2019-2020学年八年级数学下册 第一部分 基础知识篇 第17课 归纳猜想型问题(B组)瞄准中考
- 格式:ppt
- 大小:426.00 KB
- 文档页数:13
八年级下册知识点归纳总结数学数学作为一门重要的学科,对于学生的学习和发展具有十分重要的作用。
八年级下册数学内容丰富,其中涵盖了许多重要的知识点。
为了帮助同学们更好地复习和总结这些知识点,下面对八年级下册的数学知识进行归纳总结。
一、代数与函数1. 初步认识函数(1)函数的概念:函数是一种特殊的关系。
(2)函数的表示方法:函数的三要素是输入、输出和对应关系,可以用表格、图象和公式等形式来表示函数。
(3)函数的性质:单调性、奇偶性、周期性等。
2. 一次函数(1)一次函数的概念:一次函数是指次数为1的函数。
(2)一次函数的性质:一次函数的图象是一条直线,可以通过两个点来确定一条一次函数。
(3)一次函数的表达式:函数的表达式通常为y=kx+b,其中k 和b为常数。
3. 二次函数(1)二次函数的概念:二次函数是指次数为2的函数。
(2)二次函数的性质:二次函数的图象是一个抛物线,可以通过顶点、对称轴和焦点等来确定二次函数。
(3)二次函数的表达式:函数的表达式通常为y=ax²+bx+c,其中a、b、c为常数。
4. 等差数列(1)等差数列的概念:等差数列是指数之间的差值相等的数列。
(2)等差数列的通项公式:通项公式为an=a1+(n-1)d,其中a1为首项,d为公差。
二、图形与尺度1. 平行线与三角形(1)平行线的判定:根据平行线的性质,可通过角的对应关系和直线之间的交错性质来判定平行线。
(2)三角形内部角的性质:三角形内部的角和为180°,其中等腰三角形、直角三角形有一些特殊的性质。
2. 四边形(1)四边形的分类:四边形可分为平行四边形、矩形、菱形、正方形等。
(2)四边形内角的性质:四边形的内角和为360°,不同类型的四边形有不同的内角性质。
3. 相似与全等(1)相似的概念:相似是指两个图形形状相同但大小可以不同。
(2)相似三角形的性质与判定:相似三角形的对应角相等,对应边成比例。
第十七章 勾股定理17.1 勾股定理1、勾股定理:如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222a b c += 勾股定理的证明:方法一:4EFGH S S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ ∴222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证17.2 勾股定理的逆定理2、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足222a b c +=,那么这个三角形是直角三角形.3、互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.4、勾股数:能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数常见的勾股数有:3、4、5;6、8、10;5、12、13;7、24、25等 例、在Rt △ABC 中,a=3,b=4,求c .错解由勾股定理,得bacbac cabcab cbaHG F EDCBAa bccbaE D CBA诊断这里默认了∠C为直角.其实,题目中没有明确哪个角为直角,当b>a时,∠B可以为直角,故本题解答遗漏了这一种情况.当∠B为直角时,例、已知Rt△ABC中,∠B=RT∠,,c= b.错解由勾股定理,得诊断这里错在盲目地套用勾股定理“a2+b2=c2”.殊不知,只有当∠C=Rt∠时,a2+b2=c2才能成立,而当∠B=Rt∠时,则勾股定理的表达式应为a2+c2=b2.正确解答∵∠B=Rt∠,由勾股定理知a2+c2=b2.∴例、若直角三角形的两条边长为6cm、8cm,则第三边长为________.错解设第三边长为xcm.由勾股定理,得x2=62+82.=10即第三边长为10cm.诊断这里在利用勾股定理计算时,误认为第三边为斜边,其实题设中并没有说明已知的两边为直角边,∴第三边可能是斜边,也可能是直角边.正确解法设第三边长为xcm.若第三边长为斜边,由勾股定理,得=10(cm)若第三边长为直角边,则8cm长的边必为斜边,由勾股定理,得=(cm)因此,第三边的长度是10cm或者例、如图,已知Rt △ABC 中,∠BAC=90°,AD 是高,AM 是中线,且AM=12BC=233AD.又RT △ABC的周长是(6+23)cm.求AD .错解 ∵△ABC 是直角三角形, ∴AC:AB:BC=3:4:5 ∴AC ∶AB ∶BC=3∶4∶5.∴AC=312(6+23)=332+,AB=412(6+23)=6233+,BC=512(6+23)=15536+又∵12AC AB •=12BC AD • ∴AD=AC AB BC •=336232315536++⨯+ =(33)2(33)5(33)+•++=25(3+3)(cm) 诊断 我们知道,“勾三股四弦五”是直角三角形中三边关系的一种特殊情形,并不能代表一般的直角三角形的三边关系.上述解法犯了以特殊代替一般的错误.正确解法∵AM=233AD ∴MD=222(3)3AD AD -=33AD 又∵MC=MA ,∴CD=MD . ∵点C 与点M 关于AD 成轴对称. ∴AC=AM ,∴∠AMD=60°=∠C .∴∠B=30°,AC=12BC ,AB=32BC∴AC+AB+BC=12BC+32BC+BC=6+23.∴BC=4.∵12BC=233AD,∴AD=12233BC=3(cm)例、在△ABC中,a∶b∶c=9∶15∶12,试判定△ABC是不是直角三角形.错解依题意,设a=9k,b=15k,c=12k(k>0).∵a2+b2=(9k)2+(15k)2=306k2,c2=(12k)2=144k2,∴a2+b2≠c2.∴△ABC不是直角三角形.诊断我们知道“如果一个三角形最长边的平方等于另外两边的平方和,那么这个三角形是直角三角形”.而上面解答错在没有分辨清楚最长边的情况下,就盲目套用勾股定理的逆定理.正确解法由题意知b是最长边.设a=9k,b=15k,c=12k(k>0).∵a2+c2=(9k)2+(12k)2=81k2+144k2=225k2.b2=(15k)2=225k2,∴a2+c2=b2.∴△ABC是直角三角形.例、已知在△ABC中,AB>AC,AD是中线,AE是高.求证:AB2-AC2=2BC·DE错证如图.∵AE⊥BC于E,∴AB2=BE2+AE2,AC2=EC2+AE2.∴AB2-AC2=BE2-EC2=(BE+EC)·(BE-EC)=BC·(BE-EC).∵BD=DC,∴BE=BC-EC=2DC-EC.∴AB2-AC2=BC·(2DC-EC-EC)=2BC·DE.诊断题设中既没明确指出△ABC的形状,又没给出图形,因此,这个三角形有可能是锐角三角形,也可能是直角三角形或钝角三角形.∴高AE既可以在形内,也可以与一边重合,还可以在形外,这三种情况都符合题意.而这里仅只证明了其中的一种情况,这就犯了以偏概全的错误.剩下的两种情况如图所示.正确证明由读者自己完成.例、已知在△ABC中,三条边长分别为a,b,c,a=n,b=24n-1,c=244n+(n是大于2的偶数).求证:△ABC是直角三角形.错证1∵n是大于2的偶数,∴取n=4,这时a=4,b=3,c=5.∵a2+b2=42+32=25=52=c2,∴△ABC是直角三角形(勾股定理的逆定理).由勾股定理知△ABC是直角三角形.正解∵a2+b2=n2+(24n-1)2=n2+416n-22n+1=416n+22n+1c2=(244n+)2=(214n+)2=416n+22n+1由勾股定理的逆定理知,△ABC是直角三角形. 诊断证明1错在以特殊取代一般.。