《整式乘法与因式分解》单元综合测试卷(含答案)
- 格式:doc
- 大小:736.03 KB
- 文档页数:10
第十四章整式的乘法与因式分解(90分钟 100分)一、选择题(每小题3分,共30分)1.(2020·朝阳中考)下列运算正确的是( C )A.a3·a2=a6B.(a3)2=a5C.2a3÷a2=2a D.2x+3x=5x2【解析】A.a3·a2=a5,故不正确;B.(a3)2=a6,故不正确;C.2a3÷a2=2a,正确;D.2x+3x=5x,故不正确.2.(2020·眉山中考)下列计算正确的是( C )A.(x+y)2=x2+y2B.2x2y+3xy2=5x3y3C.(-2a2b)3=-8a6b3D.(-x)5÷x2=x3【解析】A.原式=x2+2xy+y2,不符合题意;B.原式不能合并,不符合题意;C.原式=-8a6b3,符合题意;D.原式=-x5÷x2=-x3,不符合题意.3.下列运算正确的是( B )A.a2·a4=a8B.210+(-2)10=211C.(-1-3a)2=1-6a+9a2D.(-3x2y)3=-9x6y3【解析】A.a2·a4=a6,故本选项不符合题意;B.210+(-2)10=210+210=(1+1)×210=2×210=211,故本选项符合题意;C.(-1-3a)2=1+6a+9a2,故本选项不符合题意;D.(-3x2y)3=-27x6y3,故本选项不符合题意.4.下列因式分解正确的是( D )A.x2-y2=(x-y)2B.-x2-y2=-(x+y)(x-y) C.x2-2xy+4y2=(x-2y)2D.-x2-2xy-y2=-(x+y)2【解析】A.x2-y2=(x-y)(x+y),故此选项错误;B.-x2-y2,无法分解因式,故此选项错误;C.x2-2xy+4y2,不是完全平方式,故此选项错误;D.-x2-2xy-y2=-(x+y)2,正确.5.(2021·厦门期末)运用公式a2+2ab+b2=(a+b)2直接对整式4x2+4x+1进行因式分解,公式中的a可以是( C )A.2x2B.4x2C.2x D.4x【解析】∵4x2+4x+1=(2x)2+2×2x+1=(2x+1)2,∴对上式进行因式分解,公式中的a可以是2x.6.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成了一个长方形(如图②),则这个长方形的面积为( A )A.a2-4b2B.(a+b)(a-b)C.(a+2b)(a-b) D.(a+b)(a-2b)【解析】根据题意得:(a+2b)(a-2b)=a2-4b2.7.为了用乘法公式计算(2x-3y-4z)( 2x-3y+4z),甲乙丙丁四位同学分别对它们进行了变形,其中变形正确的是( B )A.[2x-(3y+4z)][2x-(3y-4z)] B.[(2x-3y)-4z][(2x-3y)+4z] C.[(2x-4z)-3y][(2x+4z)-3y] D.[(2x-4z)+3y][(2x-4z)-3y] 【解析】观察(2x-3y-4z)( 2x-3y+4z),符号相同的是2x,-3y,符号相反的是-4z和4z,把符号相同的放在一起,符号相反的放在一起.8.若x2+(m-1)x+1可以用完全平方公式进行因式分解,则m的值为( D )A.-3 B.1 C.-3,1 D.-1,3【解析】∵x2+(m-1)x+1可以用完全平方公式进行因式分解,∴m-1=±2,解得m=-1或m=3.9.(2021·娄底期末)如果(x-3)(2x+4)=2x2-mx+n,那么m,n的值分别是( C )A.2,12 B.-2,12C.2,-12 D.-2,-12【解析】∵(x-3)(2x+4)=2x2-2x-12=2x2-mx+n,∴-m=-2,n=-12,解得m=2,n=-12.10.(2021·长沙期末)定义:若一个正整数能表示为两个连续自然数的平方差,那么就称这个正整数为“明德数”.如:1=12-02,3=22-12,5=32-22,因此1,3,5这三个数都是“明德数”.则介于1到200之间的所有“明德数”之和为( A )A.10 000 B.40 000 C.200 D.2 500【解析】介于1到200之间的所有“明德数”之和为:(12-02)+(22-12)+(32-22)+…+(992-982)+(1002-992)=12-02+22-12+32-22+42-32+…+992-982+1002-992=1002=10 000.二、填空题(每小题3分,共24分)11.(2020·丹东中考)因式分解:mn3-4mn=__mn(n+2)(n-2)__.【解析】原式=mn(n2-4)=mn(n+2)(n-2).12.(2020·咸宁中考)因式分解:mx2-2mx+m=__m(x-1)2__.【解析】mx2-2mx+m=m(x2-2x+1)=m(x-1)2.13.计算:(π-3)0+|-2 021|=__2__022__.【解析】原式=1+2 021=2 022.14.(2020·十堰中考)已知x+2y=3,则1+2x+4y=__7__.【解析】∵x+2y=3,∴2(x+2y)=2x+4y=2×3=6,∴1+2x+4y=1+6=7.15.如果(m2+n2+1)与(m2+n2-1)的乘积为15,那么m2+n2的值为__4__.【解析】∵(m2+n2+1)与(m2+n2-1)的乘积为15,∴(m2+n2+1)(m2+n2-1)=15,∴(m2+n2)2-1=15,即(m2+n2)2=16,解得m2+n2=4(负数舍去).16.已知a3n=5,b2n=3,则a6n·b4n的值为__225__.【解析】a6n·b4n=a3n×2·b2n×2=(a3n)2·(b2n)2=52·32=225.17.把一根20 cm长的铁丝分成两段,将每一段围成一个正方形,若这两个正方形的面积之差是5 cm2,则这两段铁丝的长分别为__12__cm和8__cm__.【解析】设其中较长的一段的长为x cm(10<x<20),则另一段的长为(20-x)cm.则两个小正方形的边长分别为1x cm和41(20-x)cm.4∵两正方形面积之差为5 cm2,∴(14x)2-[14(20-x)]2=5,解得x=12.则另一段长为20-12=8(cm).∴两段铁丝的长分别为12 cm和8 cm. 18.观察、分析、猜想:1×2×3×4+1=52;2×3×4×5+1=112;3×4×5×6+1=192;4×5×6×7+1=292;n(n+1)(n+2)(n+3)+1=__[n(n+3)+1]2__.(n为整数)【解析】∵1×2×3×4+1=[(1×4)+1]2=52,2×3×4×5+1=[(2×5)+1]2=112,3×4×5×6+1=[(3×6)+1]2=192,4×5×6×7+1=[(4×7)+1]2=292,∴n(n+1)(n+2)(n+3)+1=[n(n+3)+1]2.三、解答题(共46分)19.(6分)(1)计算:[x(x2y2-xy)-y(x2-x3y)]÷3x2y.(2)计算:(2x-3y)2-(y+3x)(3x-y).(3)已知x m=3,x n=2,求x3m+2n的值.(4)解方程:4(x-2)(x+5)-(2x-3)(2x+1)=11.【解析】(1)[x(x2y2-xy)-y(x2-x3y)]÷3x2y=(x3y2-x2y-x2y+x3y2) ÷3x2y=(2 x3y2-2x2y) ÷3x2y=2 x3y2÷3x2y-2x2y÷3x2y=23xy-23.(2)(2x-3y) 2-(y+3x)(3x-y)=4x2-12xy+9y2-(9x2-y2)=4x2-12xy+9y2-9x2+y2=-5x2-12xy+10y2.(3)因为x m=3,x n=2,所以x3m+2n=x3m×x2n=(x m)3×(x n)2=33×22=108.(4)4(x2+5x-2x-10)-(4x2+2x-6x-3)=4(x2+3x-10)-(4x2-4x -3)=11,4x2+12x-40-4x2+4x+3=11,移项合并同类项得16x=48,x=3.20.(6分)某同学化简a(a+2b)-(a+b)(a-b)出现了错误,解答过程如下:原式=a2+2ab-(a2-b2) (第一步)=a2+2ab-a2-b2(第二步)=2ab-b2 (第三步)(1)该同学解答过程从第____步开始出错,错误的原因是______________;(2)写出此题正确的解答过程.【解析】(1)该同学解答过程从第二步开始出错,错误的原因是去括号时没有变号.答案:二 去括号时没有变号(2)原式=a2+2ab-(a2-b2)=a2+2ab-a2+b2=2ab+b2.21(8分)甲、乙两人共同计算一道整式乘法题:(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“-a”,得到的结果为6x2+11x-10;乙由于漏抄了第二个多项式中x的系数,得到的结果为2x2-9x +10.(1)求正确的a,b的值.(2)计算这道乘法题的正确结果.【解析】(1)(2x-a)(3x+b)=6x2+2bx-3ax-ab=6x2+(2b-3a)x-ab=6x2+11x-10.(2x+a)(x+b)=2x2+2bx+ax+ab=2x2+(2b+a)x+ab=2x2-9x+10.∴{2b-3a=11,2b+a=-9,解得{a=-5,b=-2.(2)这道乘法题的正确结果为:(2x-5)(3x-2)=6x2-4x-15x+10=6x2-19x+10.22.(8分)已知a,b,c分别是△ABC的三边.(1)分别将多项式ac-bc,-a2+2ab-b2进行因式分解.(2)若ac-bc=-a2+2ab-b2,试判断△ABC的形状,并说明理由.【解析】(1)ac-bc=c(a-b),-a2+2ab-b2=-(a2-2ab+b2)=-(a -b)2.(2)∵ac-bc=-a2+2ab-b2,∴c(a-b)=-(a-b)2,c(a-b)+(a-b)2=0,(a-b)(c+a-b)=0,∵a,b,c分别是△ABC的三边,满足两边之和大于第三边,即c+a-b>0,∴a-b=0,即a=b,故△ABC的形状是等腰三角形.23.(8分)有一个边长为a厘米的正方形桌面,因为实际需要,需将正方形边长增加b厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a2+2ab+b2=(a+b)2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.【解析】由题意可得,方案二:a2+ab+(a+b)b=a2+ab+ab+b2=a2+2ab+b2=(a+b)2;方案三:a2+[a+(a+b)]b2+[a+(a+b)]b2=a2+ab+12b2+ab+12b2=a2+2ab+b2=(a+b)2.24.(10分)(2021·潍坊期末)阅读下列材料,并回答问题:若一个正整数x能表示成a2-b2(a,b是正整数,且a>b)的形式,则正整数x称为“明礼崇德数”.例如:因为7=2×3+1=32+2×3+1-32=(3+1)2-32=42-32,所以7是“明礼崇德数”;再如:因为12=4×3=32+2×3+1-32+2×3-1=(3+1)2-(32-2×3+1)=(3+1)2-(3-1)2=42-22,所以12是“明礼崇德数”;再如:M=x2+2xy=x2+2xy+y2-y2=(x+y)2-y2(x,y是正整数),所以M也是“明礼崇德数”.问题1:2 021是“明礼崇德数”吗?说明理由;问题2:2 020是“明礼崇德数”吗?说明理由;问题3:已知N=x2-y2+4x-6y+k(x,y是正整数,k是常数,且x >y+1),要使N是“明礼崇德数”,试求出符合条件的一个k值,并说明理由.【解析】问题1:2 021是“明礼崇德数”.理由如下:2 021=2×1 010+1=1 0102+2×1 010+1-1 0102=1 0112-1 0102 ;问题2:2 020是“明礼崇德数”.理由如下:2 020=4×505=(5052+2×505+1)-(5052-2×505+1)=5062-5042;问题3:∵N=x2-y2+4x-6y+k=(x2+4x+4)-(y2+6y+9)+k+5=(x+2)2-(y+3)2+k+5,∴当k+5=0时,N=(x+2)2-(y+3)2为“明礼崇德数”,此时k=-5,故当k=-5时,N为“明礼崇德数”.关闭Word文档返回原板块。
《整式的乘法与因式分解》单元测试卷(时间:120分钟满分:150分)一、选择题1.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(A +B )2=A 2+2A B +B 2.你根据图乙能得到的数学公式是()A . (A +B )(A ﹣B )=A 2﹣B 2 B . (A ﹣B )2=A 2﹣2A B +B 2C . A (A +B )=A 2+A BD . A (A ﹣B )=A 2﹣A B2.若(x-A )(x+B )=x2+mx+n,则m,n分别为()A . m=B -A ,n=-A B B . m=B -A ,n=A BC . m=A -B ,n=-A BD . m=A +B ,n=-A B3.现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A . 1.1111111×1016B . 1.1111111×1027C . 1.111111×1056D . 1.1111111×10174.x m+1x m-1÷(x m) 2的结果是 ( )A . -lB . 1C . 0D . ±15.若3x+2y=3,求27x×9y的值为()A . 9B . 27C . 6D . 06. 观察下列各式及其展开式:(A +B )2=A 2+2A B +B 2(A +B )3=A 3+3A 2B +3A B 2+B 3(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5…请你猜想(A +B )10的展开式第三项的系数是()A . 36B . 45C . 55D . 667.若(x﹣5)(2x﹣n)=2x2+mx﹣15,则m、n的值分别是()A . m=﹣7,n=3B . m=7,n=﹣3C . m=﹣7,n=﹣3D . m=7,n=38.要使(y2-ky+2y)(-y)的展开式中不含y2项,则k的值为()A . -2B . 0C . 2D . 3二、填空题9.若x+=3,分式(x-)2=________.10.当A =-2时,(B -A )(A +B )(A 2+B 2)-(A 4+B 4)的值为_____.11.已知8×2m×16m=211,则m的值为____.12.若27m÷9÷3=321,则m=_____.13.用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(A -B )2=_____(化为A 、B 两数和与积的形式).14.如图,在长为A 、宽为B 的长方形场地中,横向有两条宽均为n的长方形草坪,斜向有一条平行四边形的草坪,且其中一边长为m,则图中空地面积用含有A 、B 、m、n的代数式表示是_____.15.给下列多项式添括号,使它们的最高次项系数变为正数.(1)-x2+x=_____;(2)3x2-2xy2+2y2=_____;(3)-A 3+2A 2-A +1=_____;(4)-3x2y2-2x3+y3=______.16.计算(﹣A 2B )3=__.三、解答题17.若x=3A n,y=-A 2n-1,当A =2,n=3时,求A n x-A y的值.18.计算:(x+3)(x-5)-x(x-2).19.如图1所示,边长为A 的正方形中有一个边长为B 的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含A ,B 的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.20.天宫一号腾空之后某一时刻飞行速度是音速的22倍,而音速是3.4×102米/秒,一架喷气式飞机的速度是5×102米/秒,试问:这一时刻天宫一号腾空之后飞行速度是这架喷气式飞机的速度的几倍?21.工厂要做一个棱长为1.5×103mm的正方体铁箱,至少要多少mm2的铁皮?参考答案一、选择题1.利用图形中面积的等量关系可以得到某些数学公式.例如,根据图甲,我们可以得到两数和的平方公式:(A +B )2=A 2+2A B +B 2.你根据图乙能得到的数学公式是()A . (A +B )(A ﹣B )=A 2﹣B 2 B . (A ﹣B )2=A 2﹣2A B +B 2C . A (A +B )=A 2+A BD . A (A ﹣B )=A 2﹣A B[答案]B[解析]大正方形的面积=(A -B )2,还可以表示为A 2-2A B +B 2,∴(A -B )2=A 2-2A B +B 2.故选B .2.若(x-A )(x+B )=x2+mx+n,则m,n分别为()A . m=B -A ,n=-A B B . m=B -A ,n=A BC . m=A -B ,n=-A BD . m=A +B ,n=-A B[答案]A[解析][分析]先将式子展开,再根据展开后的式子求m和n.[详解](x-A )(x+B )=x2+mx+n故选A[点睛]此题重点考察学生对整式乘法的理解,整式乘法的法则是解题的关键.3.现有一列式子:①552-452;②5552-4452;③55552-44452…则第⑧个式子的计算结果用科学记数法可表示为()A . 1.1111111×1016B . 1.1111111×1027C . 1.111111×1056D . 1.1111111×1017[答案]D[解析]试题分析:根据题意得:第⑧个式子为5555555552-4444444452=(555555555+444444445)×(555555555-444444445)=1.1111111×1017.故选D .考点:1.因式分解-运用公式法;2.科学记数法—表示较大的数.4.x m+1x m-1÷(x m) 2的结果是 ( )A . -lB . 1C . 0D . ±1[答案]B[解析]试题分析:根据同底数幂相乘除和幂的乘方,直接计算可得x m+1x m-1÷(x m) 2=1.故选:B点睛:此题主要考查了幂的运算性质,解题时直接应用幂的运算性质,再根据幂的混合运算的顺序计算即可.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘.5.若3x+2y=3,求27x×9y的值为()A . 9B . 27C . 6D . 0[答案]B[解析][分析]先把27x×9y 进行转换再求值.[详解]故选B[点睛]此题重点考察学生对整式乘法的应用,根据规律化简是解题的关键.6. 观察下列各式及其展开式:(A +B )2=A 2+2A B +B 2(A +B )3=A 3+3A 2B +3A B 2+B 3(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5…请你猜想(A +B )10的展开式第三项的系数是()A . 36B . 45C . 55D . 66[答案]B[解析]试题分析:归纳总结得到展开式中第三项系数即可.解:解:(A +B )2=A 2+2A B +B 2;(A +B )3=A 3+3A 2B +3A B 2+B 3;(A +B )4=A 4+4A 3B +6A 2B 2+4A B 3+B 4;(A +B )5=A 5+5A 4B +10A 3B 2+10A 2B 3+5A B 4+B 5;(A +B )6=A 6+6A 5B +15A 4B 2+20A 3B 3+15A 2B 4+6A B 5+B 6;(A +B )7=A 7+7A 6B +21A 5B 2+35A 4B 3+35A 3B 4+21A 2B 5+7A B 6+B 7;第8个式子系数分别为:1,8,28,56,70,56,28,8,1;第9个式子系数分别为:1,9,36,84,126,126,84,36,9,1;第10个式子系数分别为:1,10,45,120,210,252,210,120,45,10,1,则(A +B )10的展开式第三项的系数为45.故选B .考点:完全平方公式.[此处有视频,请去附件查看]7.若(x﹣5)(2x﹣n)=2x2+mx﹣15,则m、n的值分别是()A . m=﹣7,n=3B . m=7,n=﹣3C . m=﹣7,n=﹣3D . m=7,n=3 [答案]C[解析]试题解析:∵(x-5)(2x-n)=2x2+mx-15,∴2x2+(-n-10)x-5n=2x2+mx-15∴5n=-15,-n-10=m,解得:n=-3,m=7,故选C .[点睛]此题主要考查了因式分解法的应用,正确得出各项对应相等是解题关键.8.要使(y2-ky+2y)(-y)的展开式中不含y2项,则k的值为()A . -2B . 0C . 2D . 3[答案]C[解析][分析]先用整式乘法将式子展开,再根据展开式中不含的要求求出k的值.[详解](y2-ky+2y)(-y)=要使展开式中不含的项,则故选C[点睛]此题重点考察学生对整式乘法的理解,因式分解是解题的关键.二、填空题9.若x+=3,分式(x-)2=________.[答案]5[解析]因为x+=3,(x-)2=x2-2+()2= x2-2+()2+4-4= x2+2+()2-4=(x-)2-4=9-4=5.故答案是:5.10.当A =-2时,(B -A )(A +B )(A 2+B 2)-(A 4+B 4)的值为_____.[答案]-32[解析][分析]先化简再把A =-2带入求值.[详解]:解:(B -A )(A +B )(A 2+B 2)-(A 4+B 4)= (B 2-A 2)(A 2+B 2)-(A 4+B 4)=(B 4-A 4) -(A 4+B 4)=-2A 4∵A =-2,∴原式=-2×(-2)4=-32.故答案为:-32.[点睛]此题重点考察学生对整式乘法的理解,会正确使用平方差公式是解题的关键.11.已知8×2m×16m=211,则m的值为____.[答案][解析][分析]先把式子左边化简成2n的形式,即可求得m的值.[详解]8×2m×16m=211故答案为[点睛]此题重点考察学生对整式乘法的应用,正确化简是解题的关键.12.若27m÷9÷3=321,则m=_____.[答案]8[解析][分析]先把式子左边化简成3n的形式,即可求得m的值.[详解]27m÷9÷3=321故答案为8[点睛]此题重点考察学生对整式乘法的应用,正确化简是解题的关键.13.用四个相同的长方形与一个小正方形无重叠、无缝隙地拼成一个大正方形的图案(如图),则由图形能得出(A -B )2=_____(化为A 、B 两数和与积的形式).[答案](A +B )2-4A B[解析][分析]根据图形先求出大正方形的面积,然后再减去四个长方形的面积.[详解]小正方形的边长为:(A -B ),∴面积为(A -B )2,小正方形的面积=大正方形的面积-4×长方形的面积=(A +B )2-4A B故答案为(A +B )2-4A B[点睛]此题重点考察学生对整式乘法中完全平方公式的理解,关键公式计算小正方形面积是解题的关键. 14.如图,在长为A 、宽为B 的长方形场地中,横向有两条宽均为n的长方形草坪,斜向有一条平行四边形的草坪,且其中一边长为m,则图中空地面积用含有A 、B 、m、n的代数式表示是_____.[答案](B -2n)(A -m)[解析][分析]利用平移的方法先找出空地的长和宽,再计算面积即可.[详解]利用平移的方法可知:空地长为A -m,宽为B -2n,图中空地面积用含有A 、B 、m、n的代数式表示是(B -2n)(A -m)[点睛]解题的关键在于找到空地的长和宽,再利用长方形面积计算公式列出式子.15.给下列多项式添括号,使它们的最高次项系数变为正数.(1)-x2+x=_____;(2)3x2-2xy2+2y2=_____;(3)-A 3+2A 2-A +1=_____;(4)-3x2y2-2x3+y3=______.[答案] (1). (1)-(x2-x);(2). (2)-(2xy2-3x2-2y2);(3). (3)-(A 3-2A 2+A -1);(4). (4)-(3x2y2+2x3-y3).[解析][分析]要使(1)(2)(3)(4)的最高次项系数变为正数,仔细观察每个最高次项系数都是负数,则直接在整个式子前加负号即可.[详解](1)-x2+x=-(x2-x);(2)3x2-2xy2+2y2=-(2xy2-3x2-2y2);(3)-A 3+2A 2-A +1=-(A 3-2A 2+A -1);(4)-3x2y2-2x3+y3=-(3x2y2+2x3-y3);故答案为(1)-(x2-x);(2)-(2xy2-3x2-2y2);(3)-(A 3-2A 2+A -1);(4)-(3x2y2+2x3-y3).[点睛]此题重点考察学生对多项式最高次数项的认识,抓住最高次项系数为正数是解题的关键.16.计算(﹣A 2B )3=__.[答案]−A 6B 3[解析][分析]根据积的乘方的运算方法:(A B )n=A n B n,求出(-A 2B )3的值是多少即可.[详解](-A 2B )3=(−)3⋅(A 2)3⋅B 3=−A 6B 3.故答案为:−A 6B 3.[点睛]本题考查了幂的乘方与积的乘方,解题的关键是熟练的掌握幂的乘方与积的乘方的运算法则.三、解答题17.若x=3A n,y=-A 2n-1,当A =2,n=3时,求A n x-A y的值.[答案]224.[解析][分析]先把A =2,n=3带入x=3A n,y=-A 2n-1求出x和y,再带入A n x-A y计算即可.[详解]A n x-A y=A n×3A n-A ×(-A 2n−1)=3A 2n+A 2n=A 2n∵A =2,n=3,∴A 2n =×26=224.[点睛]此题重点考察学生对整式乘法的应用能力,熟练整式乘法法则是解题的关键.18.计算:(x+3)(x-5)-x(x-2).[答案]-15.[解析][分析]先利用整式乘法进行展开,再合并同类项进行计算.[详解]原式=x2-5x+3x-15-x2+2x=-15.[点睛]此题重点考察学生对整式乘法的应用,熟悉整式乘法是解题的关键.19.如图1所示,边长为A 的正方形中有一个边长为B 的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含A ,B 的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.[答案](1)S1=A 2-B 2,S2=(A +B )(A ﹣B );(2)(A +B )(A ﹣B )=A 2﹣B 2;(3)216.[解析]试题分析:(1)根据两个图形的面积相等,即可写出公式;(2)根据面积相等可得(A +B )(A -B )=A 2-B 2;(3)从左到右依次利用平方差公式即可求解.试题解析:(1)S1=A 2-B 2,S2=(A +B )(A ﹣B );(2)(A +B )(A ﹣B )=A 2﹣B 2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.[点睛]运用了平方差的几何背景以及平方差公式的应用,正确理解平方差公式的结构是关键.20.天宫一号腾空之后某一时刻飞行速度是音速的22倍,而音速是3.4×102米/秒,一架喷气式飞机的速度是5×102米/秒,试问:这一时刻天宫一号腾空之后飞行速度是这架喷气式飞机的速度的几倍?[答案]天宫一号腾空之后飞行速度是这架喷气式飞机的速度的14.96倍.[解析][分析]根据题意直接列式解答即可,注意整式乘法的运算法则.[详解]依题意得(3.4×102)×22÷(5×102)=3.4×22÷5=14.96.答:天宫一号腾空之后飞行速度是这架喷气式飞机的速度的14.96倍.21.工厂要做一个棱长为1.5×103mm的正方体铁箱,至少要多少mm2的铁皮?[答案]至少要1.35×107mm2的铁皮.[解析][分析]求出正方体表面积即可知道需要多少铁皮.[详解]正方体的表面积为6×(1.5×103)2=6×2.25×106=1.35×107mm2.答:至少要1.35×107mm2的铁皮.[点睛]此题重点考察学生对整式乘法的实际应用能力,会计算正方体表面积是解题的关键.。
八年级上第十四章 整式的乘法与因式分解单元检测一、选择题(本大题共8小题,每小题3分,共24分.)1.下列计算中正确的是( ).A .a 2+b 3=2a 5B .a 4÷a =a 4C .a 2·a 4=a 8D .(-a 2)3=-a 62.(x -a )(x 2+ax +a 2)的计算结果是( ).A .x 3+2ax 2-a 3B .x 3-a 3C .x 3+2a 2x -a 3D .x 3+2ax 2+2a 2-a 33.下面是某同学在一次测验中的计算摘录,其中正确的个数有( ).①3x 3·(-2x 2)=-6x 5;②4a 3b ÷(-2a 2b )=-2a ;③(a 3)2=a 5;④(-a )3÷(-a )=-a 2.A .1个B .2个C .3个D .4个4.已知被除式是x 3+2x 2-1,商式是x ,余式是-1,则除式是( ).A .x 2+3x -1B .x 2+2xC .x 2-1D .x 2-3x +15.下列各式是完全平方式的是( ).A .x 2-x +14B .1+x 2C .x +xy +1D .x 2+2x -1 6.把多项式ax 2-ax -2a 分解因式,下列结果正确的是( ).A .a (x -2)(x +1)B .a (x +2)(x -1)C .a (x -1)2D .(ax -2)(ax +1)7.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( ).A .-3B .3C .0D .18.若3x =15,3y =5,则3x -y 等于( ).A .5B .3C .15D .10二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)9.计算(-3x 2y )·(213xy )=__________。
10.计算:22()()33m n m n -+--=__________. 11.计算:223()32x y --=_____ 12.计算:(-a 2)3+(-a 3)2-a 2·a 4+2a 9÷a 3=__________。
人教版数学八年级上学期《整式的乘法与因式分解》单元测试(时间:120分钟满分:150分)一、选择题(每小题3分,共30分)1.下列计算正确的是()A. a3-a2=aB. a2·a3=a6C. (3a)3=9a3D. (a2)2=a42.计算(-x3y)2的结果是()A. -x5yB. x6yC. -x3y2D. x6y23.下列计算错误的是()A. (-2)0=1B. 28x4y2÷7x3=4xy2C. (4xy2-6x2y+2xy)÷2xy=2y-3xD. (a-5)(a+3)=a2-2a-154.下列因式分解正确的是()A. a4b-6a3b+9a2b=a2b(a2-6a+9)B. x2-x+=(x-)2C. x2-2x+4=(x-2)2D. 4x2-y2=(4x+y)(4x-y)5.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于()A. 2B. 4C. 6D. 86.计算:(a-b+3)(a+b-3)=()A. a2+b2-9B. a2-b2-6b-9C. a2-b2+6b-9D. a2+b2-2ab+6a+6b+97.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个长方形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()学_科_网...学_科_网...A. (a+b)2=a2+2ab+b2B. (a-b)2=a2-2ab+b2C. a2-b2=(a+b)(a-b)D. (a+2b)(a-b)=a2+ab-2b28.若m=2200,n=2550,则m,n的大小关系是()A. m>nB. m<nC. m=nD. 无法确定9.多项式77x2-13x-30可分解成(7x+a)(bx+c),其中a,b,c均为整数,求a+b+c之值为何?()A. 0B. 10C. 12D. 2210.观察下列各式及其展开式:(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+4a3b+6a2b2+4ab3+b4;(a+b)5=a5+5a4b+10a3b2+10a2b3+5ab4+b5;……请你猜想(a+b)10的展开式第三项的系数是()A. 36B. 45C. 55D. 66二、填空题(每小题3分,共24分)11.计算:(-5a4)·(-8ab2)=______.12.分解因式:ab4-4ab3+4ab2=_______.13.若(2x+1)0=(3x-6)0,则x的取值范围是_______.14.已知|x-y+2|+(x+y-2)2=0,则x2-y2的值为_____.15.已知a m=3,a n=2,则a2m-3n=_____.16.若一个正方形的面积为a2+a+,则此正方形的周长为______.17.已知△ABC的三边长为整数a,b,c,且满足a2+b2-6a-4b+13=0,则c为_____.18.观察下列各式:22﹣1=1×3,32﹣1=2×4,42﹣1=3×5,52﹣1=4×6,…,根据上述规律,第n个等式应表示为______.三、解答题(共66分)19.计算:(1) y(2x-y)+(x+y)2;(2)(-2a2b3)÷(-6ab2)·(-4a2b).20.用乘法公式计算:(1)982;(2)899×901+1.21.分解因式:(1)18a3-2a;(2)ab(ab-6)+9;(3)m2-n2+2m-2n.22.先化简,再求值:(1)(2+a)(2-a)+a(a-5b)+3a5b3÷(-a2b)2,其中ab=-;(2)[(x+2y)(x-2y)-(x+4y)2]÷4y,其中x=-5,y=2.23.如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.24.已知m2=n+2,n2=m+2(m≠n),求m3-2mn+n3的值.25.已知a,b,c为△ABC的三条边的长,试判断代数式a2-2ac+c2-b2的值的符号,并说明理由.26.阅读材料并回答问题:课本中多项式与多项式相乘是利用平面几何图形中的面积来表示的,例如:(2a+b)(a+b)=2a2+3ab+b2就可以用如图①②所示的图形的面积来表示.(1)请写出如图③所示的图形的面积表示的代数恒等式;(2)试画出一个几何图形,使它的面积能表示为(a+b)(a+3b)=a2+4ab+3b2;(3)请仿照上述方法另写一个含有a,b的代数恒等式,并画出与之对应的几何图形.参考答案一、选择题(每小题3分,共30分)1.下列计算正确的是()A. a3-a2=aB. a2·a3=a6C. (3a)3=9a3D. (a2)2=a4【答案】D【解析】A.a3与a2不能合并,故A错误;B. a2⋅a3=a5,故B错误;C. (3a)3=27a3,故C错误;D. (a2)2=a4,故D正确.故选:D.2.计算(-x3y)2的结果是()A. -x5yB. x6yC. -x3y2D. x6y2【答案】D【解析】【分析】根据积的乘方的运算法则即可解答.【详解】根据积的乘方的运算法则可得:(-x3y)2= x6y2.故选D.【点睛】本题主要考查了积的乘方的运算法则:积的乘方,先把积中的每一个因数分别乘方,再把所得的幂相乘.3.下列计算错误的是()A. (-2)0=1B. 28x4y2÷7x3=4xy2C. (4xy2-6x2y+2xy)÷2xy=2y-3xD. (a-5)(a+3)=a2-2a-15【答案】C【解析】【分析】根据零指数幂的性质、单项式除以单项式的运算法则、多项式除以单项式的运算法则、多项式乘以多项式的运算法则依次计算各项,即可解答.【详解】选项A,根据零指数幂的性质可得(-2)0=1,选项A正确;选项B,根据单项式除以单项式的运算法则可得28x4y2÷7x3=4xy2,选项B正确;选项C,根据多项式除以单项式的运算法则可得(4xy2-6x2y+2xy)÷2xy=2y-3x+1,选项C错误;选项D,根据多项式乘以多项式的运算法则可得(a-5)(a+3)=a2-2a-15,选项D正确.故选C.【点睛】本题考查了零指数幂的性质、单项式除以单项式的运算法则、多项式除以单项式的运算法则、多项式乘以多项式的运算法则,熟记法则是解题的关键.4.下列因式分解正确的是()A. a4b-6a3b+9a2b=a2b(a2-6a+9)B. x2-x+=(x-)2C. x2-2x+4=(x-2)2D. 4x2-y2=(4x+y)(4x-y)【答案】B【解析】试题解析:A、原式=a2b(a2-6a+9)=a2b(a-3)2,错误;B、原式=(x-)2,正确;C、原式不能分解,错误;D、原式=(2x+y)(2x-y),错误,故选B考点:因式分解-运用公式法;因式分解-提公因式法.5.将(2x)n-81分解因式后得(4x2+9)(2x+3)(2x-3),则n等于()A. 2B. 4C. 6D. 8【答案】B【解析】试题分析:把等式右边根据平方差公式去括号后即可得到结果。
第九章《整式乘法与因式分解》单元综合测试卷(考试时间:90分钟 满分:100分)一、选择题(每小题3分,共24分) 1. 下列关系式中正确的是( )A.222()a b a b -=- B.22()()a b a b a b +-=- C.222()a b a b +=+ D.222()2a b a ab b +=-+ 2. 若223649x mxy y -+是完全平方式,则m 的值是( )A.1764B.42C.84D.84± 3. 对代数式244ax ax a -+分解因式,下列结果正确的是( )A.2(2)a x - B.2(2)a x + C.2(4)a x - D.(2)(2)a x x +- 4. 已知13x x -=,则221x x+的值( ) A.9 B.7 C.11 D.不能确定 5. 下列多项式中,不能用公式法因式分解的是( )A.2214x xy y -+ B.222x xy y ++ C.22x y -+ D.22x xy y ++ 6. 若2x y +=,2xy =-,则(1)(1)x y --的值是( )A.1-B.1C.5D.3-7. 从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式( )A.222()2a b a ab b -=-+ B.222()2a b a ab b +=++ C.22()()a b a b a b -=+- D.22(2)()2a b a b a ab b +-=+-8. 若(3)(5)M x x =--,(2)(6)N x x =--,则M 与N 的关系为( )A.M N =B.M N >C.M N <D. M 与N 的大小由x 的取值而定 二、填空题(每小题2分,共20分)9. 计算:(1)32(2)(3)a ab -= ; (2)2(231)x x x -+= .10. 若32mx y 与23n x y -是同类项,则322(3)mn x yx y -= .11. 多项式23264m n mn m n +-的公因式是 .12. 如果要使22(1)(2)x x ax a +-+的乘积中不含扩2x 项,则a = .13. 分解因式:325x x -= ;()()()a x y b y x c x y ---+-= .14. 若二次三项式2(21)4x m x +-+是一个完全平方式,则m = . 15. (1)若10m m +=,24mn =,则22m n += .(2)若13a b -=,2239a b -=,则2()a b += .16. 2(2)(23)26x x x mx +-=+-,则m = . 17. 已知210t t +-=,则3222016t t ++= .18. 若249a +加上一个单项式后可化为一个整式的平方的形式,则这个单项式可以是 .(写一个即可) 三、解答题(共56分) 19. (8分)计算:(1)22()(23)()a b a b a ab a b ab +---(2)2(4)(4)(2)x x x +---(3)225(21)(23)(5)x x x x x --++--+(4)(34)(34)x y z x y z +--+20. ( 8分)把下列各式因式分解:(1) 22()()a x y b y x -+- (2)4224168x x y y -+(3) (2)(4)1x x +++ (4)222(4)16x x +-21. (6分)(1)先化简,再求值: 2(32)(32)7(1)2(1)x x x x x +-----,其中13x =-(2)先化简,再求值: 22(1)3(3)(3)(5)(2)x x x x x +--+++-,其中x 满足22245x y x y +=--.22. ( 6分)(1)已知3()()2x a x +-的结果中不含关于字母x 的一次项,求2(2)(1)(1)a a a +---- 的值;(2)已知221x x -=,求2(1)(31)(1)x x x -+-+的值.23. ( 4分)若x ,y 满足2254x y +=,12xy =-,求下列各式的值. (1) 2()x y + (2)44x y +24. ( 5分)如图,将一张矩形大铁皮切割成九块,切痕如下图虚线所示,其中有两块是边长都为m cm 的大正方形,两块是边长都为n cm 的小正方形,五块是长、宽分别是m cm ,n cm 的小矩形,且m n >.(1)用含m ,n 的代数式表示切痕的总长为 cm:(2)若每块小矩形的面积为34.5cm 2,四个正方形的面积和为200cm 2 ,试求m n +的值.25. (6分)阅读并探索:在数学中,有些大数值问题可以通过用字母代替数转化成整式问题来解决.例:试比转2015040820150405⨯与2015040620150407⨯的大小. 解:设20150407a =,2015040820150405x =⨯,2015040620150407y =⨯ 则2(1)(2)2x a a a a =+-=--,2(1)y a a a a =-=- 因为x y -=所以x y (填“>”或“<”). 填完后,你学到了这种方法吗?不妨尝试一下.计算: (22.2015)(14.2015)(18.2015)(17.2015)m m m m ++-++26. ( 7分)动手操作:如图①是一个长为2a ,宽为2b 的长方形,沿图中的虚线剪开分成四个大小相等的长方形,然后按照图②所示拼成一个正方形. 提出问题:(1)观察图②,请用两种不同的方法表示阴影部分的面积: ; ; (2)请写出三个代数式2()a b +,2()a b -,ab 之间的一个等量关系: ; 问题解决:根据上述(2)中得到的等量关系,解决下列问题:已知7x y +=,6xy =,求x y -的值.27. ( 6分)你能求999897(1)(1)x x x xx -+++++…的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手.先分别计算下列各式的值. ①2(1)(1)1x x x -+=- ②23(1)(1)1x x x x -++=- ③324(1)(1)1x x x x x -+++=- ……由此我们可以得到:999897(1)(1)x xx x x -+++++=…请你利用上面的结论,再完成下面两题的计算: (1) 504948(2)(2)(2)(2)1-+-+-++-+…(2)若3210x x x +++=,求2016x 的值.参考答案一、1. B 2. D 3. A 4. C5. D6. D7. C8. B 二、9. (1)4224a b - (2)3223x x x -+ 10. 646x y - 11. 2mn 12. 0.513. (5)(5)x x x +- ()()x y a b c -++14. 52或32- 15. (1)52 (2)916. 1 17. 201718. 12a (或12a -,24a -,9-,449a ,答案不唯一,写对一个即可) 三、19. (1)原式3223232222233a b a b a b a b a b a b =+-++-323222322a b a b a b a b =--+(2)原式2216(44)420x x x x =---+=- (3)原式32325105(102153)x x x x x x =---+--32371515x x x =--+(4)原式[(34)][(34)]x y z x y z =+---22(34)x y z =-- 22292416x y yz z =-+-20. (1)原式22()()()()()a b x y a b a b x y =--=+-- (2)原式22222(4)(2)(2)x y x y x y =-=+- (3)原式2269(3)x x x =++=+(4)原式2222(44)(44)(2)(2)x x x x x x =+++-=+- 21. (1)2(32)(32)7(1)2(1)x x x x x +-----222(94)772(21)x x x x x =--+--+2229477242x x x x x =--+-+-116x =-当13x =-时,原式1129633=--=-(2)原式2222(21)3(9)(310)x x x x x =++--++-719x =+由22245x y x y +=--,得22(1)(2)0x y -++= 故1x =,2y =- 故原式711926=⨯+= 22. (1)3()()2x a x +-23322x x ax a =-+-233()22x a x a =+--因为不含关于字母x 的一次项,所以302a -=所以32a =2(2)(1)(1)a a a +---- 2244(1)a a a =++--22441a a a =++-+34545112a =+=⨯+=(2)2(1)(31)(1)x x x -+-+2232121x x x x =----- 2242x x =--22(2)2x x =--因为221x x -= 所以原式2120=⨯-= 23. (1)原式222x xy y =++5112()424=+⨯-= (2)原式=22222()2x y x y +-22511()2()14216=-⨯-= 24. (1)66m n +(2)依题意,得34.5mn =,2222200m n += 故22100m n +=因为222()210069169m n m mn n +=++=+= 且0m n +> 所以13m n += 25. 2- <设18.2015m x +=则原式(4)(4)(1)x x x x =+---2216x x x =--+16x =-18.201516m =+-2.2015m =+26. (1)2()4a b ab +- 2()a b -(2)22()4()a b ab a b +-=- 问题解决:由(2)知22()()4x y x y xy -=+- 当7x y +=,6xy =时22()474625x y xy +-=-⨯=故5x y -=± 27. 1001x-(1)504948(2)(2)(2)(2)1-+-+-++-+…504948(21)[(2)(2)(2)(2)1]=(21)---+-+-++-+--…5049481(21)[(2)(2)(2)(2)1]3=-⨯---+-+-++-+ (511)[(2)1]3=-⨯--512133=+ (2)因为3210x x x +++= 所以32(1)(1)0x x x x -+++= 所以41x = 所以20164504()1x x ==。