 、E 、F 中,⊙O 的关联点是D ,E ;故答案为:D ,E ;②由题意可知,若P 要刚好是⊙C 的关联点,需要点P 到⊙C 的两条切线PA 和PB 之间所夹的角为60°,由图2可知∠APB=60°,则∠CPB=30°,连接BC ,则PC=sin BC CPB∠=2BC=2r , ∴若P 点为⊙C 的关联点,则需点P 到圆心的距离d 满足0≤d≤2r ;由上述证明可知,考虑临界点位置的P 点,如图3,点P 到原点的距离OP=2×1=2,过点O 作l 轴的垂线OH ,垂足为H ,tan ∠OGF=FO OG = ∴∠OGF=60°,∴OH=OGsin60°sin ∠OPH=OH OP = ∴∠OPH=60°,可得点P 1与点G 重合,过点P 2作P 2M ⊥x 轴于点M ,可得∠P 2OM=30°,∴OM=OP 2cos30°从而若点P 为⊙O 的关联点,则P 点必在线段P 1P 2上,∴(2)若线段EF上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应在线段EF的中点;考虑临界情况,如图4,即恰好E、F点为⊙K的关联时,则KF=2KN=12EF=2,此时,r=1,故若线段EF上的所有点都是某个圆的关联点,这个圆的半径r的取值范围为r≥1.19.解:(1)相同点:①两组邻边分别相等;②有一组对角相等;③一条对角线垂直平分另一条对角线;④一条对角线平分一组对角;⑤都是轴对称图形;⑥面积等于对角线乘积的一半;不同点:①菱形的对角线互相平分,筝形的对角线不互相平分;②菱形的四边都相等,筝形只有两组邻边分别相等;③菱形的两组对边分别平行,筝形的对边不平行;④菱形的两组对角分别相等,筝形只有一组对角相等;⑤菱形的邻角互补,筝形的邻角不互补;⑥菱形的既是轴对称图形又是中心对称图形,筝形是轴对称图形不是中心对称图形;(2)如图所示:.(3)在直线y=-x+1任意取一点P,当x=0时,y=1.∴P(0,1).∵直线y=-x+3,∴k=-1,b=3,21.解:(1)∵l∥k,BE⊥l,∴∠BFC=∠BEA=90°,∴∠ABE+∠BAE=90°,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC.∴∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∴△ABE≌△BCF,∴AE=BF,∵d1=d3=1,d2=2,∴BE=3,AE=1,在直角△ABE中,AB==,;(2)过B作BE⊥l于点E,交k于点F.则BE=1,BF=3,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠ABE+∠FBC=90°,又∵直角△ABE中,∠ABE+∠EAB=90°,∴∠FBC=∠EAB,∴△AEB∽△BFC,当AB是较短的边时,如图(a),AB=12BC,则AE=12BF=32,在直角△ABE中,=当AB是长边时,如图(b),同理可得:;故答案为:(3)证明:如解答图1,连接AC,∵四边形ABCD是菱形,且∠ADC=60°,∴AC=AD,∵△AEF是等边三角形,∴AE=AF,∵AE⊥k,∠AFD=90°,∴∠AEC=∠AFD=90°,∴直角△AEC≌直角△AFD,∴EC=DF;(4)当2<DH<4时,BC∥DE.理由如下:如图2,当2<DH<4时,点D在线段CM上,连接AM.∵∠ABM=∠ACM=90°,AB=AC,AM=AM,∴Rt△ABM≌Rt△ACM,∴∠BAM=∠CAM,∴AM⊥BC,又∵AD=AE,AB=AC,∴Rt△ABE≌Rt△ACD,∴∠BAE=∠CAD,∴∠EAM=∠DAM,∴AM⊥ED.∴BC∥DE.22.解:(1)反比例函数y=2014x是闭区间[1,2019]上的“闭函数”,理由如下:反比例函数y=2014x在第一象限,y随x的增大而减小,当x=1时,y=2019;当x=2019时,y=1,所以,当1≤x≤2019时,有1≤y≤2019,符合闭函数的定义,故反比例函数y=2014x是闭区间[1,2019]上的“闭函数”;(2)分两种情况:k>0或k<0.①当k>0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而增大,故根据“闭函数”的定义知,km b m? kn b n==+⎧⎨+⎩,解得k1b0==⎧⎨⎩.∴此函数的解析式是y=x;②当k<0时,一次函数y=kx+b(k≠0)的图象是y随x的增大而减小,故根据“闭函数”的定义知,km b n? k n b m==+⎧⎨+⎩,解得k1b m n ==-⎧⎨+⎩.∴此函数的解析式是y=-x+m+n;(3)∵y=12x2-2x=12(x2-4x+4)-2=12(x-2)2-2,∴该二次函数的图象开口方向向上,最小值是-2,且当x<2时,y随x的增大而减小;当x >2时,y随x的增大而增大.①当c<2<d时,此时二次函数y=12x2-2x的最小值是-2=c,根据“闭函数”的定义知,d=12c2-2c或d=12d2-2d;Ⅰ)当d=12c2-2c时,由于d=12×(-2)2-2×(-2)=6>2,符合题意;Ⅱ)当d=12d 2-2d 时,解得d=0或6, 由于d >2,所以d=6;②当c≥2时,此二次函数y 随x 的增大而增大,则根据“闭函数”的定义知,22122122c c cd d d ⎧-=⎪⎪⎨⎪-=⎪⎩, 解得,66c d =⎧⎨=⎩, ∵c <d ,∴66c d =⎧⎨=⎩不合题意,舍去. 综上所述,c ,d 的值分别为-2,6.24.解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x-h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x-3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x-3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x-3)2+4与y=3(x-3)2+4顶点相同,开口都向上,∴两个函数y=2(x-3)2+4与y=3(x-3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x-3)2+4与y=3(x-3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12-4×m×1+2m2+1=1.整理得:m2-2m+1=0.解得:m1=m2=1.∴y1=2x2-4x+3=2(x-1)2+1.∴y1+y2=2x2-4x+3+ax2+bx+5=(a+2)x2+(b-4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x-1)2+1=(a+2)x2-2(a+2)x+(a+2)+1.其中a+2>0,即a>-2.∴b42(a2) 8(a2)1--+⎧⎨++⎩==.解得:a5b10⎧⎨-⎩==.∴函数y2的表达式为:y2=5x2-10x+5.∴y2=5x2-10x+5=5(x-1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0-1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3-1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.25.解:(1)证明:如答图1所示,连接CO并延长,交AB于点E.∵点O是△ABC的重心,∴CE是中线,点E是AB的中点.∴DE是中位线,∴DE∥AC,且DE=12 AC.∵DE∥AC,∴△AOC∽△DOE,∴AO ACOD DE=2,∵AD=AO+OD,∴AOAD=23.(2)答:点O是△ABC的重心.证明:如答图2,作△ABC的中线CE,与AD交于点Q,则点Q为△ABC的重心.由(1)可知,AOAD=23,而AOAD=23,∴点Q与点O重合(是同一个点),∴点O是△ABC的重心.(3)如答图3所示,连接DG.设S△GOD=S,由(1)知AOAD=23,即OA=2OD,∴S△AOG=2S,S△AGD=S△GOD+S△AGO=3S.为简便起见,不妨设AG=1,BG=x,则S△BGD=3xS.∴S△ABD=S△AGD+S△BGD=3S+3xS=(3x+3)S,∴S△ABC=2S△ABD=(6x+6)S.设OH=k•OG,由S△AGO=2S,得S△AOH=2kS,∴S△AGH=S△AGO+S△AOH=(2k+2)S.∴S 四边形BCHG =S △ABC -S △AGH =(6x+6)S-(2k+2)S=(6x-2k+4)S . ∴BCHG AGHS S V 四边形=(6-24)(22)x k S k S ++=3-21x k k ++ ① 如答图3,过点O 作OF ∥BC 交AC 于点F ,过点G 作GE ∥BC 交AC 于点E ,则OF ∥GE . ∵OF ∥BC , ∴23OF AO CD AD ==, ∴OF=23CD=13BC ; ∵GE ∥BC , ∴11GE AG BC AB x ==+, ∴GE=1BC x +; ∴131BC OF BC GEx =+=13x +, ∴13(1)OF x GE OF x +=--+=12x x+-. ∵OF ∥GE , ∴OH OF GH GE=, ∴1-2-OH OF x OG GE OF x+==, ∴k=12-x x+,代入①式得: BCHG AGH S S V 四边形=13-23-22-1112-x x x k x x k x +++=+++=-x 2+x+1=-(x-12)2+54, ∴当x=12时,BCHG AGHS S V 四边形有最大值,最大值为54.。
一、选择题1.(2019·岳阳)对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是() A .c <-3 B .c <-2 C .14c <D .c <1 【答案】B【解析】 当y =x 时,x =x 2+2x +c ,即为x 2+x +c =0,由题意可知:x 1,x 2是该方程的两个实数根,所以12121x x x x c+=-⎧⎨⋅=⎩∵x 1<1<x 2,∴(x 1-1)(x 2-1)<0, 即x 1x 2-(x 1+x 2) +1<0, ∴c -(-1)+1<0, ∴c <-2.又知方程有两个不相等的实数根,故Δ>0, 即12-4c >0, 解得:c <14.∴c 的取值范围为c <-2 .2.(2019·济宁)−1,-1的差类推,那么a 1+a 2+…+a 100的值是() A .-7.5 B .7.5 C .5.5 D .-5.5 【答案】A【解析】二、填空题18.(2019·娄底)已知点P ()00,x y 到直线y kx b =+的距离可表示为d =例如:点(0,1)到直线y =2x+6的距离d ==y x =与4y x =-之间的距离为___________. 【答案】.【解析】在直线y x =上任取点,不妨取(0,0),根据两条平行线之间距离的定义可知,(0,0)到直线4y x =-的距离就是两平行直线y x =与4y x =-之间的距离.d ===. 16.(2019·常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二次函数y =x 2的图象上在第一象限内的任意一点,PQ 垂直直线y =-1于点Q ,则四边形PMNQ 是广义菱形.其中正确的是 .(填序号)【答案】①④【解析】正方形和菱形满足一组对边平行,一组邻边相等,故都是广义菱形,故①正确;平行四边形虽然满足一组对边平行,但是邻边不一定相等,因此不是广义菱形,故②错误;对角线互相垂直,且两组邻边分别相等的四边形的对边不一定平行,邻边也不一定相等,因此不是广义菱形,故③错误;④中的四边形PMNQ 满足MN ∥PQ ,设P (m ,0)(m >0),∵PM+1,PQ =-(-1)=+1,∴PM =PQ ,故四边形PMNQ 是广义菱形.综上所述正确的是①④.17.(2019·陇南)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k = . 【答案】85或14. 【解析】当∠A 是顶角时,底角是50°,则k=808505=;当∠A 是底角时,则底角是20°,k=201804=,故答案为:85或14.三、解答题1.(2019·重庆A 卷)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义:对于自然数n ,在计算n +(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由; (2)求出不大于100的“纯数”的个数.解:(1)2019不是“纯数”,2020是“纯数”,理由如下:∵在计算2019+2020+2021时,个位产生了进位,而计算2020+2021+2022时,各数位都不产生进位, ∴2019不是“纯数”,2020是“纯数”.(2)由题意可知,连续三个自然数的个位不同,其他位都相同,并且连续的三个自然数个位为0、1、2时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位.现分三种情况讨论如下:①当这个数为一位自然数时,只能是0、1、2,共3个;14214m 214m 214m②当这个数为二位自然数时,十位只能为1、2、3,个位只能为0、1、2,即10、11、12、20、21、22、30、31、32共9个; ③当这个数为100时,易知100是“纯数”. 综上,不大于100的“纯数”的个数为3+9+1=13.2.(2019·重庆B 卷)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等. 现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数n ,在通过列竖式进行()()21++++n n n 的运算时各位都不产生进位现象,则称这个自然数n 为“纯数”.例如:32是“纯数”,因为343332++在列竖式计算时各位都不产生进位现象; 23不是“纯数”,因为252423++在列竖式计算时个位产生了进位. ⑴请直接写出1949到2019之间的“纯数”;⑵求出不大于100的“纯数”的个数,并说明理由. 解:(1)1949到2019之间的“纯数”为2000、2001、2002、2010、2011、2012 . (2)由题意:不大于100的“纯数”包含:一位数、两位数和三位数100若n 为一位数,则有n +(n +1)+(n +2)<10,解得:n <3,所以:小于10的“纯数数”有0、1、2,共3个.两位数须满足:十位数可以是1、2、3,个位数可以是0、1、2,列举共有9个分别是10、11、12、20、21、22、30、31、32;三位数为100,共1个所以:不大于100的“纯数”共有13个.3.(2019·衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满是x =3a c +,y =3b d +,那么称点T 是点A ,B 的融合点。
第一部分教材知识点梳理·系统复习第一单元数与式第1讲实数第2讲整式与因式分解第3讲分式第4讲二次根式第二单元方程(组)与不等式(组) 第5讲一次方程(组)第6讲一元二次方程第7讲分式方程第8讲一元一次不等式(组) x≥a x>a x≤a x<a第9讲平面直角坐标系与函数第10讲一次函数面积;②也要注意系数k的几何意义三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S第12讲二次函数的图象与性质第13讲二次函数的应用第四单元图形的初步认识与三角形第14讲平面图形与相交线、平行线第15讲一般三角形及其性质第16讲等腰、等边及直角三角形第17讲相似三角形D cD c的比叫做黄金比.)熟悉利用利用相似求解问题的基本图形,可以迅速找到解题思路,事半功倍. 第18讲 解直角三角形E C解题方法:这两种模型种都有一条公共的直角边,解题时,往往通过这条边为中介在两个三角形中依次求边,弄清题中名词、术语,根据题意画出图形,建立数学模型;第五单元四边形第19讲多边形与平行四边形,每一个外角为(1)如图①,AF平分∠BAD,则可利用平行线的性质结合等角对等边得到第20讲特殊的平行四边形形.(变式:如图④,四边形图①图②图③图④第六单元圆第21讲圆的基本性质垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.的直径垂直于弦,并且平分弦所对的两条弧;弦的垂直平分线经过圆心,并且平分弦所对的两条弧.只要满足其中两个,另外三个结论一定成立,即推二知三.图a 图b 图cBAC=40°,则∠D图a 图b 图cBAC=40°,则∠D 第22讲与圆有关的位置关系已知△ABC的三边长a=3,b=4则它的外切圆半径是2.5.第23讲与圆有关的计算:正多边形与圆(2)特殊正多边形中各中心角、长度比:中心角=120°中心角=90°中心角=60°,△BOCa:r:R=2:1:2 a:r:R=2::2知识点二:与圆有关的计算公式n第七单元图形与变换第24讲平移、对称、旋转与位似第25讲视图与投影第八单元统计与概率第27讲概率。
一、选择题1.(2020·岳阳)对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是() A .c <-3 B .c <-2 C .14c <D .c <1 【答案】B【解析】 当y =x 时,x =x 2+2x +c ,即为x 2+x +c =0,由题意可知:x 1,x 2是该方程的两个实数根,所以12121x x x x c+=-⎧⎨⋅=⎩∵x 1<1<x 2,∴(x 1-1)(x 2-1)<0, 即x 1x 2-(x 1+x 2) +1<0, ∴c -(-1)+1<0, ∴c <-2.又知方程有两个不相等的实数根,故Δ>0, 即12-4c >0, 解得:c <14.∴c 的取值范围为c <-2 .2.(2020·济宁)−1,-1的差类推,那么a 1+a 2+…+a 100的值是() A .-7.5 B .7.5 C .5.5 D .-5.5 【答案】A【解析】二、填空题18.(2020·娄底) 已知点P()00,x y 到直线y kx b =+的距离可表示为d =0,1)到直线y =2x+6的距离d ==y x =与4y x =-之间的距离为___________. 【答案】.【解析】在直线y x =上任取点,不妨取(0,0),根据两条平行线之间距离的定义可知,(0,0)到直线4y x =-的距离就是两平行直线y x =与4y x =-之间的距离.d ===. 16.(2020·常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二次函数y =x 2的图象上在第一象限内的任意一点,PQ 垂直直线y =-1于点Q ,则四边形PMNQ 是广义菱形.其中正确的是 .(填序号)【答案】①④【解析】正方形和菱形满足一组对边平行,一组邻边相等,故都是广义菱形,故①正确;平行四边形虽然满足一组对边平行,但是邻边不一定相等,因此不是广义菱形,故②错误;对角线互相垂直,且两组邻边分别相等的四边形的对边不一定平行,邻边也不一定相等,因此不是广义菱形,故③错误;④中的四边形PMNQ 满足MN ∥PQ ,设P (m ,0)(m >0),∵PM=+1,PQ =-(-1)=+1,∴PM =PQ ,故四边形PMNQ 是广义菱形.综上所述正确的是①④.17.(2020·陇南)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k = .【答案】85或14. 【解析】当∠A 是顶角时,底角是50°,则k=808505=;当∠A 是底角时,则底角是20°,k=201804=,故答案为:85或14.三、解答题1.(2020·重庆A 卷)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义:对于自然数n ,在计算n +(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由; (2)求出不大于100的“纯数”的个数.解:(1)2019不是“纯数”,2020是“纯数”,理由如下:∵在计算2019+2020+2021时,个位产生了进位,而计算2020+2021+2022时,各数位都不产生进位,∴2019不是“纯数”,2020是“纯数”.(2)由题意可知,连续三个自然数的个位不同,其他位都相同,并且连续的三个自然数个位为0、1、2时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位.现分三种情况讨论如下:①当这个数为一位自然数时,只能是0、1、2,共3个;14214m 214m 214m②当这个数为二位自然数时,十位只能为1、2、3,个位只能为0、1、2,即10、11、12、20、21、22、30、31、32共9个; ③当这个数为100时,易知100是“纯数”. 综上,不大于100的“纯数”的个数为3+9+1=13.2.(2020·重庆B 卷)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等. 现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数,在通过列竖式进行的运算时各位都不产生进位现象,则称这个自然数为“纯数”.例如:是“纯数”,因为在列竖式计算时各位都不产生进位现象; 不是“纯数”,因为在列竖式计算时个位产生了进位. ⑴请直接写出1949到2019之间的“纯数”;⑵求出不大于100的“纯数”的个数,并说明理由.解:(1)1949到2019之间的“纯数”为2000、2001、2002、2010、2011、2012 . (2)由题意:不大于100的“纯数”包含:一位数、两位数和三位数100若n 为一位数,则有n +(n +1)+(n +2)<10,解得:n <3,所以:小于10的“纯数数”有0、1、2,共3个.两位数须满足:十位数可以是1、2、3,个位数可以是0、1、2,列举共有9个分别是10、11、12、20、21、22、30、31、32;三位数为100,共1个所以:不大于100的“纯数”共有13个.3.(2020·衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满是x =3a c +,y =3b d +,那么称点T 是点A ,B 的融合点。
中考数学复习资料第一章 实数考点一、实数的概念及分类 (3分)1、实数的分类正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数 2、无理数在理解无理数时,要抓住“无限不循环”这一实质,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等; (4)某些三角函数,如sin60o 等考点二、实数的倒数、相反数和绝对值 (3分)1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|≥0。
零的绝对值时它本身,也可看成它的相反数,若|a|=a ,则a≥0;若|a|=-a ,则a≤0。
正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
考点三、平方根、算数平方根和立方根 (3—10分)1、平方根如果一个数的平方等于a ,那么这个数就叫做a 的平方根(或二次方跟)。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±”。
2、算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a ”。
正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0)0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥03、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根(或a 的三次方根)。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
一、选择题1、(2018北京昌平区初一第一学期期末)用“☆”定义一种新运算:对于任意有理数a 和b ,规定a ☆b = ab 2+ a .如:1☆3=1×32+1=10.则(-2)☆3的值为 A .10 B .-15C . -16 D .-20 答案:D 二、填空题3、(2018北京西城区七年级第一学期期末附加题)1.用“△”定义新运算:对于任意有理数a ,b ,当a ≤b 时,都有2a b a b ∆=;当a >b 时,都有2a b ab ∆=.那么,2△6 = ,2()3-△(3)-=. 答案:24,-64.(2018北京海淀区第二学期练习)定义:圆中有公共端点的两条弦组成的折线称为圆的一条折弦.阿基米德折弦定理:如图1,AB 和BC 组成圆的折弦,AB BC >,M 是弧ABC 的中点,MF AB⊥于F ,则AF FB BC =+.如图2,△ABC 中,60ABC ∠=︒,8AB =,6BC =,D 是AB 上一点,1BD =,作DE AB ⊥交△ABC 的外接圆于E ,连接EA ,则EAC ∠=________°. 答案605、(2018北京交大附中初一第一学期期末)如图,在平面内,两条直线l 1,l 2相交于点O ,对于平面内任意一点M ,若p 、q 分别是点M 到直线l 1,l 2的距离,则称(p ,q )为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有______个.三、解答题图2图1E A6、(2018北京平谷区初一第一学期期末)阅读材料:规定一种新的运算:a c =bad bc d -.例如:1214-23=-2.34××=(1)按照这个规定,请你计算5624的值.(2)按照这个规定,当5212242=-+-x x 时求x 的值. 答案(1)5624=20-12=8 (2)(2)由5212242=-+-x x 得5224221=++-)()(x x ...............................................................4 解得,x =1 (5)7、(2018北京海淀区七年级第一学期期末)对于任意四个有理数a ,b ,c ,d ,可以组成两个有理数对(a ,b )与(c ,d ).我们规定:(a ,b )★(c ,d )=bc -ad .例如:(1,2)★(3,4)=2×3-1×4=2. 根据上述规定解决下列问题:(1)有理数对(2,-3)★(3,-2)=;(2)若有理数对(-3,2x -1)★(1,x +1)=7,则x =;(3)当满足等式(-3,2x -1)★(k ,x +k )=5+2k 的x 是整数时,求整数k 的值. 答案.解:(1)﹣5……………………..2分(2)1 ……………………..4分(3)∵等式(-3,2x -1)★(k ,x +k )=5+2k 的x 是整数 ∴(2x ﹣1)k ﹣(﹣3)(x ﹢k )=5﹢2k ∴(2k ﹢3)x =5∴523x k =+∵k 是整数 ∴2k +3=±1或±5∴k =1,﹣1,﹣2,﹣4……………………..7分8、(2018北京朝阳区七年级第一学期期末)对于任意有理数a ,b ,定义运算:a ⊙b =()1a a b +-,等式右边是通常的加法、减法、乘法运算,例如,2⊙5=2×(2+5)-1=13;(3)-⊙(5)-=3(35)123-⨯---=.(1)求(2)-⊙132的值;(2)对于任意有理数m ,n ,请你重新定义一种运算“⊕”,使得5⊕3=20,写出你定义的运算:m ⊕n=(用含m ,n 的式子表示).答案解:(1)(2)-⊙1132(23)122=-⨯-+- 4=-.(2)答案不唯一,例如:m n ⊕=(1)m n +.9.(2018北京石景山区初三毕业考试)对于平面上两点A ,B ,给出如下定义:以点A 或B 为圆心,AB 长为半径的圆称为点A ,B 的“确定圆”.如图为点A ,B 的“确定圆”的示意图.... (1)已知点A 的坐标为(1,0)-,点B 的坐标为(3,3), 则点A ,B 的“确定圆”的面积为_________;(2)已知点A 的坐标为(0,0),若直线y x b =+上只存在一个点B ,使得点A ,B的“确定圆”的面积为9π,求点B 的坐标;(3)已知点A 在以(0)P m ,为圆心,以1为半径的圆上,点B 在直线y =+ 若要使所有点A ,B 的“确定圆”的面积都不小于9π,直接写出m 的取值范围. 解:(1)25π;………………… 2分(2)∵直线y x b =+上只存在一个点B ,使得点,A B 的“确定圆”的面积 为9π,∴⊙A 的半径3AB =且直线y x b =+与⊙A 相切于点B ,如图, ∴AB CD ⊥,45DCA ∠=°.①当0b >时,则点B 在第二象限. 过点B 作BE x ⊥轴于点E ,∵在Rt BEA ∆中,45BAE ∠=°,3AB =,∴2BE AE ==.∴22B-(,. ②当0b <时,则点'B 在第四象限.同理可得'22B -(.综上所述,点B的坐标为22-(,或22-(. ………………… 6分(3)5m -≤或11m ≥.10.(2018北京延庆区初三统一练习)平面直角坐标系xOy中,点1(A x ,1)y 与2(B x ,2)y ,如果满足120x x +=,120y y -=,其中12x x ≠,则称点A 与点B互为反等点.已知:点C (3,4)(1)下列各点中,与点C 互为反等点;D (-3,-4),E (3,4),F (-3,4)(2)已知点G (-5,4),连接线段CG ,若在线段CG 上存在两点P ,Q 互为反等点,求点P 的横坐标p x 的取值范围;(3)已知⊙O 的半径为r ,若⊙O 与(2)中线段CG 的两个交点互为反等点,求r 的取值范围. 解:(1)F ……1分(2)-3≤p x ≤3 且p x ≠0……4分(3)4< r≤5……7分11. (2018北京市朝阳区综合练习(一))对于平面直角坐标系xOy 中的点P 和线段AB ,其中A (t ,0)、B (t +2,0)两点,给出如下定义:若在线段AB 上存在一点Q ,使得P ,Q 两点间的距离小于或等于1,则称P 为线段AB 的伴随点. (1)当t =-3时,①在点P 1(1,1),P 2(0,0),P 3(-2,-1)中,线段AB 的伴随点是; ②在直线y =2x +b 上存在线段AB 的伴随点M 、N ,且MN 5=b 的取值范围;(2)线段AB 的中点关于点(2,0)的对称点是C ,将射线CO 以点C 为中心,顺时针旋转30°得到射线l ,若射线l 上存在线段AB 的伴随点,直接写出t 的取值范围. 解:(1)①线段AB 的伴随点是:23,P P . ………………………………………………2分 ②如图1,当直线y =2x +b 经过点(-3,-1)时,b =5,此时b 取得最大值.…………………………………………………………4分如图2,当直线y =2x +b 经过点(-1,1)时,b =3,此时b 取得最小值. ………………………………………………………5分 ∴b 的取值范围是3≤b ≤5. ………………………………………6分(2)t 的取值范围是-12.2t ≤≤……………………………………8分 12.(2018北京丰台区一模)对于平面直角坐标系xOy 中的点M 和图形1W ,2W 给出如下定义:点P 为图形1W 上一点,点Q 为图形2W 上一点,当点M 是线段PQ 的中点时,称点M 是图形1W ,2W 的“中立点”.如果点P (x 1,y 1),Q (x 2,y 2),那么“中立点”M 的坐标为⎪⎭⎫⎝⎛++2,22121y y x x . 已知,点A (-3,0),B (0,4),C (4,0). (1)连接BC ,在点D (12,0),E (0,1),F (0,12)中,可以成为点A 和线段BC 的“中立点”的是____________;(2)已知点G (3,0),⊙G 的半径为2.如果直线y = - x + 1上存在点K 可以成为点A 和⊙G 的“中立点”,求点K 的坐标; (3)以点C 为圆心,半径为2作圆.点N 为直线y = 2x + 4上的一点,如果存在点N ,使得y 轴上的一点可以成为点N 与⊙C 的“中立点”,直接写出点N 的横坐标的取值范围.解:(1)点和线段(2)点A 和⊙G 半径为1的圆上运动. 因为点K 在直线y =- x +1上, 设点K 的坐标为(x ,- x +1), 则x 2+(- x +1)2=12,解得x 1=0,x 2=1.A BC 图1图2所以点K 的坐标为(0,1)或(1,0).………5分(3)(说明:点与⊙C 的“中立点”在以线段NC 的中点P 为圆心、半径为1的圆上运动.圆P 与y 轴相切时,符合题意.) 所以点N 的横坐标的取值范围为-6≤x N ≤-2. ………8分13.(2018北京海淀区第二学期练习)在平面直角坐标系xOy 中,对于点P 和C ,给出如下定义:若C 上存在一点T 不与O 重合,使点P 关于直线OT 的对称点'P 在C 上,则称P 为C 的反射点.下图为C 的反射点P 的示意图.(1)已知点A 的坐标为(1,0),A 的半径为2,①在点(0,0)O ,(1,2)M ,(0,3)N -中,A 的反射点是____________;②点P 在直线y x =-上,若P 为A 的反射点,求点P 的横坐标的取值范围;(2)C 的圆心在x 轴上,半径为2,y 轴上存在点P 是C 的反射点,直接写出圆心C 的横坐标x 的取值范围.解(1)①A 的反射点是M ,N .………………1分②设直线y x =-与以原点为圆心,半径为1和3的两个圆的交点从左至右依次为D ,E ,F ,G ,过点D 作⊥DH x 轴于点H ,如图. 可求得点D 的横坐标为322-. 同理可求得点E ,F ,G 的横坐标分别为22-,22,322. 点P 是A 的反射点,则A 上存在一点T ,使点P 关于直线OT 的对称点'P 在A 上,则'OP OP =.∵1'3≤≤OP ,∴13≤≤OP . 反之,若13≤≤OP ,A 上存在点Q ,使得OP OQ =,故线段PQ 的垂直平分线经过原点,且与A 相交.因此点P 是A 的反射点.∴点P 的横坐标x 的取值范围是32222≤≤x --,或23222≤≤x .………………4分 N yxPOC T P’(2)圆心C 的横坐标x 的取值范围是44≤≤x -.………………7分14、.(2018北京西城区九年级统一测试)对于平面内的⊙C 和⊙C 外一点Q ,给出如下定义:若过点Q 的直线与⊙C 存在公共点,记为点A ,B ,设AQ BQk CQ+=,则称点A (或点B )是⊙C 的“k 相关依附点”,特别地,当点A 和点B 重合时,规定AQ BQ =,2AQ k CQ =(或2BQCQ). 已知在平面直角坐标系xOy 中,(1,0)Q -,(1,0)C ,⊙C 的半径为r . (1)如图1,当r =①若1(0,1)A 是⊙C 的“k 相关依附点”,则k 的值为__________.②2(1A +是否为⊙C 的“2相关依附点”.答:__________(填“是”或“否”). (2)若⊙C 上存在“k 相关依附点”点M , ①当1r =,直线QM 与⊙C 相切时,求k 的值.②当k r 的取值范围.(3)若存在r的值使得直线y b =+与⊙C 有公共点,且公共点时⊙C 的”,直接写出b 的取值范围.解:(1.…………………………………………………………………………1分②是.……………………………………………………………………………2分 (2)①如图9,当r =1时,不妨设直线QM 与⊙C 相切的切点M 在x 轴上方(切点M 在x 轴下方时同理),连接CM ,则QM ⊥CM . ∵(1,0)Q -,(1,0)C ,r =1,x∴2CQ =,1CM =. ∴MQ = 此时2MQk CQ==3分②如图10,若直线QM 与⊙C 不相切,设直线QM 与⊙C 的另一个交点为N (不妨设QN <QM ,点N ,M 在x 轴下方时同理). 作CD ⊥QM 于点D ,则MD=ND .∴()222MQ NQ MN NQ NQ ND NQ DQ +=++=+=. ∵2CQ =, ∴2MQ NQ DQk DQ CQ CQ+===.∴当k DQ = 此时1CD ==. 假设⊙C 经过点Q ,此时r = 2. ∵点Q 在⊙C 外,∴r 的取值范围是1≤r <2.……………………………………………5分(3)b <7分 15. (2018北京怀柔区一模)P 是⊙C 外一点,若射.线.PC 交⊙C 于点A ,B 两点,则给出如下定义:若0<PA PB ≤3,则点P 为⊙C的“特征点”.(1)当⊙O 的半径为1时.⋅①在点P 1(,0)、P 2(0,2)、P 3(4,0)中,⊙O 的“特征点”是; ②点P 在直线y=x+b 上,若点P 为⊙O 的“特征点”.求b 的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y=x+1与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都.不是..⊙C 的“特征点”,直接写出点C 的横坐标的取值范围. 解:(1)①P 1(,0)、P 2(0,2)…………………………………………………………………2分 ②如图,在y=x+b 上,若存在⊙O 的“特征点”点P ,点O 到直线y=x+b 的距离m ≤2.直线y=x+b 1交y 轴于点E ,过O 作OH ⊥直线y=x+b 1于点H. 因为OH=2,在Rt △DOE 中,可知OE=2. 可得b 1=2.同理可得b 2=-2.∴b 的取值范围是:≤b ≤. …………………………………………………6分 (2)x>或.…………………………………………………………………………8分16. (2018北京平谷区中考统一练习)在平面直角坐标系xOy 中,点M 的坐标为()11,x y ,点N 的坐标为()22,x y ,且12x x ≠,12y y ≠,以MN 为边构造菱形,若该菱形的两条对角线分别平行于x 轴,y 轴,则称该菱形为边的“坐标菱形”.(1)已知点A (2,0),B (),则以AB 为边的“坐标菱形”的最小内角为_______;(2)若点C (1,2),点D 在直线y =5上,以CD 为边的“坐标菱形”为正方形,求直线CD 表达式; (3)⊙O ,点P 的坐标为(3,m ) .若在⊙O 上存在一点Q ,使得以QP 为边的“坐标菱形”为正方形,求m 的取值范围.2222222-2233-<x解:(1)60; ······························································································· 1 (2)∵以CD 为边的“坐标菱形”为正方形, ∴直线CD 与直线y =5的夹角是45°. 过点C 作CE ⊥DE 于E .∴D (4,5)或()2,5-. .......................................................... 3 ∴直线CD 的表达式为1y x =+或3y x =-+. .. (5)(3)15m ≤≤或51m -≤≤-. (7)17.(2018北京顺义区初三练习)如图1,对于平面内的点P 和两条曲线1L 、2L 给出12PQ PQ 如下定义:若从点P 任意引出一条射线分别与1L 、2L 交于1Q 、2Q ,总有是定值,我们称曲线1L 与2L “曲似”,定值12PQ PQ 为“曲似比”,点P 为“曲心”.例如:如图2,以点O'为圆心,半径分别为1r 、2r (都是常数)的两个同心圆1C 、2C ,从点O'任意引出一条射线分别与两圆交于点M 、N ,因为总有12''r O M O N r =是定值,所以同心圆1C 与2C 曲似,曲似比为12r r ,“曲心”为O'.图2C 2C 1NMO'图1Q 2Q 1L 2L 1P86422468105510D CBAO(1)在平面直角坐标系xOy 中,直线y kx =与抛物线2y x =、212y x =分别交于点A 、B ,如图3所示,试判断两抛物线是否曲似,并说明理由;(2)在(1)的条件下,以O 为圆心,OA 为半径作圆,过点B 作x 轴的垂线,垂足为C ,是否存在k 值,使⊙O 与直线BC 相切?若存在,求出k 的值;若不存在,说明理由; (3)在(1)、(2)的条件下,若将“212y x =”改为“21y x m=”,其他条件不变,当存在⊙O 与直线BC 相切时,直接写出m 的取值范围及k 与m 之间的关系式.解:(1)是.过点A ,B 作x 轴的垂线,垂足分别为D ,C .依题意可得A (k ,k 2),B (2k ,2k 2).……………………………………………… 2分 因此D (k ,0),C (2k ,0). ∵AD ⊥x 轴,BC ⊥x 轴, ∴AD ∥BC . ∴122===OA OD k OB OC k . ∴两抛物线曲似,曲似比是12.………… 3分 (2)假设存在k 值,使⊙O 与直线BC 相切.则OA=OC=2k ,又∵OD=k ,AD=k 2,并且OD 2+AD 2= OA 2, ∴k 2+(k 2)2=(2k )2. ∴3k =±.(舍负) 由对称性可取3k =-.综上,3k =±.………………………… 6分(3)m 的取值范围是m >1,k 与m 之间的关系式为k 2=m 2-1 .………8分18、(2018年北京昌平区第一学期期末质量抽测)对于平面直角坐标系xOy 中的点P ,给出如下定义:记点P 到x 轴的距离为1d ,到y 轴的距离为2d ,若12d d ≥,则称1d 为点P 的最大距离;若12d d <,则称2d 为点P 的最大距离.例如:点P (3-,4)到到x 轴的距离为4,到y 轴的距离为3,因为3<4,所以点P 的最大距离为4. (1)①点A (2,5-)的最大距离为;②若点B (a ,2)的最大距离为5,则a 的值为;(2)若点C 在直线2y x =--上,且点C 的最大距离为5,求点C 的坐标;在.点M ,使点M 的最大距离为5,直接(3)若⊙O 上存.写出⊙O 的半径r 的取值范围.xy –1–2–3–4–512345–1–2–3–4–512345O解:(1)①5………………………1分②5±………………………3分 (2)∵点C 的最大距离为5,∴当5x <时,5y =±,或者当5y <时,5x =±.………………4分 分别把5x =±,5y =±代入得: 当5x =时,7y =-,当5x =-时,3y =,当5y =时,7x =-,当5y =-时,3x =,∴点C (5-,3)或(3,5-).………………………5分(3)5r ≤≤…………………………………7分19、(2018北京朝阳区第一学期期末检测)在平面直角坐标系xOy 中,点A (0, 6),点B 在x 轴的正半轴上.若点P ,Q 在线段AB 上,且PQ 为某个一边与x 轴平行的矩形的对角线,则称这个矩形为点P ,Q 的“X 矩形”.下图为点P ,Q 的“X 矩形”的示意图.(1)若点B (4,0),点C 的横坐标为2,则点B ,C 的“X 矩形”的面积为. (2)点M ,N 的“X 矩形”是正方形,①当此正方形面积为4,且点M 到y 轴的距离为3时,写出点B 的坐标,点N 的坐标及经过点N 的反比例函数的表达式; ②当此正方形的对角线长度为3,且半径为r 的⊙O 与它没有交点,直接写出r 的取值范围.备用图答案:(1)6;…………………………………………………………………………1分(2)①B(6,0)………………………………………………………………………2分N(1,5)或N(5,1)…………………………………………………………4分xy5=;……………………………………………………………………………5分②23230-<<r或229>r. …………………………………………………8分20、(2018北京东城第一学期期末)对于平面直角坐标系xOy中的点M和图形G,若在图形G上存在一点N,使M,N两点间的距离等于1,则称M为图形G的和睦点.(1)当⊙O的半径为3时,在点P1(1,0),P21),P3(72,0),P4(5,0)中,⊙O的和睦点是________;(2)若点P(4,3)为⊙O的和睦点,求⊙O 的半径r的取值范围;(3)点A在直线y=﹣1上,将点A向上平移4个单位长度得到点B,以AB为边构造正方形ABCD,且C,D两点都在AB右侧.已知点E),若线段OE上的所有点都是正方形ABCD的和睦点,直接写出点A的横坐标Ax的取值范围.答案:解:(1)P2,P3;………………2分(2)由勾股定理可知,OP=5,以点O为圆心,分别作半径为4和6的圆,分别交射线OP于点Q,R,可知PQ=PR=1,此时P是⊙O的和睦点;若⊙O半径r满足0<r<4时,点OP-r>1,此时,P不是⊙O的和睦点;若⊙O 半径r 满r >6时,r -OP >1,此时,P 也不是⊙O 的和睦点;若⊙O 半径r 满足4<r <6时,设⊙O 与射线OP 交于点T 即PT <1时,可在⊙O 上找一点S ,使PS =1,此时P 是⊙O 的和睦点;综上所述,46r ≤≤. ………………4分(3)53A x --≤11A x ≤≤. ………………8分21、(2018北京丰台区第一学期期末)28.对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:如果⊙C 的半径为r ,⊙C 外一点P 到⊙C 的切线长小于或等于2r ,那么点P 叫做⊙C 的“离心点”.(1)当⊙O 的半径为1时,①在点P 1(12,2),P 2(0,-2),P 30)中,⊙O 的“离心点”是;②点P (m ,n )在直线3y x =-+上,且点P 是⊙O 的“离心点”,求点P 横坐标m 的取值范围;(2)⊙C 的圆心C 在y 轴上,半径为2,直线121+-=x y 与x 轴、y 轴分别交于点A ,B .如果线段AB 上的所有点都是⊙C 的“离心点”,请直接写出圆心C 纵坐标的取值范围.解:(1)①2P ,3P ;……2分②设P (m ,-m +3),则()5322=+-+m m . …3分解得11=m ,22=m . ……4分 故1≤m ≤2. ……6分(2)圆心C 纵坐标C y 的取值范围为:521-≤C y <51-或3<C y ≤4. ……8分22、(2018年北京海淀区第一学期期末)对于⊙C 与⊙C 上的一点A ,若平面内的点P 满足:射线..AP 与⊙C 交于点Q (点Q 可以与点P 重合),且12PAQA≤≤,则点P 称为点A 关于⊙C 的“生长点”. 已知点O 为坐标原点,⊙O 的半径为1,点A (-1,0).(1)若点P 是点A 关于⊙O 的“生长点”,且点P 在x 轴上,请写出一个符合条件的点P 的坐标________; (2)若点B 是点A 关于⊙O 的“生长点”,且满足1tan 2BAO ∠=,求点B 的纵坐标t 的取值范围;(3)直线y b=+与x轴交于点M,与y轴交于点N,若线段MN上存在点A关于⊙O的“生长点”,直接写出b的取值范围是_____________________________.解:(1)(2,0)(答案不唯一). ………………1分(2)如图,在x轴上方作射线AM,与⊙O交于M,且使得1tan2OAM∠=,并在AM上取点N,使AM=MN,并由对称性,将MN关于x轴对称,得M N'',则由题意,线段MN和M N''上的点是满足条件的点B.作MH⊥x轴于H,连接MC,∴∠MHA=90°,即∠OAM+∠AMH=90°.∵AC是⊙O的直径,∴∠AMC=90°,即∠AMH+∠HMC=90°.∴∠OAM=∠HMC.∴1 tan tan2 HMC OAM∠=∠=.∴12 MH HCHA MH==.设MH y=,则2AH y=,12CH y=,∴522AC AH CH y=+==,解得45y=,即点M的纵坐标为45.又由2AN AM =,A 为(-1,0),可得点N 的纵坐标为85, 故在线段MN 上,点B 的纵坐标t 满足:4855t ≤≤. ……………3分 由对称性,在线段M N ''上,点B 的纵坐标t 满足:8455t -≤≤-.……………4分 ∴点B 的纵坐标t 的取值范围是8455t -≤≤-或4855t ≤≤. (3)431b -≤≤-或143b ≤≤- ………………7分23、(2018北京怀柔区第一学期期末)在平面直角坐标系xOy 中,点P 的横坐标为x ,纵坐标为2x ,满足这样条件的点称为“关系点”.(1)在点A (1,2)、B (2,1)、M (21,1)、N (1,21)中,是“关系点”的; (2)⊙O 的半径为1,若在⊙O 上存在“关系点”P ,求点P 坐标;(3)点C 的坐标为(3,0),若在⊙C 上有且只有一个......“关系点”P ,且“关系点”P 的横坐标满足-2≤x≤2.请直接写出⊙C 的半径r 的取值范围. 解:(1)A、M . ……………………………………………………………………………………2分(2)过点P 作PG ⊥x 轴于点G …………………………………………………………………3分 设P (x ,2x )∵OG 2+PG 2=OP 2………………………………………………………………………………4分∴x 2+4x 2=1 ∴5x 2=1∴x 2=∴x =∴P (,)或P (,)……………………………………………………5分 (3)r =或…………………………………………………………7分24、(2018以点P 为端点竖直向下的一条射线PN ,以它为对称轴向左右对称摆动形成了射线1PN ,2PN ,我们规定:12N PN ∠为点P 的“摇摆角”,射线PN 摇摆扫过的区域叫作点P 的“摇摆区域”(含1PN ,2PN ). 在平面直角坐标系xOy 中,点(2,3)P .(1)当点P 的摇摆角为60︒时,请判断(0,0)O 、(1,2)A 、(2,1)B 、(20)C 属于点P 的摇摆区域内的点是______________________(填写字母即可);(2)如果过点(1,0)D ,点(5,0)E 的线段完全在点P 的摇摆区域内,那么点P 的摇摆角至少为_________°; (3)⊙W 的圆心坐标为(,0)a ,半径为1,如果⊙W 上的所有点都在点P 的摇摆角为60︒时的摇摆区域内,求a 的取值范围.5155±5555255-552-5564117≤<r备用图解:(1)点B ,点C ;…………………………………………2分 (2)90°………………………………………………………3分 (3)当⊙W 运动到摇摆角的内部,与PF 左边的射线相切时如图28-1∵点(2,3)P 的摇摆角为60° ∴30KPF ∠=︒,3PF =在Rt △PFK 中,tan tan 30KFKPF PF∠=∠︒=在可求得KF ∵30KPF ∠=︒, ∴60PKF ∠=︒在Rt △PFK 中,sin sin 60QKF KW∠=∠︒=,可求得KW =∴22OW OF KF KW =-+==当⊙W 运动到摇摆角的内部,与PF 右边的射线相切时如图28-2 同理可求得OW∴2a ≤xx25、(2018北京密云区初三(上)期末)已知在平面直角坐标系xOy 中的点P 和图形G,给出如下的定义:若在图形G 上存在一点Q ,使得Q P 、之间的距离等于1,则称P 为图形G 的关联点. (1)当O 的半径为1时,①点11(,0)2P,2P ,3(0,3)P中,O 的关联点有_____________________.②直线经过(0,1)点,且与y 轴垂直,点P 在直线上.若P 是O 的关联点,求点P 的横坐标x 的取值范围.(2)已知正方形ABCD 的边长为4,中心为原点,正方形各边都与坐标轴垂直.若正方形各边上的点都是某个圆的关联点,求圆的半径r 的取值范围.备用图备用图答案:(1)12P P 、 ………2分(2)如图,以O 为圆心,2为半径的圆与直线y=1交于12,P P 两点.线段12P P 上的动点P (含端点)都是以O 为圆心,1为半径的圆的关联点.故此x ≤≤…………………………………………………………6分(3)由已知,若P 为图形G 的关联点,图形G 必与以P 为圆心1为半径的圆有交点. 正方形ABCD 边界上的点都是某圆的关联点∴该圆与以正方形边界上的各点为圆心1为半径的圆都有交点故此,符合题意的半径最大的圆是以O 为圆心,3为半径的圆;符合题意的半径最小的圆是以O为圆心,1为半径的圆.综上所述,13r ≤≤.………………………..8分26、(2018北京平谷区第一学期期末)在平面直角坐标系中,将某点(横坐标与纵坐标不相等)的横坐标与纵坐标互换后得到的点叫这个点的“互换点”,如(-3,5)与(5,-3)是一对“互换点”. (1)以O 为圆心,半径为5的圆上有无数对“互换点”,请写出一对符合条件的“互换点”; (2)点M ,N 是一对“互换点”,点M 的坐标为(m ,n ),且(m >n ),⊙P 经过点M ,N .①点M 的坐标为(4,0),求圆心P 所在直线的表达式; ②⊙P 的半径为5,求m -n 的取值范围.解:(1)答案不唯一,如:(4,3),(3,4); (2)(2)①连结MN ,∵OM =ON =4,∴Rt △OMN 是等腰直角三角形. 过O 作OA ⊥MN 于点A ,∴点M ,N 关于直线OA 对称. .......................................................... 3 由圆的对称性可知,圆心P 在直线OA 上. ................................. 4 ∴圆心P 所在直线的表达式为y=x . ................................................. 5 ②当MN 为⊙P 直径时,由等腰直角三角形性质,可知m -n= ..... 6 当点M ,N 重合时,即点M ,N 横纵坐标相等,所以m -n =0; ................. 7 ∴m -n 的取值范围是0<m -n≤ (8)27、(2018北京石景山区第一学期期末)在平面直角坐标系xOy 中,点P 的坐标为),(11y x ,点Q 的坐标为),(22y x ,且21x x ≠,21y y ≠,若PQ 为某个等腰三角形的腰,且该等腰三角形的底边与x 轴平行,则称该等腰三角形为点P ,Q 的“相关等腰三角形”.下图为点P ,Q 的“相关等腰三角形”的示意图....(1)已知点A 的坐标为)1,0(,点B 的坐标为)0,3(-,则点A ,B 的“相关等腰三角形”的顶角为_________°;(2)若点C 的坐标为)3,0(,点D 在直线34=y 上,且C ,D 的“相关等腰三角形”为等边三角形,求直线CD 的表达式;(3)⊙O 的半径为2,点N 在双曲线xy 3-=上.若在⊙O 上存在一点M ,使得点M 、N 的“相关等腰三角形”为直角三角形,直接写出点N 的横坐标N x 的取值范围.解:(1)120º; ……………………………………………………………2分 (2)∵C ,D 的“相关等腰三角形”为等边三角形,底角为60°,底边与x 轴平行,∴直线CD 与x 轴成60°角,与y 轴成30°角,通过解直角三角形可得D 的坐标为)343(,或)343(,-,进一步得直线CD的表达式为33+=x y 或33+-=x y . …………………………………………5分(3)31N x -≤≤-或13N x ≤≤. ……………………8分28、(2018北京通州区第一学期期末)点P 的“d 值”定义如下:若点Q 为圆上任意一点,线段PQ 长度的最大值与最小值之差即为点P 的“d 值”,记为P d .特别的,当点P ,Q 重合时,线段PQ 的长度为0. 当⊙O 的半径为2时: (1)若点⎪⎭⎫⎝⎛-0,21C ,()4,3D ,则=C d _________,=D d _________; (2)若在直线22+=x y 上存在点P ,使得2=P d ,求出点P 的横坐标; (3)直线()033>+-=b b x y 与x 轴,y 轴分别交于点A ,B .若线段AB 上存在点P ,使得32<≤P d ,请你直接写出b 的取值范围.答案:29、(2018北京西城区第一学期期末)在平面直角坐标系xOy 中,A ,B 两点的坐标分别为(2,2)A ,(2,2)B -.对于给定的线段AB 及点P ,Q ,给出如下定义:若点Q 关于AB 所在直线的对称点Q '落在△ABP 的内部(不含边界),则称点Q 是点P 关于线段AB 的内称点. (1)已知点(4,1)P -.①在1(1,1)Q -,2(1,1)Q 两点中,是点P 关于线段AB 的内称点的是____________;②若点M 在直线1y x =-上,且点M 是点P 关于线段AB 的内称点,求点M 的横坐标M x 的取值范围;(2)已知点(3,3)C ,⊙C 的半径为r ,点(4,0)D ,若点E 是点D 关于线段AB 的内称点,且满足直线DE 与⊙C 相切,求半径r 的取值范围.答案:30、(2018北京昌平区二模)在平面直角坐标系xOy 中,对于任意三点A 、B 、C 我们给出如下定义:“横长”a :三点中横坐标的最大值与最小值的差,“纵长”b :三点中纵坐标的最大值与最小值的差,若三点的横长与纵长相等,我们称这三点为正方点.例如:点A (2-,0),点B (1,1),点C (1-,2-),则A 、B 、C 三点的“横长”a =|1(2)--|=3,A 、B 、C 三点的“纵长”b =|1(2)--|=3.因为a =b ,所以A 、B 、C 三点为正方点.(1)在点R (3,5),S (3,2-),T (4-,3-)中,与点A 、B 为正方点的是;(2)点P (0,t )为y 轴上一动点,若A ,B ,P 三点为正方点,t 的值为;(3)已知点D (1,0).①平面直角坐标系中的点E 满足以下条件:点A ,D ,E 三点为正方点,在图中画出所有符合条件的点E 组成的图形;②若直线l :12y x m =+上存在点N ,使得A ,D ,N 三点为正方点,直接写出m 的取值范围.(备用图)解:(1)点R ………………………1分 (2)−2或3………………………3分(3)①画出如图所示的图像………………………5分y xxyyx②52m ≥或2m ≤-………………………7分31、(2018北京朝阳区二模)对于平面直角坐标系xOy 中的点P 和直线m ,给出如下定义:若存在一点P ,使得点P 到直线m 的距离等于1,则称P 为直线m 的平行点. (1)当直线m 的表达式为y =x 时,①在点P 1(1,1),P 2(0,2),P 3(22-,22)中,直线m 的平行点是; ②⊙O 的半径为10,点Q 在⊙O 上,若点Q 为直线m 的平行点,求点Q 的坐标.(2)点A 的坐标为(n ,0),⊙A 半径等于1,若⊙A 上存在直线x y 3=的平行点,直接写出n 的取值范围.答案:(1)①P 2,P 3 ……………………………………………………………………2分②解:由题意可知,直线m 的所有平行点组成平行于直线m ,且到直线m 的距离为1的直线.设该直线与x 轴交于点A ,与y 轴交于点B .如图1,当点B 在原点上方时,作OH ⊥AB 于点H ,可知OH=1. 由直线m 的表达式为y =x ,可知∠OAB=∠OBA =45°. 所以OB=2.直线AB 与⊙O 的交点即为满足条件的点Q . 连接OQ 1,作Q 1N ⊥y 轴于点N ,可知OQ 1=10. 在Rt △OHQ 1中,可求HQ 1=3. 所以BQ 1=2.在Rt △BHQ 1中,可求NQ 1=NB=2. 所以ON=22.所以点Q 1的坐标为(2,22).同理可求点Q 2的坐标为(22-,2-).……………………………4分如图2,当点B 在原点下方时,可求点Q 3的坐标为(22,2)点Q 4的坐标为 (2-,22-).………………………………………………………6分综上所述,点Q 的坐标为(2,22),(22-,2-),(22,2),(2-,22-). (2)334-≤n ≤334.……………………………………………………………8分32、(2018北京东城区二模)研究发现,抛物线214y x =上的点到点F (0,1)的距离与到直线l :1y =-的距离相等.如图1所示,若点P 是抛物线214y x =上任意一点,PH ⊥l 于点H ,则PH PF =. 基于上述发现,对于平面直角坐标系x O y 中的点M ,记点M 到点P 的距离与点P 到点F 的距离之和的最小值为d ,称d 为点M 关于抛物线214y x =的关联距离;当24d ≤≤时,称点M 为抛物线214y x =的关联点.(1)在点1(20)M ,,2(12)M ,,3(45)M ,,4(04)M -,中,抛物线214y x =的关联点是______ ; (2)如图2,在矩形ABCD 中,点(1)A t ,,点(13)A t +,C (t . ①若t =4,点M 在矩形ABCD 上,求点M 关于抛物线214y x =的关联距离d 的取值范围; ②若矩形ABCD 上的所有点都是抛物线214y x =的关联点,则t 的取值范围是__________. (1)12M M ,; -----------------------------------------------------------------2分(2)①当4t =时,()41A ,,()51B ,,()53C ,,()43D ,, 此时矩形ABCD 上的所有点都在抛物线214y x =的下方, ∴.d MF = ∴.AF d CF ≤≤ ∵=4=29AF CF ,∴29.d 4≤≤ ---------------------------------------------------------------------------------- 5分 ②33 1.t --2≤≤2 ------------------------------------------------------------------------8分33、(2018北京房山区二模)已知点P ,Q 为平面直角坐标系xOy 中不重合的两点,以点P 为圆心且经过点Q 作⊙P ,则称点Q 为⊙P 的“关联点”,⊙P 为点Q 的“关联圆”.(1)已知⊙O 的半径为1,在点E (1,1),F (-12,32 ),M (0,-1)中,⊙O 的“关联点”为; (2)若点P (2,0),点Q (3,n ),⊙Q 为点P 的“关联圆”,且⊙Q 的半径为 5 ,求n 的值;(3)已知点D (0,2),点H (m ,2),⊙D 是点H 的“关联圆”,直线443y x =-+与 x 轴,y 轴分别交于点A ,B .若线段AB 上存在⊙D 的“关联点”,求m 的取值范围.解:(1)①F ,M .………………………………………………………………………2′(注:每正确1个得1分) (2)如图1,过点Q 作QH ⊥x 轴于H . ∵PH =1,QH =n ,PQ =5 ∴由勾股定理得,PH 2+QH 2=PQ 2 即()22215n +=解得,2n =或-2. ………………………………………………………4′(3)由443y x =-+,知A (3,0),B (0,4) y xT D BAOH 1∴可得AB =5I. 如图2(1),当⊙D 与线段AB 相切于点T 时,连接DT .则DT ⊥AB ,∠DTB =90°∵OA DTsin OBA AB BD∠==∴可得DT =DH 1=65∴165m =…………………………………………………5′II. 如图2(2), 当⊙D 过点A 时,连接AD .由勾股定理得DA =OD 2+OA 2=DH 2=13 ……………………6′ 综合I ,II可得:65m ≤-或65m ≤8′34、(2018北京丰台区二模)在平面直角坐标系xOy 中,将任意两点()11,y x P 与()22y x Q,之间的“直距”定义为:2121y y x x D PQ -+-=.例如:点M (1,2-),点N (3,5-),则132(5)5MN D =-+---=.已知点A (1,0)、点B (-1,4). (1)则_______=AOD ,_______=BO D ;(2)如果直线AB 上存在点C ,使得CO D 为2,请你求出点C 的坐标; (3)如果⊙B 的半径为3,点E 为⊙B 上一点,请你直接写出EO D 的取值范围.答案. (1)1AO D =,5BO D =;………………2分(2)如图:解法1:由点A 和点B 坐标可得,直线AB 的解析式为y =-2x +2.设点C 的坐标为(x ,-2x +2),则222x x +-+=,则点C 的坐标为(0,2)或42(,)33-. 解法2:由点A 和点B 坐标可得,直线AB 的解析式为y =-2x +2.点C 与点O 之间的“直距CO D ”为2的运动轨迹为以点O 为中心、对角线分别位于坐标轴上、对角线长度为4的正方形.设点C 的坐标为(x ,-2x +2),则利用直线解析式可求得,点C 的坐标为(0,2) 或42(,)33-. ………………5分(3)EO D 的取值范围为45EO D -≤+7分35、(2018北京海淀区二模)对某一个函数给出如下定义:若存在实数k ,对于函数图象上横坐标之差为1的任意两点1(,)a b ,2(1,)a b +,21b b k -≥都成立,则称这个函数是限减函数,在所有满足条件的k 中,其最大值称为这个函数的限减系数.例如,函数2y x =-+,当x 取值a 和1a +时,函数值分别为12b a =-+,21b a =-+,故211b b k -=-≥,因此函数2y x =-+是限减函数,它的限减系数为1-.(1)写出函数21y x =-的限减系数;(2)0m >,已知1y x=(1,0x m x -≤≤≠)是限减函数,且限减系数4k =,求m 的取值范围. (3)已知函数2y x =-的图象上一点P ,过点P 作直线l 垂直于y 轴,将函数2y x =-的图象在点P 右侧的部分关于直线l 翻折,其余部分保持不变,得到一个新函数的图象,如果这个新函数是限减函数,且限减系数1k ≥-,直接写出P 点横坐标n 的取值范围.答案28.解:(1)函数21y x =-的限减系数是2;(2)若1m >,则10m ->,(1m -,11m -)和(m ,1m)是函数图象上两点,11101(1)m m m m -=-<--,与函数的限减系数4k =不符,∴1m ≤. 若102m <<,(1t -,11t -)和(t ,1t)是函数图象上横坐标之差为1的任意两点,则0t m <≤,1111(1)t t t t -=---, ∵(1)0t t -->,且2211111(1)()()24244t t t m --=--+≤--+<,∴1141t t ->-,与函数的限减系数4k =不符. ∴12m ≥. 若112m ≤≤,(1t -,11t -)和(t ,1t )是函数图象上横坐标之差为1的任意两点,则0t m <≤,1111(1)t t t t -=---, ∵(1)0t t -->,且2111(1)()244t t t --=--+≤,∴11141(1)t t t t -=≥---,当12t =时,等号成立,故函数的限减系数4k =. ∴m 的取值范围是112m ≤≤. (3)11-n ≤≤.36.(2018北京市东城区初二期末)定义:任意两个数,a b ,按规则c ab a b =++扩充得到一个新数c ,称所得的新数c 为“如意数”. (1)若1,a b ==直接写出,a b 的“如意数”c ;(2) 如果4,a m b m =-=-,求,a b 的“如意数”c ,并证明“如意数”0c ≤(3)已知2=1(0)a x x -≠,且,a b 的“如意数”3231,c x x =+-,则b =(用含x 的式子表示) .解:(1) 1.2c =分2224,(4)()(4)()44444(m 2)05a m b mc m m m m m m c m m c (2)分分=-=-∴=-⨯-+-+-=-+-=-+-=--∴≤⋅⋅⋅⋅⋅⋅26b x =+(3)分37.(2018北京市平谷区初二期末)对于实数a ,我们规定:用符号[]a 表示不大于a 的最大整数,称[]a 为a 的根整数,例如:[]39=,[]310=.(1)仿照以上方法计算:[]=4_______;[]=26________.(2)若[]1=x ,写出满足题意的x 的整数值______________.如果我们对a 连续求根整数,直到结果为1为止.例如:对10连续求根整数2次[][]13310=→=,这时候结果为1.(3)对100连续求根整数,______次之后结果为1.(4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是________. 解:(1)2, 5 (2)1,2,3 (3) 3 (4)25538.(2018北京市顺义区八年级期末)如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式: ①211x x -+;②222a b a b --;③22x y x y +-;④222()a b a b -+. 其中是“和谐分式”是 (填写序号即可);(2)若a 为正整数,且214x x ax -++为“和谐分式”,请写出a 的值;(3)在化简22344a a bab b b -÷-时, 小东和小强分别进行了如下三步变形:小东:22344=a a ab b b b -⨯-原式223244a a ab b b =--()()222323244a b a ab b ab b b --=- 小强:22344=a a ab b b b -⨯-原式()22244a a b a b b =--()()2244a a a b a b b --=- 显然,小强利用了其中的和谐分式, 第三步所得结果比小东的结果简单, 原因是:,请你接着小强的方法完成化简. 解:(1)②………………1分(2) 4,5………………3分(3)小强通分时,利用和谐分式找到了最简公分母. ………………4分。
中考数学新定义创新型综合压轴问题【方法归纳】新定义"型问题是指在问题中定义了初中数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识进行理解,而后根据新定义进行运算、推理、迁移的一种题型。
它一般分为三种类型:(1)定义新运算;(2)定义初、高中知识衔接"新知识";(3)定义新概念.这类试题考查考生对"新定义"的理解和认识,以及灵活运用知识的能力,解题时需要将"新定义"的知识与已学知识联系起来,利用已有的知识经验来解决问题。
解决此类题的关键是(1)深刻理解“新定义”——明确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。
北京中考最后一题的新定义主要涉及函数与圆的有关新定义问题,属于函数的范畴,已经考过“对应点”、“关联线段”、“平移距离”“闭距离”、“相关矩形”、“反称点”、“有界函数”、“关联点”等新定义。
在平时的教学过程中要从细节中挖掘出数学的本质特征,引领学生找到解决问题的思想方法。
解答这类问题的关键是要读懂题目提供的新知识,理解其本质,把它与已学的知识联系起来,把新的问题转化为已学的知识进行解决。
【典例剖析】【例1】(2022·北京·中考真题)在平面直角坐标系xOy中,已知点M(a,b),N.对于点P给出如下定义:将点P向右(a≥0)或向左(a<0)平移|a|个单位长度,再向上(b≥0)或向下(b<0)平移|b|个单位长度,得到点P′关于点N的对称点为Q,称点Q为点P的“对应点”.(1)如图,点M(1,1),点N在线段OM的延长线上,若点P(−2,0),点Q为点P的“对应点”.①在图中画出点Q;OM;②连接PQ,交线段ON于点T.求证:NT=12(2)⊙O的半径为1,M是⊙O上一点,点N在线段OM上,且ON=t(1<t<1),若P为⊙O外2一点,点Q为点P的“对应点”,连接PQ.当点M在⊙O上运动时直接写出PQ长的最大值与最小值的差(用含t的式子表示)【例2】(2021·北京·中考真题)在平面直角坐标系xOy中,⊙O的半径为1,对于点A和线段BC,给出如下定义:若将线段BC绕点A旋转可以得到⊙O的弦B′C′(B′,C′分别是B,C的对应点),则称线段BC是⊙O的以点A为中心的“关联线段”.(1)如图,点A,B1,C1,B2,C2,B3,的横、纵坐标都是整数.在线段B1C1,B2C2,B3C3中,⊙O 的以点A为中心的“关联线段”是______________;(2)△ABC是边长为1的等边三角形,点A(0,t),其中t≠0.若BC是⊙O的以点A为中心的“关联线段”,求t的值;(3)在△ABC中,AB=1,AC=2.若BC是⊙O的以点A为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC长.【真题再现】1.(2020·北京·中考真题)在平面直角坐标系xOy中,⊙O的半径为1,A,B为⊙O外两点,AB=1.给出如下定义:平移线段AB,得到⊙O的弦A′B′(A′,B′分别为点A,B的对应点),线段AA′长度的最小值称为线段AB到⊙O的“平移距离”.(1)如图,平移线段AB 到⊙O 的长度为1的弦P 1P 2和P 3P 4,则这两条弦的位置关系是 ;在点P 1,P 2,P 3,P 4中,连接点A 与点 的线段的长度等于线段AB 到⊙O 的“平移距离”;(2)若点A ,B 都在直线y =√3x +2√3上,记线段AB 到⊙O 的“平移距离”为d 1,求d 1的最小值;(3)若点A 的坐标为(2,32),记线段AB 到⊙O 的“平移距离”为d 2,直接写出d 2的取值范围.2(2019·北京·中考真题)在△ABC 中,D ,E 分别是△ABC 两边的中点,如果DE⌢上的所有点都在△ABC 的内部或边上,则称DE⌢为△ABC 的中内弧.例如,下图中DE ⌢是△ABC 的一条中内弧.(1)如图,在Rt △ABC 中,AB =AC =2√2,D ,E 分别是AB ,AC 的中点.画出△ABC 的最长的中内弧DE⌢,并直接写出此时DE ⌢的长;(2)在平面直角坐标系中,已知点A(0,2),B(0,0),C(4t,0)(t >0),在△ABC 中,D ,E 分别是AB ,AC 的中点.①若t =12,求△ABC 的中内弧DE⌢所在圆的圆心P 的纵坐标的取值范围;②若在△ABC 中存在一条中内弧DE⌢,使得DE ⌢所在圆的圆心P 在△ABC 的内部或边上,直接写出t 的取值范围.3.(2018·北京·中考真题)对于平面直角坐标系xOy 中的图形M ,N ,给出如下定义:P 为图形M 上任意一点,Q 为图形N 上任意一点,如果P ,Q 两点间的距离有最小值,那么称这个最小值为图形M ,N 间的“闭距离”,记作d (M ,N ).已知点A (−2,6),B (−2,−2),C (6,−2).(1)求d (点O ,△ABC );(2)记函数y =kx (−1≤x ≤1,k ≠0)的图象为图形G ,若d (G ,△ABC )=1,直接写出k 的取值范围;(3)⊙T 的圆心为T (t ,0),半径为1.若d (⊙T ,△ABC )=1,直接写出t 的取值范围. 4.(2017·北京·中考真题)在平面直角坐标系xOy 中的点P 和图形M ,给出如下的定义:若在图形M 存在一点Q ,使得P 、Q 两点间的距离小于或等于1,则称P 为图形M 的关联点.(1)当⊙O 的半径为2时,①在点P 1(12,0),P 2(12,√32),P 3(52,0) 中,⊙O 的关联点是_______________. ②点P 在直线y=-x 上,若P 为⊙O 的关联点,求点P 的横坐标的取值范围.(2)⊙C 的圆心在x 轴上,半径为2,直线y=-x+1与x 轴、y 轴交于点A 、B .若线段AB 上的所有点都是⊙C 的关联点,直接写出圆心C 的横坐标的取值范围.5.(2016·北京·中考真题)在平面直角坐标系xOy 中,点P 的坐标为(x 1,y 1),点Q 的坐标为(x 2,y 2),且x 1≠x 2,y 1≠y 2,若P ,Q 为某个矩形的两个顶点,且该矩形的边均与,Q 的“相关矩形”.下图为点P ,Q 的“相关矩形”的示意图.(1)已知点A 的坐标为(1,0).①若点B 的坐标为(3,1)求点A ,B 的“相关矩形”的面积;②点C 在直线x=3上,若点A ,C 的“相关矩形”为正方形,求直线AC 的表达式;(2)⊙O 的半径为,点M 的坐标为(m ,3).若在⊙O 上存在一点N ,使得点M ,N 的“相关矩形”为正方形,求m 的取值范围.6.(2015·北京·中考真题)在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P关于⊙C的反称点的定义如下:若在射线CP上存在一点P′,满足CP+CP′=2r,则称P′为点P关于⊙C的反称点,如图为点P及其关于⊙C的反称点P′的示意图.特别地,当点P′与圆心C重合时,规定CP′=0.(1)当⊙O的半径为1时.,0),T(1,√3)关于⊙O的反称点是否存在?若存在,求①分别判断点M(2,1),N(32其坐标;②点P在直线y=﹣x+2上,若点P关于⊙O的反称点P′存在,且点P′不在x轴上,求点P的横坐标的取值范围;x+2√3与x轴、y轴分别交于点A,B,若(2)⊙C的圆心在x轴上,半径为1,直线y=﹣√33线段AB上存在点P,使得点P关于⊙C的反称点P′在⊙C的内部,求圆心C的横坐标的取值范围.7.(2014·北京·中考真题)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足−M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(x>0)和y=x+1(−4<x≤2)是不是有界函数?若是有界函数,(1)分别判断函数y=1x求其边界值;(2)若函数y=−x+1(a⩽x⩽b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(−1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值≤t≤1?是t,当m在什么范围时,满足348.(2013·北京·中考真题)对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得∠APB=60°,则称P 为⊙C 的关联点.已知点D (,),E (0,-2),F (,0)(1)当⊙O 的半径为1时,①在点D ,E ,F 中,⊙O 的关联点是 ;②过点F 作直线交y 轴正半轴于点G ,使∠GFO=30°,若直线上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.【模拟精练】一、解答题1.(2022·北京朝阳二模)在平面直角坐标系xOy 中,⊙O 的半径为1,AB =1,且A ,B 两点中至少有一点在⊙O 外.给出如下定义:平移线段AB ,得到线段A ′B ′(A ′,B ′分别为点A ,B 的对应点),若线段A ′B ′上所有的点都在⊙O 的内部或⊙O 上,则线段AA ′长度的最小值称为线段AB 到⊙O 的“平移距离”.(1)如图1,点A 1,B 1的坐标分别为(-3,0),(-2,0),线段A 1B 1到⊙O 的“平移距离”为___,点A 2,B 2的坐标分别为(-12,√3),(12,√3),线段A 2B 2到⊙O 的“平移距离”为___;(2)若点A,B都在直线y=√3x+2√3上,记线段AB到⊙O的“平移距离”为d,求d的最小值;(3)如图2,若点A坐标为(1,√3),线段AB到⊙O的“平移距离”为1,画图并说明所有满足条件的点B形成的图形(不需证明).2.(2022·北京北京·二模)在平面直角坐标系xOy中,⊙O的半径为1.对于线段PQ给出如下定义:若线段PQ与⊙O有两个交点M,N,且PM=MN=NQ,则称线段PQ是⊙O的“倍弦线”.(1)如图,点A,B,C,D的横、纵坐标都是整数.在线段AB,AD,CB,CD中,⊙O的“倍弦线”是_____________;(2)⊙O的“倍弦线”PQ与直线x=2交于点E,求点E纵坐标y E的取值范围;(3)若⊙O的“倍弦线”PQ过点(1,0),直线y=x+b与线段PQ有公共点,直接写出b的取值范围.3.(2022·北京大兴·二模)在平面直角坐标系xOy中,对于点P和直线y=1,给出如下定义:若点P在直线y=1上,且以点P为顶点的角是45°,则称点P为直线y=1的“关联点”.(1)若在直线x=1上存在直线y=1的“关联点”P.则点P的坐标为_____;(2)过点P(2,1)作两条射线,一条射线垂直于x轴,垂足为A;另一条射线、交x轴于点B,若点P为直线y=1的“关联点”.求点B的坐标;(3)以点O为圆心,1为半径作圆,若在⊙O上存在点N,使得∠OPN的顶点P为直线y=1的“关联点”.则点P的横坐标a的取值范围是________.4.(2022·北京东城·二模)在平面直角坐标系xOy中,对于图形G及过定点P(3,0)的直线l,有如下定义:过图形G上任意一点Q作QH⊥l于点H,若QH+PH有最大值,那么称这个最大值为图形G关于直线l的最佳射影距离,记作d(G,l),此时点Q称为图形G关于直线l的最佳射影点.(1)如图1,已知A(2,2),B(3,3),写出线段AB关于x轴的最佳射影距离d(AB,x轴)=____________;(2)已知点C(3,2),⊙C的半径为√2,求⊙C关于x轴的最佳射影距离d(⊙C,x轴),并写出此时⊙C关于x轴的最佳射影点Q的坐标;(3)直接写出点D(0,√3)关于直线l的最佳射影距离d(点D,l)的最大值.5.(2022·北京·清华附中一模)在平面直角坐标系xOy中,对于两个点P,Q和图形W,如果在图形W上存在点M,N(M,N可以重合)使得PM=QN,那么称点P与点Q是图形W的一对平衡点.(1)如图1,已知点A(0,3),B(2,3);①设点O与线段AB上一点的距离为d,则d的最小值是______,最大值是______;,0),P2(1,4),P3(−3,0)这三个点中,与点O是线段AB的一对平衡点的是______.②在P1(32(2)如图2,已知⊙O的半径为1,点D的坐标为(5,0).若点E(x,2)在第一象限,且点D 与点E是⊙O的一对平衡点,求x的取值范围;(3)如图3,已知点H(−3,0),以点O为圆心,OH长为半径画弧交x的正半轴于点K.点C(a,b)(其中b≥0)是坐标平面内一个动点,且OC=5,⊙C是以点C为圆心,半径为2的圆,若HK上的任意两个点都是⊙C的一对平衡点,直接写出b的取值范围.6.(2022·北京丰台·一模)在平面直角坐标系xOy中,⊙O的半径为1,T(0,t)为y轴上一点,P为平面上一点.给出如下定义:若在⊙O上存在一点Q,使得△TQP是等腰直角三角形,且∠TQP=90°,则称点P为⊙O的“等直点”,△TQP为⊙O的“等直三角形”.如图,点A,B,C,D的横、纵坐标都是整数.(1)当t=2时,在点A,B,C,D中,⊙O的“等直点”是;(2)当t=3时,若△TQP是⊙O“等直三角形”,且点P,Q都在第一象限,求CP的值.OQ 7.(2022·北京市第一六一中学分校一模)在平面直角坐标系xOy中,对于点P和图形W,如果线段OP与图形W无公共点,则称点P为关于图形W的“阳光点”;如果线段OP与图形W有公共点,则称点P为关于图形W的“阴影点”.(1)如图1,已知点A(1,3),B(1,1),连接AB.①在P1(1,4),P2(1,2),P3(2,3),P4(2,1)这四个点中,关于线段AB的“阳光点”是;②线段A1B1∥AB,A1B1上的所有点都是关于线段AB的“阴影点”,且当线段A1B1向上或向下平移时,都会有A1B1上的点成为关于线段AB的“阳光点”,若,A1B1的长为4,且点A1在B1的上方,则点A1的坐标为.(2)如图2,已知点C(1,√3),⊙C与y轴相切于点D,若⊙E的半径为3,圆心E在直线2l:y=−√3x+4√3上,且⊙E的所有点都是关于⊙C的“阴影点”,求点E的横坐标的取值范围;(3)如图3,⊙M的半径为3,点M到原点的距离为5,点N是⊙M上到原点距离最近的点,点Q和T是坐标平面的两个动点,且⊙M上的所有点都是关于△NQT的“阴影点”直接写出△NQT的周长的最小值.8.(2022·北京市第五中学分校模拟预测)定义:P、Q分别是两条线段a和b上任意一点,线段PQ长度的最小值叫做线段a与线段b的“冰雪距离”,已知O(0,0),A(1,√2),B (m,n),C(m,n+2)是平面直角坐标系中四点.(1)根据上述定义,完成下面的问题:①当m=2√2,n=√2时,如图1,线段BC与线段OA的“冰雪距离”是;②当m=2√2时,线段BC与线段OA的“冰雪距离”是√2,则n的取值范围是;(2)如图2,若点B落在圆心为A,半径为√2的圆上,当n≥√2时,线段BC与线段OA的“冰雪距离”记为d,结合图象,求d的最小值;(3)当m的值变化时,动线段BC与线段OA的“冰雪距离”始终为√2,线段BC的中点为M.直接写出点M随线段BC运动所走过的路径长.9.(2022·北京市师达中学模拟预测)如果一个圆上所有的点都在一个角的内部或边上,那么称这个圆为该角的角内圆.特别地,当这个圆与角的至少..一边相切时,称这个圆为该角的角内相切圆.在平面直角坐标系xOy中,点E,F分别在x轴的正半轴和y轴的正半轴上.(1)分别以点A(1,0),B(1,1),C(3,2)为圆心,1为半径作圆,得到⊙A,⊙B和⊙C,其中是∠EOF的角内圆的是;(2)如果以点D(t,2)为圆心,以1为半径的⊙D为∠EOF的角内圆,且与直线y=x有公共点,求t的取值范围;(3)点M在第一象限内,如果存在一个半径为1且过点P(2,2√3)的圆为∠EMO的角内相切圆,直接写出∠EOM的取值范围.10.(2021·北京朝阳·二模)在平面直角坐标系xOy中,对于图形Q和∠P,给出如下定义:若图形Q上的所有的点都在∠P的内部或∠P的边上,则∠P的最小值称为点P对图形Q的可视度.如图1,∠AOB的度数为点O对线段AB的可视度.(1)已知点N(2,0),在点M1(0,2√3),M2(1,√3),M3(2,3)中,对线段ON的可视度为360º的点是______.(2)如图2,已知点A(-2,2),B(-2,-2),C(2,-2),D(2,2),E(0,4).①直接写出点E对四边形ABCD的可视度为______°;②已知点F(a,4),若点F对四边形ABCD的可视度为45°,求a的值.11.(2022·北京四中模拟预测)在平面内,对点组A1,A2,...,An和点P给出如下定义:点P与点A1,A2,...,An的距离分别记作d1,d2,...,dn,数组d1,d2,...,dn的中位数称为点P对点组A1,A2,...,An的中位距离.例如,对点组A1(0,0),A2(0,3),A3(4,1)和点P(4,3),有d1=5,d2=4,d3=2,故点P对点组A1,A2,A3的中位距离为4.(1)设Z1(0,0),Z2(4,0),Z304),Y(0,3),直接写出点Y对点组Z1,Z2,Z3的中位距离;(2)设C1(0,0),C2(8,0),C3(6,6),则点Q1(7,3),Q2(3,3),Q3(4,0),Q4(4,2)中,对点组C1,C2,C3的中位距离最小的点是,该点对点组C1,C2,C3的中位距离为;(3)设M(1,0),N(0,√3),T1(t,0),T2(t+2,0),T3(t,2),若线段MN上任意一点对点组T1,T2,T3的中位距离都不超过2,直接写出实数t的取值范围.12.(2020·北京·人大附中模拟预测)在平面直角坐标系xOy中,对于平面中的点P,Q和图形M,若图形M上存在一点C,使∠PQC=90°,则称点Q为点P关于图形M的“折转点”,称△PCQ为点P关于图形M的“折转三角形”(1)已知点A(4,0),B(2,0)①在点Q1(2,2),Q2(1,−√3),Q3(4,−1)中,点O关于点A的“折转点”是______;②点D在直线y=−x上,若点D是点O关于线段AB的“折转点”,求点D的横坐标x D的取值范围;(2)⊙T的圆心为(t,0),半径为3,直线y=x+2与x,y轴分别交于E,F两点,点P为⊙T 上一点,若线段EF上存在点P关于⊙T的“折转点”,且对应的“折转三角形”是底边长为2的等腰三角形,直接写出t的取值范围.13.(2020·北京市陈经纶中学分校三模)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”的对于图形W1和图形W2,若图形W1和图形W2分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形W1和图形W2是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点A(1,0),点C(2,1),①下列四个点P1(0,1),P2(2,2),P3(−12,0),P4(−12,−√32)中,与点A是“中心轴对称”的是________;②点E在射线OB上,若点E与正方形ABC D是“中心轴对称”的,求点E的横坐标x E的取值范围;(2)四边形GHJK的四个顶点的坐标分别为G(−2,2),H(2,2),J(2,−2),K(−2,−2),一次函数y=√3x+b图象与x轴交于点M,与y轴交于点N,若线段与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.14.(2022·北京房山·二模)对于平面直角坐标系xOy中的图形G和点Q,给出如下定义:将图形G绕点Q顺时针旋转90°得到图形N,图形N称为图形G关于点Q的“垂直图形”,例如,图1中线段OD为线段OC关于点O的“垂直图形”.(1)线段MN关于点M(1,1)的“垂直图形”为线段MP.①若点N的坐标为(1,2),则点P的坐标为__________;②若点P的坐标为(4,1),则点N的坐标为__________;(2)E(−3,3),F(−2,3),H(a,0).线段EF关于点H的“垂直图形”记为E′F′,点E的对应点为E′,点的对应点为F′.①求点E′的坐标(用含a的式子表示);②若⊙O的半径为2,E′F′上任意一点都在⊙O内部或圆上,直接写出满足条件的EE′的长度的最大值.15.(2022·北京丰台·xOy中,⊙O的半径为1,A为任意一点,B 为⊙O上任意一点,给出如下定义:记A,B两点间的距离的最小值为p(规定:点A在⊙O上时,p=0),最大值为q,那么把p+q的值称为点A与⊙O的“关联距离”,记作d(A,2⊙O)(1)如图,点D,E,F的横、纵坐标都是整数①d(D,⊙O)=__________;②若点M在线段EF上,求d(M,⊙O)的取值范围;(2)若点N在直线y=√3x+2√3上,直接写出d(N,⊙O)的取值范围;(3)正方形的边长为m,若点P在该正方形的边上运动时,满足d(P,⊙O)的最小值为1,最大值为√10,直接写出m的最小值和最大值.16.(2022·北京平谷·二模)对于平面直角坐标系xOy中的图形P,Q,给出如下定义:M为图形P上任意一点,N为图形Q上任意一点,如果M,N两点间的距离有最小值,那么称这个最小值为图形P,Q间的“非常距离”,记作d(P,Q).已知点A(−2,2),B(2,2),连接AB.(1)d(点O,AB)=;(2)⊙O半径为r,若d(⊙O,AB)=0,直接写出r的取值范围;(3)⊙O半径为r,若将点A绕点B逆时针旋转α°(0°<α<180°),得到点A′.①当α=30°时d(⊙O,A′)=0,求出此时r的值;②对于取定的r值,若存在两个α使d(⊙O,A′)=0,直接写出r的范围.17.(2022·北京密云·二模)对于平面直角坐标系xOy中的点P(2,3)与图形T,给出如下定义:在点P与图形T上各点连接的所有线段中,线段长度的最大值与最小值的差,称为图形T关于点P的“宽距”.(1)如图,⊙O的半径为2,且与x轴分别交于A,B两点.①线段AB关于点P的“宽距”为______;⊙O关于点P的“宽距”为______.②点M(m,0)为x轴正半轴上的一点,当线段AM关于点P的“宽距”为2时,求m的取值范围.(2)已知一次函数y=x+1的图象分别与x轴、y轴交于D、E两点,⊙C的圆心在x轴上,且⊙C的半径为1.若线段DE上的任意一点K都能使得⊙C关于点K的“宽距”为2,直接写出圆心C的横坐标x C的取值范围.18.(2022·北京门头沟·二模)我们规定:如图,点H在直线MN上,点P和点P′均在直线MN的上方,如果HP=HP′,∠PHM=∠P′HN,点P′就是点P关于直线MN的“反射点”,其中点H为“V点”,射线HP与射线HP′组成的图形为“V形”.在平面直角坐标系xOy中,(1)如果点P(0,3) ,H(1.5,0),那么点P关于x轴的反射点P′的坐标为;(2)已知点A(0,a) ,过点A作平行于x轴的直线l.①如果点B(5,3) 关于直线l的反射点B′和“V点”都在直线y=−x+4上,求点B′的坐标和a的值;②⊙W是以(3,2) 为圆心,1为半径的圆,如果某点关于直线l的反射点和“V点”都在直线y=−x+4上,且形成的“V形”恰好与⊙W有且只有两个交点,求a的取值范围.19.(2022·北京东城·一模)对于平面直角坐标系xOy中的点C及图形G,有如下定义:若图形G上存在A,B两点,使得△ABC为等腰直角三角形,且∠ABC=90°,则称点C为图形G的“友好点”.(1)已知点O(0,0),M(4,0),在点C1(0,4),C2(1,4),C3(2,−1)中,线段OM的“友好点”是_______;(2)直线y=−x+b分别交x轴、y轴于P,Q两点,若点C(2,1)为线段PQ的“友好点”,求b 的取值范围;(3)已知直线y=x+d(d>0)分别交x轴、y轴于E,F两点,若线段EF上的所有点都是半径为2的⊙O的“友好点”,直接写出d的取值范围.20.(2022·北京顺义·二模)在平面直角坐标系xOy中,对于点R和线段PQ,给出如下定义:M为线段PQ上任意一点,如果R,M两点间的距离的最小值恰好等于线段PQ的长,则称点R为线段PQ的“等距点”.(1)已知点A(5,0).①在点B1(−3,4),B2(1,5),B3(4,−3),B4(3,6)中,线段OA的“等距点”是______;②若点C在直线y=2x+5上,并且点C是线段OA的“等距点”,求点C的坐标;(2)已知点D(1,0),点E(0,−1),图形W是以点T(t,0)为圆心,1为半径的⊙T位于x轴及x 轴上方的部分.若图形W上存在线段DE的“等距点”,直接写出t的取值范围.21.(2022·北京市十一学校模拟预测)在平面直角坐标系xOy中,给出如下定义:点P为图形G上任意一点,将点P到原点O的最大距离与最小距离之差定义为图形G的“全距”.特别地,点P到原点O的最大距离与最小距离相等时,规定图形G的“全距”为0.(1)已知,点A(−4√2,2),B(2√2,2).①原点O到线段AB上一点的最大距离为_______,最小距离为_______;②当点C的坐标为(0,m)时,且△ABC的“全距”为4,求m的取值范围;(2)已知OM=7,等边△DEF的三个顶点均在半径为3的⊙M上.求△DEF的“全距”d的取值范围.22.(2022·北京房山·二模)对于平面直角坐标系xOy中的图形W1和图形W2.给出如下定义:在图形W1上存在两点A,B(点A,B可以重合),在图形W2上存在两点M,N,(点M、N 可以重合)使得AM=2BN,则称图形W1和图形W2满足限距关系(1)如图1,点C(√3,0),D(0,−1),E(0,1),点P在线段CE上运动(点P可以与点C,E重合),连接OP,DP.①线段OP的最小值为__________,最大值为__________;线段DP的取值范围是__________;②在点O,点D中,点__________与线段EC满足限距关系;(2)在(1)的条件下,如图2,⊙O的半径为1,线段FG与x轴、y轴正半轴分别交于点F,G,且FG∥EC,若线段FG与⊙O满足限距关系,求点F横坐标的取值范围;(3)⊙O的半径为r(r>0),点H,K是⊙O上的两个点,分别以H,K为圆心,2为半径作圆得到⊙H和⊙K,若对于任意点H,K,⊙H和⊙K都满足限距关系,直接写出r的取值范围.23.(2022·北京昌平·二模)在平面直角坐标系xOy中,⊙O的半径为1,对于△ABC和直线l给出如下定义:若△ABC的一条边关于直线l的对称线段PQ是⊙O的弦,则称△ABC是⊙O 的关于直线l的“关联三角形”“关联轴”.(1)如图1,若△ABC是⊙O的关于直线l的“关联三角形”,请画出△ABC与⊙O的“关联轴”(至少画两条);(2)若△ABC中,点A坐标为(2,3),点B坐标为(4,1),点C在直线y=−x+3的图像上,存在“关联轴l”使△ABC是⊙O的关联三角形,求点C横坐标的取值范围;(3)已知A(√3,1),将点A向上平移2个单位得到点M,以M为圆心MA为半径画圆,B,C为⊙M 上的两点,且AB=2(点B在点A右侧),若△ABC与⊙O的关联轴至少有两条,直接写出OC 的最小值和最大值,以及OC最大时AC的长.24.(2022·北京市十一学校二模)对于平面直角坐标系xOy中的图形W,给出如下定义:点P是图形W上任意一点,若存在点Q,使得∠OQP是直角,则称点Q是图形W的“直角点”.(1)已知点A(6,8),在点Q1(5,0),Q2(−2,4),Q3(9,5)中,________是点A的“直角点”;(2)已知点B(-4,4),C(3,4),若点Q是线段BC的“直角点”,求点Q的横坐标n的取值范围;(3)在(2)的条件下,已知点D(m-1,0),E(m,0),以线段DE为边在x轴上方作正方形DEFG.若正方形DEFG上的所有点均为线段BC的“直角点”,求m的取值范围.25.(2022·北京通州·一模)在平面直角坐标系xOy中,给出如下定义:点P为图形G上任意―点,将点P到原点O的最大距离与最小距离之差定义为图形G的“全距”.特别地,点P 到原点O的最大距离与最小距离相等时,规定图形G的“全距”为0.(1)如图,点A(−√3,1),B(√3,1).①原点O到线段AB上一点的最大距离为______,最小距离为______;②当点C的坐标为(0,m)时,且△ABC的“全距”为1,求m的取值范围;(2)已知OM=2,等边△DEF的三个顶点均在半径为1的⊙M上.请直接写出△DEF的“全距”d 的取值范围.26.(2022·北京石景山·一模)在平面直角坐标系xOy中,点P不在坐标轴上,点P关于x 轴的对称点为P1,点P关于y轴的对称点为P2,称△P1PP2为点P的“关联三角形”.(1)已知点A(1,2),求点A的“关联三角形”的面积;(2)如图,已知点B(m,n),⊙T的圆心为T(2,2),半径为2.若点B的“关联三角形”与⊙T 有公共点,直接写出m的取值范围;(3)已知⊙O的半径为r,OP=2r,若点P的“关联三角形”与⊙O有四个公共点,直接写出∠PP1P2的取值范围.27.(2022·北京一七一中一模)已知平面直角坐标系xOy中,对于线段MN及P、Q,若∠MPN= 45°且线段MN关于点P的中心对称线段M′N′恰好经过点Q,则称Q是点P的线段MN−45°对经点.(1)设点A(0,2),①Q1(4,0),Q2(2,2),Q3(2+√7,1),其中为某点P的线段OA−45°对经点的是___________.②选出①中一个符合题意的点Q,则此时所对应的对称中心P的坐标为.③已知B(0,1),设⊙B的半径是r,若⊙B上存在某点P的线段OA−45°对经点,求r的取值范围.(2)已知C(0,t),D(0,−t)(t>0),若点Q(4,0)同时是相异两点P1,P2的线段CD−45°对经点,直接写出t的取值范围.28.(2022·北京大兴·一模)在平面直角坐标系xOy中,⊙O的半径为1,已知点A,过点A 作直线MN.对于点A和直线MN,给出如下定义:若将直线MN绕点A顺时针旋转,直线MN与⊙O有两个交点时,则称MN是⊙O的“双关联直线”,与⊙O有一个交点P时,则称MN是⊙O的“单关联直线”,AP⊙O的“单关联线段”.(1)如图1,A(0,4),当MN与y轴重合时,设MN与⊙O交于C,D两点.则MN是⊙O的“______的值为______;关联直线”(填“双”或“单”);ACAD(2)如图2,点A为直线y=−3x+4上一动点,AP是⊙O的“单关联线段”.①求OA的最小值;②直接写出△APO面积的最小值.29.(2022·北京市燕山教研中心一模)对于平面直角坐标系xOy中的线段PQ,给出如下定义:若存在△PQR使得S△PQR=PQ2,则称△PQR为线段PQ的“等幂三角形”,点R称为线段PQ 的“等幂点”.(1)已知A(2,0).①在点P1(2,4),P2(1,2),P3(−4,1),P4(1,−4)中,线段OA的“等幂点”是____________;②若存在等腰△OAB是线段OA的“等幂三角形”,求点B的坐标;(2)已知点C的坐标为C(2,−1),点D在直线y=x−3上,记图形M为以点T(1,0)为圆心,2为半径的⊙T位于x轴上方的部分.若图形M上存在点E,使得线段CD的“等幂三角形”△CDE 为锐角三角形,直接写出点D的横坐标x D的取值范围.30.(2022·北京平谷·一模)在平面直角坐标系xOy中,⊙O的半径为r,对于平面上任一点P,我们定义:若在⊙O上存在一点A,使得点P关于点A的对称点点B在⊙O内,我们就称点P为⊙O的友好点.(1)如图1,若r为1.①已知点P1(0,0),P2(﹣1,1),P3(2,0)中,是⊙O的友好点的是;②若点P(t,0)为⊙O的友好点,求t的取值范围;(2)已知M(0,3),N(3,0),线段MN上所有的点都是⊙O的友好点,求r取值范围.。
专题5 新定义问题例题精讲例 1.割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率.请你也用这个方法求出二次函数 y=14(x −4)2的图象与两坐标轴所围成的图形最接近的面积是( ) A. 5 B. 225 C. 4 D. 17﹣4π 【答案】 A【解析】【解答】解:如图,设抛物线与坐标轴的交点为A 、B ,则有: A (4,0),B (0,4);作直线l∥AB ,易求得直线AB :y=﹣x+4,所以设直线l :y=﹣x+h ,当直线l 与抛物线只有一个交点(相切)时,有: ﹣x+h=14(x ﹣4)2 ,整理得:14x 2﹣x+4﹣h=0, ∥=1﹣4×14(4﹣h )=0,即h=3;所以直线l :y=﹣x+3;设直线l 与坐标轴的交点为C 、D ,则C (3,0)、D (0,3),因抛物线的图象与两坐标轴所围成的图形面积大于S ∥OCD 小于S ∥OAB S ∥OCD =12×3×3=4.5. S ∥OAB =12×4×4=8, 故抛物线的图象与两坐标轴所围成的图形面积在4.5<S <8的范围内,选项中符合的只有A , 故选A .例2.定义一种对正整数n 的“F”运算: ①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为 n2k (其中k 是使 n2k 为奇数的正整数),并且运算重复进行. 例如,取n=26,那么当n=26时,第2016次“F 运算”的结果是________.【答案】 62【解析】【解答】解:根据题意,得 当n=26时,第1次的计算结果是262=13,第2次的计算结果是13×3+5=44, 第3次的计算结果是 4422 =11, 第4次的计算结果是11×3+5=38, 第5次的计算结果是382 =19,第6次的计算结果是19×3+5=62, 第7次的计算结果是622=31,第8次的计算结果是31×3+5=98, 第9次的计算结果是982=49,第10次的计算结果是49×3+5=152, 第11次的计算结果是15223=19,以下每6次运算一循环,∥(2016﹣4)÷6=335…2,∥第2016次“F 运算”的结果与第6次的计算结果相同,为62, 故答案为:62.例3.观察下列运算过程:S=1+3+32+33+…+32017+32018 ①, ①×3得3S=3+32+33+…+32018+32019 ②, ②﹣①得2S=32019﹣1,S=32019−12.运用上面计算方法计算:1+5+52+53+…+52018=________. 【答案】52019−14【解析】【解答】设S=1+5+52+53+…+52018 ①, 则5S=5+52+53+54…+52019②, ②﹣①得:4S=52019﹣1,所以S= 52019−14,故答案为:52019−14.例4.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为S= √14[a 2b 2−(a 2+b 2−c 22)2] .现已知∥ABC 的三边长分别为1,2, √5 ,则∥ABC 的面积为________. 【答案】1【解析】【解答】解:∥S= √14[a 2b 2−(a 2+b 2−c 22)2] ,∥∥ABC 的三边长分别为1,2, √5 ,则∥ABC 的面积为: S= √14[12×22−(12+22−(√5)22)2] =1,故答案为:1.例5.设双曲线 y =kx (k >0) 与直线 y =x 交于 A , B 两点(点 A 在第三象限),将双曲线在第一象限的一支沿射线 BA 的方向平移,使其经过点 A ,将双曲线在第三象限的一支沿射线 AB 的方向平移,使其经过点 B ,平移后的两条曲线相交于点 P , Q 两点,此时我称平移后的两条曲线所围部分(如图中(k>0)的眸径为6时,k的值为阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径”当双曲线y=kx________.【答案】【解析】【解答】解:∥双曲线是关于原点成中心对称,点P、Q关于原点对称和直线AB对称∥四边形PAQB是菱形∥PQ=6∥PO=3根据题意可得出∥APB是等边三角形∥在Rt∥POB中,OB=tan30°×PO=√3×3= √33设点B的坐标为(x,x)∥2x2=3x2= 3=k2故答案为:32习题精炼一、单选题1.在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:①f(x,y)=(y,x).如f(2,3)=(3,2);②g(x,y)=(﹣x,﹣y),如g(2,3)=(﹣2,﹣3).按照以上变换有:f(g(2,3))=f(﹣2,﹣3)=(﹣3,﹣2),那么g(f(﹣6,7))等于()A.(7,6)B.(7,﹣6)C.(﹣7,6)D.(﹣7,﹣6)2.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x2+1,﹣x}的最大值是()A.√5−12B.√5+12C.1D.03.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+ 1x(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是1x,矩形的周长是2(x+ 1x );当矩形成为正方形时,就有x= 1x(0>0),解得x=1,这时矩形的周长2(x+ 1x)=4最小,因此x+ 1x (x>0)的最小值是2.模仿张华的推导,你求得式子x2+9x(x>0)的最小值是()A.2B.1C.6D.104.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3B.1,1,√2C.1,1,√3D.1,2,√35.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S= 610−15,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是()A.a2014−1a−1B.a2015−1a−1C.a2014−1aD.a2014﹣16.阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∥MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2 √2)D.(50°,2 √2)7.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3B.4C.5D.68.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC∥BD;②AO=CO= 12AC;③∥ABD∥∥CBD,其中正确的结论有()A.0个B.1个C.2个D.3个9.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是()A.12B.23C.25D.3510.对于两个不相等的实数a、b ,我们规定符号Max{a ,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x} =2x+1x的解为().A.1﹣√2B.2﹣√2C.1+ √2或1﹣√2D.1+ √2或﹣111.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④B.①③④C.①②④D.①②③12.宽与长的比是√5−12(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH∥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFEB.矩形EFCDC.矩形EFGHD.矩形DCGH13.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为()A.23B.1 C.43D.5314.已知点A在函数y1=−1x(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上,若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.只有1对或2对B.只有1对C.只有2对D.只有2对或3对15.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距√5的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13B.14C.15D.1616.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]= 12x2的解为()#N.A. 0或 √2B. 0或2C. 1或 −√2D. √2 或﹣ √2 二、填空题17.对非负实数x“四舍五入”到个位的值记为(x ).即当n 为非负整数时,若n ﹣ 12 ≤x <n+ 12 ,则(x )=n .如(0.46)=0,(3.67)=4. 给出下列关于(x )的结论:①(1.493)=1;②(2x )=2(x );③若( 12x −1 )=4,则实数x 的取值范围是9≤x <11;④当x≥0,m 为非负整数时,有(m+2013x )=m+(2013x );⑤(x+y )=(x )+(y );其中,正确的结论有________(填写所有正确的序号).18.若x 是不等于1的实数,我们把11−x称为x 的差倒数,如2的差倒数是11−2=﹣1,﹣1的差倒数为11−(−1)=12,现已知x 1=﹣ 13,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2017=________.19.在∥ABC 中,P 是AB 上的动点(P 异于A 、B ),过点P 的直线截∥ABC ,使截得的三角形与∥ABC 相似,我们不妨称这种直线为过点P 的∥ABC 的相似线,简记为P (l x )(x 为自然数).(1)如图①,∥A=90°,∥B=∥C ,当BP=2PA 时,P (l 1)、P (l 2)都是过点P 的∥ABC 的相似线(其中l 1∥BC ,l 2∥AC ),此外,还有________条;(2)如图②,∥C=90°,∥B=30°,当BPBA =________时,P (l x )截得的三角形面积为∥ABC 面积的14 .20.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是________.(写出所有正确说法的序号) ①当x=1.7时,[x]+(x )+[x )=6; ②当x=﹣2.1时,[x]+(x )+[x )=﹣7;③方程4[x]+3(x )+[x )=11的解为1<x <1.5;④当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有两个交点.21.阅读理解:如图1,∥O 与直线a 、b 都相切,不论∥O 如何转动,直线a 、b 之间的距离始终保持不变(等于∥O 的直径),我们把具有这一特性的图形成为“等宽曲线”,图2是利用圆的这一特性的例子,将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力既可以推动物体前进,据说,古埃及人就是利用这样的方法将巨石推到金字塔顶的.拓展应用:如图3所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”,如图4,夹在平行线c ,d 之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,若直线c ,d 之间的距离等于2cm ,则莱洛三角形的周长为________cm .22.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是∥ABC 的“和谐分割线”,∥ACD为等腰三角形∥CBD和∥ABC相似,∥A =46°,则∥ACB的度数为________.答案解析部分一、单选题1.【答案】C【解析】【解答】解:∥f(﹣6,7)=(7,﹣6),∥g(f(﹣6,7))=g(7,﹣6)=(﹣7,6).故选C.2.【答案】A【解析】【解答】解:在同一坐标系xOy中,画出函数二次函数y=﹣x2+1与正比例函数y=﹣x的图象,如图所示.设它们交于点A、B.令﹣x2+1=﹣x,即x2﹣x﹣1=0,解得:x= 1+√52或1−√52,∥A(1−√52,√5−12),B(1+√52,−1−√52).观察图象可知:①当x≤ 1−√52时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而增大,其最大值为√5−12;②当1−√52<x<1+√52时,min{﹣x2+1,﹣x}=﹣x,函数值随x的增大而减小,其最大值为√5−12;③当x≥ 1+√52时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而减小,最大值为−1−√52.综上所示,min{﹣x2+1,﹣x}的最大值是√5−12.故选:A.3.【答案】C【解析】【解答】解:∥x>0,∥在原式中分母分子同除以x,即x 2+9x=x+ 9x,在面积是9的矩形中设矩形的一边长为x,则另一边长是9x,矩形的周长是2(x+ 9x);当矩形成为正方形时,就有x= 9x,(x>0),解得x=3,这时矩形的周长2(x+ 9x)=12最小,因此x+ 9x(x >0)的最小值是6.故答案为:C 4.【答案】D【解析】【解答】解:A 、∥1+2=3,不能构成三角形,故选项错误; B 、∥12+12=( √2 )2 , 是等腰直角三角形,故选项错误;C 、底边上的高是 √12−(√32)2 = 12 ,可知是顶角120°,底角30°的等腰三角形,故选项错误;D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确. 故选:D . 5.【答案】B【解析】【解答】解:设S=1+a+a 2+a 3+a 4+…+a 2014 , ① 则aS=a+a 2+a 3+a 4+…+a 2014+a 2015 , ②, ②﹣①得:(a ﹣1)S=a 2015﹣1, ∥S= a 2015−1a−1,即1+a+a 2+a 3+a 4+…+a 2014= a 2015−1a−1.故答案为:B . 6.【答案】 A【解析】【解答】解:如图,设正六边形的中心为D ,连接AD ,∥∥ADO=360°÷6=60°,OD=AD , ∥∥AOD 是等边三角形, ∥OD=OA=2,∥AOD=60°, ∥OC=2OD=2×2=4,∥正六边形的顶点C 的极坐标应记为(60°,4). 故选:A .7.【答案】 C【解析】【解答】如图所示,∥ (a +b)2=21 ,∥ a 2+2ab +b 2 =21,∥大正方形的面积为13,2ab=21﹣13=8,∥小正方形的面积为13﹣8=5.故答案为:C . 8.【答案】 D【解析】【解答】解:在∥ABD 与∥CBD 中, {AD =CD AB =BC DB =DB, ∥∥ABD∥∥CBD (SSS ), 故③正确; ∥∥ADB=∥CDB ,在∥AOD 与∥COD 中,{AD =CD∠ADB =∠CDB OD =OD,∥∥AOD∥∥COD (SAS ),∥∥AOD=∥COD=90°,AO=OC , ∥AC∥DB ,故①②正确; 故选D9.【答案】 C【解析】【解答】解:列表得: 9 379 479 579 679 879 ﹣ 8 378 478 578 678 ﹣ 978 6 376 476 576 ﹣ 876 976 5 375 475 ﹣ 675 875 975 4 374 ﹣ 574 674 874 974 3 ﹣ 473 573 673 873 973345689∥共有30种等可能的结果,与7组成“中高数”的有12种情况, ∥与7组成“中高数”的概率是:1230=25 .故选C .10.【答案】 D【解析】【分析】根据x 与﹣x 的大小关系,取x 与﹣x 中的最大值化简所求方程,求出解即可.【解答】当x <﹣x , 即x <0时,所求方程变形得:﹣x= ,去分母得:x 2+2x+1=0,即x=﹣1;当x >﹣x , 即x >0时,所求方程变形得:x= ,即x 2﹣2x=1,解得:x=1+或x=1﹣(舍去), 经检验x=﹣1与x=1+都为分式方程的解.故选:D .11.【答案】C【解析】【解答】解:①根据题意得:a@b=(a+b )2﹣(a ﹣b )2 ∥(a+b )2﹣(a ﹣b )2=0,整理得:(a+b+a ﹣b )(a+b ﹣a+b )=0,即4ab=0, 解得:a=0或b=0,正确;②∥a@(b+c )=(a+b+c )2﹣(a ﹣b ﹣c )2=4ab+4aca@b+a@c=(a+b )2﹣(a ﹣b )2+(a+c )2﹣(a ﹣c )2=4ab+4ac , ∥a@(b+c )=a@b+a@c 正确;③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∥a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∥a2+b2+2ab≥4ab,∥4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∥a@b最大时,a=b,故④正确,故选C.12.【答案】D【解析】【解答】解:设正方形的边长为2,则CD=2,CF=1 在直角三角形DCF中,DF= √12+22= √5∥FG= √5∥CG= √5﹣1∥ CGCD = √5−12∥矩形DCGH为黄金矩形故选D.13.【答案】D【解析】【解答】解:由题意得:{y=2x−1y=−x+3,解得:{x=43y=53,当2x﹣1≥﹣x+3时,x≥ 43,∥当x≥ 43时,y=min{2x﹣1,﹣x+3}=﹣x+3,由图象可知:此时该函数的最大值为53;当2x﹣1<﹣x+3时,x<43,∥当x<43时,y=min{2x﹣1,﹣x+3}=2x﹣1,由图象可知:此时该函数的最大值为53;综上所述,y=min{2x﹣1,﹣x+3}的最大值是当x= 43所对应的y的值,如图所示,当x= 43时,y= 53,故答案为:D.14.【答案】A【解析】【解答】解:设A(a,−1a ),根据题意点A关于坐标原点对称的点B(-a,1a)在直线y 2 = k x + 1 + k上,∥1a=-ak+1+k,整理得:ka2-(k+1)a+1=0 ①,即(a-1)(ka-1)=0,∥a-1=0或ka-1=0,则a=1或ka-1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=1k,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上所述,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.15.【答案】B【解析】【解答】解:如图1,连接AC,CF,则AF=3 √2,∥两次变换相当于向右移动3格,向上移动3格,又∥MN=20 √2,∥20 √2÷3 √2= 203,(不是整数)∥按A﹣C﹣F的方向连续变换10次后,相当于向右移动了10÷2×3=15格,向上移动了10÷2×3=15格,此时M位于如图所示的5×5的正方形网格的点G处,再按如图所示的方式变换4次即可到达点N处,∥从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是14次,故选:B.16.【答案】A【解析】【解答】解:当1≤x<2时,12x2=1,解得x1= √2,x2=﹣√2;当x=0,12x2=0,x=0;当﹣1≤x <0时, 12x 2=﹣1,方程没有实数解;当﹣2≤x <﹣1时, 12 x 2=﹣1,方程没有实数解; 所以方程[x]= 12 x 2的解为0或 √2 .二、填空题17.【答案】 ①③④【解析】【解答】解:①(1.493)=1,正确;②(2x )≠2(x ),例如当x=0.3时,(2x )=1,2(x )=0,故②错误; ③若( 12x −1 )=4,则4﹣ 12 ≤ 12 x ﹣1<4+ 12 ,解得:9≤x <11,故③正确;④m 为整数,故(m+2013x )=m+(2013x ),故④正确;⑤(x+y )≠(x )+(y ),例如x=0.3,y=0.4时,(x+y )=1,(x )+(y )=0,故⑤错误; 综上可得①③正确. 故答案为:①③④ 18.【答案】−13【解析】【解答】解:由题意可得, x 1=﹣ 13 ,x 2= 11−(−13)=34 ,x 3=11−34=4 ,x 4= 11−4=−13 , 2017÷3=672…1, ∥x 2017= −13 , 故答案为: −13 . 19.【答案】 1 ;12或34或√34【解析】【解答】(1)存在另外 1 条相似线.如图1所示,过点P 作l 3∥BC 交AC 于Q ,则∥APQ∥∥ABC ; 故答案为:1;(2)设P (l x )截得的三角形面积为S ,S=14S ∥ABC , 则相似比为1:2.如图2所示,共有4条相似线:①第1条l 1 , 此时P 为斜边AB 中点,l 1∥AC ,∥BP BA =12;②第2条l 2 , 此时P 为斜边AB 中点,l 2∥BC ,∥BP BA =12;③第3条l 3 , 此时BP 与BC 为对应边,且BP BA =12, ∥BP BA=BPBC COS30o=√34;④第4条l 4 , 此时AP 与AC 为对应边,且AP AC =12, ∥AP AB=APAC sin30o=14, ∥BP BA =34.故答案为:12或12或√34.20.【答案】②③【解析】【解答】解:①当x=1.7时, [x]+(x )+[x )=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;②当x=﹣2.1时, [x]+(x )+[x )=[﹣2.1]+(﹣2.1)+[﹣2.1)=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正确;③当1<x <1.5时, 4[x]+3(x )+[x ) =4×1+3×2+1 =4+6+1=11,故③正确;④∥﹣1<x <1时,∥当﹣1<x <﹣0.5时,y=[x]+(x )+x=﹣1+0+x=x ﹣1, 当﹣0.5<x <0时,y=[x]+(x )+x=﹣1+0+x=x ﹣1, 当x=0时,y=[x]+(x )+x=0+0+0=0,当0<x <0.5时,y=[x]+(x )+x=0+1+x=x+1,当0.5<x <1时,y=[x]+(x )+x=0+1+x=x+1,∥y=4x ,则x ﹣1=4x 时,得x= −13;x+1=4x 时,得x= 13;当x=0时,y=4x=0,∥当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有三个交点,故④错误, 故答案为:②③. 21.【答案】2π【解析】【解答】解:如图3,由题意知AB=BC=AC=2cm , ∥∥BAC=∥ABC=∥ACB=60°,∥ AB̂ 在以点C 为圆心、2为半径的圆上, ∥ AB̂ 的长为 60⋅π⋅2180= 2π3, 则莱洛三角形的周长为2π3×3=2π,故答案为:2π.22.【答案】113°或92°.【解析】【解答】∥△BCD ∼△BAC , ∥∥BCD=∥A=46°,∥△ACD 为等腰三角形,∥ADC>∥BCD , ∥∥ADC>∥A , ∥AC ≠CD ,①当AC=AD 时,∥ACD=∥ADC=12(180°-46°)=67°, ∥∥ACB=67°+46°=113°.②当DA=DC 时,∥ACD=∥A=46°,。
模型08 新定义问题(1)【模型分析】新定义型问题是学习型阅读理解题,是指题目中首先给出一个新定义(新概念或新公式),通过阅读题目提供的材料,理解新定义,再通过对新定义的理解来解决题目提出的问题。
其主要目的是通过对新定义的理解与运用来考查学生的自主学习能力,便于学生养成良好的学习习惯。
解决此类题的关键是(1)深刻理解“新定义”——明 确“新定义”的条件、原理、方法、步骤和结论;(2)重视“举例”,利用“举例”检验是否理解和正确运用“新定义”;归纳“举例”提供的做题方法;归纳“举例”提供的分类情况;(3)依据新定义,运用类比、归纳、联想、分类讨论以及数形结合的数学思想方法解决题目中需要解决的问题。
【经典例题】例1.(2020·湖南广益实验中学七年级月考)规定:用{}m 表示大于m 的最小整数,例如5{}32=,{4}5=,{1.5}1-=-等;用[]m 表示不大于m 的最大整数,例如7[]32=,[2]2=,[3.2]4-=-,如果整数x 满足关系式:2{}3[]32x x +=,则x 的值为( )A .3B .5-C .6D .7【分析】根据题意,可将2x +3[x ]=32变形为2x +2+3x =32,解方程后即可得出结论. 【解析】∵x 为整数, ∵{x }=x +1, [x ]=x ,∵2{x }+3[x ]=32可化为:2(x +1)+3x =32 去括号,得 2x +2+3x =32, 移项合并,得5x =30, 系数化为1,得x =6. 选C .【小结】本题结合新定义主要考查解一元一次方程,比较新颖,注意仔细审题,理解新定义运算的规则是解题的关键.例2.(2021·河南安阳市·八年级期末)对于有理数a ,b ,定义{},min a b :当a b ≥时,{},min a b b =;当a b ≤时,{},min a b a =.若{}2240,12440min m n m n -+--=,则n m 的值为______.【分析】根据22124-+--m n m n 与40的大小,再根据{}2240,12440min m n m n -+--=,从而确定m ,n 的值即可得出n m 的值.【解析】∵{}2240,12440min m n m n -+--=∵40≤22124-+--m n m n ∵22412400+-≤++m n n m ∵(m +6)2+(n -2)2≤0 ∵(m +6)2+(n -2)2≥0 ∵m +6=0,n -2=0 ∵m =-6,n =2 ∵()2636=-=n m【小结】本题考查了配方法的应用和非负数的性质.根据题意理解新定义的计算公式是解题的关键.例3.(2021·北京西城区·八年级期末)给出如下定义:在平面直角坐标系xOy 中,已知点123(,),(,),(,)P a b P c b P c d ,这三个点中任意两点间的距离的最小值称为点123,,P P P 的“最佳间距”.例如:如图,点123(1,2),(1,2),(1,3)P P P -的“最佳间距”是1(1)点1(2,1)Q ,2(4,1)Q ,3(4,4)Q 的“最佳间距”是__________ (2)已知点(0,0)O ,(3,0)A -,(3,)B y -①若点O ,A ,B 的“最佳间距”是1,则y 的值为__________ ②点O ,A ,B 的“最佳间距”的最大值为________(3)已知直线l 与坐标轴分别交于点()0,3C 和()4,0D ,点()P m n ,是线段CD 上的一个动点.当点()0,0O ,(),0E m ,()P m n ,的“最佳间距”取到最大值时,求此时点P 的坐标 【分析】(1)根据题意,分别求出点1(2,1)Q ,2(4,1)Q ,3(4,4)Q 任意两点间的距离,比较后即可得出结论(2)①根据三个点的坐标特点可得AB ∥y 轴,由此可求出OA 、OB 均不满足点O ,A ,B 的“最佳间距”是1,则可得AB =1,从而求出y 值的两种情况② 根据OA =3,且OA 为定值,可得无论y 取何值,点O ,A ,B 的“最佳间距”最大值为3; (3)根据题目中的已知条件,可利用待定系数法求出直线CD 的解析式,由(),0E m ,()P m n ,可判断PE ∵x 轴,同(2)②则可得出点()0,0O ,(),0E m ,()P m n ,“最佳间距”取到最大值时的条件为OE =PE ,从而可列出关于m 的方程,求解后即可求出点P 坐标. 【解析】(1)∵点1(2,1)Q ,2(4,1)Q ,3(4,4)Q∵212Q Q =,323Q Q =,13Q Q ==∵2<3∵点1(2,1)Q ,2(4,1)Q ,3(4,4)Q 的“最佳间距”是2 (2)①∵点(0,0)O ,(3,0)A -,(3,)B y - ∵AB ∥y 轴 ∵OA =3,OB >OA∵点O ,A ,B 的“最佳间距”是1 ∵AB =1 ∵y =±1②当-3≤y ≤3时,点O ,A ,B 的“最佳间距”是y =AB ≤3当y >3或y <-3时,AB >3,点O ,A ,B 的“最佳间距”是OA =3, ∵点O ,A ,B 的“最佳间距”的最大值为3. (3)如图,设直线CD 的解析式为y =k 1x +b 1,将()0,3C ,()4,0D 代入:111340b k b =⎧⎨+=⎩,解得11343k b ⎧=-⎪⎨⎪=⎩ ∵334y x =-+,∵()P m n ,,(),0E m , ∵PE ∵x 轴,当且仅当OE =PE 时,点()0,0O ,(),0E m ,()P m n ,的“最佳间距”取到最大值,∵OE =m ,PE =n =334m -+, ∵334m m =-+,解得127m =,∵P (127,127),当点O ,E ,P 的“最佳间距”取到最大值时,点P 的坐标为(127,127). 【小结】本题考查了新定义运算的综合应用,弄清新定义的规则,并灵活应用所学知识求解是解题的关键.【巩固提升】1.(2020·福建省泉州实验中学八年级月考)如果三角形有一边上的中线长恰好等于这边的长,那么称这个三角形为“匀称三角形”.若Rt ABC 是“匀称三角形”,且90C ∠=︒,AC BC >,则::AC BC AB 为( )A 2B .2C .2D .无法确定【分析】作Rt ∵ABC 的三条中线AD 、BE 、CF ,由“匀称三角形”的定义可判断满足条件的中线是BE ,它是AC 边上的中线,设AC =2a ,则CE =a ,BE =2a ,在Rt ∵BCE 中∠BCE =90°,根据勾股定理可求出BC 、AB ,则AC :BC :AB 的值可求出. 【解析】如图①,作Rt ∵ABC 的三条中线AD 、BE 、CF ,∵∠ACB =90°, ∵12CF AB AB =≠, 又在Rt ∵ABC 中,AD >AC >BC ,,AD BC ∴≠∵满足条件的中线是BE ,它是AC 边上的中线, 设AC =2a ,则,2,CE AE a BE a ===在Rt ∵BCE 中∠BCE =90°,∵,BC ==在Rt ∵ABC 中,,AB ===∵AC :BC :AB =22a = 选B .【小结】考查了新定义、勾股定理的应用,算术平方根的含义,解题的关键是理解“匀称三角形”的定义,灵活运用所学知识解决问题.2.(2021·上海徐汇区·九年级一模)定义:[]x 表示不超过实数x 的最大整数例如:[]1.71=,305⎡⎤=⎢⎥⎣⎦,1234⎡⎤-=-⎢⎥⎣⎦根据你学习函数的经验,下列关于函数[]y x =的判断中,正确的是( )A .函数[]y x =的定义域是一切整数B .函数[]y x =的图像是经过原点的一条直线 C .点2(2,2)5在函数[]y x =图像上 D .函数[]y x =的函数值y 随x 的增大而增大 【分析】根据题意描述的概念逐项分析即可.【解析】A 、对于原函数,自变量显然可取一切实数,则其定义域为一切实数,故错误; B 、因为原函数的函数值是一些整数,则图象不会是一条过原点的直线,故错误; C 、由题意可知2225⎡⎤=⎢⎥⎣⎦,则点2(2,2)5在函数[]y x =图像上,故正确;D 、例如113⎡⎤=⎢⎥⎣⎦,112⎡⎤=⎢⎥⎣⎦,即当13x =,12x =时,函数值均为1y =,不是y 随x 的增大而增大,故错误; 选C .【小结】考查函数的概念以及新定义问题,仔细审题,理解材料介绍的的概念是解题关键.3.(2020·浙江杭州市·七年级其他模拟)定义运算“∵”:, ,aa b a ba b b a b b a⎧>⎪⎪-=⎨⎪<⎪-⎩※,若5x ※的值为整数,则整数x 的值为_______.【分析】根据题中的新定义可分若5>x ,若5<x ,两种情况分别求解,最后合并结果. 【解析】若5>x ,则5x ※=55x-为整数,则x =0或4或6(舍)或10(舍), 若5<x , 则5x ※=5551555x x x x x -+==+---为整数,则x =0(舍)或4(舍)或6或10, 综上:整数x 的值为:0或4或6或10,【小结】此题考查了分式的值的求法,要熟练掌握,解答此题的关键是理解题中的新定义.4.(2020·浙江嘉兴市·七年级期末)材料:一般地,n 个相同因数a 相乘:n a a a a a⋅⋅⋅⋅⋅个记为n a .如328=,此时3叫做以2为底的8的对数,记为2log 8(即2log 83=).那么3log 9=_____,()2231log 16log 813+=_____.【分析】由239=可求出2log 93=,由4216=,43=81可分别求出2log 164=,3log 814=,继而可计算出结果【解析】(1)由题意可知:239=,则2log 93=(2)由题意可知:4216=,43=81,则2log 164=,3log 814= ∵223141(log 16)log 811617333+=+= 【小结】本题主要考查定义新运算,读懂题意,掌握运算方法是解题关键.6.(2021·北京顺义区·七年级期末)我们规定:若有理数,a b 满足a b ab +=,则称,a b 互为“等和积数”,其中a 叫做b 的“等和积数”,b 也叫a 的“等和积数”.例如:因为()11122+-=-,()11122⨯-=-,所以()()221111-=⨯-+,则12与1-互为“等和积数”.请根据上述规定解答下列问题:(1)有理数2的“等和积数”是__________;(2)有理数1_________(填“有”或“没有”)“等和积数”; (3)若m 的“等和积数”是25,n 的“等和积数”是37,求34m n +的值. 【分析】(1)根据“等和积数”的定义列方程求解即可; (2)根据“等和积数”的定列方程求解即可;(3)根据“等和积数”的定列方程求出m 和n 的值,代入34m n +计算即可. 【解析】(1)设有理数2的“等和积数”是x ,由题意得2+x =2x ,解得x =2, (2)设有理数1的“等和积数”是y ,由题意得1+y =y , ∵y -y =1,∵此方程无解,∵有理数1没有 “等和积数”;(3)∵m 的“等和积数”是25,∵m +25=25m ,解得m =23-; ∵n 的“等和积数”是37,∵n +37=37n ,解得n =34-;∵34m n +=3×(23-)+4×(34-)=-5.【小结】考查新定义,以及一元一次方程的应用,根据新定义列方程求解是解答本题的关键.6.(2021·北京海淀区·北理工附中七年级期末)我们把a cb d称为二阶行列式,且a c ad bcb d=-.如:121(4)321034=⨯--⨯=--.(1)计算:2135=-_______;4235=-________;(2)小明观察(1)中两个行列式的结构特点及结果,归纳总结,猜想:若行列式中的某一行(列)的所有数都乘以同一个数k ,等于用数k 乘以此行列式.即ka kc a cka c a kc a c kbdkb kdkb db kdb d====,你认为小明的猜想正确吗?若正确请说明理由,若错误请举出反例. (3)若1k ≠,且113232x x x x kk++=,求x 的值.【分析】(1)各式利用题中的新定义计算即可求出值; (2)小明的说法不正确,举一个反例即可;(3)已知等式利用题中的新定义化简,计算即可求出x 的值. 【解析】(1)原式=2×5-1×(-3)=10+3=13,原式=4×5-2×(-3)=20+6=26 (2)小明的说法错误,当k =0时,203054145⨯⨯=-=,而002345=⨯,不相等;(3)已知等式整理得:2(x +1)-3x =2k (x +1)-3kx , 去括号得:2x +2-3x =2kx +2k -3kx , 整理得:(k -1)x =2(k -1), ∵k ≠1, ∵k -1≠0, 解得:x =2.【小结】此题考查了有理数的混合运算,整式的加减、新定义,解一元一次方程等知识,熟练掌握运算法则是解本题的关键.模型09 新定义问题(2)【模型分析】知识精要新定义型问题是学习型阅读理解题,是指题目中首先给出一个新定义(新概念或新公式),通过阅读题目提供的材料,理解新定义,再通过对新定义的理解来解决题目提出的问题。
中考数学总复习资料代数部分第一章:实数基础知识点:一、实数的分类:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数或无限循环小负分数正分数分数负整数零正整数整数有理数实数1、有理数:任何一个有理数总可以写成qp的形式,其中p 、q 是互质的整数,这是有理数的重要特征。
2、无理数:初中遇到的无理数有三种:开不尽的方根,如2、34;特定结构的不限环无限小数,如1.101001000100001……;特定意义的数,如π、45sin °等。
3、判断一个实数的数性不能仅凭表面上的感觉,往往要经过整理化简后才下结论。
二、实数中的几个概念1、相反数:只有符号不同的两个数叫做互为相反数。
(1)实数a 的相反数是 -a ; (2)a 和b 互为相反数⇔a+b=0 2、倒数:(1)实数a (a ≠0)的倒数是a1;(2)a 和b 互为倒数⇔1=ab ; (3)注意0没有倒数 3、绝对值:(1)一个数a 的绝对值有以下三种情况:⎪⎩⎪⎨⎧-==0,0,00, a a a a a a(2)实数的绝对值是一个非负数,从数轴上看,一个实数的绝对值,就是数轴上表示这个数的点到原点的距离。
(3)去掉绝对值符号(化简)必须要对绝对值符号里面的实数进行数性(正、负)确认,再去掉绝对值符号。
4、n 次方根(1)平方根,算术平方根:设a ≥0,称a ±叫a 的平方根,a 叫a 的算术平方根。
(2)正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
(3)立方根:3a 叫实数a 的立方根。
(4)一个正数有一个正的立方根;0的立方根是0;一个负数有一个负的立方根。
三、实数与数轴1、数轴:规定了原点、正方向、单位长度的直线称为数轴。
原点、正方向、单位长度是数轴的三要素。
2、数轴上的点和实数的对应关系:数轴上的每一个点都表示一个实数,而每一个实数都可以用数轴上的唯一的点来表示。
、选择题=—2,贝U m=()2 2A . — 2——C . 2D.—55【答案】B【思路分析】如图【解题过程】 由题意得m -1 —(5m )- 1= 1m 【知识点】定义新运算22. (20佃年广西柳州市,8, 3分)定义:形如a+bi 的数称为复数(其中 a 和b 为实数,i 为虚数单位,规定i =-1),a 称为复数的实部,b 称为复数的虚部.复数可以进行四则运算, 运算的结果还是一个复数.例如(1+3i )2= 12+2 x 1X 3i+(3i ) 2= 1+6i+9i 2=1+6i - 9 =- 8+6i ,因此,(1+3i ) 2的实部是-8,虚部是6.已知复数(3-mi ) 2的虚部是12,则实部是( )A . - 6B . 6C . 5D . - 52 2 2 22 22 2【解题过程】'/( 3 - mi ) = 3 - 2 x 3x mi+ (mi ) = 9 - 6mi+m i = 9+m i - 6mi = 9 - m - 6mi ,复数(3 - mi ) 的实部是9 - m ,虚部是-6m , .•.- 6m = 12, /• m =- 2,299 - m = 9-( - 2) = 9 - 4 = 5. 故选:C .【知识点】完全平方公式;新定义【点评】本题考查了新定义,完全平方公式,理解新定义是解题的关键. 二、填空题1. (20佃广西省贵港市,题号 18,分值3分)我们定义一种新函数:形如 y=|ax bx c|(^-=0,b -4a 0)的函数叫做“鹊桥”函数.小丽同学画出了 “鹊桥”函数y =|x 2 -2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(-1,0) , (3,0)和(0,3);②图象具有对称性,对称轴是直线x =:1 ;③当-1第収1或x---3 时,函数值y 随x 值的增大而增大;④当x 二-1或x=3时,函数的最小值是 0;⑤当x=1时,函数的最大值是 4 •其 中正确结论的个数是4 .1. (20佃广东深圳,11,3分)定义一种新运算: n . n© n = a - b ,例如:©2 = 12-32=1 — 9=— 8,若(5m - 1—=—2,贝U m= -?,故选 B .5m5【答案】C【思路分析】先利用完全平方公式得出(3 - mi)2= 9 - 6mi+m2i2,再根据新定义得出复数(3 - mi)2的实部是92 2 2-m,虚部是-6口,由(3 - mi)的虚部是12得出m=- 2,代入9 - m计算即可.【答案】4. 【思路分析】由(_1,0) , (3,0)和(0,3)坐标都满足函数y =|x 2—2x —3| ,.①是正确的;从图象可以看出图象具有 对称性,对称轴可用对称轴公式求得是直线x =1,②也是正确的;根据函数的图象和性质,发现当 一1剟x 1或X---3时,函数值y 随x 值的增大而增大,因此 ③也是正确的;函数图 象的最低点就是与 x 轴的两个交点,根据 y =0,求出相应的x 的值为x = _1或x = 3,因此④也是正确的;从图象上看,当x :::_1或x 3,函数值要大于当x =1时的y=|x 2 _2x_3| = 4,因此⑤时不正确的;逐个判断之后, 可得出答案.【解题过程】 解:①:(-1,0) , (3,0)和(0,3)坐标都满足函数y=|x 2-2x-3| ,.①是正确的; ② 从图象可知图象具有对称性,对称轴可用对称轴公式求得是直线 x=1,因此②也是正确的;③ 根据函数的图象和性质,发现当-1剟x 1或时,函数值y 随x 值的增大而增大,因此 ③也是正确的;④ 函数图象的最低点就是与 x 轴的两个交点,根据 y =0,求出相应的x 的值为x = ..1或x =3,因此④也是正确 的;⑤从图象上看,当x :::_1或x 3,函数值要大于当 x =1时的y=|x 2 -2x -3|=4,因此⑤时不正确的;【答案】6【知识点】新定义;平面直角坐标系3. (2019湖北荆州,13, 3分)对非负实数x “四舍五入”到个位的值记为(x ),即当n 为非负整数时,若 n -二次函数的最值;二次函数图象与几何变换;抛物线与 x 轴的交点2. (2019湖南湘西,8, 4分)阅读材料:设 (x 1, y 1),(X 2, y 2),如果// , 则X 1?y 2= x 2?y 1,根据该材料填空,已知 (4, 3), (8, m ),且 // ,贝U m = __________【解析】解: (8, m ),且 // ,二 4m = 3x 8,二 m = 6;故答案为 6;y 40.5< x v n+0.5,则(x)=门.如(1.34)= 1, (4.86)= 5.若(0.5x- 1 )= 6,则实数x 的取值范围是______________ 【答案】13W x v 15【解析】解:依题意得:6 - 0.5W 0.5x- 1V 6+0.5解得13< x v 15.故答案是:13W x v 15.【知识点】一元一次不等式组的应用三、解答题1. (20佃广西北部湾,26, 10分)如果抛物线C i的顶点在抛物线C2上,抛物线C2的顶点也在抛物线C i上时,1 2 2那么我们称抛物线C i与C2互为关联”的抛物线.如图1,已知抛物线C i:y i x - x与C2:y2二ax x c是4互为关联”的抛物线,点A,B分别是抛物线C i,C2的顶点,抛物线C2经过点D(6,-1).(1 )直接写出A,B的坐标和抛物线C2的解析式;(2)抛物线C2上是否存在点E,使得△ ABE是直角三角形?如果存在,请求出点E的坐标;如果不存在,请说明理由;(3)如图2,点F (-6,3)在抛物线C i上,点M,N分别是抛物线C i,C2上的动点,且但M,N的横坐标相同,记△ AFM 面积为S i (当点M与点A,F重合时,S i=0),△ ABN的面积为S2 (当点N与点A,B重合时,S2=0),令s=S i+S2,观察图象,当y i鬥2时,写出x的取值范围,并求出在此范围内D的最大值.图1 图2【思路分析】本题考查了二次函数的综合应用.1 2(1 )由抛物线C i:y i= x +x可得 A (-2,-1),将 A (-2,-1 ),D (6,-1)代入y2=ax2+x+c,得出抛物线C24的解析式,B (2,3);(2)易得直线AB的解析式:y=x+1,①若B为直角顶点,BE丄AB,得出E的坐标;②若A为直角顶点,AE丄AB,1得出E的坐标;③若E为直角顶点,设 E (m,—m2+ m+2)不符合题意;41 2 1 2(3)由y i今2,得-2<x<2 设M (t,- t+t),N (t,- 一t +t+2),且-2*2易求直线AF 的解析式:y=-x-3,4 4一1 2 1 2过M作x轴的平行线MQ交AF于Q,S i= —t2+4t+6,设AB交MN于点P,易知P (t,t+1 ),S2=2-— t2,所2 2以S=S计S2=4t+8,进而得出S最大值.1 2【解题过程】解:由抛物线C i:y i= x2+x可得A (- 2,- 1),4将 A (- 2,- 1), D (6, - 1)代入y2= ax2+x+c14a -2 c - -1得|36a -6 c = -1…y 2 =_W+x+2 ,4,解得二 B (2, 3);(2)由A (- 2,- 1)和B (2, 3)可得直线AB 的解析式: ①若B 为直角顶点,BE 丄AB , k BE ?k AB =- 1,二 k BE =- 1 ,直线BE 解析式为y =- x+5y = x+1,联立解得 x = 2, y = 3 或 x = 6, y =- 1, 二 E ( 6,- 1); ②若A 为直角顶点,AE 丄AB , 同理得AE 解析式:y =- x - 3,y = -x -3 联立 1 2,y x x 24解得 x =- 2, y =- 1 或 x = 10, y =- 13, 二 E( 10,- 13);1③若E 为直角顶点,设 E (m ,- — m 2+m+2)4由 AE 丄 BE 得 k BE ?k AE =- 1,1 2 1 2 m m T即丄m -2m 2解得m = 2或1 2 1 2 设 M (t , t +t ), N (t , - —t +t+2),且-2 WW2 44易求直线AF 的解析式:y =- x - 3 , 过M 作x 轴的平行线MQ 交AF 于Q ,1 2 1 2 则Q(4t-t-3,4t+t),1 1 251 —QM ?y F y A|= t +4t+62 22. (2019贵州省毕节市,题号25 ,分值12分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a , b , c ,用M{a, b , c}表示这三个数的平均数,用min{a , b , c}表示这三个数中最小的数. 例M{1 212 9如: min{1,2,-3} - -3,min{3,1,1} -1 .请结合上述材料,解决下列问题: M{1, 2, 9} 4 ,(1)① M{( -2)2,22『22} =_上 _; ② min{sin30 , cos60 , tan45 } = _______ ;—3 —(2)若M{ -2x ,2x , 3} = 2,求x的值;若min{3 -2x , 1 3x ,』} - ~5,求x的取值范围.②求出三个数中的最小的数即可.(3)【思路分析】(1)①根据平均数的定义计算即可. (2) 构建方程即可解决问题. (3) 根据不等式解决问题即可.2 2 2【解题过程】 解:(1)① M{(-2)2 3 4, 22 , 一22} =(一2) 2_21cos60 , tan 45 }22-2x x 3故答案为:4;33 ,4解得x = -1或3;② min{sin30(2) )TM{-2X , x 2 , 3} =2 ,3 -2x…-5■ J|1,3x…一5 解得2剟x 4 .【知识点】特殊角的三角函数值;算术平均数;解一元一次不等式组3. ( 2019贵州黔西南州,25,12分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实,数a, b, c,用M{a,b,c}表示这三个数的平均数,用min{a, b, c}表示这三个数中最小的数, 例如M{1 , 2, 9} --------- 4, min{1 , 2, - 3} = - 3, min (3, 1, 1} = 1 .请结合上述材料,解决下列问题:(1)① M{ (- 2) 2, 22,- 22} = __________ ,②min{sin30 ° , cos60°, tan45° } = ________ ;(2) ______________________________________________________ 若min (3- 2x, 1+3x,- 5} =- 5,则x 的取值范围为_____________________________________________________________ ;2(3)若M{ - 2x, x , 3} = 2,求x 的值;(4)如果M{2 , 1 + x, 2x} = min{2 , 1+x, 2x},求x 的值.【思路分析】(1)①根据平均数的定义计算即可. ②求出三个数中的最小的数即可.(2)根据不等式解决问题即可.(3)构建方程即可解决问题.(4)把问题转化为不等式组解决即可.2 2 2【解题过程】解:(1 [①M{ (- 2) , 2 , - 2 }-,②min{sin30 ° , cos60° , tan45° } 一;故答案为:一,-.(2)v min ( 3- 2x , 1+3x , - 5} =- 5 ,… ,解得-2 < x w 4 , 故答案为-2w x< 4.2(3)v M{ - 2x , x2, 3} = 2 ,二---------- 2 , 解得x=- 1或3.(4)v M{2 , 1+x , 2x} = min{2 , 1+x , 2x},又••x+1 ,解得1W x w 1,x= 1 .【知识点】解一元一次不等式组;特殊角的三角函数值;算术平均数4. ( 2019 •湖南张家界,19,6)阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项. 排在第一位的数称为第一项,记为a1,排在第二位的数称为第二项,记为a2,依次类推,排在第n位的数称为第n项,记为a n,所以,数列的一般形式可以写成:a1, a2, a3,…,a n,….一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示,如:数列1, 3, 5, 7,…为等差数列,其中a1= 1, a4= 7,公差为d= 2.根据以上材料,解答下列问题:(1)等差数列5, 10, 15,…的公差d为 ________________ ,第5项是__________________ .(2)如果一个数列a1, a2, a3,…,%,…是等差数列,且公差为d,那么根据定义可得到:a2- a1 = d, a3-a?= d, a4-a3= d,…,a“一a n-1= d,… 所以a2= a1+ d,a3= a?+ d = (a〔+ d) + d= a〔+ 2d,a4= 83+ d = (a〔+ 2d) + d = a〔+ 3d,由此,请你填空完成等差数列的通项公式:a n= a1+ ( ________ )d.(3)- 4041是不是等差数列—5,- 7,- 9,…的项?如果是,是第几项?【思路分析】(1)认真阅读材料,理解数列及等差数列的相关知识,利用材料提供的公差定义,锁定a n= 5n.(2) 由a? = a1 + d, a3 = a1 + 2d, a4= a1 + 3d,可知a n= a1 + (n —1)d; (3)先求出a1 = —5, d = —2,再代入a n= a1 + (n- 1)d,即可求出n的值.【解题过程】(1) 5, 25;(2)n- 1;(3)v等差数列为一5, - 7,- 9,…,--a 1 5, d 2.a n= a1 + (n —1)d, a n= —4041,•••—5- 2(n —1)=- 4041.••• n = 2019.•••—4041是不是等差数列—5, - 7,- 9,…的项,且是第2019项.【知识点】阅读理解题;数列;等差数据;探究规律题.5. (2019湖北咸宁,23, 10分)定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A, B, C在O O上,/ ABC的平分线交O O于点D,连接AD , CD .求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB = AD,连接AC, AC是否平分/ BCD ?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB= AD,其外角/ EAD的平分线交CD的延长线于点F, CD = 10,AF = 5,求DF的长.【思路分析】(1)由圆内接四边形互补可知/ A+Z C= 180°,/ ABC+ / ADC = 180°,再证AD = CD,即可根据等补四边形的定义得出结论;(2)过点A分别作AE丄BC于点E, AF垂直CD的延长线于点F,证△ ABE◎△ ADF,得到AE = AF,根据角平分线的判定可得出结论;(3)连接AC,先证Z EAD =Z BCD,推出Z FCA = Z FAD,再证△ ACF DAF,利用相似三角形对应边的比相等可求出DF的长.【解题过程】解:(1)证明:•••四边形ABCD为圆内接四边形,•••Z A+Z C= 180° ,Z ABC + Z ADC = 180°,•/ BD 平分Z ABC,•Z ABD = Z CBD ,… ,• AD = CD ,•四边形ABCD是等补四边形;(2) AD平分Z BCD,理由如下:如图2,过点A分别作AE丄BC于点E, AF垂直CD的延长线于点F ,则/ AEB = Z AFD = 90°,•••四边形ABCD是等补四边形,•••/ B+Z ADC = 180 °,又/ ADC+ Z ADF = 180 ° ,•Z B =Z ADF ,•/ AB= AD ,•△ ABE◎△ ADF (AAS),• AE= AF,• AC是Z BCF的平分线,即AC平分Z BCD;(3)如图3,连接AC,I ItZD•••四边形ABCD是等补四边形,•Z BAD+ Z BCD = 180 ° , 又Z BAD+ Z EAD = 180 ° ,•Z EAD = Z BCD ,•/ AF 平分Z EAD ,•Z FAD -Z EAD ,由(2)知,AC平分Z BCD,•Z FCA -Z BCD ,•Z FCA = Z FAD,又Z AFC = Z DFA ,•△ ACFDAF ,即—---------- ,• DF = 5 5.【知识点】新定义等补四边形;圆的有关性质;全等三角形的判定与性质;角平分线的判定;相似三角形的判定与性质6. (2019湖南郴州,24, 10分)若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数•下面我们参照学习函数的过程与方法,探究分段函数y 的图象与性质•列>描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:①点 A (- 5, y i) , B ( -, y2), C (x i, -),D (X2, 6)在函数图象上,贝V y i _________ y2, ______ X2;(填“〉”,“=”或“v”)②当函数值y= 2时,求自变量x的值;③在直线x=- 1的右侧的函数图象上有两个不同的点P ( X3, y3), Q ( x4, y4),且y3= y4,求X3+X4的值;④若直线y=a与函数图象有三个不同的交点,求a的取值范围.【思路分析】(1)描点连线即可;(2)①A与B在y -上,y随x的增大而增大,所以yy y2;C与D在y= X- 1上,观察图象可得MV X2;②当y = 2 时,2 = |x - 1|,则有x= 3 或x=- 1 ;③由图可知- Kx w 3时,点关于x= 1对称,当y3= y4时X3+x4= 2;④由图象可知,0v a v 2;【解题过程】解: (1)如图所示:(2)① A (- 5, y1), B ( -, y2),A与B在y -上, y随x的增大而增大,••• y1 v y2;C (X1, 一),D (X2 , 6),1 2故答案为v,v;②当y= 2时,2 -,••• X —(不符合);当y = 2 时,2= X-1,二x= 3 或x=—1;③••• P (X3, y3), Q (X4, y4)在X=- 1 的右侧,1w X< 3时,点关于X= 1对称,••• y3= y4,•- X3+X4= 2 ;【知识点】分段函数;一次函数的图象;一次函数的性质;反比例函数的图象;反比例函数的性质7. (20佃贵州省安顺市,22 , 10分)阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J. Nplcr , 1550- 1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr ,1707 - 1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x= N (a>0, 1),那么x叫做以a为底N的对数,记作:x= log a N .比如指4 2数式2 = 16可以转化为4 = log216,对数式2= log525可以转化为5 = 25.我们根据对数的定义可得到对数的一个性质:log a ( M?N)= log a M+log a N (a> 0, a^ 1, M > 0, N > 0 );理由如下:设log a M = m, log a N = n,贝V M = a", N= a nM?N= a m?a n= a m+n,由对数的定义得m+n = log a ( M?N)又••• m+n = log a M+log a N• log a ( M?N)= log a M+log a N根据阅读材料,解决以下问题:(1)_________________________________ 将指数34= 81转化为对数式;(2)证明log a —= log a M - log a N (a>0, a工1, M >0, N>0)N(3)______________________________________ 拓展运用:计算Iog69+log68 Tog62 = .【思路分析】(1 )根据题意可以把指数式 34= 81写成对数式;(2)先设log a M = m , log a N = n ,根据对数的定义可表示为指数式为:M = a , N = a ,计算_M 的结果,冋理由N所给材料的证明过程可得结论;(3) 根据公式:log a ( M?N )= log a M+log a N 和log a — = log a M - log a N 的逆用,将所求式子表示为:Nlog 6 (9 x 8 — 2),计算可得结论.【解题过程】 解:(1)由题意可得,指数式 34= 81写成对数式为:4= log 381,N(3) Iog 69+log 68 - log 62,=log 6 (9x 8— 2),=log 636, =2,故答案为:2............................................................................................................. 10分【知识点】 同底数幕的乘法;同底数幕的除法.整式的混合运算、对数与指数之间的关系与相互转化的关系 8.(2019 •江苏常州,26, 10)【阅读】数学中,常对同一个量(图形的面积、点的个数、三角形内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次” .“算两次”也称为富比尼原理,是一种重要的数学思想.【理解】(1)如图1,两个边长分别为 a 、b 、c 的直角三角形和一个两条直角边都是c 的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;(2)如图2, n 行n 列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得到等式:n 2 =故答案为: 4 = log 381; ..................................................... 3分 (2)设 log a M = m , log a N = n ,则 M = a m , N = a n , ........................................................ 4 分 ••• M = a m n ,由对数的定义得 m - n = log a M , ................................................................... 5分N aN又T m - n = log a M - log a N 6 分•- log a M = log a M - log a N (a > 0,1, M > 0, N > 0);................... 7 分□• •••••• •图26—2 图26—1【运用】(3) n边形有n个顶点,在它的内部再画m个点,以(m+ n)点为顶点,把n边形剪成若干个三角形,设最多可以剪得y个这样的三角形•当n= 3, m= 3时,如图3,最多可以剪得7个这样的三角形,所以y= 7.①当n= 4, m= 2 时,如图4, y= _______ ;当n = 5, m= _________ 时,y= 9;②对于一般的情形,在n边形内画m个点,通过归纳思想,可得y= ___________ (用含m、n的代数式表示)•请对同一个量用算两次的方法说明你的猜想成立.【思路分析】本题考查了勾股定理的验证、数列的求和公式推导、规律探究等知识点. (1)利用梯形面积的两种不同的计算方式,得到关于直角三角形三边a、b、c的数量关系:a2+ b2= c2,从而得到结论:直角三角形的两条直角边的平方和等于斜边的平方. (2)根据图2中n行n列个点的计算方式,得到n2= 1 + 3 + 5 +…+ 2n- 1 (n为正整数).(3)先观察图3和图4,不难解决第①问;②利用多边形的内角和公式,得到在n边形内有不共线的m个点,最多能剪出y个三角形,这些y个三角形的内角和的总和为(180y) °,也等于n边形的内角和与m 个周角的和,即可得到y与m、n的数量关系式.【解题过程】1 12 2解:(1 )••• S梯形= (a+ b)(a+ b)= (a + 2ab+ b),2 21 1 2又T S梯形=2x ab+ c ,2 21 2 2 1 1 2— (a + 2ab+ b ) = 2x ab+ c •2 2 2a? + 2ab + b? = 2ab+ c?.a2+ b2= c2.结论:直角三角形的两条直角边的平方和等于斜边的平方.(2) 1 + 3 + 5+・・・+ 2n— 1 (n为正整数).(3[① 6, 3;②n+ 2m—2,理由如下:如答图,在n边形内有不共线的m个点,最多能剪出y个三角形,这些y个三角形的内角和的总和为(180y)°,也等于n边形的内角和与m个周角的和,即180°?(n—2) + m ?360。
难题突破专题三新定义问题所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力.解决“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其解决问题的思想方法;二是根据问题情境的变化,通过认真思考,合理进行思想方法的迁移.类型1 新法则、新运算型1 [2019·枣庄] 我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q).在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=pq .例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所以3×4是12的最佳分解,所以F(12)=34 .(1)如果一个正整数m是另外一个正整数n的平方,我们称正整数m是完全平方数,求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为36,那么我们称这个数t为“吉祥数”,求所有“吉祥数”;(3)在(2)所得的“吉祥数”中,求F(t)的最大值.例题分层分析(1)对任意一个完全平方数m,设m=n2(n为正整数),找出m的最佳分解为________,所以F(m)=________=________;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=________,根据“吉祥数”的定义确定出x与y的关系式为________,进而求出所求即可;(3)利用“吉祥数”的定义分别求出各自的值,进而确定出F(t)的最大值即可.解题方法点析此类问题在于读懂新定义,然后仿照范例进行运算,细心研读定义,细致观察范例是解题的关键.类型2 新定义几何概念型2 [2019·金华] 如图Z3-1,将△ABC纸片沿中位线EH折叠,使点A的对称点D落在BC边上,再将纸片分别沿等腰△BED和等腰△DHC的底边上的高线EF,HG折叠,折叠后的三个三角形拼合形成一个矩形.类似地,对多边形进行折叠,若翻折后的图形恰能拼成一个无缝隙、无重叠的矩形,这样的矩形称为叠合矩形.图Z3-1(1)将▱ABCD纸片按图Z3-2①的方式折叠成一个叠合矩形AEFG,则操作形成的折痕分别是线段________,________;S矩形AEFG∶S▱ABCD=________.(2)▱ABCD纸片还可以按图Z3-2②的方式折叠成一个叠合矩形EFGH,若EF=5,EH=12,求AD的长.(3)如图Z3-2③,四边形ABCD纸片满足AD∥BC,AD<BC,AB⊥BC,AB=8,CD=10.小明把该纸片折叠,得到叠合正方形....请你帮助画出叠合正方形的示意图,并求出AD,BC的长.图Z3-2例题分层分析(1)观察图形直接得到操作形成的折痕,根据矩形和平行四边形的面积公式与折叠的轴对称性质可得S矩形AEFG∶S▱ABCD=________;(2)由矩形的性质和勾股定理可求得FH=________,再由折叠的轴对称性质可知HD=________,FC=______,∠AHE=12______,∠CFG=12________,从而可得∠________=∠________,再证得△AEH≌△CGF,可得________,进而求得AD的长;(3)根据叠合矩形定义,画出叠合正方形,然后再求AD,BC的长.解题方法点析解决此类问题的关键在于仔细研读几何新概念,将新的几何问题转化为已知的三角形、四边形或圆的问题,从而解决问题.对于几何新概念弄清楚条件和结论是至关重要的.专 题 训 练1.[2019·潍坊] 定义[x]表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数y =[x]的图象如图Z3-3所示,则方程[x]=12x 2的解为( )图Z3-3A .0或 2B .0或2C .1或- 2 D.2或- 22.[2019·莱芜] 对于实数a ,b ,定义符号min{a ,b},其意义为:当a≥b 时,min{a ,b}=b :当a <b 时,min{a ,b}=a.例如min{2,-1}=-1.若关于x 的函数y =min{2x -1,-x +3},则该函数的最大值为( )A.23 B .1 C.43 D.533.[2019·成都] 在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P(x ,y),我们把点P′(1x ,1y )称为点P 的“倒影点”.直线y =-x +1上有两点A ,B ,它们的倒影点A′,B ′均在反比例函数y =k x 的图象上.若AB =2 2,则k =________.4.[2019·齐齐哈尔] 经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图Z3-4,线段CD 是△ABC 的“和谐分割线”,△ACD 为等腰三角形,△CBD 和△ABC 相似,∠A =46°,则∠ACB 的度数为________.图Z3-45.[2019·湖州] 对于任意实数a ,b ,定义关于“⊗”的一种运算如下:a ⊗b =2a -b.例如:5⊗2=2×5-2=8,(-3)⊗4=2×(-3)-4=-10.(1)若3⊗x =-2019,求x 的值; (2)若x ⊗3<5,求x 的取值范围.6.[2019·义乌] 定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形. (1)如图Z3-5①,等腰直角四边形ABCD 中,AB =BC ,∠ABC =90°. ①若AB =CD =1,AB ∥CD ,求对角线BD 的长.②若AC⊥BD,求证:AD =CD.(2)如图Z3-5②,在矩形ABCD 中,AB =5,BC =9,点P 是对角线BD 上一点,且BP =2PD ,过点P 作直线分别交边AD ,BC 于点E ,F ,使四边形ABFE 是等腰直角四边形.求AE 的长.图Z3-57.[2019·宁波] 有两个内角分别是它们对角的一半的四边形叫做半对角四边形.(1)如图Z3-6①,在半对角四边形ABCD 中,∠B =12∠D,∠C =12∠A,求∠B 与∠C 的度数之和;(2)如图Z3-6②,锐角三角形ABC 内接于⊙O,若边AB 上存在一点D ,使得BD =BO ,∠OBA 的平分线交OA 于点E ,连结DE 并延长交AC 于点F ,∠AFE=2∠EAF,求证:四边形DBCF 是半对角四边形;(3)如图Z3-6③,在(2)的条件下,过点D 作DG⊥OB 于点H ,交BC 于点G ,当DH =BG 时,求△BGH 与△ABC 的面积之比.图Z3-6参考答案类型1 新法则、新运算型 例1 【例题分层分析】 (1)m =n×nnn1 (2)10y +x y =x +4解:(1)证明:对任意一个完全平方数m , 设m =n 2(n 为正整数),∵|n -n|=0,∴n ×n 是m 的最佳分解, ∴对任意一个完全平方数m ,总有F(m)=nn=1.(2)设交换t 的个位上的数与十位上的数得到的新数为t′,则t′=10y +x , ∵t 是“吉祥数”,∴t ′-t =(10y +x)-(10x +y)=9(y -x)=36, ∴y =x +4,∵1≤x ≤y ≤9,x ,y 为自然数,∴满足“吉祥数”的为15,26,37,48,59.(3)F(15)=35,F(26)=213,F(37)=137,F(48)=68=34,F(59)=159.∵34>35>213>137>159,∴所有“吉祥数”中,F(t)的最大值是34.类型2 新定义几何概念型 例2 【例题分层分析】 (1)1∶2(2)13 HN FN ∠AHF ∠CFH AHE CFG FC =AH 解:(1)AE ,GF ;1∶2.提示:由折叠的性质,得AD =2AG. ∵S 矩形AEFG =AE·AG,S ▱ABCD =AE·AD, ∴S 矩形AEFG ∶S ▱ABCD =AE·AGAE·AD=1∶2.(2)∵四边形EFGH 是叠合矩形,∴∠FEH =90°, ∴FH =EF 2+EH 2=52+122=13.由折叠的性质可知,HD =HN ,FC =FN ,∠AHE =12∠AHF,∠CFG =12∠CFH.∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∠A =∠C,∴∠AHF =∠CFH,∴∠AHE =∠CFG. ∵EH =FG ,∴△AEH ≌△CGF ,∴FC =AH , ∴AD =AH +HD =FC +HN =FN +HN =FH =13. (3)本题有以下两种基本折法,如图①,图②.①按图①的折法的解法:由折叠的性质可知,AD =BF ,BE =AE =4,CH =DH =5,FG =CG. ∵四边形EBGH 是叠合正方形,∴HG =BG =4, ∴CG =3,∴FG =CG =3,∴BF=BG -FG =1,BC =BG +CG =4+3=7, ∴AD =1,BC =7. ②按图②的折法的解法: 设AD =x.由折叠的性质可知,AE =EM =BE =4,MH =AD =x ,DN =HN ,HG =CG ,FC =FH. 由DN =HN ,HG =CG ,则GN =12CD =5.∵四边形EFGN 是叠合正方形, ∴EF =FG =GN =5,∴MF =BF =3, ∴FC =FH =x +3.∵∠B =∠EFG=∠CGF=90°,∴∠BEF +∠BFE=∠BFE+∠CFG=90°, ∴∠BEF =∠CFG,∴△GF C∽△BEF, ∴FG BE =FC EF ,即54=x +35,解得x =134, ∴AD =134,BC =BF +FC =3+134+3=374.专题训练1.A [解析] 由函数图象可知,当-2≤x<-1时,y =-2,即有[x]=-2,此时方程无解;当-1≤x <0时,y =-1,即有[x]=-1,此时方程无解;当0≤x <1时,y =0,即有[x]=0,此时方程为0=12x 2,解得x =0;当1≤x<2时,y =1,即有[x]=1,此时方程为1=12x 2,解得x =2或x =-2(不在x 的取值范围内,舍去).综上可知,方程[x]=12x 2的解为0或 2.2.D [解析] 当2x -1≥-x +3时,x ≥43,y =min{2x -1,-x +3}=-x +3,最大值为53.当2x -1<-x +3时,x<43,y =min{2x -1,-x +3}=2x -1,y 的值都小于53.综上,该函数的最大值为53.3.-43 [解析] A ,B 两点在直线y =-x +1上,设A(a ,-a +1),B(b ,-b +1),∴AB 2=(a -b)2+(-a +1+b -1)2=2(a -b)2=(2 2)2,∴(a -b)2=4,∴a -b =±2. A ,B 两点的“倒影点”分别为A′(1a ,11-a ),B ′(1b ,11-b).∵点A′,B ′均在反比例函数y =k x 的图象上,∴1a ·11-a =k =1b ·11-b,∴a(1-a)=b(1-b),变形得(a -b)(1-a -b)=0,∵a -b =±2,∴1-a -b =0.由⎩⎪⎨⎪⎧a -b =2,1-a -b =0解得⎩⎪⎨⎪⎧a =32,b =-12,∴k =1a ·11-a =23×(-2)=-43;由⎩⎪⎨⎪⎧a -b =-2,1-a -b =0解得⎩⎪⎨⎪⎧a =-12,b =32,∴k =1a ·11-a =(-2)×23=-43.综上,k =-43.4.113°或92° [解析] ∵△CBD 和△ABC 相似, ∴∠BCD =∠A=46°.设∠ACB=x ,则∠ACD=x -46°.∵△ACD 是等腰三角形,又∠ADC>∠BCD,∴∠ADC >∠A ,即AC≠CD. ①若AC =AD ,则∠ACD=∠ADC=x -46°, ∵46°+x -46°+x -46°=180°, ∴x =113°.②若AD =CD ,则∠ACD=∠A, 即46°=x -46°, ∴x =92°.综上所述,∠ACB 的度数为113°或92°. 5.解:(1)根据题意,得2×3-x =-2019, 解这个方程,得x =2019. (2)根据题意,得2x -3<5, 解得x <4,即x 的取值范围是x <4.6.解:(1)①∵AB=CD =1且AB∥CD,∴四边形ABCD 是平行四边形, 又∵AB=BC ,∴四边形ABCD 是菱形. ∵∠ABC =90°,∴四边形ABCD 是正方形, ∴BD =AC =12+12= 2. ②证明:如图①中,连结AC ,BD. ∵AB =BC ,AC ⊥BD ,∴∠ABD =∠CBD, ∵BD =BD ,∴△ABD ≌△CBD ,∴AD =CD.(2)若EF⊥BC,则AE≠EF,BF ≠EF ,∴四边形ABFE 不表示等腰直角四边形,故不符合条件. 若EF 与BC 不垂直,①当AE =AB 时,如图②,此时四边形ABFE 是等腰直角四边形,∴AE =AB =5. ②当BF =AB 时,如图③,此时四边形ABFE 是等腰直角四边形,∴BF =AB =5,∵DE ∥BF ,BP =2PD ,∴BF ∶DE =2∶1,∴DE =2.5,∴AE =9-2.5=6.5.综上所述,满足条件的AE 的长为5或6.5.7.解:(1)在半对角四边形ABCD 中,∠B =12∠D,∠C =12∠A,∵∠A +∠B+∠C+∠D=360°,∴3∠B +3∠C=360°,∴∠B +∠C=120°, 即∠B 与∠C 的度数之和为120°. (2)证明:在△BED 和△BEO 中, ⎩⎪⎨⎪⎧BD =BO ,∠EBD =∠EBO,BE =BE ,∴△BED ≌△BEO(SAS), ∴∠BDE =∠BOE.又∵∠BCF=12∠BOE,∴∠BCF =12∠BDE.如图,连结OC ,设∠EAF=α,则∠AFE=2α,∴∠EFC =180°-∠AFE=180°-2α. ∵OA =OC ,∴∠OAC =∠OCA=α, ∴∠AOC =180°-2α, ∴∠ABC =12∠AOC=12∠EFC,∴四边形DBCF 是半对角四边形. (3)如图,作OM⊥BC 交BC 于点M. ∵四边形DBCF 是半对角四边形,∴∠ABC +∠ACB=120°,∴∠BAC =60°,∴∠BOC=2∠BAC=120°.∵OB=OC,∴∠OBC=∠OCB=30°,∴BC=2BM=3BO=3BD.∵DG⊥OB,∴∠HGB=∠BAC=60°.∵∠DBG=∠CBA,∴△DBG∽△CBA,∴△DBG的面积△ABC的面积=(BDBC)2=13.∵DH=BG,BG=2HG,∴DG=3HG,∴△BHG的面积△BDG的面积=13,∴△BHG的面积△ABC的面积=19.2019-2020学年数学中考模拟试卷一、选择题1.下列分式中,最简分式是( )A.2211x x -+B.211x x +- C.2222x xy y x xy-+- D.236212x x -+ 2.若一组数据9、6、x 、7、5的平均数是2x ,则这组数据的中位数是( ) A .5 B .6C .7D .93.在的环湖越野赛中,甲乙两选手的行程(单位:)随时间(单位:)变化的图象如图所示,根据图中提供的信息,下列说法中,错误的是:( )A.出发后1小时,两人行程均为;B.出发后1.5小时,甲的行程比乙多;C.两人相遇前,甲的速度小于乙的速度;D.甲比乙先到达终点.4.若整数a 使关于x 的不等式组()222233a xx x x +⎧≥-⎪⎪⎨⎪-->⎪⎩的解为2x <,且使关于x 的分手方程15444x a x x -++=---的解为正整数,则满足条件a 的的值之和为( ) A .12 B .11 C .10 D .95.在质地和颜色都相同的三张卡片的正面分别写有-2,-1,1,将三张卡片背面朝上洗匀,从中抽出一张,并记为x ,然后从余下的两张中再抽出一张,记为y ,则点(x ,y )在直线y=-x-1上的概率为( ) A.12B.13C.23D.16.下列各式能用平方差公式进行分解因式的是( ) A .-x 2+1B .-x 2-4C .x 2-xD .x 2+ 257.如图所示,是两木杆在同一时刻的影子,请问它们是太阳光线还是灯光下的投影?请问这一时刻是上午还是下午?( ) 北东西南A .太阳光线,上午B .太阳光线,下午C .灯光,上午D .灯光,下午8.如图,这是一幅2018年俄罗斯世界杯的长方形宣传画,长为4m ,宽为2m.为测量画上世界杯图案的面积,现将宣传画平铺在地上,向长方形宜传画内随机投掷骰子(假设骰子落在长方形内的每一点都是等可能的),经过大量重复投掷试验,发现骰子落在世界杯图案中的频率稳定在常数0.4左右.由此可估计宜传画上世界杯图案的面积为( )A .22.4mB .23.2mC .24.8mD .27.2m9.下列图案,既是轴对称图形又是中心对称图形的有( )A.1个B.2个C.3个D.4个10.如图,在Rt △ABC 中,∠C =90°,AB =10,AC =6,D 、E 、F 分别是△ABC 三边的中点,则△DEF 的周长为( )A .24B .16C .14D .1211.如图,在矩形ABCD 中,,点M 在边AD 上,连接BM ,BD 平分∠MBC ,则AM MD的值为( )A.12B.2C.53D.3512.如图菱形OABC 中,∠A =120°,OA =1,将菱形OABC 绕点O 顺时针方向旋转90°,则图中阴影部分的面积是( )A.23πB.232π-C.11122π- D.23π﹣1二、填空题13.如图,直线y=15x﹣1与x,y轴交于B、A,点M为双曲线ykx=上的一点,若△MAB为等腰直角三角形,则k=_____.14.当x变化时,分式22365112x xx x++++的最小值是___________.15.如图,抛物线y=ax2﹣1(a>0)与直线y=kx+3交于MN两点,在y轴负半轴上存在一定点P,使得不论k取何值,直线PM与PN总是关于y轴对称,则点P的坐标是_____16.写出一个比5大且比6小的无理数________.17.已知正方形ABCD中A(1,1)、B(1,2)、C(2,2)、D(2,1),有一抛物线y=(x+1)2向下平移m个单位(m>0)与正方形ABCD的边(包括四个顶点)有交点,则m的取值范围是_____.18.已知x>y,且(m﹣2)x<(m﹣2)y,则m的取值范围是_____.三、解答题19.一张圆形纸片如图,请你至少设计出两种方法找出它的圆心(不必写作法,但要有作图痕迹).20.先化简,再求值:(a﹣2b)(a+2b)﹣(a﹣2b)2+8b2,其中a=﹣6,b=1 321.在等腰三角形ABC中,底边BC为y,腰长AB长为x,若三角形ABC的周长为12.(1)求y 关于x 的函数表达式;(2)当腰长比底边的2倍多1时,求x 的值.22.计算:()022)sin 45︒23.如图,在△ABC 中,以AC 为直径的⊙O 与边AB 交于点D ,点E 为⊙O 上一点,连接CE 并延长交AB 于点F ,连接ED .(1)若BC 是⊙O 的切线,求证:∠B+∠FED =90°;(2)若FC =6,DE =3,FD =2.求⊙O 的直径.24.如图,线段BC 所在的直线是以AB 为直径的圆的切线,点D 为圆A 上一点,满足BD BC =,且点C ,D 位于直径AB 两侧,连接CD 交圆于点E ,F 为BD 上一点,连接 EF ,分别交AB ,BD 于点G ,H ,且EF BD =.(1)求证://EF BC ;(2)若4EH =,2HF =,求BE 的长.25.如图,已知△ABC 中,D 为AB 的中点.(1)请用尺规作图法作出边AC 的中点E ,并连接DE (保留作图痕迹,不要求写作法)(2)在(1)条件下,若S △ADE =2,求△ABC 的面积.【参考答案】***一、选择题二、填空题13.414.415.(0,-5)1617.2≤m≤818.m<2.三、解答题19.见解析【解析】【分析】方法一:作两个顶点在圆上的直角,连接两个直角与圆的交点,两条连线的交点即是所求的圆心.方法二:作弦AB,BC,再作出线段AB,BC的垂直平分线相交于点O,则O点即为所求.【详解】方法一:利用直角作出圆的两条直角AB,CD,AB与CD的交点O即为圆心.方法二:在圆上取A,B,C三点,作线段AB,BC的垂直平分线,两条垂直平分线的交点O即为圆心.【点睛】本题考查的是作图-应用与设计作图,熟知垂径定理和圆周角定理是解答此题的关键.90°的圆周角所对的弦是直径;弦的垂直平分线经过圆心.20.-8【解析】【分析】原式利用平方差公式,完全平方公式计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【详解】原式=a 2﹣4b 2﹣a 2+4ab ﹣4b 2+8b 2=4ab ,当a =﹣6,b =13时,原式=﹣8. 【点睛】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.(1)12-2(36)y x x =<<;(2)x=5【解析】【分析】(1)等腰三角形的底边长=周长﹣2×腰长;(2)根据题意列方程即可得到结论.【详解】(1)∵等腰三角形的腰长为x ,底边长为y ,周长为12,∴y=12﹣2x ;∵2x >y >0,∴2x >12﹣2x >0,解得:3<x <6.故y=12﹣2x (3<x <6);(2)∵腰长比底边的2倍多1,∴x=2y+1,∴x=2(12﹣2x )+1,解得:x=5.【点睛】本题考查了等腰三角形的性质,根据实际问题列一次函数关系式;判断出等腰三角形腰长的取值范围是解决本题的难点.22.8【解析】【分析】根据二次根式的运算法则和特殊锐角三角函数值进行计算.【详解】原式341=+-=8【点睛】考核知识点:含有特殊锐角三角函数值的运算.23.(1)见解析;(2)⊙O 的直径为9.【解析】【分析】(1)利用圆内接四边形对角互补以及邻补角的定义得出∠FED=∠A ,进而得出∠B+∠A=90°,求出答案;(2)利用相似三角形的判定与性质首先得出△FED ∽△FAC ,进而求出即可.【详解】(1)证明:∵∠A+∠DEC =180°,∠FED+∠DEC =180°,∴∠FED =∠A ,∵BC 是⊙O 的切线,∴∠BCA =90°,∴∠B+∠A =90°,∴∠B+∠FED =90°;(2)解:∵∠CFA=∠DFE,∠FED=∠A,∴△FED∽△FAC,∴DE DF AC FC=,∴326 AC=,解得:AC=9,即⊙O的直径为9.【点睛】此题主要考查了相似三角形的判定与性质以及切线的性质等知识,得出△FED∽△FAC是解题关键.24.(1)详见解析;(2【解析】【分析】(1)先求出//BF DC,再利用同位角相等两直线平行进行求证即可(2)连接DF,根据题意先求出112HG FG HF EF HF=-=-=,再利用三角函数求出60BHG∠=︒,再由(1)得出圆的半径为【详解】(1)证明:EF BD=,∴EF BD=∴EF BF BD BF-=-即BE DF=∴BDE DBF∠=∠,∴//BF DC.DF DF=,∴DBF DEF∠=∠,∴BDE FED∠=∠.BD BC=,∴C BDE∠=∠,∴FED C∠=∠,∴//EF BC.(2)解:连接DF.AB为直径,BC为切线,∴AB BC ⊥,∴90ABC ∠=︒,//EF BC ,∴90BGF ABC ∠=∠=︒,∴AB EF ⊥, ∴12FG EG EF ==, BF BE =, ∴BDF BDE ∠=∠.4EH =,2HF =,∴6EF FH HE =+=,112HG FG HF EF HF =-=-= =BE BE ,∴BFE BDE DBF ∠=∠=∠,∴2BH FH ==.在 Rt BGH ∆中,1cos 2HG BHG BH ∠== ∴60BHG ∠=︒,由(1)得30FED BDE ∠=∠=︒,∴30BDF ∠=︒,∴18090DFE BDF BDE DEF ∠=︒-∠-∠-∠=︒,∴DE 为直径.在Rt DEF ∆中,cos30EF DE ==︒∴圆的半径为=BE BE ,30BDE ∠=︒,∴BE 所对的圆心角为60︒,∴BE 的长60=1803π⨯ 【点睛】此题考查平行线的判定与性质,圆周角定理,解题关键在于先判定//BF DC25.(1)见解析;(2)8【解析】【分析】(1)利用尺规作图作线段AC 的中垂线即可得其中点E ,连接DE 即可;(2)先由DE 是△ABC 的中位线知DE ∥BC 且DE BC =12,继而由△ADE ∽△ABC 得ADE ABC S S =(DE BC)2,据此求解可得.【详解】解:(1)如图所示,作AC 的中点E ,即DE 即为所求.(2)∵D 是AB 中点,E 是AC 中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,且DE BC =12, ∴△ADE ∽△ABC , 则ADEABC S S =(DE BC )2=14, 又S △ADE =2,∴S △ABC =8.【点睛】本题主要考查作图-基本作图和相似三角形性质,解题的关键是掌握线段中垂线的尺规作图、相似三角形的判定与性质.2019-2020学年数学中考模拟试卷一、选择题1.如图,在已知的△ABC 中,按以下步骤:(1)分别以B 、C 为圆心,大于12BC 的长为半径作弧,两弧相交M 、N ;(2)作直线MN ,交AB 于D ,连结CD ,若CD =AD ,∠B =20°,则下列结论:①∠ADC =40°②∠ACD =70°③点D 为△ABC 的外心④∠ACD =90°,正确的有( )A .4个B .3个C .2个D .1个 2.如图1,点P 从矩形ABCD 的顶点A 出发,沿以的速度匀速运动到点C ,图2是点P 运动时,APD 的面积2()y cm 随运动时间()x s 变化而变化的函数关系图象,则矩形ABCD 的面积为( )A .36B .C .32D .3.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是( )A.2017年第二季度环比有所提高B.2017年第三季度环比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高4.某校九年级(1)班为了筹备演讲比赛,准备用200元钱购买日记本和钢笔两种奖品(两种都要买),其中日记本10元/本,钢笔l5元/支,在钱全部用完的条件下,购买的方案共有( )A .4种B .5种C .6种D .7种5.关于x 的一元二次方程(k-1)x 2+4x+1=0有实数根,则k 的取值范围是( )A .k 5<B .k 5<且k 1≠C .k 5≤D .k 5≤且k 1≠6.下列各式计算正确的是( )A .a 2×a 3=a 6B 2= C .21111x x x -=-+ D .(x+y )2=x 2+y 27.已知A ,B 两地相距120千米,甲、乙两人沿同一条公路从A 地出发到B 地,乙骑自行车,甲骑摩托车,图中DE ,OC 分别表示甲、乙离开A 地的路程s (单位:千米)与时间t (单位:小时)的函数关系的图象,设在这个过程中,甲、乙两人相距y (单位:千米),则y 关于t 的函数图象是( )A .B .C .D .8.在下列各组条件中,不能说明△ABC ≌△DEF 的是( )A .AB =DE ,∠B =∠E ,∠C =∠FB .AC =DF ,BC =EF ,∠A =∠D C .AB =DE ,∠A =∠D ,∠B =∠E D .AB =DE ,BC =EF ,AC =DF9.若不等式组2120x x x m ->-⎧⎨+≤⎩有解,则m 的取值范围是( ) A.1m >- B.1m ≥- C.1m ≤- D.1m <-10.如图,在△ABC 中,∠C=50°,∠B=35°,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,直线MN 交BC 于点D ,连接AD .则∠DAC 的度数为( )A .85°B .70°C .60°D .25°11.如图所示的几何体的俯视图是( )A .B .C .D .12.﹣π的绝对值是( )A .﹣πB .3.14C .πD .1π二、填空题13.因式分解:x 2-4y 2=________ .14.数轴上的两个数﹣3与a ,并且a >﹣3,它们之间的距离可以表示为_____.15.时光飞逝,小学、中学的学习时光已过去,九年的在校时间大约有16200小时,请将数16200用科学记数法表示为________.16.已知关于x 的方程(a+2)x 2﹣2ax+a=0有两个不相等的实数根x 1和x 2, 抛物线y=x 2﹣(2a+1)x+2a﹣5与x 轴的两个交点分别为位于点(2,0)的两旁,若|x 1|+|x 2a 的值为________.17.一元二次方程23210x x -+=的根的判别式∆_______0.(填“>”,“=”或“<”)18.如图,在平面直角坐标系xOy 中,点A ,P 分别在x 轴、y 轴上,∠APO =30°.先将线段PA 沿y 轴翻折得到线段PB ,再将线段PA 绕点P 顺时针旋转30°得到线段PC ,连接BC .若点A 的坐标为(﹣1,0),则线段BC 的长为_____.三、解答题19.先化简,再求值:211211a a a a ⎛⎫÷- ⎪+++⎝⎭,其中1a =. 20.(1)解方程:x 21x 1x-=-(2)化简求值:82(2)224x x x x x +-+÷--,其中12x =-. 21.如图,四边形ABCD 是矩形(1)尺规作图:在图8中,求作AB 的中点E (保留作图痕迹,不写作法)(2)在(1)的条件下,连接CE ,DE,若2,AB AD ==, 求证:CE 平分∠BED22.如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,求证:BE =DC .23.(1)解方程:x 2﹣2x ﹣1=0;(2)解不等式组:31233122x x x x +<+⎧⎪⎨->⎪⎩24.为顺利通过“国家文明城市”验收,市政府拟对城区部分路段的人行道地砖、绿化带、排水管等公用设施全面更新改造,现有甲、乙两个工程队有意承包这项工程,经调查知道,乙工程队单独完成此项工程的时间是甲工程队单独完成此项工程时间的2倍,若甲、乙两工程队合作只需10天完成.甲、乙两个工程队单独完成此项工程各需多少天?25.先化简,再求值221212121--⎛⎫-+÷+ ⎪+++⎝⎭m m m m m m ,其中m 是使得一次函数y =(m ﹣3)x+m+1不经过第三象限的整数值.【参考答案】***一、选择题二、填空题13.()()22x y x y +-14.a+3 15.62×10416.﹣117.<18.2三、解答题19.11a +,2. 【解析】【分析】原始第一项先化简括号里面的,再利用除法法则变形,约分后利用同分母分式得到最简结果,将a 的值代入即可【详解】解:21(1)211a a a a ÷-+++ =211(1)1a a a a +-÷++ =21(1)a a a a ++ =1+1a ,当a=2.【点睛】 此题考察分式的化简求值,关键在于约分20.(1) x =2;(2)3.【解析】【分析】(1)先去分母,把分式方程化为整式方程,求出x 的值,再把x 的值代入公分母进行检验;(2)先根据分式混合运算的法则把原式化简,再把x 的值代入进行计算即可.【详解】(1)去分母得:x 2﹣2x+2=x 2﹣x ,解得:x =2,检验:当x =2时,方程左右两边相等,所以x =2是原方程的解;(2)原式=24482(2)()222x x x x x x x -+-+⋅--+=2(+2)2xx-2(2)2xx-⋅+=2(x+2)=2x+4,当12x=-时,原式=2×(﹣12)+4=﹣1+4=3.【点睛】本题考查的是分式的化简求值及解分式方程,在解分式方程时要注意验根.21.(1)见解析;(2)见解析.【解析】【分析】(1)作AB的垂直平分线即可得到AB的中点E,E点即为所求;(2)先利用勾股定理求出DE=2,再利用平行线的性质可得出结果.【详解】如图,四边形ABCD是矩形了(1)正确作出AB的垂直平分线下结论:点E为所求(2)∵E是AB的中点∴AE=11 2AB=∵四边形ABCD是矩形∴∠A=90°AB=CD=2∴2DE==∴DE=DC∴∠DEC=∠DCE∵AB∥CD∴∠CEB=∠DCE∴∠CEB=∠DEC∴CE平分∠BED【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).22.见解析.【解析】【分析】只需要证明△CBE ≌△ACD ,即可解答【详解】解:由题意知∠CAD+∠ACD =90°,∠ACD+∠BCE =90°,∴∠BCE =∠CAD .在△CBE 与△ACD 中,CEB ADC BCE CAD BC AC =⎧⎪=⎨⎪=⎩∠∠∠∠ ∴△CBE ≌△ACD (AAS ).∴BE =DC .【点睛】此题考查三角形全等的判定与性质,难度不大23.(1)1211x x ==(2)﹣1<x <2.【解析】【分析】(1)运用配方法求解;(2)先求各不等式解集,再求公共解集.【详解】解:(1)∵x 2﹣2x ﹣1=0∴x 2﹣2x =1∴(x ﹣1)2=2∴x ﹣1,解得,x 1=,x 2=1; (2)31233122x x x x +<+⎧⎪⎨->⎪⎩①② 由不等式①,得x <2,由不等式②,得x >﹣1,故原不等式组的解集是﹣1<x <2.【点睛】考核知识点:解不等式组,一元二次方程.24.15,30. 【解析】【分析】等量关系为:甲工效+乙工效=110,甲(乙)的工效×甲(乙)的工作时间=甲(乙)的工作量;【详解】设甲工程队单独完成此项工程需x天,则乙工程队单独完成此工程需2x天.由题意,得10×(112x x+)=1解得:x=15.经检验,x=15是原方程的根.∴2x=30.答:甲、乙两个工程队单独完成此项工程分别需15天和30天.【点睛】考查了工程问题,题目相对复杂.分析题意,找到合适的等量关系是解决本题的关键.此题等量关系比较多,主要用到公式:工作总量=工作效率×工作时间.25.2或0或﹣4【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,求出不等式组的解集,找出解集中的整数解确定出m的值,代入计算即可求出值.【详解】解:原式=222m(m2)m2m(m2)(m1)22m m2 m1(n1)m1m2---+-=+=-⋅+=--+ +++-,∵m是使得一次函数y=(m﹣3)x+m+1不经过第三象限的整数,∴m﹣3<0①,m+1≥0②由①得:m<3;由②得:m≥﹣1,∴不等式组的解集为﹣1≤m<3,即整数解为m=﹣1,0,1,2,则原式的值为:2或0或﹣4.【点睛】此题考查了分式的化简求值,一次函数的性质以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】一、选择题1.(2019·岳阳)对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y =x 2+2x +c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是() A .c <-3 B .c <-2 C .14c <D .c <1 【答案】B【解析】 当y =x 时,x =x 2+2x +c ,即为x 2+x +c =0,由题意可知:x 1,x 2是该方程的两个实数根,所以12121x x x x c +=-⎧⎨⋅=⎩ ∵x 1<1<x 2,∴(x 1-1)(x 2-1)<0, 即x 1x 2-(x 1+x 2) +1<0, ∴c -(-1)+1<0, ∴c <-2.又知方程有两个不相等的实数根,故Δ>0, 即12-4c >0, 解得:c <14.∴c 的取值范围为c <-2 .2.(2019·济宁)−1,-1的差类推,那么a 1+a 2+…+a 100的值是() A .-7.5 B .7.5 C .5.5 D .-5.5 【答案】A【解析】3.4. 5. 6. 7. 8.10.二、填空题18.(2019·娄底) 已知点P ()00,x y 到直线y kx b =+的距离可表示为d =例如:点(0,1)到直线y =2x+6的距离d ==y x =与4y x =-之间的距离为___________.【答案】.【解析】在直线y x =上任取点,不妨取(0,0),根据两条平行线之间距离的定义可知,(0,0)到直线4y x =-的距离就是两平行直线y x =与4y x =-之间的距离.d ===. 16.(2019·常德)规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二次函数y =x 2的图象上在第一象限内的任意一点,PQ 垂直直线y =-1于点Q ,则四边形PMNQ 是广义菱形.其中正确的是 .(填序号)【答案】①④【解析】正方形和菱形满足一组对边平行,一组邻边相等,故都是广义菱形,故①正确;平行四边形虽然满足一组对边平行,但是邻边不一定相等,因此不是广义菱形,故②错误;对角线互相垂直,且两组邻边分别相等的四边形的对边不一定平行,邻边也不一定相等,因此不是广义菱形,故③错误;④中的四边形PMNQ 满足MN ∥PQ ,设P (m ,0)(m >0),∵PM+1,PQ =-(-1)=+1,∴PM =PQ ,故四边形PMNQ 是广义菱形.综上所述正确的是①④.17.(2019·陇南)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k = . 【答案】85或14. 【解析】当∠A 是顶角时,底角是50°,则k=808505=o o ;当∠A 是底角时,则底角是20°,k=201804=o o ,故答案为:85或14.2. 3. 4. 14214m 214m 214m三、解答题1.(2019·重庆A 卷)《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现在我们来研究另一种特珠的自然数—“纯数”.定义:对于自然数n ,在计算n +(n +1)+(n +2)时,各数位都不产生进位,则称这个自然数n 为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由; (2)求出不大于100的“纯数”的个数.解:(1)2019不是“纯数”,2020是“纯数”,理由如下:∵在计算2019+2020+2021时,个位产生了进位,而计算2020+2021+2022时,各数位都不产生进位, ∴2019不是“纯数”,2020是“纯数”.(2)由题意可知,连续三个自然数的个位不同,其他位都相同,并且连续的三个自然数个位为0、1、2时,不会产生进位;其他位的数字为0、1、2、3时,不会产生进位.现分三种情况讨论如下:①当这个数为一位自然数时,只能是0、1、2,共3个;②当这个数为二位自然数时,十位只能为1、2、3,个位只能为0、1、2,即10、11、12、20、21、22、30、31、32共9个; ③当这个数为100时,易知100是“纯数”.综上,不大于100的“纯数”的个数为3+9+1=13.2.(2019·重庆B 卷)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、合数、质数等. 现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数n ,在通过列竖式进行()()21++++n n n 的运算时各位都不产生进位现象,则称这个自然数n 为“纯数”.例如:32是“纯数”,因为343332++在列竖式计算时各位都不产生进位现象; 23不是“纯数”,因为252423++在列竖式计算时个位产生了进位. ⑴请直接写出1949到2019之间的“纯数”;⑵求出不大于100的“纯数”的个数,并说明理由. 解:(1)1949到2019之间的“纯数”为2000、2001、2002、2010、2011、2012 . (2)由题意:不大于100的“纯数”包含:一位数、两位数和三位数100若n 为一位数,则有n +(n +1)+(n +2)<10,解得:n <3,所以:小于10的“纯数数”有0、1、2,共3个.两位数须满足:十位数可以是1、2、3,个位数可以是0、1、2,列举共有9个分别是10、11、12、20、21、22、30、31、32;三位数为100,共1个所以:不大于100的“纯数”共有13个.3.(2019·衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满是x =3a c +,y =3b d +,那么称点T 是点A ,B 的融合点。
例如:A (-1,8),B (4,一2),当点T (x .y )满是x =14-+=1,y =8(2)+-=2时.则点T (1,2)是点A ,B 的融合点。
(1)已知点A (-1,5),B (7,7).C (2,4)。
请说明其中一个点是另外两个点的融合点. (2)如图,点D (3,0).点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点.①试确定y 与x 的关系式.②若直线ET 交x 轴于点H ,当△DTH 为直角三角形时,求点E 的坐标.解:(1)∵173-+=2,573+=4, ∴点C (2,4)是点A .B 的融合点。
..…3分 (2)①由融合点定义知x =33t+,得t =3x -3....4分 又∵y =0(23)3t ++,得t =332y -...….5分 ∴3x -3=332y -,化简得y =2x -1.……6分 ②要使△DTH 为直角三角形,可分三种情况讨论:(Ⅰ)当∠THD =90°时,如图1所示,设T (m ,2m -1),则点E 为(m ,2m +3).由点T 是点D ,E 的融合点,可得m=33m+或2m-1=(23)03m++解得m=32,∴点E1(32,6).…7分(Ⅱ)当∠TDH=90°时,如图2所示,则点T为(3,5).由点T是点D,E的融合点,可得点E2(6,15)。
.……8分(Ⅲ)当∠HTD=90°时,该情况不存在。
……9分(注:此类情况不写不扣分)综上所述,符合题意的点为E1(32,6),E2(6,15). ……10分4.(2019·宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形;(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F 在格点上;(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,求邻余线AB的长.解:(1)∵AB =AC,AD 是△ABC 的角平分线,∴AD ⊥BC,∴∠ADB =90°,∴∠DAB+∠DBA =90°, ∴∠FAB 与∠EBA 互余.∴四边形ABEF 是邻余四边形; (2)如图所示,四边形ABEF 即为所求.(答案不唯一)(3)∵AB =AC,AD 是△ABC 的角平分线,∴BD =CD,∵DE =2BE,∴BD =CD =3BE,∴CE =CD+DE =5BE.∵∠EDF =90°,M 为EF 的中点,∴DM =ME.∴∠MDE =∠MED.∵AB =AC,∴∠B =∠C,∴△DBQ ∽△ECN,∴35QB BD NC CE ==,∵QB =3,∴NC =5,∵AN =CN,∴AC =2CN =10,∴AB =AC =10.5.(2019·金华)如图,在平面直角坐标系中,正方形OABC 的边长为4,边OA ,OC 分别在x 轴,y 轴的正半轴上,把正方形OABC 的内部及边上,横、纵坐标均为整数的点称为好点.点P 为抛物线y =-(x -2)2+m +2的顶点.(1)当m =0时,求该抛物线下放(包括边界)的好点个数. (2)当m =3时,求该抛物线上的好点坐标.(3)若点P 在正方形OABC 内部,该抛物线下方(包括边界)恰好存在8个好点,求m 的取值范围.解:(1)当m =0时,二次函数的表达式为y =-x 2+2,画出函数图象(图1), ∵当x =0时,y =2;当x =1时,y =1; ∴抛物线经过点(0,2)和(1,1).∴好点有:(0,0),(0,1),(0,2).(1,0)和(1,1)共5个.(2)当m =3时,二次函数的表达式为y =-(x -3)2+5,画出函数图象(图2), ∵当x =1时,y =1;当x =4时,y =4;∴抛物线上存在好点,坐标分别是(1,1)和(4,4). (3)∵抛物线顶点P 的坐标为(m ,m +2), ∴点P 在直线y =x +2上.由于点P 在正方形内,则0<m <2. 如图3,点E (2,1),F (2,2).∴当顶点P 在正方形OABC 内,且好点恰好存在8个时,抛物线与线段EF 有交点(点F 除外). 当抛物线经过点E (2,1)时,-( 2-m )2+m +2=1, 解得m 1m 2当抛物线经过点F (2,2)时,-( 2-m )2+m +2=2, 解得m 1=1,m 2=4(舍去).<m <1时,点P 在正方形OABC 内部,该抛物线下方(包括边界)恰好存在8个好点. 6.(2019·达州)箭头四角形 模型规律如图1,延长CO 交AB 于点D ,则∠BOC=∠1+∠B=∠A+∠C+∠B. 因为凹四边形ABOC 形似箭头,其四角具有“∠BOC=∠A+∠C+∠B ”这个规律,所以我们把这个模型叫做“箭头四角形”. 模型应用(1)直接应用:①如图2,∠A+∠B+∠C+∠D+∠E+∠F=________.②如图3,∠ABE 、∠ACE 的2等分线(即角平分线)BF 、CF 交于点F ,已知∠BEC=120°∠BAC=50°,则∠BFC=__________.③如图4,BO 1、CO 2分别为∠ABO 、∠ACO 的2019等分线(i=1,2,3,…,2017,2018),它们的交点从上到下依次为O ,O ,O ,…,O . 已知∠BOC=m °,∠BAC=n °,则∠BO C=______图1图3度(1)拓展应用:如图5,在四边形ABCD 中,BC=CD ,∠BCD=2∠BAD. O 是四边形ABCD 内的一点,且OA=OB=OD. 求证:四边形OBCD 是菱形.解:(1)①∵∠A+∠B+∠C=α∠,∠D+∠E+∠F=α∠ ∴∠A+∠B+∠C+∠D+∠E+∠F=2α∠②∵∠BEC=∠A+∠ABC+∠ACB ∠BFC=∠A+21∠ABC+21∠ACB ∠BEC=120°∠BAC=50° ∴21∠BEC=21∠A+21∠ABC+21∠ACB ∴60°=25°+21∠ABC+21∠ACB ∴21∠ABC+21∠ACB=35° ∴∠BFC=∠A+21∠ABC+21∠ACB =50°+35° =85°∴∠BFC =85° ③οοn m 2019101920191000+ (2)7.(2019·枣庄)对于实数a 、b ,定义关于的一种运算:a ⊗b =2a+b.例如3⊗4=2×3+4=10. (1)求4⊗(-3)的值;(2)若x ⊗(-y)=2,(2y)⊗x =-1,求x+y 的值. 解:(1)根据题意得:4⊗(-3)=2×4+(-3)=5.(2)∵x ⊗(-y)=2,(2y)⊗x =-1,∴2x+(-y)=2,2×2y+x =-1,解这个二元一次方程组,得,x =79,y =49-,∴x+y =13.8.(2019·济宁) 阅读下面材料:如果函数y =f (x )满足:对于自变量x 的取值范围内的任意x 1,x 2, (1)若x 1<x 2,都有f (x 1) <f (x 2),则称f (x )是增函数; (2)若x 1<x 2,都有f (x 1) >f (x 2),则称f (x )是减函数. 例题:证明函数f (x )=6x(x >0)是减函数. 证明:设0<x 1<x 2,f (x 1) -f (x 2)=1266x x -=()21211212666.x x x x x x x x --= ∵0<x 1<x 2,∴x 2-x 1>0,x 1x 2>0. ∴()21126x x x x ->0,即f (x 1) — f (x 2)>0.∴f (x 1) >f (x 2),∴函数f (x )=6x(x >0)是减函数.根据以上材料,解答下面的问题:已知函数()21f x x x=+(x <0),()()()()()()22117110,22412f f -=+-=-=+-=--- (1)计算:f (-3)=________,f (-4)=________; (2)猜想:函数()21f x x x =+(x <0)是________函数(填“增”或“减”); (3)请仿照例题证明你的猜想. 解:(1)()()()()()()2212616333,4491634f f -=+-=--=+-=--- (2)增;(3)证明:设x 1<x 2<0,f (x 1) -f (x 2)=22211212122222221212121111x x x x x x x x x x x x x x ⎛⎫⎛⎫-+-+=-+-=+- ⎪ ⎪⎝⎭⎝⎭ ()()()()()2121212121222212121x x x x x x x x x x x x x x +--+-=--=.∵x 1<x 2<0,∴x 2—x 1>0,x 12x 22>0,x 2+x 1-1<0, ∴()()212122121x x x x x x -+-<0,即f (x 1)-f (x 2)<0.∴f (x 1) <f (x 2),∴函数()21f x x x=+是增函数.。