2019年初中数学-七年级第1单元检测卷
- 格式:doc
- 大小:462.50 KB
- 文档页数:5
人教版初中数学七年级上册第1章《有理数》单元测试题一、选择题(本大题共10小题,每小题3分,共30分)1.若汽车向南行驶30米记作+30米,则-50米表示()A.向东行驶50米B.向西行驶50米C.向南行驶50米D.向北行驶50米2.-|-2|的值是()A.-2 B.2 C.±2 D.43.大于-1且小于3的整数共有()A.2个B.3个C.4个D.5个4.下列四个数中,与-2018的和为0的数是()1 A.-2018 B.2018 C.0 D.-20185. “中国天眼”即500米口径球面射电望远镜(FAST),是世界最大单口径、最灵敏的射电望远镜,由4600个反射单元组成一个球面.将数据4600表示成a×10n(其中1≤a<10,n为整数)的形式,则n的值为()A.-1 B.2 C.3 D.46.检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,下列最接近标准质量的是()A B C D7.图1所示的数轴单位长度为1,如果点A,B表示的数的绝对值相等,那么点B表示的数是()A.-4 B.-2 C.0 D.4图18.下列说法中不正确的是()A.在数轴上能找到表示任何有理数的点B.若a ,b 互为相反数,则ba=-1 C.若一个数的绝对值是它本身,则这个数是非负数D.近似数7.30所表示的准确数的范围是大于或等于7.295,小于7.3059. 如图2,数轴上点A 表示的有理数为a ,点B 表示的有理数为b ,则下列式子中成立的是( )A .a+b >0B .a+b <0C .a-b >0D .|a|=|b|图210.用十进制计数法表示正整数,如365=300+60+5=3×102+6×101+5,用二进制计数法来表示正整数,如:5=4+1=1×22+0×21+1×1,记作5=(101)2,14=8+4+2=1×23+1×22+1×21+0×1,记作14=(1110)2,则(10101)2表示数() A. 41B. 21C. 20D. 24二、填空题(本大题共6小题,每小题4分,共24分)11.在有理数-0.2,0,321,-5中,整数有____________. 12. 计算:(-1)6+(-1)7=____________.13. 两会期间,百度APP 以图文、图案、短视频、直播等多种形式展现两会内容.据统计,直播内容237场,峰值观看人数一度高达3 800 000人,将数据3 800 000用科学记数法表示为 .14.已知线段AB 在数轴上,且它的长度为4,若点A 在数轴上对应的数为-1,则点B 在数轴上对应的数为 .15.已知一张纸的厚度是0.1 mm ,若将它连续对折10次后,则它折后的厚度为 mm .16.观察下列数据,找出规律并在横线上填上适当的数:1,-43,95,-167, , , ,… 三、解答题(本大题共6小题,共52分)17.(每小题3分,共6分)比较下列各组数的大小:(1)|-4+5|与|-4|+|5|; (2)2×32与(2×3)2.18.(每小题4分,共8分)计算: (1)|-2|-(-3)×(-15)÷(-9); (2)-12018+(-21+32-41)×24.19.(7分)当温度每上升1℃时,某种金属丝伸长0.002 mm ;反之,当温度每下降1℃时,金属丝缩短0.00 2mm.把15℃的这种金属丝加热到60 ℃,再使它冷却降温到5 ℃,求最后的长度比原来伸长了多少.20.(9分)计算6÷(-21+31)时,李明同学的计算过程如下,原式=6÷(-21)+6÷31=-12+18=6.请你判断李明的计算过程是否正确,若不正确,请你写出正确的计算过程,并正确计算出(21-61+91)÷(-361).21.(10分)如图3,已知点A 在数轴上表示的数为-1,从点A 出发,沿数轴向右移动3个单位长度到达点C ,点B 所表示的有理数是5的相反数,按要求完成下列各题. (1)请在数轴上标出点B 和点C ;(2)求点B 所表示的数与点C 所表示的数的乘积;(3)若将该数轴进行折叠,使得点A 和点B 重合,则点C 和哪个数所对应的点重合?图322.(12分)一辆货车从仓库装满货物后在东西街道上运送水果,规定向东为正方向,某次到达的五个地点分别为A,B,C,D,E,最后回到仓库,货车行驶的记录(单位:千米)如下:+1,+3,-6,-l,-2,+5.(1)请以仓库为原点,选择适当的单位长度,画出数轴,并标出A,B,C,D,E的位置;(2)求出该货车共行驶了多少千米;(3)如果货车运送的水果以l00千克为标准质量,超过的千克数记为正数,不足的千克数记为负数,则运往A,B,C,D,E五个地点的水果质量可记为:+50,-l5,+25,-l0,-15,则该货车运送的水果总质量是多少千克?附加题(共20分,不计入总分)1.(8分)如图,点P,Q在数轴上表示的数分别是-8,4,点P以每秒2个单位长度的速度向右运动,点Q以每秒1个单位长度的速度向左运动,当运动秒时,P,Q 两点相距3个单位长度.2.(12分)对于有理数a,b,定义运算“⊕”:a⊕b=ab-2a-2b+1.(1)计算5⊕4的结果;(2)计算[(-2)⊕6]⊕3的结果;(3)定义的新运算“⊕”交换律是否还成立?请写出你的探究过程.(第一章 有理数测试题参考答案一、1.D 2.A 3.B 4. B 5.C 6.C 7.B 8.B 9. A 10.B二、11. 0,-5 12.013. 3.8×106 14.3或-5 15. 102.4 16.259,-3611,4913 提示:第n 个数,分母是n 2,分子是2n-1,第奇数个数是正数,第偶数个数是负数.三、17.(1)|-4+5|=|1|=1,|-4|+|5|=4+5=9,所以|-4+5|<|-4|+|5|. (2)2×32=2×9=18,(2×3)2=62=36,所以2×32<(2×3)2.18. 解:(1) 原式=2+3×15×91=2+5=7. (2)原式=−1−21×24+32×24−41×24=−1−12+16−6=−3. 19. 解:(60-15)×0.002-(60-5)×0.002 =45×0.002-55×0.002 =(45-55)×0.002 =(-10)×0.002 =-0.02(mm ).答:最后的长度比原来伸长了-0.02 mm.20.解:李明的计算过程不正确,正确计算过程为:6÷(-21+31)=6÷(-61)=-36.原式=(21-61+人教版七年级数学(上)第一章有理数单元达标测试卷(有答案) 一、选择题(每题3分,共30分)1.如果向东走7 km 记作+7 km ,那么-5 km 表示( )A .向北走5 kmB .向南走5 kmC .向西走5 kmD .向东走5 km 2.在0,4,-3,-4这四个数中,最小的数是( )A .0B .4C .-3D .-43.在有理数|-1|,0,-122,(-1)2 019中,负数的个数为( )A .1B .2C .3D .44.某市去年共引进世界500强外资企业19家,累计引进外资410 000 000美元.410 000 000用科学记数法表示为( )A .41×107B .4.1×108C .4.1×109D .0.41×109 5.下列计算错误的是( )A .(-2)×(-3)=2×3=6B .-3-5=-3+(+5)=2C .4÷⎝ ⎛⎭⎪⎫-12=4×(-2)=-8 D .-(-32)=-(-9)=96.下列每对数中,不相等...的一对是( ) A .(-2)2 019和-22 019 B .(-2)2 020和22 020 C .(-2)2 020和-22 020 D .|-2|2 019和|2|2 0197.有理数a ,b 在数轴上对应的点的位置如图所示,则a +bab 的值是( )(第7题)A .负数B .正数C .0D .正数或0 8.下列说法正确的是( )A .近似数0.21与0.210的精确度相同B .近似数1.3×104精确到十分位C .数2.995 1精确到百分位是3.00D .“小明的身高约为161 cm”中的数是准确数9.已知|m |=4,|n |=6,且|m +n |=m +n ,则m -n 的值等于( )A .-10B .-2C .-2或-10D .2或1010.一根100 m 长的小棒,第一次截去一半,第二次截去剩下的13,第三次截去剩下的14……如此下去,直到截去剩下的1100,则剩下的小棒长为( )A.12 m B .1 m C .2 m D .4 m 二、填空题(每题3分,共24分)11.如果全班某次数学测试的平均成绩为90分,某位同学考了93分,记作+3分,那么得分86分应记作__________.12.-2 019的相反数是________,绝对值是________,倒数是________. 13.将数59 840精确到千位是__________.14.比较大小:-(-0.3)________⎪⎪⎪⎪⎪⎪-13(填“>”“<”或“=”).15.如图,点A 表示的数是-2,以点A 为圆心、1个单位长度为半径的圆交数轴于B ,C 两点,那么B ,C 两点表示的数分别是____________.(第15题)16.如果|a +2|+(b -3)2=0,那么a b =________.17.如图是一个简单的数值运算程序图,当输入x 的值为-1时,输出的数值为________.(第17题) (第18题)18.一个质点P从距原点1个单位长度的点A处向原点方向跳动,第一次跳动到OA的中点A1处,第二次从点A1跳动到OA1的中点A2处,第三次从点A2跳动到OA2的中点A3处,…如此不断跳动下去,则第五次跳动后,该质点到原点O的距离为________;第n次跳动后,该质点到原点O的距离为________.三、解答题(19,24题每题12分,20题16分,21题6分,其余每题10分,共66分)19.(1)将下列各数填在相应的大括号里:-(-2.5),(-1)2,-|-2|,-22,0,-12.整数:{ …}; 分数:{ …}; 正有理数:{ …}; 负有理数:{ …}.(2)把表示上面各数的点画在数轴上,再按从小到大的顺序,用“<”号把这些数连接起来.20.计算(能简算的要简算): (1)-6+10-3+|-9|;(2)-49-⎝ ⎛⎭⎪⎫-118+⎝ ⎛⎭⎪⎫-18-59;(3)⎝ ⎛⎭⎪⎫79-1112+16×36;(4)-42÷(-2)3+(-1)2 020-49÷23.21.现规定一种新运算“*”:a *b =a b-2,例如:2*3=23-2=6.试求⎝ ⎛⎭⎪⎫-32*2*2的值.22.某市质量技术监督局从某食品厂生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,把超过或不足的部分分别用正、负数来表示,记录如下表:(1)若标准质量为450 g,则抽样检测的20袋食品的总质量为多少克?(2)若该种食品的合格标准为450±5 g,求该食品的抽样检测的合格率.23.某景区工作人员接到任务后,驾驶电瓶车从景区大门出发,向东走2 km到达A景区,继续向东走2.5 km到达B景区,然后又回头向西走8.5 km到达C景区,最后回到景区大门.(1)以景区大门为原点,向东为正方向,以1个单位长度表示1 km,建立如图所示的数轴,请在数轴上表示出上述A,B,C三个景区的位置.(2)若电瓶车充足一次电能行走15 km,则该工作人员能否在电瓶车一开始充好电而途中不充电的情况下完成此次任务?请计算说明.(第23题)24.点P,Q分别从A,B两点同时出发,在数轴上运动,它们的速度分别是2个单位长度/s、4个单位长度/s,它们运动的时间为t s.(1)如果点P,Q在点A,B之间相向运动,当它们相遇时,点P表示的数是________;(2)如果点P,Q都向左运动,当点Q追上点P时,求点P表示的数;(3)如果点P,Q在点A,B人教版七年级数学上册第一章有理数单元测试(含答案)一、单选题1.在有理数-3,0,23,-85,3.7中,属于非负数的个数有()A.4个B.3个C.2个D.1个2.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数,则在下面4个足球中,质量最接近标准的是()A.B.C.D.3.下列各式中结果为负数的是()A.﹣(﹣2) B.|﹣2| C.(﹣2)2D.﹣|﹣2|4.下列说法不正确的是:()① a一定是正数;②0的倒数是0 ;③最大的负整数-1;④只有负数的绝对值是它的相反数;⑤相反数等于本身的有理数只有0A.②③④B.①②④⑤C.②③④⑤D.①②④5.在数轴上与-3的距离等于4的点表示的数是()A.1 B.-7 C.1或-7 D.无数个6.已知p与q互为相反数,且p≠0,那么下列关系式正确的是()A.p•q=1B.p1q=C.p-q=0 D.p+q=07.56-的相反数是()A.56B.56-C.65D.65-8.实数-2019的绝对值是()A. B.2019 C. D.9.下列计算正确的是( ) A .5+(﹣6)=﹣11 B .﹣1.3+(﹣1.7)=﹣3 C .(﹣11)﹣7=﹣4 D .(﹣7)﹣(﹣8)=﹣110.|-6|的倒数是( ) A .6B .-6C .16 D .-1611.﹣|﹣3|的倒数是( ) A .﹣3B .﹣13C .13D .312.一个数和它的倒数相等,则这个数是 ( ) A .1 B .-1 C .±1 D .±1和0二、填空题13.中国的领水面积约为3700000km 2,将3700000用科学记数法表示为_____. 14.0.7808用四舍五入法精确到十分位是_____. 15.计算:1001-1-6-)6÷⨯()(=_________16.用“>”或“<”填空: 3--______ ( 3.1)--; 78-____67-; 17.一只蚂蚁从数轴上一点A 出发,爬了7个单位长度到了原点,则点A 所表示的数是__.三、解答题 18.计算: (1)1+(-2)+|-2-3|-5 (2) 51557-÷ (3) (-16+34-512)⨯(12)- (4)(-1)2012-(-512)×411+(-8)÷[(-3)+5] (5)()2014322321-+--⨯-19.用☉定义一种新运算:对于任意有理数a 、b ,都有21ab b =+。
一、选择题1.将多项式241x +加上一个单项式后,使它能成为一个完全平方式,下列添加单项式错误的是( )A .2xB .4xC .4x -D .44x2.下列运算中正确的是( )A .235x y xy +=B .()3253x y x y =C .826x x x ÷=D .32622x x x ⋅= 3.下列计算中,错误的是( )A .()()2131319x x x -+=-B .221124a a a ⎛⎫-=-+ ⎪⎝⎭ C .()()x y a b ax ay bx by --=--+D .()m x y m my -+=-+ 4.根据等式:()()2111x x x -+=-,()()23111,x x x x -++=-()()324111x x x x x -+++=-,()()4325111,x x x x x x -++++=-……的规律,则可以推算得出2021202020192222...221++++++的末位数字是( )A .1B .3C .5D .7 5.若3a b +=-,10ab =-,则-a b 的值是( ) A .0或7 B .0或13- C .7-或7 D .13-或13 6.下列计算正确的是( )A .(a +b )(a ﹣2b )=a 2﹣2b 2B .(a ﹣12)2=a 2﹣14C .﹣2a (3a ﹣1)=﹣6a 2+aD .(a ﹣2b )2=a 2﹣4ab +4b 2 7.若28x x k -+是完全平方式,则k 的值是( ) A .4B .8C .16D .32 8.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( ) A .a b c >> B .b c a >> C .c a b >>D .a c b >> 9.下列运算正确的是( ) A .3515x x x ⋅=B .()3412x x -=C .()32628y y =D .623x x x ÷=10.下列各式计算正确的是( )A .5210a a a =B .()428=a aC .()236a b a b =D .358a a a += 11.下列各式中,计算正确的是( )A .34x x x +=B .()246x x =C .5210x x x ⋅=D .826(0)x x x x ÷=≠ 12.计算()233a a ⋅的结果是( ) A .9a B .8a C .11a D .18a二、填空题13.已知a m =2,a n =12,则a n -m =____.14.若()()253x x x bx c +-=++,则b+c=______. 15.若2211392781n n ++⨯÷=,则n =____.16.已知2m a =,5n a =,则2m n a -=___________.17.已知102m =,103n =,则32210m n ++=_______.18.计算(7+1)(7﹣1)的结果等于_____.19.设23P x xy =-,239Q xy y =-,若P Q =,则x y的值为__________. 20.若0a >,且2x a =,3y a =,则x y a +的值等于________.三、解答题21.在数学中,有许多关系都是在不经意间被发现的,当然,没有敏锐的观察力是做不到的.认真观察图形,解答下列问题:()1如图l ,用两种不同方法表示两个阴影图形的面积的和,可以得到的等式为_ ;()2如图2,是由4个长为,a 宽为b 的长方形卡片围成的正方形,试利用面积关系写出一个代数恒等式;()3如图3,是由边长分别为(),a b a b >的两个正方形拼成的图形,已知10a b +=,24,ab =利用()1中得到的等式,求出图3中阴影部分的面积.22.先化简,再求值:()()()2222x y x y x y --+-其中1x =-,2y =23.图1是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)请写出图2中阴影部分的面积:________________;(2)观察图2,你能写出下列三个式子:2()m n +,2()m n -,mn 之间的等量关系吗?(3)根据(2)中的等量关系,已知:21a a -=求:2a a+的值. 24.计算: (1)()3210842a a a a +-÷; (2)()()22222ab a b ---⋅.25.某超市有线上和线下两种销售方式,与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的销售总额、线上销售额、线下销售额(直接在表格中填写结果); 时间销售总额(元) 线上销售额(元) 线下销售额(元) 2019年4月份 a xa x - 2020年4月份26.计算:4a 2·(-b )-8ab ·(b -12a ).【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据完全平方公式即可求出答案.【详解】解:A.4x 2+2x+1,不是完全平方式,故此选项符合题意;B.4x 2+4x+1=(2x+1)2,是完全平方式,故此选项不符合题意;C.4x 2-4x+1=(2x-1)2,是完全平方式,故此选项不符合题意;D.4x 4+4x 2+1=(2x 2+1)2,是完全平方式,故此选项不符合题意;故选:A .【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型. 2.C解析:C【分析】按照合并同类项,幂的运算法则计算判断即可.【详解】∵2x 与3y 不是同类项,∴无法计算,∴选项A 错误;∵()3263x y x y =,∴选项B 错误;∵88262x x x x -==÷,∴选项C 正确;∵32325222x x x x +⋅==,∴选项D 错误;故选C.【点睛】本题考查了幂的基本运算,准确掌握幂的运算法则,并规范求解是解题的关键. 3.D解析:D【分析】根据平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式依次求出每个式子的值,再判断即可.【详解】A. ()()2131319x x x -+=-,计算正确,不符合题意; B. 221124a a a ⎛⎫-=-+ ⎪⎝⎭,计算正确,不符合题意; C. ()()x y a b ax ay bx by --=--+,计算正确,不符合题意;D. ()m x y mx my -+=--,计算错误,符合题意;故选D .【点睛】本题考查了平方差公式、完全平方公式、多项式乘以多项式法、单项式乘以多项式,能正确求出每个式子的值是解此题的关键. 4.B解析:B【分析】利用题目给出的规律:把2021202020192222...221++++++乘(2-1)得出22022-1,研究22022的末位数字规律,进一步解决问题.【详解】解:由题目中等式的规律可得:2021202020192222...221++++++=(2-1)×2021202020192(222...221)++++++=22022-1,21的末位数字是2,22的末位数字是4,23的末位数字是8,24的末位数字是6,25的末位数字是2…,所以2n 的末位数字是以2、4、8、6四个数字一循环.2022÷4=505…2,所以22022的末位数字是4,22022-1的末位数字是3.故选:B【点睛】此题考查了平方差公式,乘方的末位数字的规律,尾数特征,注意从简单情形入手,发现规律,解决问题.5.C解析:C【分析】根据完全平方公式得出( a-b )2=( a + b )2-4ab ,进而求出( a-b )2的值,再求出 a-b 的值即可【详解】( a-b )2=( a + b )2-4ab∴ ()22(3) 4(10)a b =--⨯-- ∴()2 49a b -=∴7a b -=±故答案选:C【点睛】考查完全平方公式的应用,掌握完全平方公式的特点和相应的变形,是正确解答的关键. 6.D解析:D【分析】根据整式的乘法逐项判断即可求解.【详解】解:A. (a +b )(a ﹣2b )=a 2﹣4b 2,原题计算错误,不合题意;B. (a ﹣12)2=a 2﹣a +14,原题计算错误,不合题意; C. ﹣2a (3a ﹣1)=﹣6a 2+2a ,原题计算错误,不合题意;D. (a ﹣2b )2=a 2﹣4ab +4b 2,计算正确,符合题意.故选:D【点睛】本题考查了单项式乘以多项式,平方差公式,完全平方式,熟练掌握单项式乘以多项式的法则、乘法公式是解题的关键.7.C解析:C【分析】根据完全平方公式的特征进行计算即可.【详解】 ∵222288()(4)8162x x x x x --+=-=-+, ∴k=16,故选C.【点睛】本题考查了完全平方公式,熟记公式并灵活变形是解题的关键. 8.B解析:B【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可.【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> ,∴411311511(3)(4)(2)>>,即b c a >>,故选B .【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.9.C解析:C【分析】根据整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则进行计算并判断.【详解】A 、358⋅=x x x ,故该项错误;B 、()3412x x -=-,故该项错误; C 、()32628y y =,故该项正确; D 、624x x x ÷=,故该项错误; 故选:C .【点睛】 本题考查了整式的计算,熟记整式的同底数幂相乘法则、幂的乘方法则、积的乘方法则、同底数幂相除法则是解题的关键.10.B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意;B 、(a 2)4=a 8,此选项计算正确,符合题意;C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意;D 、a 3与a 5不能合并,此选项计算错误,故不符合题意.故选:B .【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则.11.D解析:D【分析】根据合并同类项法则,幂的乘方,同底数幂的乘法,同底数幂相除的法则逐项判断即可求解.【详解】解:A.不是同类项,无法合并,计算错误,不合题意;B. ()248x x =,计算错误,不合题意;C. 527x x x ⋅=计算错误,不合题意;D. 826(0)x x x x ÷=≠,计算正确,符合题意.故选:D【点睛】本题考查了合并同类项法则,幂的乘方,同底数幂的乘法,同底数幂相除的法则,熟知运算法则是解题关键.12.A解析:A【分析】根据幂的乘方运算、同底数幂的乘法法则即可得.【详解】原式63a a =⋅,9a =,故选:A .【点睛】本题考查了幂的乘方、同底数幂的乘法,熟练掌握各运算法则是解题关键.二、填空题13.6【分析】根据同底数幂的除法计算即可;【详解】∵am=2an=12∴;故答案是6【点睛】本题主要考查了同底数幂的除法准确分析计算是解题的关键 解析:6【分析】根据同底数幂的除法计算即可;【详解】∵a m =2,a n =12,∴1226n m n m a a a -=÷=÷=;故答案是6.【点睛】本题主要考查了同底数幂的除法,准确分析计算是解题的关键.14.-13【分析】先利用多项式的乘法展开再根据对应项系数相等确定出bc 的值最后计算出结果即可【详解】解:∵∴∴b=2c=-15∴b+c=2-15=-13故答案为:-13【点睛】此题主要考查了整式的乘法熟解析:-13【分析】先利用多项式的乘法展开,再根据对应项系数相等确定出b ,c 的值,最后计算出结果即可.【详解】解:∵()()253x x x bx c +-=++ ∴22+215x x x bx c -=++∴b=2,c=-15∴b+c=2-15=-13故答案为:-13.【点睛】此题主要考查了整式的乘法,熟练掌握运算法则是解答此题的关键.15.3【分析】根据幂的乘方把算式中的各底数变成同底数然后按同底数幂运算法则列方程即可【详解】解:故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方根据题意把底数变成相同是解题关键解析:3【分析】根据幂的乘方把算式中的各底数变成同底数,然后按同底数幂运算法则,列方程即可.【详解】解:2211392781n n ++⨯÷=22213143(3)(3)3n n ++⨯÷=,2423343333n n ++⨯÷=,242(33)433n n ++-+=,1433n +=,14n +=,3n =.故答案为:3【点睛】本题考查了同底数幂的乘除和幂的乘方,根据题意,把底数变成相同是解题关键. 16.【分析】根据幂的乘方与同底数幂的除法法则解答即可【详解】∵(am )2÷an =22÷5=4÷5=故答案为:【点睛】本题主要考查了幂的乘方与同底数幂的除法熟记幂的运算法则是解答本题的关键 解析:45【分析】根据幂的乘方与同底数幂的除法法则解答即可.【详解】∵2m a =,5n a =,2m n a -=(a m )2÷a n =22÷5=4÷5=45. 故答案为:45. 【点睛】 本题主要考查了幂的乘方与同底数幂的除法,熟记幂的运算法则是解答本题的关键. 17.7200【分析】根据幂的乘方法则分别求出和的值然后根据同底数幂的乘法运算法则计算即可【详解】解:∵∴∴故答案为:7200【点睛】本题考查同底数幂的乘法和幂的乘方解题的关键是掌握运算法则解析:7200【分析】根据幂的乘方法则分别求出3m 10和210n 的值,然后根据同底数幂的乘法运算法则计算即可.【详解】解:∵102m =,103n =,∴()33m 10108m ==,()22n 10109n ==,∴3m+2n+232210101010891007200m n =⋅⋅=⨯⨯=,故答案为:7200.【点睛】本题考查同底数幂的乘法和幂的乘方,解题的关键是掌握运算法则.18.6【分析】根据平方差公式计算【详解】(+1)(﹣1)=7-1=6故答案为:6【点睛】此题考查平方差计算公式:熟记公式是解题的关键解析:6【分析】根据平方差公式计算.【详解】﹣1)=7-1=6,故答案为:6.【点睛】此题考查平方差计算公式:22()()a b a b a b +-=-,熟记公式是解题的关键. 19.3【分析】根据P=Q 得出x=3y 求解即可【详解】解:∵∴即=0∴x=3y ∴=3故答案为:3【点睛】本题考查了完全平方公式关键是能根据已知条件变形 解析:3【分析】根据P=Q ,得出x=3y 求解即可.【详解】解:∵P Q =,23P x xy =-,239Q xy y =-,∴22339x xy xy y -=-,即2226(3)9x xy y x y =--+=0,∴x=3y ∴x y=3. 故答案为:3【点睛】本题考查了完全平方公式,关键是能根据已知条件变形.20.6【分析】根据同底数幂的乘法法则求解【详解】故答案为:6【点睛】本题考查了同底数幂的乘法解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘底数不变指数相加解析:6【分析】根据同底数幂的乘法法则求解.【详解】·236x y x y a a a +==⨯= .故答案为:6.【点睛】本题考查了同底数幂的乘法,解答本题的关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.三、解答题21.(1)222(a )2a b b ab +=+-或222()2a b ab a b +-=+;(2)22()()4a b a b ab +=-+或22()()4a b a b ab -=+-或224()()ab a b a b =+--;()314.【分析】(1)和的完全平方公式的变形;(2)两种完全平方公式的恒等关系;(3)根据公式计算即可.【详解】(1)∵外部是一个边长为(a+b )的正方形,∴正方形的面积为2()a b +,∵白色长方形的长为a ,宽为b ,∴两个白色长方形的面积和为2ab ,∴阴影部分的面积为222(a )2a b b ab +=+-或222()2a b ab a b +-=+;(2)∵外部是一个边长为(a+b )的正方形,∴正方形的面积为2()a b +,∵白色长方形的长为a ,宽为b ,∴四个白色长方形的面积和为4ab ,∵内部小正方形的边长为(a-b ),∴正方形的面积为2()a b -,∴22()()4a b a b ab +=-+或22()()4a b a b ab -=+-或224()()ab a b a b =+--; (3)根据图3可得,()222221*********S a b a a b b a b ab =+--+=+-阴影 ()()22113222212a b ab ab a b ab ⎡⎤+--=+-⎣=⎦, 当10a b +=,24ab =时,原式=213102422⨯-⨯=14. 【点睛】本题考查了以图形面积解释完全平方公式,公式的变形,熟练掌握面积的计算,准确进行公式变形是解题的关键.22.248xy y -+,40【分析】先提公因式(2)x y -,然后计算括号内的运算,得到最简整式,然后把1x =-,2y =代入计算,即可得到答案.【详解】解:原式()()()222x y x y x y =---+⎡⎤⎣⎦()[]222x y x y x y =----()42y x y =--248xy y =-+.当1x =-,2y =时,原式()4212240=-⨯⨯--⨯=.【点睛】本题考查了整式的混合运算,整式的化简求值,解题的关键是掌握运算法则进行化简. 23.(1)2()m n -或2()4m n mn +-;(2)22()()4m n m n mn -=+-;(3)±3.【分析】(1)一种方法是先表示出大正方形面积和四个长方形的面积,用大正方形面积减去四个长方形的面积表示出阴影部分面积;另一种方法是先用m 、n 表示出阴影部分边长,再用正方形面积公式表示之;(2)22(),(),m n m n mn +-分别表示大正方形,小正方形和长方形面积,由图知大正方形面积-四个长方形面积=小正方形面积,可得它们之间的关系;(3)直接把(2)中得到的关系式用(a+b )、ab 的值对应替换即可.【详解】解:(1)由图知:图2中阴影部分的面积:2()m n -或2()4m n mn +-;(2)22()()4m n m n mn -=+-; (3)因为22228189a a a a ⎛⎫⎛⎫+=-+=+= ⎪ ⎪⎝⎭⎝⎭, 所以23a a+=±. 【点睛】 本题考查完全平方差公式和完全平方和公式的联系.会用代数式表示图形面积是解决问题的关键;两数的完全平方和比它们的完全平方差多了两数积的4倍,该结论经常用到. 24.(1)2542a a +-;(2)224a b . 【分析】(1)多项式除以单项式,用多项式中的每一项分别除以单项式进行计算;(2)幂的混合运算,注意先算乘方,然后再按照单项式乘单项式的法则进行计算.【详解】解:(1)()3210842a a a a +-÷ 321028242a a a a a a =÷+÷-÷2542a a =+-(2)()()22222ab a b ---⋅ 24424a b a b --=⋅224a b --=224a b =. 【点睛】 本题考查整式的混合运算和幂的混合运算,掌握运算顺序和计算法则正确计算是解题关键.25.(1)1.1a ;1.43x ,1.04()a x -;(2)0.8.【分析】(1)2019年4月份的销售总额为a 元乘以(1+10%)即可得到2020年4月份销售总额,用2019年4月线上销售额为x 元乘以(1+43%)即可得到2020年4月份线上销售额,用2019年的销售总额减去线上销售额再乘以(14%)+即可2020年4月份线下销售额; (2)根据2020年销售总额与线上线下销售额的关系得到213x a =,再列式比较即可得到答案.【详解】解:(1)与2019年4月份相比,该超市2020年4月份线下销售额增长4%, ∴该超市2020年4月份线下销售额为()(14%)a x -+=1.04()a x -元.∵2019年4月线上销售额为x 元,2020年4月份,线上销售额增长43%,∴2020年4月份线上销售额(1+43%)x=1.43x ,∵2019年4月份的销售总额为a 元,该超市2020年4月份销售总额增长10%, ∴2020年4月份的销售总额(1+10%)a = 1.1a ,(2)依题意,得:,解得:213x a =, ∴()21.041.040.88130.81.1 1.1 1.1a a a x a a a a⎛⎫- ⎪-⎝⎭===. 答:2020年4月份线下销售额与当月销售总额的比值为0.8.【点睛】本题考查整式与实际问题的应用,一元一次方程与实际问题,列代数式,整式的除法计算,正确理解题意是解题的关键.26.28ab -【分析】整式的混合运算,先算乘除,然后再算加减,有小括号先算小括号里面的.【详解】解:4a 2·(-b )-8ab ·(b -12a ) =222484--+a b ab a b=28ab -.【点睛】本题考查整式的混合运算,掌握单项式乘单项式以及单项式乘多项式的计算法则正确计算是解题关键.。
章节测试题1.【答题】某公司的仓库中原先有1.5万件货物,后来运出0.7万件.过了一段时间,该公司计划往仓库中补充1.2万件货物,但由于某些原因,少往仓库中补充0.3万件货物,则现在仓库中的货物有()A. 1.8万件B. 1.7万件C. 1.5万件D. 1.1万件【答案】B【分析】【解答】2.【答题】某飞机原来的飞行高度是2500m,后来上升了-100m,又下降了256m.此时该飞机的飞行高度是______ m.【答案】2144【分析】【解答】3.【答题】某河流的水位第一天上升了8cm,第二天下降了7cm,第三天又下降了9cm,第四天上升了3cm,那么第四天的水位比刚开始时的水位高______cm.【答案】-5【分析】【解答】4.【题文】下图为本周股市指数变化折线统计图.(1)已知上周五股指收于3900点(周六、周日不开市),则本周股指的最高点为多少点?(2)用正数表示比前一天上涨,负数表示比前一天下跌,完成下表:【答案】(1)3960(2)+30,+10,-20,+40,-50【分析】【解答】5.【题文】一个病人每天上午需要测量一次血压,下表是这个病人星期一至星期五收缩压的变化情况.这个病人上个星期日的收缩压为160单位.(1)这个病人哪一天的收缩压最高?哪一天的收缩压最低?(2)与上个星期相比,本周星期五的收缩压升了还是降了?【答案】解:(1)星期一:185单位;星期二:170单位;星期三:183单位;星期四:198单位;星期五:178单位.因此,这个病人星期四的收缩压最高,星期二的收缩压最低.(2)因为+25-15+13+15-20=18>0,所以与上个星期相比,本周星期五的收缩压升了.【分析】【解答】6.【题文】下表是我国某城市2019年各月的平均气温表(单位:℃).这个城市2019年全年的月平均气温是多少?【答案】解:(-15-9-2+6+15+23+27+27+24+13-2-11)÷12=(-39+135)÷12=96÷12=8(℃).因此,这个城市2019年全年的月平均气温是8℃.【分析】【解答】7.【题文】某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天该检修小组自A地出发到收工的行程(单位:km)为+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.(1)该检修小组收工时距A地多远?(2)若油耗为0.2L/km,则从A地出发到收工共耗油多少升?【答案】解:(1)+10-3+4+2-8+13-2+12+8+5=41(km).因此,该检修小组收工时距A地41km.(2)(10+3+4+2+8+13+2+12+8+5)×0.2=67×0.2=13.4(L).因此,共耗油13.4L.【分析】【解答】8.【题文】某汽车厂计划本周每天生产250辆汽车.由于每天上班的人数不一定相等,每天的实际生产量与计划生产量相比,情况如下表(记增加的辆数为正数,减少的辆数为负数):(1)根据记录可知,本周星期六生产了多少辆汽车?(2)产量最多的那一天比产量最少的那一天多生产了多少辆汽车?(3)本周总生产量与计划生产量相比,是增加了还是减少了?增减数为多少? (4)本周总生产量是多少?【答案】解:(1)250-9=241(辆).因此,本周星期六生产了241辆汽车.(2)10-(-25)=35(辆).因此,多生产了35辆汽车.(3)-5+7-3+4+10-9-25=-21(辆).因此,是减少了,减少了21辆.(4)250×7-21=1729(辆).因此,本周总生产量是1729辆.【分析】【解答】9.【答题】(2018江苏盐城盐都冈中中学第一次质检)将-3-(+6)-(-5)+(-2)写成省略加号和括号的和的形式是()A. -3+6-5-2B. -3-6+5-2C. -3-6-5-2D. -3-6+5+2【答案】B【解答】-3-(+6)-(-5)+(-2)=-3-6+5-2.选B.10.【答题】算式8-7+3-6正确的读法是()A. 8、7、3、6的和B. 正8、负7、正3、负6的和C. 8减7加正3减负6D. 8减7加3减6的和【答案】B【分析】【解答】有两种读法,读法一:正8、负7、正3、负6的和;读法二:8减7加3减6.11.【答题】可以读作______,也可以读作______.【答案】正、负、负、正的和,减减加【分析】【解答】12.【答题】下列计算中,正确的是()A. -6+(-3)+(-2)=1B. 7+(-0.5)+2-3=5.5C. D.【答案】B【解答】A的正确结果为-11,C的正确结果为,D的正确结果为,B中的计算正确.13.【答题】下列各式运用加法运算律变形错误的是()A. 1+(-0.25)+(-0.75)=1+[(-0.25)+(-0.75)]B. 1-2+3-4+5-6=(1-2)+(3-4)+(5-6)C.D. 7-8-3+6+2=(7-3)+(-8)+(6+2)【答案】C【分析】【解答】.选C.14.【答题】某股民在上周星期五买进某种股票500股,每股为60元,下表是本周每日该股票的涨跌情况(单位:元).则本周星期三收盘时每股为______元.【答案】67.5【解答】因为上周星期五买进股票时每股为60元,所以本周星期三收盘时每股为60+4+4.5-1=67.5(元).15.【答题】若,b=-3,c是最大的负整数,则a+b-c的值是______.【答案】0或-4【分析】【解答】因为,所以a=±2.因为c是最大的负整数,所以c=-1.当a=2时,a+b-c=2-3-(-1)=2-3+1=2+1-3=0;当a=-2时,a+b-c=-2-3-(-1)=-2-3+1=-5+1=-4,所以a+b-c的值是0或-4.16.【题文】(2019山东济南槐荫育华中学第一次月考)计算:(1);(2).【答案】见解答【分析】【解答】(1).(2).17.【题文】(2020独家原创试题)某科技大学气象社团的成员们,被电影《攀登者》的精神影响,想把社团设计的简易气象站搬到雪山顶峰.成员们冒着风雪,经过10天的艰难跋涉到达距顶峰500米的二号营地,以二号营地为基准,开始向顶峰冲击,他们记上升为正,行进过程记录如下(单位:米):+150,-35,-40,+210,-32,+20,-18,-5,+20,+85,-25.问:(1)他们最终有没有登上顶峰?若没有,则他们距离顶峰还有多少米?(2)登山时,若5名队员在记录的行进路线上都使用了氧气,且每人耗氧速度为0.04升/米,则他们共耗氧多少升?【答案】见解答【分析】【解答】(1)+150-35-40+210-32+20-18-5+20+85-25=330(米),500-330=170(米).答:他们最终没有登上顶峰,距离顶峰还有170米.(2)0.04×5×(150+35+40+210+32+20+18+5+20+85+25)=128(升).答:他们共耗氧128升.18.【答题】(2020山东滨州五校期中联考,6,★☆☆)在1.17-32-23中把省略的加号和括号添上应得到()A. 1.17+32+23B. -1.17+(-32)+(-23)C. 1.17+(-32)+(-23)D. 1.17-(+32)-(-23)【答案】C【分析】【解答】1.17-32-23=1.17+(-32)+(-23).选C.19.【答题】(2020山东淄博博山万杰朝阳学校期中,17,★☆☆)小明近期几次的数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分那么小明第四次的测试成绩是______分.【答案】91【分析】【解答】由题意,得85+8-12+10=91(分).20.【答题】(2019陕西安康汉滨建设中学第一次月考,12,★☆☆)分别输入-1、-2,按图2-6-1所示的程序运算,则输出的结果依次是______、______.【答案】1,0【分析】【解答】当输入-1时,输岀的结果是-1+4-(-3)-5=-1+4+3-5=1;当输入-2时,输岀的结果是-2+4-(-3)-5=-2+4+3-5=0.。
一、选择题1.某测绘小组的技术员要测量A,B两处的高度差(A,B两处无法直接测量),他们首先选择了D,E,F,G四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A,B之间的高度关系为()A.B处比A处高B.A处比B处高C.A,B两处一样高D.无法确定2.下列说法正确的是( )A.近似数1.50和1.5是相同的B.3520精确到百位等于3600C.6.610精确到千分位D.2.708×104精确到千分位3.下列说法正确的是()A.近似数5千和5000的精确度是相同的B.317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯C.2.46万精确到百分位D.近似数8.4和0.7的精确度不一样4.围绕保障疫情防控、为企业好困解难,财政部门快速行动,持续加大资金投入,截至2月14日,各级财政已安排疫情防控补助资金901.5亿元,把“901.5”用科学记数法表示为()A.109.01510⨯B.39.01510⨯C.29.01510⨯D.109.0210⨯5.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>06.计算11212312341254 2334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值()A.54 B.27 C.272D.07.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|8.当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,记作()A.海拔23米B.海拔﹣23米C.海拔175米D.海拔129米9.6-的相反数是()A .6B .-6C .16D .16- 10.下列分数不能化成有限小数的是( ) A .625 B .324 C .412 D .11611.把实数36.1210-⨯用小数表示为()A .0.0612B .6120C .0.00612D .612000 12.据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元二、填空题13.把67.758精确到0.01位得到的近似数是__.14.数轴上,如果点 A 所表示的数是3-,已知到点 A 的距离等于 4 个单位长度的点所表示的数为负数,则这个数是_______.15.数轴上A 、B 两点所表示的有理数的和是 ________.16.计算-32+5-8×(-2)时,应该先算_____,再算_____,最后算_____.正确的结果为_____.17.用计算器求2.733,按键顺序是________;使用计算器计算时,按键顺序为,则计算结果为________.18.在数轴上,与表示-2的点的距离是4个单位的点所对应的数是___________. 19.若a ,b 互为相反数,c ,d 互为倒数,且0a ≠,则200720082009()()()a a b cd b++-=___________. 20.(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位;(2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.三、解答题21.画一条数轴,把1-12,0,3各数和它们的相反数在数轴上表示出来,并比较它们的大小,用“<”号连接.22.计算下列各题:(1)(14﹣13﹣1)×(﹣12); (2)(﹣2)3+(﹣3)×[(﹣4)2﹣6].23.计算(1)(-1)2019+0.25×(-2)3+4÷23 (2)21233()12323-÷+-⨯+24.计算(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+.25.计算(1))()()(2108243-+÷---⨯-;(2))()(22000112376⎡⎤--⨯--÷-⎥⎢⎦⎣. 26.计算:(1)9-(-14)+(-7)-15;(2)12×(-5)-(-3)÷374(3)-15+(-2)3÷193⎛⎫--- ⎪⎝⎭(4)(-10)3+[(-8)2-(5-32)×9]【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高.【详解】根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+=A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------=∵1.5>0∴A B h h >故选B .【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.2.C解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A 、近似数1.50和1.5是不同的,A 错B 、3520精确到百位是3500,B 错D 、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.3.B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A .近似数5千精确度到千位,近似数5000精确到个位,所以A 选项错误;B .317500精确到千位可以表示为31.8万,也可以表示为53.1810⨯,所以B 选项正确;C .2.46万精确到百位,所以C 选项错误;D .近似数8.4和0.7的精确度是一样的,所以D 选项错误.故选B .【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.4.C解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】901.5=9.015×102.故选:C.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.6.C解析:C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27=27×1 2=272.故选:C.【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.7.D解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.8.B解析:B【解析】由已知,当A地高于海平面152米时,记作“海拔+152米”,那么B地低于海平面23米时,则应该记作“海拔-23米”,故选B.9.B解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B.10.C解析:C【分析】首先,要把分数化成最简分数,再根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;如果分母中含有2与5以外的质因数,这个分数就不能化成有限小数.【详解】A、625的分母中只含有质因数5,所以625能化成有限小数;B、31248=,18的分母中只含有质因数2,所以324能化成有限小数;C、41123=,13的分母中含有质因数3,所以412不能化成有限小数;D、116的分母中只含有质因数2,所以116能化成有限小数.故选:C.【点睛】此题主要考查判断一个分数能否化成有限小数的方法,根据一个最简分数,如果分母中除了2与5以外,不能含有其它的质因数,这个分数就能化成有限小数;否则就不能化成有限小数.11.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.二、填空题13.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.14.-7【分析】根据在数轴上点A所表示的数为3可以得到到点A的距离等于4个单位长度的点所表示的数是什么再根据负数的定义即可求解【详解】解:∵点A所表示的数是-3到点A的距离等于4个单位长度的点所表示的数解析:-7【分析】根据在数轴上,点A所表示的数为3,可以得到到点A的距离等于4个单位长度的点所表示的数是什么,再根据负数的定义即可求解.【详解】解:∵点A所表示的数是-3,到点A的距离等于4个单位长度的点所表示的数为负数,∴这个数是-3-4=-7.故答案为:-7.【点睛】本题考查了数轴,解题的关键是明确数轴的特点,知道到一个点的距离等3个单位长度的点表示的数有两个.15.-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1【解析】由数轴得,点A表示的数是﹣3,点B表示的数是2,∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.16.乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可【详解】解:原式=-9+5+16=12故答案为:乘方乘法加法12【点睛】本题主要考查了有理数混合运算的运算顺序先算乘方再算乘除最后解析:乘方乘法加法12【分析】按照有理数混合运算的运算顺序进行计算解答即可.【详解】解:原式=-9+5+16=12.故答案为:乘方,乘法,加法,12【点睛】本题主要考查了有理数混合运算的运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.17.73xy3=-2【分析】首先确定使用的是xy键先按底数再按yx键接着按指数最后按等号即可【详解】解:(1)按照计算器的基本应用用计算机求2733按键顺序是273xy3=;(2)-8×5÷20=-40解析:73,x y ,3,= -2【分析】首先确定使用的是x y 键,先按底数,再按y x 键,接着按指数,最后按等号即可.【详解】解:(1)按照计算器的基本应用,用计算机求2.733,按键顺序是2.73、x y 、3、=; (2)-8×5÷20=-40÷20=-2.【点睛】此题主要考查了利用计算器进行数的乘方,关键是计算器求幂的时候指数的使用方法. 18.2或-6【分析】分在-2的左边和右边两种情况讨论求解即可【详解】解:如图在-2的左边时-2-4=-6在-2右边时-2+4=2所以点对应的数是-6或2故答案为-6或2【点睛】本题考查了数轴难点在于分情解析:2或-6【分析】分在-2的左边和右边两种情况讨论求解即可.【详解】解:如图,在-2的左边时,-2-4=-6,在-2右边时,-2+4=2,所以,点对应的数是-6或2.故答案为-6或2.【点睛】本题考查了数轴,难点在于分情况讨论,作出图形更形象直观.19.2【分析】利用相反数倒数的性质确定出a+bcd 的值代入原式计算即可求出值【详解】解:根据题意得:a+b=0cd=1则原式=0+1-(-1)=2故答案为:2【点睛】此题考查了有理数的混合运算熟练掌握运解析:2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,1a b=- 则原式=0+1-(-1)=2.故答案为:2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. 20.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就解析:(1)千分 (2)百 (3)3.14 十万【分析】(1)根据精确到哪位,就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位,就是对它后边的一位进行四舍五入以及科学记数法的精确方法解答即可.【详解】解:(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到千分位;(2)近似数2.428×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位;(3)用四舍五入法把3.141 592 6精确到百分位是3.14,近似数3.0×106精确到十万位.故答案为: (1)千分; (2)百; (3)3.14、十万.【点睛】本题考查了近似数,掌握确定近似数精确的位数和科学记数法的精确方法是解答本题的关键.三、解答题21.数轴表示见解析;-3<112-<0<112<3.【分析】先画出数轴,把各数依次表示出来,从左到右用“<”把各数连接起来即可.【详解】解:112-的相反数是112,0的相反数是0,3的相反数是-3,在数轴上的表示如图所示:从左到右用“<”连接为:-3<112-<0<112<3.故答案为:-3<112-<0<112<3.【点睛】本题考查的是数轴的特点、相反数的定义及有理数的大小比较,由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.22.(1)13;(2)-38【分析】(1)根据乘法分配律可以解答本题;(2)根据有理数的乘方、有理数的乘法和加减法可以解答本题.【详解】解:(1)(14﹣13﹣1)×(﹣12)=14×(﹣12)﹣13×(﹣12)﹣1×(﹣12)=(﹣3)+4+12=13;(2)(﹣2)3+(﹣3)×[(﹣4)2﹣6]=(﹣8)+(﹣3)×(16﹣6)=(﹣8)+(﹣3)×10=(﹣8)+(﹣30)=﹣38.【点睛】本题考查有理数的混合计算,掌握有理数混合运算的顺序,会利用简便运算简化运算是解题关键.23.(1)3;(2)-2【分析】(1)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;(2)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;【详解】解:(1)原式=-1+0.25×(-8)+6=-1-2+6=3;(2)原式=12 931212323-÷+⨯-⨯+=-3+6-8+3=-2;【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算.24.(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】解:(1)原式=21 24633⎛⎫⎛⎫-⨯-+⨯-⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.25.(1)20-;(2)116-. 【分析】(1)先计算有理数的乘方与乘法,再计算有理数的除法,然后计算有理数的加减法即可得;(2)先计算有理数的乘方,再计算有理数的加减乘除法即可得.【详解】(1)原式108412=-+÷-,10212=-+-,20=-;(2)原式())(112976=--⨯-÷-, ())(11776=--⨯-÷-, )(7176=-+÷-, 116=--, 116=-. 【点睛】本题考查了含乘方的有理数混合运算,熟练掌握有理数的运算法则是解题关键. 26.(1)1;(2)14;(3)1147-;(4)-900. 【分析】(1)先将减法化为加法,再分别把正数和负数相加,将结果相加;(2)先分别计算乘除,再计算加法;(3)先分别计算乘方和括号内的,再计算除法,最后计算加法;(4)先分别计算乘方和括号内的,再将结果相加即可.【详解】解:(1)原式=914(7)(15)++-+-=23(22)+-=1;(2)原式=7460(3)3---=6074-+=14;(3)原式=115(8)(9)3-+-÷-- =2815(8)()3-+-÷-=315(8)()28-+-- =6157-+ =1147-; (4)原式=[]100064(4)9-+--⨯=1000(6436)-++=1000100-+=-900.【点睛】本题考查有理数的混合运算.熟记有理数混合运算的运算顺序和每一步的运算法则是解题关键.。
浙教版初中数学试卷2019-2020年浙教版七年级数学上册《有理数的运算》精选试题学校:__________一、选择题1.(2分)223(3)−+−的值是()A.-12 B. 0 C.-18 D.182.(2分)下面结论中,错误的是()A.一个数的平方不可能是负数B.一个数的平方一定是正数C.一个非 0有理数的偶数次方是正数D.一个负数的奇数次方还是负数3.(2分)若两个有理数的和与积都是负数,则这两个有理数()A.都是负数B.都是正数C.一正一负,且正数的绝对值较小D.无法确定4.(2分)设a是大于 1 的有理数,若a、23a+、213a+在数轴上的对应点分别记作 A.B、C,则A、B、C三点在数轴上自左至右的顺序是()A.C、B、A B.B、C、A C.A、B、C D.C.A、B 5.(2分)数学课上老师给出下面的数据,精确的是()A.2002年美国在阿富汗的战争每月耗费10亿美元B.地球上煤储量为5万亿吨以上C.人的大脑有l×1010个细胞D.七年级某班有51个人6.(2分)1.4149保留三个有效数字的近似数是()A .1.41B . 1.42C .1.420D .1.4157.(2分)数6.25×104是 ( ) A .三位数B . 四位数C .五位数D .六位数8.(2分)任何有理数的平方的末位数,不可能是( ) A . 1,4,9,0B . 2,3,7,8C .4,5,6,1D .1,5,6,99.(2分) 下列各式中,运算结果为负数的是( ) A .(-2)×(-3)÷(+4) B .(+1)÷(-1)×(-1)÷(+1) C .1111()()()24816−⨯−÷−⨯D .(-3)×(-5)×(-7)÷(-9)10.(2分)算式(-3. 14)×47+ (-3. 14)×53 是由下列哪一个算式用分配律变形得到的?( )A .(-3.14)×(47+53)B .( -3.14)×( -47-53)C .(-3.1)×( (47-53)D .3.14×(-47+53)11.(2分)当 a=-3,b= 0,c=-4,d=9时,(a-b )×(c+d )的值是( ) A .10B .13C .-14D .-1512.(2分)计算5313716⨯最简便的方法是( ) A .53(13)716+⨯ B .23(14)716−⨯C .53(103)716+⨯D .23(162)716−⨯二、填空题13.(2分)写出三个有理数,使它们都同时满足:①是负数;②是整数;③能被2、3、5整除. 它们是 .14.(2分)若在数轴上表示数a 的点到原点的距离为 3,则3a −= . 15.(2分)已知,|x|=5,y=3,则=−y x . 16.(2分)( )2=16;( )3=64.17.(2分)近似数0.0300精确到 位,含有 个有效数字,l .20万精确到 位,有效数字是 .18.(2分)用四舍五入法取72.633的近似数,精确到个位是 ,精确到十分位是 ;用 四舍五入法把0.7096保留3个有效数字,它的近似值约是 .19.(2分)33亿精确到 位,有 个有效数字,它们是 ;26.5万精确到 位,有 个有效数字,它们是 .20.(2分)在6(2)−中,底数是 ,指数是 ,运算结果是 ;在62−中,底数是 ,指数是 ;运算结果是 . 21.(2分)确定 a 是正数还是负数. (1)若||1a a=−,则a 是 ; (2)若1||aa =,则a 是 . 22.(2分)a 、b 是不同的有理数,若0ab =,则 ;若0ab=,则 . 23.(2分)137−与 是互为倒数; 的倒数是-2. 25.三、解答题24.(8分)两位同学就两个近似数“l .7”和“1.70”是否一样争论不休,甲说是一样的,小数点后面的0可以不要;乙说:不一样,虽然它们都是近似数但精确度不一样,你认为哪一位同学是正确的?为什么?25.(8分)2002年5月15日,我国发射的海洋1号气象卫星,进入预定轨道后,若绕地球运行的速度为每秒7.9×103m ,则运行2×102 s ,走过的路程是多少(用科学记数法表示)?26.(8分)设199920001()(2008)2008M =⨯−,1213121(5)(6)()230N =−⨯−⨯−−,求2()M N −的值,并用科学记数法表示出来.27.(8分)若 a-1 的相反数是 2,b 的绝对值是 3,求a-b 的值.28.(8分)计算: (用简便方法) (1) (+1.3) +(-0.8)+2.7+(-0. 6);(2)13( 2.25)(3)(3)(0.125)84−+−+−++(3)4( 6.74)(1)( 1.74)( 1.8)5++++−+−29.(8分)计算:(1) (-53)×(-9999 );(2)11 (37)()(3)88−⨯−−−⨯;(3)3711 (1)1 48127−−⨯30.(8分)用简便方法计算:(1)12114 ()()(1)(1)(1) 23435−⨯−⨯−⨯−⨯−(2 ) (-5.25 )×(-4.73 )-4.73 ×(-19.75)-25×(-5.27).【参考答案】***试卷处理标记,请不要删除一、选择题1.B2.B3.C4.B5.D6.A7.C8.B 9.C 10.A 11.D 12.D二、填空题13.答案不唯一,如:-30,-60,-90 14.-6或0 15.2或-8 16.4±,417.万分;三;百;1,2,0 18.73,72. 6,0. 71019.亿两;3,3;千,三;2,6,5 20.-2,6,64,2,6,-64 21.(1)负数 (2)正数 22.a=0或b= 0,a=0 23.722−,49−三、解答题24.乙正确,因为 1.7 精确到十分位,1.70 精确到百分位 25.1.58×lO 6m26.由题意,易得M= 2008,N =-8. ∴2226()(20088)2000410M N −=−==⨯ 27.-4或2 28.(1)2.6 (2)-9 (3)5 29.(1)529947 (2)5 (3) 192130.(1)35(2)250。
人教版七年级数学上册第一章有理数单元训练试题含解析一.选择题(共6小题)1.下列说法:①有理数中,0的意义仅表示没有;②整数包括正整数和负整数;③正数和负数统称有理数;④0是最小的整数;⑤负分数是有理数.其中正确的个数()A.1个B.2个C.3个D.5个2.若a,b互为相反数,则下列各对数中不是互为相反数的是()A.﹣2a和﹣2b B.a+1和b+1C.a+1和b﹣1D.2a和2b3.a﹣|a|的值是()A.0B.2a C.2a或0D.不能确定4.某种病毒近似于球体,它的半径约为0.000000005米,用科学记数法表示为()A.5×108B.5×109C.5×10﹣8D.5×10﹣95.下列说法正确的是()A.准确数18精确到个位B.5.649精确到0.1是5.7C.近似数18.0的有效数字的个数与近似数18相同D.由四舍五入将3.995精确到百分位是4.006.数轴上点A和点B表示的数分别是﹣1和3,点P到A、B两点的距离之和为6,则点P 表示的数是()A.﹣3B.﹣3或5C.﹣2D.﹣2或4二.填空题(共5小题)7.若|m|=3,|n|=2且m>n,则2m﹣n=.8.如果|x|=﹣x,那么x=.9.若|a|=3,|b|=5,且a、b异号,则a•b=.10.大于1的正整数m的三次方可“分裂”成若干个连续奇数的和,23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一个奇数是1007,则m的值是.11.定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为(其中k是使为奇数的最小正整数),并且运算重复进行.例如:取n=26,则运算过程如图:那么当n=9时,第2019次“F运算”的结果是.三.解答题(共10小题)12.将下列各数分别填入相应的大括号里:3.14,﹣(+2),+43,﹣0.,﹣10%,,0,|﹣23|,﹣(﹣1)2整数集合:{…}负分数集合:{…}非负整数集合:{…}.13.(﹣)++|﹣0.75|+(﹣)+.14.简便计算:(﹣5)×(﹣3)+(﹣7)×+(﹣12)×.15.已知a与﹣3互为相反数,b与﹣互为倒数,求a﹣b的值.16.若x2=4,|y|=2,且x<y,求x+y和(x﹣y)2的值.17.定义新运算.a⊗b=a2﹣|b|,如3⊗(﹣2)=32﹣|﹣2|=9﹣2=7,计算下列各式.(1)(﹣2)⊗3;(2)5⊗(﹣4);(3)(﹣3)⊗(0⊗(﹣1))18.小聪学习了有理数后,对知识进行归纳总结.【知识呈现】根据所学知识,完成下列填空:(1)|﹣2|=2,|2|=2;(2)(﹣3)2=9,32=9;(3)若|x|=5,则x=;(4)若x2=4,则x=.【知识归纳】根据上述知识,你能发现的结论是:【知识运用】运用上述结论解答:已知|x+1|=4,(y+2)2=4,求x+y的值.19.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从A地出发,晚上到达B地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,﹣9,+8,﹣7,13,﹣6,+12,﹣5.(1)请你帮忙确定B地位于A地的什么方向,距离A地多少千米?(2)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?(3)救灾过程中,冲锋舟离出发点A最远处有多远?20.阅读下面材料:在数轴上5与﹣2所对的两点之间的距离:|5﹣(﹣2)|=7;在数轴上﹣2与3所对的两点之间的距离:|﹣2﹣3|=5;在数轴上﹣8与﹣5所对的两点之间的距离:|(﹣8)﹣(﹣5)|=3在数轴上点A、B分别表示数a、b,则A、B两点之间的距离AB=|a﹣b|=|b﹣a|回答下列问题:(1)数轴上表示﹣2和﹣5的两点之间的距离是;数轴上表示数x和3的两点之间的距离表示为;数轴上表示数和的两点之间的距离表示为|x+2|;(2)七年级研究性学习小组在数学老师指导下,对式子|x+2|+|x﹣3|进行探究:①请你在草稿纸上画出数轴,当表示数x的点在﹣2与3之间移动时,|x﹣3|+|x+2|的值总是一个固定的值为:.②请你在草稿纸上画出数轴,要使|x﹣3|+|x+2|=7,数轴上表示点的数x=.21.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.参考答案一.选择题(共6小题)1.解:①在有理数中,0的意义不仅表示没有,在进行运算时,0还表示正整数与负整数的分界等,故①错误;②整数包括正整数、负整数和0,故②错误;③整数和分数统称为有理数,故③错误;④整数包括正整数和负整数、0,因此0不是最小的整数,故错误;⑤所有的分数都是有理数,因此正确;综上,⑤正确,故选:A.2.解:∵a,b互为相反数,∴a+b=0.A中,﹣2a+(﹣2b)=﹣2(a+b)=0,它们互为相反数;B中,a+1+b+1=2≠0,即a+1和b+1不是互为相反数;C中,a+1+b﹣1=a+b=0,它们互为相反数;D中,2a+2b=2(a+b)=0,它们互为相反数.故选:B.3.解:当a≥0时,a﹣|a|=a﹣a=0;当a<0时,a﹣|a|=a+a=2a;故a﹣|a|的值是2a或0.故选:C.4.解:0.000000005=5×10﹣9.故选:D.5.解:A、准确数不存在精确问题,故本选项错误;B、5.649精确到0.1是5.6,故本选项错误;C、近似数18.0精确到十分位,18精确到个位,故本选项错误;D、由四舍五入将3.995精确到百分位是4.00,故本选项正确;故选:D.6.解:∵AB=|3﹣(﹣1)|=4,点P到A、B两点的距离之和为6,设点P表示的数为x,∴点P在点A的左边时,﹣1﹣x+3﹣x=6,解得:x=﹣2,点P在点B的右边时,x﹣3+x﹣(﹣1)=6,解得:x=4,综上所述,点P表示的数是﹣2或4.故选:D.二.填空题(共5小题)7.解:∵|m|=3,|n|=2且m>n,∴m=3,n=±2,(1)m=3,n=2时,2m﹣n=2×3﹣2=4(2)m=3,n=﹣2时,2m﹣n=2×3﹣(﹣2)=8故答案为:4或8.8.解:∵|x|=﹣x,∴x=非正数.故答案为:非正数.9.解:∵|a|=3,|b|=5,∴a=±3,b=±5.∵a、b异号,∴a=3,b=﹣5或a=﹣3,b=5.∴ab=﹣15.故答案为:﹣15.10.解:∵底数是2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,∴m3分裂成m个奇数,所以,到m3的奇数的个数为:2+3+4+…+m=,∵2n+1=1007,n=503,∴奇数1007是从3开始的第503个奇数,∵=495,=527,∴第503个奇数是底数为32的数的立方分裂的奇数的其中一个,即m=32.故答案为:32.11.解:由题意可知,当n=9时,历次运算的结果是:3×9+5=32,=1(使得为奇数的最小正整数为16),1×3+5=8,=1,…故32→1→8→1→8→…,即从第四次开始1和8出现循环,偶数次为1,奇数次为8,∴当n=9时,第2019次“F运算”的结果是8.故答案为:8.三.解答题(共10小题)12.解:整数集合:{﹣(+2),+43,0,|﹣23|,﹣(﹣1)2}负分数集合:{﹣0.,﹣10%}非负整数集合:{+43,0,|﹣23|}.故答案为:﹣(+2),+43,0,|﹣23|,﹣(﹣1)2;﹣0.,﹣10%;+43,0,|﹣23|.13.解:原式=﹣0.75+3+0.75﹣5.5+2=6﹣5.5=0.5.14.解:(﹣5)×(﹣3)+(﹣7)×(﹣3)+(﹣12)×3,=5×3+7×3﹣12×3=3×(5+7﹣12)=3×0=0.15.解:∵a与﹣3互为相反数,b与﹣互为倒数,∴a=3,b=﹣2.∴a﹣b=3﹣(﹣2)=3+2=5.16.解:∵x2=4,|y|=2,且x<y,∴x=﹣2,y=2.∴x+y=﹣2+2=0,(x﹣y)2=(﹣2﹣2)2=(﹣4)2=16.17.解:(1)(﹣2)⊗3=(﹣2)2﹣|3|=4﹣3=1;(2)5⊗(﹣4))=52﹣|﹣4|=25﹣4=21;(3)根据题中的新定义得:0⊗(﹣1)=0﹣1=﹣1,则(﹣3)⊗(0⊗(﹣1))=(﹣3)⊗(﹣1)=9﹣1=8.18.解:【知识呈现】(3)若|x|=5,则x=±5;(4)若x2=4,则x=±2.【知识归纳】根据上述知识,你能发现的结论是:绝对值等于一个正数的数有两个,平方等于一个正数的数有两个;【知识运用】根据题意得:x+1=4或﹣4,y+2=2或﹣2,解得:x=3或﹣5,y=0或﹣4,当x=3,y=0时,x+y=3;当x=3,y=﹣4时,x+y=﹣1;当x=﹣5,y=0时,x+y=﹣5;当x=﹣5,y=﹣4时,x+y=﹣9.综上所述,x+y的值是3,﹣1,﹣5,﹣9..故答案为:±5;±2;绝对值等于一个正数的数有两个,平方等于一个正数的数有两个.19.解:(1)∵14﹣9+8﹣7+13﹣6+12﹣5=20,答:B地在A地的东边20千米;(2)这一天走的总路程为:14+|﹣9|+8+|﹣7|+13+|﹣6|+12|+|﹣5|=74千米,应耗油74×0.5=37(升),故还需补充的油量为:37﹣28=9(升),答:冲锋舟当天救灾过程中至少还需补充9升油;(3)∵路程记录中各点离出发点的距离分别为:14千米;14﹣9=5(千米);14﹣9+8=13(千米);14﹣9+8﹣7=6(千米);14﹣9+8﹣7+13=19(千米);14﹣9+8﹣7+13﹣6=13(千米);14﹣9+8﹣7+13﹣6+12=25(千米);14﹣9+8﹣7+13﹣6+12﹣5=20(千米),25>20>19>14>13>>6>5,∴最远处离出发点25千米;(每小题2分)20.解:(1)数轴上表示﹣2和﹣5的两点之间的距离=|﹣2﹣(﹣5)|=3;数轴上表示数x和3的两点之间的距离=|x﹣3|;数轴上表示数x和﹣2的两点之间的距离表示为|x+2|;(2)①当﹣2≤x≤3时,|x+2|+|x﹣3|=x+2+3﹣x=5;②当x>3时,x﹣3+x+2=7,解得:x=4,当x<﹣2时,3﹣x﹣x﹣2=7.解得x=﹣3.∴x=﹣3或x=4.故答案为:(1)3;|x﹣3|;x;﹣2;(2)5;﹣3或4.21.解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.人教版初中数学七年级上册第1章《有理数》单元测试题(一、单选题1.移动互联网已经全面进入人们的日常生活,全国用户总数量超过3.87亿人,将3.87亿用科学记数法表示应为()A. 0.387×109B. 3.87×108C. 38.7×107D. 387×1062.某市地铁一号与地铁二号线接通后,该市交通通行和转换能力成倍增长,该工程投资预算约为930000万元,这一数据用科学记数法表示为()A. 9.3×105万元B. 9.3×106万元C. 0.93×106万元D. 9.3×104万元3.一种面粉的质量标识为“25±0.20千克”,下列面粉中合格的是()A. 25.30千克B. 24.70千克C. 25.51千克D. 24.82千克4.下列结论错误的是()A. 若a,b异号,则a b<0,<0B. 若a,b同号,则a b>0,>0C. D.5.如果x<0,y>0,x+y<0,那么下列关系式中,正确的是( )A. x>y>-y>-xB. -x>y>-y>xC. y>-x>-y>xD. -x>y>x>-y6.28 cm接近于( )A. 珠穆朗玛峰的高度B. 三层楼的高度C. 姚明的身高D. 一张纸的厚度7.我国最大的领海是南海,总面积有3 500 000平方公里,将数3 500 000用科学记数法表示应为()A. 3.5×106B. 3.5×107C. 35×105D. 0.35×1088.下列各式:-(-5)、-|-5|、-52、(-5)2、,计算结果为负数的有( )A. 4个B. 3个C. 2个D. 1个9.把(﹣5)﹣(+7)+(﹣3)+(﹣11)写成省略加号的代数和的形式,正确的是()A. ﹣5+7﹣3﹣11B. (﹣5)(+7)(﹣3)(﹣11)C. ﹣5﹣7﹣3﹣11D. ﹣5﹣7+﹣3+11二、填空题10.一个数的平方与这个数的立方相等,那么这个数是________.11.按要求取近似数:0.02049≈________(精确到0.01).12.绝对值小于的整数有________.13.填空:(1)-40÷(-5)=__________;【答案】8(1)(-36)÷6=________;(2)8÷(-0.125)=________;(3)________÷32=0.14.①若,则a与0的大小关系是a ________0.②若,则a与0的大小关系是a ________0.15.比较大小:- ________- .三、计算题16.计算:.17.18.(1)-17+3;(2)-32+ ÷(-3).四、解答题19.已知有理数a在数轴上的位置如图所示:试比较a,-a,|a|,a2和的大小,并将它们按从小到大的顺序,用“<”或“=”连接起来.20.卫星绕地球表面做圆周运动的速度约为7.9×103米/秒,则卫星运行8×103秒所走的路程约是多少?21.某地一天中午12时的气温是6°C,傍晚5时的气温比中午12时下降了4°C,凌晨4时的温度比傍晚5时还低4°C,问傍晚5时的气温是多少?凌晨4时的气温是多少?答案一、单选题1.【答案】B【解析】【解答】解:将3.87亿用科学记数法表示为:3.87×108故选:B.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.2.【答案】A【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】将930000用科学记数法表示为9.3×105.故选A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】【解答】25+0.20=25.2;25−0.20=24.8∵25.2<25.3,∴A不符合题意;,24.7<24.8,∴B不符合题意;∵25.2<25.51,∴C不符合题意;∵25.2>24.82>24.8,∴D符合题意。
鲁教版2019七年级数学第一章三角形能力提升检测题A(含答案)1.若一个三角形中,三个内角的度数比是1:2:3,则这个三角形中最大的内角度数为( )A.300B.450C.600D.9002.点P到△ABC的三个顶点的距离相等,则点P是△ABC ( )的交点.A.三条高B.三条角平分线C.三条中线D.三边的垂直平分线3.线段AB的垂直平分线上一点P到A点的距离PA=5,则点P到B点的距离PB等于()A.PB=5 B.PB>5 C.PB<5 D.无法确定4.以下列各组线段的长为边,能组成三角形的是()A.1cm、2cm、3cm B.1dm、5cm、6cm C.1dm、3cm、3cm D.2cm、4cm、7cm5.已知等腰三角形的一边长为4,另一边长为8,则这个等腰三角形的周长为()A.16 B.20 C.20或16 D.126.如图,AD是△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S△ABC=7,DE =2,AB=4,则AC的长是()A.6 B.5 C.4 D.37.下列各个图形中,哪一个图形中AD是△ABC中BC边上的高()A.B.C.D.8.下列设备,没有利用三角形的稳定性的是()A.活动的四边形衣架B.起重机C.屋顶的三角形钢架D.索道支架9.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为()A.45°B.60°C.90°D.100°10.如图,用直尺和圆规作射线OC,使它平分∠AOB,则△ODC≌△OEC的理由是()A.SSS B.SAS C.AAS D.HL第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.在△ABC 中,∠C =80°,∠B ﹣∠A =40°,则∠A =_____.12.如图所示,在中,,AE 的垂直平分线MN 交BE 于点C ,且,则的度数是______.13.如图,在中,.点在上,点在的延长线上,连接FD 并延长交BC 于点E ,若∠BED=2∠ADC ,AF=2,DF=7,则的面积为______.14.如图,在ABC 中,已知A ∠=70o ,ABC ∠、ACB ∠的平分线OB 、OC 相较于点O ,则BOC ∠的度数为______.15.如图,在△ABC 中,AB=AC ,BE 、CF 是中线,则由______可得△AFC ≌△AEB .16.如图,正五角星的每个角都是顶角为36°的等腰三角形,则∠等于_____.17.如图,BD平分∠ABC交AC于点D,DE⊥BC于点E,若AB=5,BC=6,S△ABC =9,则DE的长为______.18.一个三角形的三个内角的度数的比是1:2:3,这个三角形是_________________三角形.(填锐角、直角或钝角)19.已知三角形的三边分别为a,b,c,其中a,b满足,那么这个三角形的第三边c的取值范围是____.20.△ABC中,∠A=32°,∠B=76°,则与∠C相邻的外角是_____°.三、解答题21.如图,在△AEC中,点D是EC上的一点,且AE=AD,AB=AC,∠1=∠2.求证:BD=EC.22.如图,在平面直角坐标系中,已知A(0,8),B(4,8),C是x轴正半轴上一点,点P满足下面两个条件:①P到∠AOC两边的距离相等;②P A=PB.(1)利用尺规,作出点P的位置(不写作法,保留作图痕迹);(2)点P的坐标为.23.如图,,,BE与CD相交于点O.在不添加辅助线的情况下,由已知条件可以得出许多结论,例如:≌、、等请你动动脑筋,再写出3个结论,所写结论不能与题中举例相同且只要写出3个即可请你从自己写出的结论中,选取一个说明其成立的理由.24.用直尺和圆规作一个角等于∠MON.(不写步骤,保留作图痕迹)25.如图,△ABC中,∠C=90°,∠BAC=30°,点E是AB的中点.以△ABC的边AB 向外作等边△ABD,连接DE.求证:AC=DE.26.如图①,∠MON=70°,点A、B在∠MON的两条边上运动,∠MAB与∠NBA的平分线交于点P.(1)点A、B在运动过程中,∠P的大小会变吗?如果不会,求出∠P的度数;如果会,请说明理由.(2)如图②,继续作BC是平分,AP的反向延长线交BC的延长线于点D,点A、B在运动过程中,∠D的大小会变吗?如果不会,求出∠D的度数;如果会,请说明理由.(3)如图②,∠P和∠D有怎样的数量关系?(直接写出答案)27.如图,直线相交于点,平分,.(1)若,求的度数;(2)若,求的度数.28.如图所示,在Rt△ABC中,∠C=90°,∠A=30°.(1)尺规作图:作线段AB的垂直平分线l(保留作图痕迹,不写作法);(2)在已作的图形中,若l分别交AB、AC及BC的延长线于点D、E、F,连接BE.求证:EF=2DE.参考答案1.D【解析】【分析】根据三角形的内角和定理,设一个角是x度,则另两角分别是2x度,3x度.根据三角形内角和定理得到:x+2x+3x=180.【详解】若三角形三个内角度数的比为1:2:3,设一个角是x度,则另两角分别是2x度,3x度.根据三角形内角和定理得到:x+2x+3x=180,解得:x=30度.则最大的角是3x=90度.故选:D【点睛】本题考查了三角形的内角和定理,找准等量关系是解题的关键.2.D【解析】【分析】利用线段垂直平分线性质判断即可.【详解】因为点P到△ABC三个顶点的距离相等,则点P应是△ABC的三条边垂直平分线的交点.故选:D.【点睛】此题考查了线段垂直平分线的性质,以及三角形的角平分线、中线和高,熟练掌握性质是解本题的关键.3.A【解析】【分析】根据线段垂直平分线的性质解答即可.【详解】∵点P在线段AB的垂直平分线上,PA=5,∴PB=PA=5故选A.【点睛】本题考查了线段垂直平分线的性质,线段垂直平分线上的点,到线段两端的距离相等,熟练掌握线段垂直平分线的性质是解题关键.4.B【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”进行分析即可得出结论.【详解】根据三角形的三边关系可知:A.2+1=3,不能组成三角形;B.1dm=10cm,5+6>10,能组成三角形;C.1dm=10cm,3+3<10,不能组成三角形;D.2+4<7,不能组成三角形.故选B.【点睛】本题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.注意单位要统一.5.B【解析】【分析】题目给出等腰三角形有两条边长为4cm和8cm,而没有明确腰是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】当8cm为腰,4cm为底时,4+8>8,能构成等腰三角形,周长为8+8+4=20cm;当4cm为腰,8cm为底时,4+4=8,不能构成等腰三角形.故答案为:B.本题考查了等腰三角形的性质和三角形三边关系,熟练掌握这些知识点是本题解题的关键. 6.D【解析】【分析】首先根据角平分线上的点到角两边的距离相等可得DE=DF,再算出△ADB的面积,用S△ABC-S△ADB可得到△ADC的面积,根据面积公式可计算出AC的长.【详解】解:∵AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,∵DE=2,AB=4,∴S△ADB=•AB•DE=×2×4=4,∵S△ABC=7,∴S△ADC=7-4=3,∵•DF•AC=3,×2×AC=3,∴AC=3.故选D.【点睛】此题主要考查了角平分线的性质,以及三角形的面积公式,关键是掌握角平分线上的点到角两边的距离相等得到DE=DF=2.7.D【解析】【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段即为该边上的高线.【详解】过点A作直线BC的垂线段,即画BC边上的高AD,所以画法正确的是D.【点睛】考查了三角形的高的概念,能够正确作三角形一边上的高.8.A【解析】【分析】根据三角形的特性-稳定性解答即可.【详解】解:没有利用三角形的稳定性的是活动的四边形衣架,故选:A.【点睛】本题考查了多边形,三角形的稳定性,正确的理解题意是解题的关键.9.C【解析】【分析】根据方格纸的特征可判定△ABC≌△AED,根据全等三角形的性质可得∠1=∠AED,再由∠2+∠AED=90°,即可得∠1+∠2=90°.【详解】∵AB=AE,∠A=∠A=90°,AC=AD,∴△ABC≌△AED,∴∠1=∠AED,∵∠2+∠AED=90°,∴∠1+∠2=90°.故选C.【点睛】本题考查了方格纸的特性及全等三角形的判定与性质,证明△ABC≌△AED是解决问题的关键.10.A【解析】【分析】根据SSS证明三角形全等即可.【详解】由作图可知,OD=OE,DC=EC,在△ODC与△OEC中,∴△ODC≌△OEC(SSS),故选:A.【点睛】考查全等三角形的判定,关键是根据三角形全等的判定方法解答.11.30°.【解析】【分析】先根据三角形内角和等于180°求出∠B+∠A的度数,然后与∠B﹣∠A=40°两式相加即可求出∠A.【详解】解:∵∠C=80°,∴∠B+∠A=180°﹣80°=100°①,∵∠B﹣∠A=40°②,∴①﹣②得,2∠A=140°,解得∠A=30°.故答案为:30°.【点睛】本题考查了三角形的内角和定理与加减消元法,先求出∠B+∠C的度数是解题的关键.12.【解析】【分析】首先连接AC,由AE的垂直平分线MN交BE于点C,可得AC=EC,又由AB+BC=BE,易证得AB=AC,然后由等腰三角形的性质与三角形内角和定理,求得∠BAE=∠BAC+∠CAE=180°-4∠E+∠E=105°,继而求得答案.【详解】连接AC,∵MN是AE的垂直平分线,∴AC=EC,∴∠CAE=∠E,∵AB+BC=BE,BC+EC=BE,∴AB=EC=AC,∴∠B=∠ACB,∵∠ACB=∠CAE+∠E=2∠E,∴∠B=2∠E,∴∠BAC=180°-∠B-∠ACB=180°-4∠E,∵∠BAE=∠BAC+∠CAE=180°-4∠E+∠E=105°,解得:∠E=25°,∴∠B=2∠E=50°.故答案为:50°.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质以及三角形内角和定理,解题关键是注意掌握辅助线的作法和数形结合思想的应用.13.【解析】【分析】作CD的垂直平分线交AD于M,交CD与N,根据垂直平分线的性质可得MC=MD,进而可得∠MDC=∠MCD,根据已知及外角性质可得∠AMC=∠BED,由等腰直角三角形的性质可得∠B=∠CAB=45°,根据三角形内角和定理可得∠ACM=∠BDE,进而可证明∠ADF=∠ACM,进而即可证明∠FCD=∠FDC,根据等腰三角形的性质可得CF=DF,根据已知可求出AC的长,根据三角形面积公式即可得答案.【详解】作CD的垂直平分线交AD于M,交CD与N,∵MN是CD的垂直平分线,∴MC=MD,∴∠MDC=∠MCD,∵∠AMC=∠MDC=∠MCD,∴∠AMC=2∠ADC,∵∠BED=2∠ADC,∴∠AMC=∠BED,∵∠ACB=90°,AC=BC,∴∠B=∠CAB=45°,∵∠ACM=180°-∠CAM-∠AMC,∠BDE=180°-∠B-∠BED,∴∠ACM=∠BDE,∵∠BDE=∠ADF,∴∠ADF=∠ACM,∴∠ADF+∠ADC=∠ACM+∠MCD,即∠FCD=∠FDC,∴FC=FD,∵AF=2,FD=7,∴AC=FC-AF=7-2=5,∴S△ABC=×5×5=.故答案为:【点睛】本题考查了等腰三角形的判定与性质及线段垂直平分线的性质,线段垂直平分线上的点,到线段两端的距离相等;等腰三角形的两个底角相等;熟练掌握相关的定理及性质是解题关键. 14.125°.【解析】【分析】先根据角平分线的定义得到∠1=12∠ABC,∠2=12∠ACB,再根据三角形内角和定理得到∠1+∠2+∠COB=180°,∠ABC+∠ACB+∠A=180°,经过变形后得到∠BOC=90°+12∠A,然后把∠A=70°代入计算即可.【详解】如图,∵∠ABC、∠ACB的平分线OB、OC相交于O.∴∠1=12∠ABC,∠2=12∠ACB,∵∠1+∠2+∠COB=180°,∠ABC+∠ACB+∠A=180°,∴∠1+∠2=180°-∠COB,12(∠ABC+∠ACB+∠A)=90°,∴180°-∠COB+12∠A=90°,∴∠BOC=90°+12∠A,而∠A=70°,∴∠BOC=90°+12×70°=125°.【点睛】本题考查了三角形内角和定理:三角形内角和为180°.也考查了角平分线的定义.15.:SAS.【解析】【分析】由AB=AC,BE、CF是中线可知AE=AF,由∠A是公共角,AB=AC即可根据SAS证明△AFC≌△AEB.【详解】∵BE、CF是中线,∴AF=AB,AE=AC,∵AB=AC∴AE=AF,∵AE=AF,∠A=∠A,AB=AC,∴△AFC≌△AEB(SAS).故答案为:SAS【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.根据已知条件在三角形中的位置来选择方法是解题的关键.16.108°.【解析】【分析】根据三角形内角和定理知,∠AMB==72°,再根据三角形的一个外角与它相邻的内互补,求∠α的度数.【详解】解:∵∠A=36°,∠ACM=∠AMC,∴∠AMC=(180°﹣36°)÷2=72°,∴∠α=∠AMB=180°﹣72°=108°.故答案为:108°.【点睛】本题利用了三角形内角和定理和三角形的一个外角与它相邻的内互补求解17.【解析】【分析】作DF⊥AB,根据角平分线性质得出DE=DF,根据三角形的面积公式得出关于DE的方程,求出即可.【详解】∵BD平分∠ABC交AC于点D,DF⊥AB,DE⊥BC,∴DE=DF,∵S△ABC=9,AB=5,BC=6,∴×6×DE+×5×DF=9,∴DE=DF=.【点睛】本题考查的是角平分线,熟练掌握角平分线定理是解题的关键.18.直角【解析】【分析】分析题意,三角形三个内角的度数比是1:2:3,即把一个三角形的内角和平均分成了(1+2+3)份;因为三角形的内角和为180°,所以可先算出平均1份的度数,再求出最大角的度数,进而判断这个三角形是哪种三角形.【详解】解:331 180******** 12362︒⨯=︒⨯=︒⨯=︒++,所以这个三角形是直角三角形.故答案为:直角.【点睛】考查三角形的内角和,掌握三角形的内角和定理是解题的关键.19.【解析】【分析】根据非负数的性质列式求出a、b,再根据三角形的任意两边之和大于第三边,两边只差小于第三边求解即可.【详解】∵,∴=0,b-4=0,∴a=3,b=4,∴4-3<c<4+3,即.故答案是:.【点睛】考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0;三角形的三边关系.20.108.【解析】【分析】根据三角形内角与外角的关系可得答案.【详解】解:如图,∠1=∠A+∠B, ∠A=32°, ∠B=76° ,∠1=32°+76°=108°,故答案为:108°.【点睛】本题主要考查三角形内角与外角的关系: 三角形的一个外角等于和它不相邻的两个内角的和.21.见解析。
一、选择题1.数轴上点A 和点B 表示的数分别为-4和2,若要使点A 到点B 的距离是2,则应将点A向右移动( )A .4个单位长度B .6个单位长度C .4个单位长度或8个单位长度D .6个单位长度或8个单位长度2.下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=3.计算:11322⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .﹣3 B .3 C .﹣12 D .124.在-1,2,-3,4,这四个数中,任意三数之积的最大值是( ) A .6B .12C .8D .24 5.如图是北京地铁一号线部分站点的分布示意图,在图中以正东为正方向建立数轴,有如下四个结论: ①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14;上述结论中,所有正确结论的序号是( )A .①②③B .②③④C .①④D .①②③④ 6.2--的相反数是( )A .12-B .2-C .12D .27.绝对值大于1小于4的整数的和是( )A.0 B.5 C.﹣5 D.108.-1+2-3+4-5+6+…-2011+2012的值等于A.1 B.-1 C.2012 D.10069.在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为()A.1,2 B.1,3C.4,2 D.4,310.计算2136⎛⎫---⎪⎝⎭的结果为()A.-12B.12C.56D.5611.一个数的绝对值是3,则这个数可以是()A.3B.3-C.3或者3-D.1 312.计算-3-1的结果是()A.2 B.-2 C.4 D.-4二、填空题13.已知四个互不相等的整数a,b,c,d满足abcd=77,则a+b+c+d=___________.14.绝对值小于2018的所有整数之和为________.15.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)16.把35.89543精确到百分位所得到的近似数为________.17.有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中是准确数的有_____,是近似数的有_____.18.定义一种正整数的“H运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H运算”的结果是22,经过2次“H运算”的结果为11,经过3次“H运算”的结果为46,那么数28经过2020次“H运算”得到的结果是_________.19.计算:(1)(2)(3)(4)(2019)(2020)++-+++-++++-=_____.20.在数轴上,距离原点有2个单位的点所对应的数是________.三、解答题21.点A、B在数轴上所表示的数如图所示,回答下列问题:(1)将A在数轴上向左移动1个单位长度,再向右移动9个单位长度,得到点C,求出B、C两点间的距离是多少个单位长度?(2)若点B 在数轴上移动了m 个单位长度到点D ,且A 、D 两点间的距离是3,求m 的值.22.阅读下面材料:在数轴上6与1-所对的两点之间的距离:6(1)7--=; 在数轴上2-与3所对的两点之间的距离:235--=;在数轴上8-与4-所对的两点之间的距离:(8)(4)4---=;在数轴上点A 、B 分别表示数a 、b ,则A 、B 两点之间的距离AB a b b a =-=-. 回答下列问题:(1)数轴上表示2-和5-的两点之间的距离是_______;数轴上表示数x 和3的两点之间的距离表示为_______;数轴上表示数_______和_______的两点之间的距离表示为2x +;(2)七年级研究性学习小组在数学老师指导下,对式子23x x ++-进行探究: ①请你在草稿纸上画出数轴,当表示数x 的点在2-与3之间移动时,32x x -++的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使327x x -++=,数轴上表示点的数x =_______.23.计算(1)3124623⎛⎫⎛⎫-÷-+⨯- ⎪ ⎪⎝⎭⎝⎭(2)()()34011 1.950.50|5|5---+-⨯⨯--+.24.计算下列各式的值:(1)1243 3.55-+-(2)131(48)64⎛⎫-+⨯- ⎪⎝⎭(3)22350(5)1--÷--25.计算:(1)231+-+;(2)()3202111024⎡⎤-⨯+-÷⎣⎦. 26.表格记录的是龙岗区图书馆上周借书情况:(规定:超过200册记为正,少于200册记为负).(1)上星期五借出多少册书?(2)上星期四比上星期三多借出几册?(3)上周平均每天借出几册?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】A 点移动后可以在B 点左侧,或右侧,分两种情况讨论即可.【详解】∵到2距离为2的数为2+2=4或2-2=0∴-4移动到0需向右移动4个单位长度,移动到4需向右移动8个单位长度故选C .【点睛】本题考查了数轴表示距离,分两种情况一左一右讨论是本题的关键.2.C解析:C【分析】根据有理数的运算法则逐一判断即可.【详解】(2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C .【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化. 3.C解析:C【分析】根据有理数的除法法则,可得除以一个数等于乘以这个数的倒数,再根据有理数的乘法运算,可得答案.【详解】原式﹣3×(﹣2)×(﹣2)=﹣3×2×2=﹣12,故选:C.【点睛】本题考查了有理数的乘除法法则,除以一个数等于乘这个数的倒数,计算过程中,最后结果的正负根据原式中负号的个数确定,原则是奇负偶正.4.B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B.【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.5.D解析:D【分析】数轴上单位长度是统一的,利用图象,根据两点之间单位长度是否统一,判断即可.【详解】:①当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣3.5时,表示东单的点所表示的数为6,故①说法正确;②当表示天安门东的点所表示的数为0,表示天安门西的点所表示的数为﹣7时,表示东单的点所表示的数为12,故②说法正确;③当表示天安门东的点所表示的数为1,表示天安门西的点所表示的数为﹣2.5时,表示东单的点所表示的数为7,故③说法正确;④当表示天安门东的点所表示的数为2,表示天安门西的点所表示的数为﹣5时,表示东单的点所表示的数为14,故④说法正确.故选:D.【点睛】本题考查了数轴表示数,数轴的三要素是:原点,正方向和单位长度,因此本题的关键是确定原点的位置和单位长度.6.D解析:D【分析】|-2|去掉绝对值后为2,而-2的相反数为2.【详解】--的相反数是2,2故选:D.【点睛】本题考查了相反数和绝对值的概念,本题的关键是首先要对原题进行化简,然后在求这个数的相反数;其中,正数的相反数是负数,负数的相反数是正数,0的相反数是0.7.A解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A.8.D解析:D【解析】解:原式=(﹣1+2)+(﹣3+4)+(﹣5+6)+…+(﹣2011+2012)=+1+1+1+…+1=1006.故选D.点睛:本题考查了有理数的混合运算,正确根据式子的特点进行正确分组是关键.9.A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30,30+4×3=42,故选A.点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.10.A解析:A【分析】根据有理数加减法法则计算即可得答案.【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A .【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.11.C解析:C【解析】试题∵一个数的绝对值是3,可设这个数位a ,∴|a|=3,∴a=±3故选C .12.D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.二、填空题13.【解析】77=7×11=1×1×7×11=-1×1×(-7)×11=-1×1×7×(-11)由题意知abcd 的取值为-11-711或-117-11从而a+b+c+d=±4故答案为±4解析:4±【解析】77=7×11=1×1×7×11= -1×1×(-7)×11= -1×1×7×(-11),由题意知,a 、b 、c 、d 的取值为-1,1,-7,11或-1,1,7,-11,从而a+b+c+d=±4,故答案为±4.14.0【分析】根据绝对小于2018可得许多互为相反数的数根据互为相反数的和等于可得答案【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2解析:0【分析】根据绝对小于2018,可得许多互为相反数的数,根据互为相反数的和等于,可得答案.【详解】解:绝对值小于2018的所有整数的和:(-2017)+(-2016)+(-2015)+…+0+1+2+…+2017=0,故答案为0.【点睛】本题考查了有理数的加法,先根据绝对值小于2018写出各数,再根据有理数的加法,得出答案.15.46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:解析:46×108【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为10na 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16.90【分析】要精确到百分位看看那个数字在百分位上然后看看能不能四舍五入【详解】解:3589543可看到9在百分位上后面的5等于5往前面进一位所以有理数3589543精确到百分位的近似数为3590故答解析:90【分析】要精确到百分位,看看那个数字在百分位上,然后看看能不能四舍五入.【详解】解:35.89543可看到9在百分位上,后面的5等于5,往前面进一位,所以有理数35.89543精确到百分位的近似数为35.90,故答案为:35.90.【点睛】本题考查了精确度,精确到哪一位,即对下一位的数字进行四舍五入.17.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.18.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.19.【分析】第1个数与第2个数相结合第3个数与第4个数相结合……第2019个数与第2020个数相结合进行计算即可【详解】原式故答案为:【点睛】本题考查了加法的结合律根据加数的特点将从第一个开始的每相邻两-解析:1010【分析】第1个数与第2个数相结合,第3个数与第4个数相结合,……,第2019个数与第2020个数相结合进行计算即可.【详解】=-+-++-=-----=-.原式(12)(34)(20192020)11111010-.故答案为:1010【点睛】本题考查了加法的结合律,根据加数的特点,将从第一个开始的每相邻两个数结合是解决此题的关键.20.【分析】由绝对值的定义可知:|x|=2所以x=±2【详解】设距离原点有2个单位的点所对应的数为x由绝对值的定义可知:|x|=2∴x=±2故答案为±2【点睛】本题考查了绝对值的性质属于基础题型解析:2±【分析】由绝对值的定义可知:|x|=2,所以x=±2.【详解】设距离原点有2个单位的点所对应的数为x,由绝对值的定义可知:|x|=2,∴x=±2.故答案为±2.【点睛】本题考查了绝对值的性质,属于基础题型.三、解答题21.(1)B、C两点间的距离是3个单位长度;(2)m的值为2或8.【分析】(1)利用数轴上平移左移减,右移加可求点C所表示的数为﹣3﹣1+9=5,利用绝对值求两点距离BC=|2﹣5|=3;(2)分类考虑当点D在点A的左侧与右侧,利用AD=3,求出点D所表示的数,再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5,∴BC=|2﹣5|=3.(2)当点D在点A的右侧时,点D所表示的数为﹣3+3=0,所以点B移动到点D的距离为m=|2﹣0|=2,当点D在点A的左侧时,点D所表示的数为﹣3﹣3=﹣6,所以点B移动到点D的距离为m=|2﹣(﹣6)|=8,答:m的值为2或8.【点睛】本题考查数轴上平移,两点距离问题,利用AD的距离分类讨论点D的位置是解题关键.22.(1)3;|x−3|;x,-2;(2)5;−3或4.(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可;(2)①先化简绝对值,然后合并同类项即可;②分为x>3和x<−2两种情况讨论.【详解】解:(1)数轴上表示−2和−5的两点之间的距离为:|−2−(−5)|=3;数轴上表示数x和3的两点之间的距离为:|x−3|;数轴上表示数x和−2的两点之间的距离表示为:|x+2|;故答案为:3,|x−3|,x,-2;(2)①当x在-2和3之间移动时,|x+2|+|x−3|=x+2+3−x=5;②当x>3时,x−3+x+2=7,解得:x=4,当x<−2时,3−x−x−2=7.解得x=−3,∴x=−3或x=4.故答案为:5;−3或4.【点睛】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键.23.(1)14;(2)0【分析】(1)先计算乘法和除法,再计算加法;(2)分别计算乘方、乘法和绝对值,再计算加法和减法.【详解】解:(1)原式=21 24633⎛⎫⎛⎫-⨯-+⨯-⎪ ⎪⎝⎭⎝⎭()162=+-14=;(2)原式011055=-++-+=0.【点睛】本题考查有理数的混合运算.(1)中注意要先把除法化为乘法再计算;(2)中注意多个有理数相乘时,只要有一个因数为0,那么积就为0.24.(1)-24.3;(2)-76;(3)-12【分析】(1)先将减法化为加法,再计算加法即可;(2)利用乘法分配律计算即可;(3)先计算乘方,再计算除法,最后计算减法.【详解】解:(1)原式=24 3.2( 3.5)-++-(2)原式=131(48)(48)(48)64⨯--⨯-+⨯- =488(36)-++-=-76;(3)原式=950251--÷-=921---=9(2)(1)-+-+-=-12.【点睛】本题考查有理数的混合运算.熟记运算顺序和每一步的运算法则是解题关键. 25.(1)6;(2)12-【分析】(1)先化简绝对值,再算加法即可求解;(2)先算乘方,再算括号里面的,最后算乘除即可.【详解】(1)原式=2+3+1=6;(2)原式=1(108)4-⨯-÷=124-⨯÷=1124-⨯⨯=12- 【点睛】此题考查有理数的混合运算,掌握运算顺序和运算法则是解答此题的关键.26.(1)188册;(2)25册;(3)202册【分析】(1)由题意可知,周五借出的册数少于200册,即可解答.(2)根据正负数的定义分别求出周三、周四的册数,再解答即可.(3)将5天的册数分别求出,再求平均数即可.【详解】解:(1)200-12=188册.(2)(200+8)-(200-17)=208-183=25册.(3)[(200+21)+(200+10)+(200-17)+(200+8)+(200-12)]÷5=202册. 答:上星期五借出188册书,上星期四比上星期三多借出25册,上周平均每天借出202册.【点睛】主要考查正负数在实际生活中的应用,有理数加减乘除混合运算的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.。
人教版初中数学七年级上册第一章《有理数》综合能力检测题一、选择题1.-2019的相反数是( )A.-2019B.2019C.-20191D. 20191 2.一个数的倒数等于它本身的数是( )A.1B.-1C.±1D.03.如果两个数的绝对值相等,则这两个数( )A.互为相反数 B .相等 C.积为0 D.互为相反数或相等4.下列说法中正确的是( )A.一个数前面加上“-”号,这个数就是负数B.非负数就是正数C.正数和负数统称为有理数D.0既不是正数又不是负数5.下列各对数中,数值相等的是( )A.-27与(-2)7B.-32与(-3)2C.-3×23与-32×2D.-(-3)2与-(-2)36.大于-2019而小于2020的所有整数的和是( )A.-2019B.-2018C.2019D.20207.当n 为正整数时,(-1)2n +1-(-1)2n 的值是( )A.0B.2C.-2D.2,或-28.定义a ∨b 表示a 、b 两数中较大的一个,a ∧b 表示a 、b 两数中较小的一个,则(50∨52)∨(49∧51)的结果是( )A.50B.52C.49D.519.某人用1000元购进一批货物,第二天售出,获利110,过几天又以900元购进一批货物,但这一次亏了10%,这样,他在这两次交易中( )A.不盈不亏B.盈10元C.亏10元D.不能确定10.31=3,32=9,33=27,34=81,35=243,36=729,…,用你发现的规律写出32019的末位数字是( )A.3B.9C.7D.1二、填空题11.绝对值最小的有理数是_____,最小的正整数是_____.12.写出与-32异号的两个有理数:_____.13.比7大-7的数是_____.14.最小的自然数与最大的负整数的差是_____.15.不为零的两数成互为相反数,则它们的商是_____.16.绝对值小于π的所有整数有_____个,其积为_____.17.在数轴上距2.5有3.5个单位长度的点所表示的数是_____.18.19.一外地民工10天的收支情况如下(收入为正):30元,-17元,23元,-15元,-3 元,27元,45元,-10元,-8元,20元.如果他原来有钱60元,则现在他有_____元钱.20.你喜欢吃拉面吗?拉面馆的师傅将一根很粗的面条,捏合一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条,拉成了许多细的面条,如图所示:这样,第4次捏合后可拉出_____根细面条;第_____次捏合后可拉出256根细面条.三、解答题21.计算:(1)-6+213.(2)(712-56+1)÷(-124). 22.某项科学研究,以45分钟为一个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正.例如9:15记为-1,10:45记为1等等,依此类推,上午7:45•应记为多少?23.一天美美和丽丽利用温差来测量山峰的高度.美美在山脚测得的温度是4℃,丽丽此时在山顶测得的温度是-2℃,已知该地区高度每升高100米,气温下降0.6℃,问这个山峰有多高?24.讲完“有理数的乘法”后,老师在课堂上出了下面一道计算题:992122×(-11). 不一会儿,不少同学算出了答案,老师把班上同学的解题归类写到黑板上: 解法一:原式=-219922×11=-2418922=-109912. 解法二:原式=(99+2122)×(-11)=99×(-11)+ 2122×(-11)=-109912. 解法三:原式=(100-122)×(-11)=100×(-11)+122×11=-109912. 对这三种解法,大家议论纷纷,你认为哪种方法最好?说说你的理由,通过对本题的求解,你有何启发?25.若定义一种新的运算为a *b =ab ÷(1-ab ),计算[(3*2)]*16. 26.写出一个三位数,它的各个数位上的数字都不相等,如637,用这个三位数各个数位上的数字组成一个最大数和一个最小数,并用最大数减去最小数,得到一个新的三位数.对于新得到的三位数,重复上面的过程,又得到一个新的三位数,一直重复下去,你发现了什么?请写出你的探索过程.27.任选1,2,3,…,9中的一个数字,将这个数乘7,再将结果乘15 873,你发现了什么规律?能试着解释一下理由吗?28.某一出租车一天下午以文昌阁为出发地在东西方向营运,向东走为正,向西走为负,行车里程(单位:千米)依先后次序记录如下:+9,-3,-5,+4,-8,+6,-5,-6,-4,+10.(1)将最后一名乘客送到目的地,出租车在文昌阁的什么方向?离文昌阁多远?(2)若每公里的价格为2.4元,司机一个下午的营业额是多少?参考答案:一、1.B.点拨:负数的相反数是正数;2.C.点拨:1的倒数等于1,-1的倒数等于-1;3.D.点拨:非负数的绝对值等于它的本身,负数的绝对值等于它的相反数;4.D.点拨:A、B、C都应忽视了0;5.A.点拨:(-2)7=-27,-32=-9≠(-3)2=9,-3×23=-24≠-32×2=-18,-(-3)2=-9≠-(-2)3=-8;6.C.点拨:-2018+(-2017) +(-2016) +…+2016+2017+2018+2019=2019;7.C.点拨:因为(-1)2n+1=-1,(-1)2n=1,所以(-1)2n+1-(-1)2n=-1-1=2;8.B.点拨:由新定义,得(50∨52)∨(49∧51)=52∨49=52;9.B.点拨:1000×110-900×10%=10;10.C.点拨:末位数字依次以3、9、7、1循环,而2019÷4=502…3,即末位数字是7.二、11.0、1;12.答案不惟一,所有正数都可,如,2、9.等等;13.0.点拨:7+(-7)=0;14.1.点拨:最小的自然数是0,最大的负整数是-1,其差为0-(-1)=1;15.-1.点拨:取具体数值验证;16.7、0.点拨:绝对值小于π的所有整数有-3、-2、-1、0、1、2、3,其和为(-3)+(-2)+(-1)+0+1+2+3=0;17.-1和6.点拨:在2.5的左边,且与之相距3.5个单位长度的点是-1,在2.5的右边,且与之相距3.5个单位长度的点是6;18.日,一.点拨:星期一的温差=11℃-2℃=9℃,星期二的温差=12℃-1℃=11℃,星期三的温差=11℃-0℃=11℃,星期四的温差=9℃-(-1)℃=10℃,星期五的温差=7℃-(-4)℃=11℃,星期六的温差=5℃-(-5)℃=10℃,星期日的温差=7℃-(-5)℃=12℃,显然,星期日的温差最大,星期一的温差最小;19.152.点拨:60+30+(-17)+23+(-15)+(-3)+27+45+(-10)+(-8)+20=152;20.16、8.点拨:第在次捏合后可拉出21根细面条,第2次捏合后可拉出22根细面条,第3次捏合后可拉出23根细面条,第4次捏合后可拉出24根细面条,…,第n次捏合后可拉出2n根细面条,所以第4次捏合后可拉出24=16根细面条,若拉出256根细面条,则有2n=256,即2n=28,所以n=8.三、21.(1)原式=-183+73=-323.(2)原式=(712-56+1)×(-24)=(712-56+1)×(-24)=712×(-24)-56×(-24) +1×(-24)=-14+20-24=-18.22.以10时为0,向前每45分钟为一个“-1”,因为7:45到10:00共135分钟,含3个45分钟,所以7:45应记为-3.23.从山脚到山顶温度降低了4-(-2)=6(℃).因为每升高100米平均降低0.6℃,由6÷0.6=10,可知从山脚到山顶共升高了10个100米,所以山高为10×100=2500(米).即综合式子是:[4-(-2)]÷0.6×100=1000(米),即山高为1000米.24.解法二与解法三;解法二与解法三巧妙地利用了拆分思想,把带分数拆成一个整数与一个真分数的和,再应用分配律,简化了计算过程;我们在解题时要善于发现问题的特点.25.因为a*b=ab÷(1-ab),所以[(3*2)]*16=3×2÷(1-3×2)*16=(-65)*16=(-65)×16÷[1-(-65)×16]=(-15)÷65=-15×56=-16.26.若以637为例进行尝试:637→763-367=396→963-369=594→954-459=495→954-459=495,最后结果固定为495,若再用258进行尝试:258→852-258=594→954-459=495→954-459=495.经过多次尝试后发现,总能得到495这结果,并固定在这一结果上,似乎掉进了一个“黑洞”.点拨:这是数学上的“黑洞”问题,有兴趣的同学可以尝试探索四位数、五位数是否也存在同样的“黑洞”,自己发现数学中某些数字的神奇作用,感受数学的无穷魅力.27.取数字3,乘7,再将结果乘15 873,得(3×7)×15 873=21•×15 •873=333 333;取数字5,乘7,再将结果乘15 873,得(5×7)×15 873=35×15 •873=555555;取数字8,乘7,再将结果乘15 873,得(8×7)×15 873=56×15 873=888 888.由此,通过观察发现,任选1,2,3,…,9中的一个数字n ,将这个数乘7,再将结果乘15 873,均得到一个6位数,每位上的数字相同,都是n ,即(n ×7)×15 873=nnn nnn .因为7×15873=111 111,所以(n ×7)×15 873=n ×(7×15 873)=n ×111 111=nnn nnn .点拨:通过探索规律可以发现,数学真奇妙,数学中存在一些具有特殊作用的数字,如本题7与15 873的积就具有神奇的“复印”功能,你能将任意一个1,2,3,…,9中的数字连续“复印”6次,你还能发现其他具有“特异功能”的数字吗?28.(1)因为+9+(-3)+(-5)+4+(-8)+6+(-5)+(-6)+(-4)+10=-2,所以出租车在文昌阁的西边,距文昌阁2千米.(2)因为+9+3-+5-+4+8-+6+5-+6-+4-+10=60,所以60×2.4=144,即司机一个下午的营业额是144元.。
初中七年级数学第一单元测试卷一、选择题(每题3分,共30分)1.下列各数中,最小的数是 ( )A. -3B. 0C. 2D. -12.下列计算正确的是 ( )A. 7+(−7)=14B. 5−(−3)=2C. (−2)×3=6D. 3−6=−23.下列说法中,正确的是 ( )A. 0是最小的整数B. 有理数就是有限小数和无限小数的统称C. 正分数、零、负分数统称为分数D. 一个有理数不是整数就是分数4.下列各式中,去括号正确的是 ( )A. −(a+b)=−a−bB. −(a−b)=−a+bC. a−(b−c)=a−b−cD. a+(b−c)=a+b+c5.下列说法中,错误的是 ( )A. 绝对值等于它本身的数是非负数B. 相反数等于它本身的数只有0C. 倒数等于它本身的数是1和-1D. 平方等于它本身的数是0和1,还有-1 6.下列说法正确的是 ( )A. 绝对值等于2的数是2B. 倒数等于本身的数是1C. 立方等于本身的数是±1D. 平方等于-1的数是-17.下列说法中,正确的是 ( )A. 有理数就是有限小数和无限循环小数的统称B. 数轴上的点表示的数都是有理数C. 一个有理数不是整数就是分数D. 正分数、零、负分数统称为有理数8.下列说法中,正确的是 ( )A. 绝对值等于它的相反数的数是负数B. 任何数的绝对值都是正数C. 只有0的绝对值是它本身D. 绝对值等于它的相反数的数是非正数9.下列计算正确的是 ( )A. 7a−a=6B. 5a2−2b2=3C. 7a+a=7a2D. 3x2+2x2=5x210.下列各式中,去括号正确的是 ( )A. m−(n+p)=m−n+pB. −(m−n)=−m−nC. −(m+n)−n=−m+nD. a+(b−c)=a+b−c二、填空题(每题2分,共20分)1.-7的相反数是 _______,绝对值是 _______。
2.已知∣x∣=5,则x=_______。
丰富的图形世界检测题
一、选择题(每小题3分,共30分)
1.下列几何体没有曲面的是( )
A.圆锥 B.圆柱 C.球 D.棱柱
2.下列说法不正确的是( )
A.球的截面一定是圆 B.组成长方体的各个面中不可能有正方形
C.从三个不同的方向看正方体,得到的都是正方形 D.圆锥的截面可能是圆
3.如图是每个面上都有一个汉字的正方体的一种平面展开图,那么在原正方体中和“国”字相对的面是( )
A.钓B.鱼C.岛D.中
错误!,第4题图) ,第5题图)
4.某几何体的三视图如图所示,这个几何体是( )
A.圆柱B.三棱柱C.长方体D.圆锥
5.一个几何体的三视图如图所示,这个几何体的侧面积为( )
A.2πcm2B.4πcm2C.8πcm2D.16πcm2
6.如图,各图形绕虚线旋转一周能形成球的是( )
7.如图所示,把一张长方形纸片对折,折痕为AB,再以AB的中点O为顶点,把平角∠AOB 三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的直角三角形,那么剪出的直角三角形全部展开铺平后得的平面图形一定是( )
A.正三角形B.正方形C.正五边形D.正六边形
8.如下左图所示的几何体是由一些小正方形组合而成的,则这个几何体从上面看到的图形是( )
9.如下左图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体从上面看到
的图形是( )
10.如下右图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适.以下裁剪示意图中,正确的是( )
二、填空题(每小题3分,共24分)
11.时钟秒针旋转时,形成一个圆面,这说明了______________;三角板绕它的一条直角边旋转一周,形成一个圆锥体,这说明了______________.
12.如图所示,截去正方体一角变成一个多面体,这个多面体有________个面,有________条棱,有________个顶点.
13.如图,折叠后是一个________体.
,第12题图),第13题图)
,第16题图)
14.下列结论中正确的是________.①圆柱由3个面围成,这3个面都是平面;②圆锥由2个面围成,这2个面中,1个是平面,1个是曲面;③球由1个面围成,这个面是平面;④正方体由6个面围成,这6个面都是平面.
15.写出图中截面的形状.
16.如图,在一个仓库里堆放有若干个相同的正方体货箱,仓库管理员将这堆货箱从三个方向看得到的图形画出来,则这堆货箱共有________个.
17.一个棱柱有12个顶点,所有侧棱长的和是48 cm,则每条侧棱长是________.
18.如图是一个正八棱柱,它的底面边长为3 cm,高为6 cm.这个棱柱共有________条棱,________个面,侧面积是________.
三、解答题(共66分)
19.(10分)写出下图中几何体的名称,并按锥体和柱体把它们分类.
20.(8分)连线:将图中四个物体与(下面第二排中)其相对应的从上面观察到的图形连接起来.
21.(8分)画出下面几何体从正面、左面、上面看到的图形.
22.(8分)如图所示是一个食品包装盒的平面展开图.
(1)请写出这个包装盒的几何体的名称;
(2)请根据图中所标的尺寸,计算这个几何体的侧面积.
23.(8分)如图所示的正方体被竖直截去了一部分,求被截去的那一部分的体积.(棱柱的体积等于底面积乘以高)
24.(12分)如图是某几何体从三个方向分别看到的图形.
(1)说出这个几何体的名称;
(2)画出它的一种表面展开图;
(3)若图①的长为15 cm,宽为4 cm;图②的宽为3 cm;图③直角三角形的斜边长为5 cm,试求这个几何体的所有棱长的和是多少?它的侧面积是多大?
25.(12分)把一个长方形绕它的一条边所在的直线旋转一周能得到一个圆柱体,那么把一个长为8 cm,宽为6 cm的长方形,绕它的一条边所在的直线旋转一周后,你能计算出所得到的圆柱体的体积吗?(结果保留π)
参考答案
第一章检测题
1.D 2.B 3.B 4.C 5.C 6.B 7.D 8.D 9.D 10.B 11.线动成面面动成体12.7 12 7 13.长方14.②④15.长方形三角形圆16.5 17.8 cm18.24 10 144 cm219.(1)长方体(2)圆锥(3)六棱柱(4)圆柱(1)(3)(4)是一类,都是柱体(2)是锥体20.①-c ②-a ③-d ④-b
21.22.(1)六棱柱(2)8×2×6=96 23.V=1
2×
(5-4)×(5-3)×5=5(cm3).答:被截去的那一部分体积为5 cm324.(1)三棱柱(2)
(3)棱长和为:(3+4+5)×2+15×3=69 cm侧面积为:3×15+4×15+5×
15=180 cm225.①若绕着长所在的直线旋转,所得图形为圆柱,此时底面圆半径为6 cm,圆柱的高为8 cm,则V=π×62×8=288π(cm3);②若绕着宽所在的直线旋转,所得图形为圆柱,此时底面圆半径为8 cm,圆柱的高为6 cm,则V=π×82×6=384π(cm3).答:所得到的圆柱体的体积为288πcm3或384πcm3。