广西北海市2012年中考数学真题试题
- 格式:doc
- 大小:319.00 KB
- 文档页数:9
新世纪教育网精选资料版权所有@新世纪教育网广西各市 2012 年中考数学试题分类分析汇编专题 7:统计与概率一、选择题1. ( 2012 广西北海 3 分)在一个不透明的口袋中有 6 个除颜色外其余都同样的小球,此中 1 个白球, 2个红球, 3 个黄球。
从口袋中随意摸出一个球是红球的概率是:【】1115A .B .C. D .6326【答案】 B。
【考点】概率。
【剖析】依据概率的求法,找准两点:①所有等可能状况的总数;②切合条件的状况数量;两者的比值就是其发生的概率。
所以,∵口袋中小球的总数为 6,红球有 2 个,∴从口袋中随意摸出一个球是红球的概率是2=1。
应选B。
632. ( 2012 广西贵港 3 分)在一次扔掷实心球训练中,小丽同学 5 次扔掷成绩(单位:m)为: 6、 8、 9、8、 9。
则对于这组数据的说法不正确的是【】...A .极差是 3B .均匀数是 8C.众数是 8 和 9D.中位数是 9【答案】 D。
【考点】极差,,均匀数,中位数,众数。
【剖析】依据极差,中位数,均匀数和众数的定义分别计算即可解答:A .极差是9- 6= 3,故此选项正确,不切合题意;B .均匀数为 (6+ 8+ 9+ 8+ 9) ÷5= 8,故此选项正确,不切合题意;C.∵ 8,9 各有 2 个,∴众数是8 和 9,故此选项正确,不切合题意;D .从小到大摆列后,为6, 8, 8,9, 9,中位数是8,故此选项错误,切合题意。
应选 D。
3. ( 2012 广西贵港 3 分)从2、-1、-2三个数中随意选用一个作为直线y= kx +1 中的 k 值,则所得的直线不经过第三象限的概率是【】...112A .3B.2C.3D.1【答案】 C。
【考点】概率公式,一次函数图象与系数的关系。
【剖析】∵ y= kx + 1,当直线不经过第三象限时k< 0,此中 3 个数中小于0 的数有 2 个,所以概率为2。
2011年初中毕业生学业考试试题卷数 学考生注意:1.本卷为数学试题卷,全卷共4页,三大题25小题,满分150分.考试时间为120分钟. 2.一律在《答题卡》相应位置作答,在试题卷上答题视为无效. 3.可以使用科学计算器.一、选择题(以下每小题均有A ,B ,C ,D 四个选项,其中只有一个选项正确,请用2B 铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分) 1. 5-的绝对值是( )A .5B .15C .5-D .0.5 2.如图1,在平行四边形ABCD 中,E 是AB 延长线上的一点,若60A ∠=,则1∠的度数为( ) A .120oB .60oC .45oD .30o3.2008年5月12日,在我国四川省汶川县发生里氏8.0级强烈地震.面对地震灾害,中央和各级政府快速作出反应,为地震灾区提供大量资金用于救助和灾后重建,据统计,截止5月31日,各级政府共投入抗震救灾资金22600000000元人民币,22600000000用科学记数法表示为( ) A .1022.610⨯ B .112.2610⨯ C .102.2610⨯ D .822610⨯4.在一个晴朗的上午,小丽拿着一块矩形木板在阳光下做投影实验,矩形木板在地面上形成的投影不可能是()5.刘翔在今年五月结束的“好运北京”田径测试赛中获得了110m 栏的冠军.赛前他进行了刻苦训练,如果对他10次训练成绩进行统计分析,判断他的成绩是否稳定,则需要知道刘翔这10次成绩的( ) A .众数 B .方差 C .平均数 D .中位数6.如果两个相似三角形的相似比是1:2,那么它们的面积比是( ) A .1:2B .1:4C .D. 2︰1A .B .C .D . (图1)ABECD 17.8名学生在一次数学测试中的成绩为80,82,79,69,74,78,x ,81,这组成绩的平均数是77,则x 的值为( ) A .76 B .75 C .74 D .73 8.二次函数2(1)2y x =-+的最小值是( )A .2-B .2C .1-D .19.对任意实数x ,点2(2)P x x x -,一定不在..( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 10.根据如图2所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( ) A .3n B .3(1)n n + C .6nD .6(1)n n +二、填空题(每小题4分,共20分) 11.分解因式:24x -= .12.如图3,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为 cm 2. 13.符号“f ”表示一种运算,它对一些数的运算结果如下: (1)(1)0f =,(2)1f =,(3)2f =,(4)3f =,…(2)122f ⎛⎫=⎪⎝⎭,133f ⎛⎫= ⎪⎝⎭,144f ⎛⎫= ⎪⎝⎭,155f ⎛⎫= ⎪⎝⎭,… 利用以上规律计算:1(2008)2008f f ⎛⎫-=⎪⎝⎭.14.在一个不透明的盒子中装有2个白球,n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23, 则n = . 15.如图4,在12×6的网格图中(每个小正方形的边长均为1个单位),⊙A 的半径为1,⊙B 的 半径为2,要使⊙A 与静止的⊙B 相切,那么 ⊙A 由图示位置需向右平移 个单位.(图……(1)(2) (3)(图3)A B三、解答题 16.(本题满分10分)如图5,在平面直角坐标系xoy 中,(15)A -,, (10)B -,,(43)C -,. (1)求出ABC △的面积.(4分) (2)在图5中作出ABC △关于y 轴的对称图形111A B C △.(3分) (3)写出点111A B C ,,的坐标.(3分)17.(本题满分10分)某校八年级(1)班50名学生参加2007年贵阳市数学质量监控考试,全班学生的成绩统计如下表:请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是 .(3分) (2)该班学生考试成绩的中位数是 .(4分)(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.(3分)(图5)18.(本题满分10分)如图6,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程s (千米)和行驶时间t (小时)之间的关系,根据所给图象,解答下列问题: (1)写出甲的行驶路程s 和行驶时间(0)t t ≥之间的函数关系式.(3分)(2)在哪一段时间内,甲的行驶速度小于乙的行驶速度;在哪一段时间内,甲的行驶速度大于乙的行驶速度.(4分) (3)从图象中你还能获得什么信息?请写出其中的一条.(3分) 19.(本题满分10分)如图7,某拦河坝截面的原设计方案为:A H ∥BC ,坡角74ABC ∠=,坝顶到坝脚的距离6m AB =.为了提高拦河坝的安全性,现将坡角改为55o ,由此,点A 需向右平移至点D ,请你计算AD 的长(精确到0.1m ).(图7)A BCD H55o (图6)20.(本题满分10分)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共40个,小颖做摸球实验,她将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述(1)请估计:当很大时,摸到白球的频率将会接近 .(精确到0.1)(3分) (2)假如你摸一次,你摸到白球的概率()P 白球 .(3分) (3)试估算盒子里黑、白两种颜色的球各有多少只?(4分) 21.(本题满分10分) 如图8,在ABCD 中,E ,F 分别为边AB ,CD 的 中点,连接E 、BF 、BD .(1)求证:ADE CBF △≌△.(5分)(2)若A D ⊥BD ,则四边形BFDE 是什么特殊四边形?请证明你的结论.(5分)(图8)A BCDEF22.(本题满分8分)汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同. (1)该公司2006年盈利多少万元?(6分)(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?(2分) 23.(本题满分10分) 利用图象解一元二次方程230x x +-=时,我们采用的一种 方法是:在平面直角坐标系中画出抛物线2y x =和直线3y x =-+,两图象交点的横坐标就是该方程的解.(1)填空:利用图象解一元二次方程230x x +-=,也可以这样求解:在平面直角坐标系中画出抛物线y = 和直线y x =-,其交点的横坐标就是 该方程的解.(4分) (2)已知函数6y x =-的图象(如图9所示),利用图象求方程630x x-+=的近似解(结果保留两个有效数字).(6分)(图9)24.(本题满分10分)如图10,已知AB 是⊙O 的直径,点C 在⊙O 上,且13AB =, 5BC =. (1)求sin BAC ∠的值.(3分)(2)如果OD AC ⊥,垂足为D ,求AD 的长.(3分) (3)求图中阴影部分的面积(精确到0.1).(4分)(图10)25.(本题满分12分)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用. 设每个房间每天的定价增加x 元.求:(1)房间每天的入住量y (间)关于x (元)的函数关系式.(3分) (2)该宾馆每天的房间收费z (元)关于x (元)的函数关系式.(3分)(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少?(6分)贵阳市2008年初中毕业生学业考试数学参考答案及评分标准一、选择题:二、填空题:11. (x +2)(x -2) 12. 8 13. 1 14. 1 15. 2、4、6、8三、解答题:16. (1)()()平方单位或7.52153521=⨯⨯=∆ABC S ………………4分(2)如图5…………………………………3分(3)A 1(1,5),B 1(1,0),C 1(4,3)…3分17. (1)88分……………………………………3分(2)86分……………………………………4分 (3)不能说张华的成绩处于中游偏上的水平……………………………………1分 因为全班成绩的中位数是86分,83分低 于全班成绩的中位数………………………2分18. (1)s=2t ………………………………………………………………3分(2)在0< t < 1时,甲的行驶速度小于乙的行驶速度;在t > 1时,甲的行驶速度大于乙的行驶速度. ……………………………………………4分(3)只要说法合乎情理即可给分 …………………………………………3分19. 如图7,过点A 作A E ⊥BC 于点E ,过点D 作DF ⊥BC 于点F . ………2分在Rt △ABE 中, 分6.............................................................................65.174cos 6cos cos ≈=∠=∴=∠o ABE AB BE ABBEABE ∵AH ∥BC∴DF = AE ≈ 5.77 …………………………………………………7分 ()分米分中,在 ...10..................................................2.41.65-4.04BE -BF EF AD 9..........................................................04.455tan 77.5tan ,tan Rt ≈===∴≈≈∠=∴=∠∆oDBF DF BF BFDFDBF BDF20. (1)0.6 …………………………………………………………………3分(2)0.6 …………………………………………………………………3分 (3)40×0.6=24,40-24=16 ………………………………………2分21. (1)在平行四边形ABCD 中,∠A =∠C ,AD =CD ,∵E 、F 分别为AB 、CD 的中点∴AE=CF ……………………………………………………2分()分中,和在 ...5......................................................................SAS CFB AED CF AE C A CB AD CFB AED ∆≅∆∴⎪⎩⎪⎨⎧=∠=∠=∆∆ (2)若AD ⊥BD ,则四边形BFDE 是菱形. …………………………1分77.574sin 6sin ,sin ≈=∠=∴=∠o ABE AB AE AB AEABE 分4.....................................................................77.574sin 6sin ≈=∠=∴oABE AB AE (图7)A BCD H 55o.5............................................................ .BFDE BFDE DF,EB EB//DF 3...................................................................... BE AB 21DE ,AB E ..2..........).........90ADB AB Rt ABD BD AD 分是菱形四边形是平行四边形四边形且由题意可知分的中点是分是斜边(或,且是,证明:∴∴===∴=∠∆∆∴⊥ o22. (1)设每年盈利的年增长率为x ,………………………………..1分 根据题意得1500(1﹢x )2 =2160 ………………………..….3分 解得x 1 = 0.2, x 2 = -2.2(不合题意,舍去)…………....4分 ∴1500(1 + x )=1500(1+0.2)=1800 ……………………5分 答:2006年该公司盈利1800万元. …………………………6分(2) 2160(1+0.2)=2592答:预计2008年该公司盈利2592万元. ……………………2分 23. (1)32-x ………………………………………………………4分(2)由图象得出方程的近似解为: 分6......................................................4.44.121≈-≈,xx24. (1)∵AB 是⊙O 的直径,点C 在⊙O 上∴∠ACB = 90o ....................................................1分 ∵AB =13,BC =5 分3 (13)5sin ==∠∴AB BC BAC (2)在Rt △ABC 中,分分......3...................................................................... 6AC 21AD 1................................................125132222==∴--=-=BC AB AC (3)()分平方单位.4....................4.3612521213212≈⨯⨯-⎪⎭⎫⎝⎛⨯=π阴影部分S11 ()()()()()()分元有最大值,且最大值是元时,天当每个房间的定价为每就是说,,此时,有最大值时,当分分分分.....6.............................. .15210410 410200.210 4 (1521021010)11080042101 2.......................................106020106020033.........................120004010110602002 3. (10)601.25222w x w x x x x x x x w x x x x z x y =+=+--=++-=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-+=++-=⎪⎭⎫ ⎝⎛-+=-=。
2012年广西省中等学校招生考试数 学(样卷3)本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟.注意:答案一律填写在答题卷上,在试题卷上作答无效..........考试结束,将本试卷和答题卷一并交回.第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A.B.C.D.四个结论,其中只有一个是正确的.请考生用2B 铅笔在答题卷上将选定的答案标号涂黑. 1. 4 的平方根是( )A. 2B. 16C. ±2D.±162. 下列四个角中,最有可能与70o 角互补的角是( )(第2题图)3.平面直角坐标系中,与点(2,-3)关于原点对称的点是( ) A .(-3,2) B .(3,-2) C .(-2,3) D .(2,3)4. 下列四幅图形中,表示两颗小树在同一时刻阳光下的影子的图形可能是( )A. B. C. D.(第4题图)5. 下列调查中,适合用普查方式的是( )A.了解一批炮弹的杀伤半径B.了解广西电视台《今日关注》栏目的收视率BACDC.了解漓江中鱼的种类D.了解某班学生对父母生日的知晓率6.已知下列命题:①对角线互相平分的四边形是平行四边形;②等腰梯形的对角线相等;③对角线互相垂直的四边形是菱形;④内错角相等.其中假命题有( ) A .1个 B .2个 C .3个 D .4个7. 二元一次方程21-=x y 有无数多个解,下列四组值中不是..该方程的解的是 A .012x y =⎧⎪⎨=-⎪⎩B .11x y =⎧⎨=⎩C .10x y =⎧⎨=⎩D .11x y =-⎧⎨=-⎩8. 如图,矩形OABC 的顶点O 为坐标原点,点A 在x 轴上,点B 的坐标为(2,1).如果将矩形OABC 绕点O 顺时针旋转180°,旋转后的图形为矩形OA 1B 1C 1,那么点B 1的坐标为( ).(A)(2,1) (B)(-2,1) (C)(-2,-1) (D)(2,-1)9. 某种商品的进价为800元,标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最多可打( )A .6折B .7折C .8折D .9折 10. 抛物线()223y x =+-可以由抛物线2y x =平移得到,则下列平移过程正确的是( )A.先向左平移2个单位,再向下平移3个单位B.先向左平移2个单位,再向上平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位11. 一艘轮船在邕江航线上往返于甲、乙两地.若轮船在静水中的速度不变,轮船先从甲地逆水航行到乙地,停留一段时间后,又从乙地顺水航行返回到甲地.设轮船从甲地出发后所用的时间为t(小时),航行的路程为s(千米),则s与t的函数图象大致是()12. 下面图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形一共有1个平行四边形,第②个图形一共有5个平行四边形,第③个图形一共有11个平行四边形,……,则第⑨个图形中平行四边形的个数为()……图①图②图③图④A.89 B.99 C.71 D.55第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分)13. 函数xy-=12的自变量x的取值范围是.14.已知三角形的两边长为4,6,则第三边的长度可以是(只写一个即可)15. 已知反比例函数kyx=的图象经过(1,-3).则k=.16.如图,C岛在A岛的北偏东55°方向,在B岛的北偏西45°方向,则从C岛看A、B两岛的视角∠ACB=17. 如图,已知梯形ABCD,AD∥BC,对角线AC,BD相交于点O,△AOD与△BOC的面积之比为1:9,若AD=2,则BC的长是.18. 长为1,宽为a的矩形纸片(121<<a),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第ABC北北5545第16题图第17题图一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 此操作后,剩下的矩形为正方形,则操作终止.当n =3时,a 的值为 .三、解答题:(本大题共8小题,满分66分.解答题应写出文字说明、证明过程或演算步骤) 19. (本题满分6分)计算:-22-128-(3-π)0+2sin45°.20. (本题满分6分)先化简代数式:1)1111(2-÷+--x x x x ,再从你喜欢的数中选择一个恰当的作为x 的值,代入求出代数式的值。
2012年广西省中等学校招生考试数 学(样卷4)本试卷分第Ⅰ卷和第Ⅱ卷,满分120分,考试时间120分钟.注意:答案一律填写在答题卷上,在试题卷上作答无效..........考试结束,将本试卷和答题卷一并交回.第Ⅰ卷(选择题,共36分)一、选择题(本大题共12小题,每小题3分,共36分)每小题都给出代号为A.B.C.D.四个结论,其中只有一个是正确的.请考生用2B 铅笔在答题卷上将选定的答案标号涂黑. 1. 下列各组数中,互为相反数的是( ) A .2和-2B .-2和12C .-2和-12D .12和22.如图,直线EO ⊥CD ,垂足为点O ,AB 平分∠EOD ,则∠BOD 的度数为(A )120° (B )130° (C )135° (D )140°3. 已知3是关于x 的方程12=-a x 的解,则a 的值是( ) A.-7 B.7 C.5 D.-54. 为了了解某初中学校学生的视力情况,需要抽取部分学生进行调查,下列抽取学生的方法最合适的是( )A .随机抽取该校一个班级的学生B .随机抽取该校一个年级的女生C .随机抽取该校一部分女生D .从该校初一、初二、初三年级中各班随机抽取10%的学生5. 谢老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图,根据图中给出的信息,这次考试成绩达到A 等级的人数占总人数的A .6%B .10%C .20%D .25%AECDO B第1题图6. 在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中黄球1个,红球1个,白球2个,“从中任意摸出2个球,它们的颜色相同”这一事件A.必然事件 B.不可能事件C.随机事件 D.确定事件7.如果一个等腰三角形的两边长分别是3cm和4cm,那么此三角形的周长是()A.12cm B.10cm C.11cm D.10cm或11cm8. 不等式312->+x的解集在数轴上表示正确的是第8题图9. 如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3) B.点(1,3)C.点(2,3) D.点(6,0)第9题图10.抛物线y=ax2+bx+c(a≠0)的图象如图所示,则下列说法正确的是()第10题图A、b2﹣4ac<0B、abc<0C、12ba-<-D、a﹣b+c<011. 如图是由小正方体所搭成的几何体的俯视图,小正方体中的数字表示该位置小正方体的xy11BCA-2 0-1 -2 0 0-2A B C D个数,则该几何体的主视图是 ( )第11题图12. 图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第2012个图形的周长是( ) (A )20122 (B )20124(C )20132(D )20142第12题图第Ⅱ卷(非选择题,共84分)二、填空题(本大题共6小题,每小题3分,共18分)13. 当x 时,分式x31有意义.14. 在直角三角形ABC 中,∠C = 90°,BC = 8,AC = 6,则AB =15. 如图,直线y =kx +b 经过A (-1,1)和B (-7,0)两点,则不等式0<kx +b <-x 的解集为_ .图1图2 图3……x y BA O(第15题图)16. 如图,△ABC 中,DE ∥BC ,DE 分别交边AB 、AC 于D 、E 两点, 若AD :DB =1:2,则△ADE 与△ABC 的面积比为 .(第16题图)17. 火车匀速通过隧道时,火车在隧道内的长度y (米)与火车行驶时间x (秒)之间的关系用图象描述如图所示,有下列结论: ①火车的长度为120米; ②火车的速度为30米/秒; ③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是 . (把你认为正确结论的序号都填上)18.如图,⊙A 、⊙B 的圆心A 、B 都在直线l 上,⊙A 的半径为1cm ,⊙B 的半径为2cm ,圆心距AB =6cm. 现⊙A 沿直线l 以每秒1cm 的速度向右移动,设运动时间为t 秒,写出两圆相交时,t 的取值范围:_______.三、解答题:(本大题共8小题,满分66分.解答题应写出文字说明、证明过程或演算步骤)19. (本题满分6分)计算:()1013-3cos3012 1.22π-︒⎛⎫+-++- ⎪⎝⎭20. (本题满分6分)解方程:2x +xx +3=1.第18题图y /米 (第17题图) x /秒150O 30 3521.(本题满分8分)生活经验表明,靠墙摆放的梯子,当50°≤α≤70°(α为梯子与地面所成的角),能够使人安全攀爬,现在有一长为10米的梯子AB,试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC.(结果保留两个有效数字,sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)(第21题图)22. (本题满分8分)某工程队承包了某标段全长1820米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进2米,经过5天施工,两组共掘进了70米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.5米,乙组平均每天能比原来多掘进2米.按此工程进度,能够比原来少用多少天完成任务?23. (本题满分8分)李老师为了了解学生课堂发言情况,对前一天本班男、女生的发言次数进行了统计,并绘制成如下频数分布折线图(图1) .(1) 请根据图1,回答下列问题:①这个班共有名学生,发言次数是6次的男生有人;②男、女生发言次数的中位数分别是次和次.(2) 通过李老师的鼓励,第二天的发言次数比前一天明显增加,全班发言次数变化的人数..的扇形统计图如图2所示.求第二天发言次数增加3次的学生人数和全班增加的发言总次数.24. (本题满分10分)某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元.现该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?25. (本题满分10分)如图,AB是⊙O的直径,AC是弦,CD是⊙O的切线,C为切点,AD⊥CD于点D.求证:(1)∠AOC=2∠ACD;(2)若AB=12,AD=2,求AC的长.(第25题图)26.(本题满分10分)如图,要设计一个等腰梯形的花坛,花坛上底长120米,下底长180米,上下底相距80米,在两腰中点连线(虚线)处有一条横向甬道,上下底之间有两条纵向甬道,各甬道的宽度相等.设甬道的宽为x米.(1)用含x的式子表示横向甬道的面积;(2)当三条甬道的面积是梯形面积的八分之一时,求甬道的宽;(3)根据设计的要求,甬道的宽不能超过6米.如果修建甬道的总费用(万元)与甬道的宽度成正比例关系,比例系数是5.7,花坛其余部分的绿化费用为每平方米0.02万元,那么当甬道的宽度为多少米时,所建花坛的总费用最少?最少费用是多少万元?(第26题图)。
广西各市2012年中考数学试题分类解析汇编专题3:方程(组)和不等式(组)一、选择题1. (2012广西北海3分)分式方程7x 8-=1的解是:【 】 A .-1B .1C .8D .15【答案】D 。
【考点】解分式方程。
【分析】首先去掉分母,观察可得最简公分母是x -8,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解: 7=1x 8=7x=15x 8⇒-⇒-,检验,合适。
故选D 。
2. (2012广西桂林3分)二元一次方程组x+y=32x=4⎧⎨⎩的解是【 】 A .x=3y=0⎧⎨⎩ B .x=1y=2⎧⎨⎩ C .x=5y=2⎧⎨-⎩ D .x=2y=1⎧⎨⎩ 【答案】D 。
【考点】解二元一次方程组。
【分析】x y 32x 4+=⎧⎨=⎩①②,解方程②得:x=2,把x=2代入①得:2+y=3,解得:y=1。
∴方程组的解为:x=2y=1⎧⎨⎩。
故选D 。
3. (2012广西桂林3分)关于x 的方程x 2-2x +k =0有两个不相等的实数根,则k 的取值范围是【 】A .k <1B .k >1C .k <-1D .k >-1【答案】A 。
【考点】一元二次方程根的判别式。
【分析】∵关于x 的方程x2-2x+k=0有两个不相等的实数根,∴△>0,即4-4k >0,k <1。
故选A 。
4. (2012广西河池3分)一元二次方程2x 2x 20++=的根的情况是【 】A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .无实数根【答案】D 。
【考点】一元二次方程根的判别式。
【分析】∵2x 2x 20++=中,a=1,b=2,c=2,∴△22b 4ac=2412=40<=--⨯⨯-。
∴2x 2x 20++=无实数根。
故选D 。
5. (2012广西河池3分)若a b 0>>,则下列不等式不一定...成立的是【 】 A .ac bc >B .a c b c +>+C .11a b <D .2ab b > 【答案】A 。
数量和位置变化2012年广西省各市中考题(含答案)广西各市2012年中考数学试题分类解析汇编专题5:数量和位置变化一、选择题1. (2012广西桂林3分)如图,把抛物线y=x2沿直线y=x平移个单位后,其顶点在直线上的A处,则平移后的抛物线解析式是【】A.y=(x+1)2-1B.y=(x+1)2+1C.y =(x-1)2+1D.y=(x-1)2-1【答案】C。
【考点】二次函数图象与平移变换,二次函数的性质,勾股定理。
【分析】首先根据A点所在位置设出A点坐标为(m,m)再根据AO= ,利用勾股定理求出m的值,然后根据抛物线平移的性质:左加右减,上加下减可得解析式:∵A在直线y=x上,∴设A(m,m),∵OA= ,∴m2+m2=()2,解得:m=±1(m=-1舍去)。
∴A(1,1)。
∴抛物线解析式为:y=(x-1)2+1。
故选C。
2. (2012广西桂林3分)如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动.设P点运动的时间为t,△APQ的面积为S,则S与t 的函数关系的图象是【】A.B.C.D.【答案】D。
【考点】动点问题的函数图象,正方形的性质。
【分析】∵动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,∴点Q运动到点C的时间为4÷2=2秒。
由题意得,当0≤t≤2时,即点P在AB上,点Q在BC上,AP=t,BQ=2t,,为开口向上的抛物线的一部分。
当2<t≤4时,即点P在AB上,点Q在DC上,AP=t,AP上的高为4,,为直线(一次函数)的一部分。
观察所给图象,符合条件的为选项D。
故选D。
3. (2012广西河池3分)下列图象中,表示y是x的函数的个数有【】A.1个B.2个C.3个D.4个【答案】B。
【考点】函数的定义【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数:第一个图象,对每一个x的值,都有唯一确定的y值与之对应,是函数图象;第二个图象,对每一个x的值,都有唯一确定的y值与之对应,是函数图象;第三个图象,对给定的x的值,有两个y值与之对应,不是函数图象;第四个图象,对给定的x的值,有两个y值与之对应,不是函数图象。
广西各市2012年中考数学试题分类解析汇编专题11:圆一、选择题1. (2012广西北海3分)已知两圆的半径分别是3和4,圆心距的长为1,则两圆的位置关系为:【】A.外离B.相交C.内切D.外切【答案】C。
【考点】两圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
因此,∵两圆半径之差为1,等于圆心距,∴两圆的位置关系为内切。
故选C。
2. (2012广西贵港3分)如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠P=40°,则∠ACB的度数是【】A.80°B.110°C.120°D.140°【答案】B。
3. (2012广西桂林3分)已知两圆半径为5cm和3cm,圆心距为3cm,则两圆的位置关系是【】A.相交B.内含C.内切D.外切【答案】A。
【考点】两圆的位置关系。
【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),相离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差)。
因此,∵两圆半径之差2cm<圆心距3cm<两圆半径之和8cm,∴两圆的位置关系是相交。
故选A。
4. (2012广西河池3分)如图,已知AB为⊙O的直径,∠CAB=300,则∠D的度数为【】A.30°B.45°C.60°D.80°【答案】C。
【考点】圆周角定理,三角形内角和定理。
【分析】∵AB为⊙O的直径,∴∠ACB=90°。
∵∠CAB=30°,∴∠B=90°-∠CAB=60°。
2012年北海市中等学校招生暨初中毕业统一考试试卷数学(考试时间:120分钟;全卷满分:120分)准考证号:________________________ 姓名:_____________座位号:___________一、选择题(本大题共12小题,每小题3分,满分36分;在每个小题给出的四个选项中,有且只有一个是正确的,每小题选对得3分,选错或不选得0分)1.-16的绝对值是:()A.-16B.16C.-6 D.62.“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力。
用科学记数法表示568000是:()A.568×103B.56.8×104C.5.68×105D.0.568×1063.下列图形即使轴对称图形又是中心对称图形的有:()①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形A.1个B.2个C.3个D.4个4.一个几何体的三视图完全相同,该几何体可以是:( ) A .圆锥B .圆柱C .长方体D .球 5.下列运算正确的是:( )A .x 3·x 5=x 15B .(2x 2)3=8x 6C .x 9÷x 3=x 3D .(x -1)2=x 2-126.如图,梯形ABCD 中AD//BC ,对角线AC 、BD 相交于点O ,若AO ∶CO =2:3,AD =4,则BC 等于: ( ) A .12B .8C .7D .67.已知二次函数y =x 2-4x +5的顶点坐标为: ( ) A .(-2,-1) B .(2,1) C .(2,-1) D .(-2,1)8.分式方程78x =1的解是: ( ) A .-1B .1C .8D .159.在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个白球,2个红球,3个黄球。
从口袋中任意摸出一个球是红球的概率是:( ) A .16B .13C .12D .5610.已知两圆的半径分别是3和4,圆心距的长为1,则两圆的位置关系为:( ) ADB C O 第6题D .外切11.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为: ( ) A .10πB .3C .3π D .π12.如图,等边△ABC 的周长为6π,半径是1的⊙O从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了: ( )A .2周B .3周C .4周D .5周二、填空题(本大题共6小题,每小题3分,满分18分) 13.因式分解:-m 2+n 2=___________。
广西各市2012年中考数学试题分类解析汇编专题4:图形的变换一、选择题1. (2012广西北海3分)一个几何体的三视图完全相同,该几何体可以是【 】 A .圆锥B .圆柱C .长方体D .球【答案】D 。
【考点】由三视图判断几何体。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形。
因此,A 、圆锥的主视图、左视图都是三角形,俯视图是圆形;故本选项错误;B 、圆柱的主视图、左视图都是长方形,俯视图是圆形;故本选项错误;C 、长方体的主视图为长方形、左视图为长方形或正方形、俯视图为长方形或正方形;故本选项错误;D 、球体的主视图、左视图、俯视图都是圆形;故本选项正确。
故选D 。
2. (2012广西北海3分)如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC绕点C 顺时针旋转60°,则顶点A 所经过的路径长为:【 】A .10πB .3C .3πD .π【答案】C 。
【考点】网格问题,勾股定理,弧长的计算。
【分析】由网格的性质和勾股定理,得=。
∴将△ABC 绕点C 顺时针旋转60°,顶点A 所经过的路径长为:=。
故选C 。
3. (2012广西贵港3分)如图是由若干个大小相同的正方体搭成的几何体的三视图,则该几何体所用的正方形的个数是【】A.2 B.3 C.4 D.5【答案】C。
【考点】由三视图判断几何体。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,综合三视图可知,这个几何体的底层有3个小正方体,第二层有1个小正方体,因此搭成这个几何体所用小正方体的个数是3+1=4个。
故选C。
4. (2012广西桂林3分)下列几何体的主视图、俯视图和左视图都是..长方形的是【】A.B.C.D.【答案】B。
【考点】简单几何体的三视图。
【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.找到几何体的三视图即可作出判断:A、主视图和左视图为矩形,俯视图为圆,故选项错误;B、主视图为矩形,俯视图和左视图都为矩形,故选项正确;C、主视图和左视图为等腰梯形,俯视图为圆环,故选项错误;D、主视图和左视图为三角形,俯视图为有对角线的矩形,故选项错误。
2012年北海市中等学校招生暨初中毕业统一考试试卷数 学(考试时间:120分钟;全卷满分:120分)准考证号:_____________________ 姓名:_______________ 座位号:___________一、选择题(本大题共12小题,每小题3分,满分36分;在每个小题给出的四个选项中,有且只有一个是正确的,每小题选对得3分,选错或不选得0分) 1.-16的绝对值是: ( )A .-16B .16C .-6D .62.“神舟七号”舱门除了有气压外,还有光压,开门最省力也需要用大约568000斤的臂力。
用科学记数法表示568000是: ( )A .568×103B .56.8×104C .5.68×105D .0.568×1063.下列图形即使轴对称图形又是中心对称图形的有: ( ) ①平行四边形;②正方形;③等腰梯形;④菱形;⑤正六边形 A .1个 B .2个 C .3个 D .4个4.一个几何体的三视图完全相同,该几何体可以是: ( ) A .圆锥 B .圆柱 C .长方体 D .球 5.下列运算正确的是: ( )A .x 3·x 5=x 15B .(2x 2)3=8x 6C .x 9÷x 3=x 3D .(x -1)2=x 2-126.如图,梯形ABCD 中AD//BC ,对角线AC 、BD 相交于点O ,若AO ∶CO =2:3,AD =4,则BC 等于: ( )A .12B .8C .7D .67.已知二次函数y =x 2-4x +5的顶点坐标为: ( )A .(-2,-1)B .(2,1)C .(2,-1)D .(-2,1) 8.分式方程78x =1的解是: ( )A .-1B .1C .8D .159.在一个不透明的口袋中有6个除颜色外其余都相同的小球,其中1个白球,2个红球,3个黄球。
从口袋中任意摸出一个球是红球的概率是: ( ) A .16B .13C .12D .5610.已知两圆的半径分别是3和4,圆心距的长为1,则两圆的位置关系为:( )A .外离B .相交C .内切D .外切 11.如图,在边长为1的正方形组成的网格中,△ABC 的顶点都在格点上,将△ABC 绕点C 顺时针旋转60°,则顶点A 所经过的路径长为: ( )A .10πBCD .π12.如图,等边△ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了: ( )A .2周B .3周C .4周D .5周 二、填空题(本大题共6小题,每小题3分,满分18分)A DBCO第6题图ABC第11题图13.因式分解:-m 2+n 2=___________。
14___________。
15.函数y x 的取值范围是___________。
16.一个多边形的每一个外角都等于18°,它是___________边形。
17.一组数据:1、-1、0、4的方差是___________。
18.如图,点A 的坐标为(-1,0),点B 在直线y =2x -4上运动,当线段AB 最短时,点B 的坐标是___________。
三、解答题(本大题共8题,满分66分。
解答时应写出必要的文字说明、演算步骤或推理过程)19.(本题满分6分)计算:4cos45°+(π+3)0116-⎛⎫⎪⎝⎭。
20.(本题满分6分)先化简,再求值:2141326a a a -⎛⎫+÷⎪--⎝⎭;其中a =5。
21.(本题满分8分)已知:如图,在△ABC 中,∠A =30°,∠B =60°。
(1)作∠B 的平分线BD ,交AC 于点D ;作AB 的中点E (要求:尺规作图,保留作图痕迹,不必写作法和证明);(2)连接DE ,求证:△ADE ≌△BDE 。
22.(本题满分8分)去年4月,我市开展了“北海历史文化进课堂”的活动,北海某校政教处就同学们对北海历史文化的了解程度进行随机抽样调查,并绘制成了如下两幅不完整的统计图。
第21题图C10%很了解10%第22题图根据统计图中的信息,解答下列问题:(1)本次调查的样本容量是___________,调查中“了解很少”的学生占___________%;(2)补全条形统计图;(3)若全校共有学生900人,那么该校约有多少名学生“很了解”北海的历史文化?(4)通过以上数据的分析,请你从爱家乡、爱北海的角度提出自己的观点和建议。
23.(本题满分8分)某班有学生55人,其中男生与女生的人数之比为6:5。
(1)求出该班男生与女生的人数;(2)学校要从该班选出20人参加学校的合唱团,要求:①男生人数不少于7人;②女生人数超过男生人数2人以上。
请问男、女生人数有几种选择方案?24.(本题满分8分)大润发超市进了一批成本为8元/个的文具盒。
调查发现:这种文具盒每个星期的销售量y(个)与它的定价x(元/个)的关系如图所示:第24题图(1)求这种文具盒每个星期的销售量y(个)与它的定价x(元/个)之间的函数关系式(不必写出自变量x的取值范围);(2)每个文具盒定价是多少元时,超市每星期销售这种文具盒(不考虑其他因素)可获得的利润最高?最高利润是多少?25.(本题满分10分)如图,AB是O的直径,AE交O于点E,且与O的切线CD互相垂直,垂足为D。
(1)求证:∠EAC=∠CAB;(2)若CD=4,AD=8:①求O的半径;②求tan∠BAE的值。
E第25题图26.(本题满分12分)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0)、B(0,1)、C(d,2)。
(1)求d的值;(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图像上。
请求出这个反比例函数和此时的直线B′C′的解析式;(3)在(2)的条件下,直线BC交y轴于点G。
问是否存在x轴上的点M和反比例函数图像上的点P,使得四边形PGMC′是平行四边形。
如果存在,请求出点M和点P的坐标;如果不存在,请说明理由。
2012年北海市中等学校招生暨初中毕业统一考试试卷数学参考答案及评分标准一、选择题(本大题共12小题,每小题3分,满分36分;在每个小题给出的四个选项中,有且只有一个二、填空题(本大题共6小题,每小题3分,满分18分) 13.(m +n )( m -n ) 14.2 15.12x ≥16.二十 17.27 18.(75,-65) 三、解答题(本大题共8题,满分66分。
解答时应写出必要的文字说明、演算步骤或推理过程) 19.解:原式=4+1-6 4分=22-1+6 5分 =76分 20.解:原式=()()()23133322a a a a a a --⎛⎫+∙⎪--+-⎝⎭3分=()()()232322a a a a a --∙-+-4分=22a + 5分 当a =5时,22a +=252+=276分 21.(1)作出∠B 的平分线BD ;2分作出AB 的中点E 。
4分(2)证明:∵∠ABD =12×60°=30°,∠A =30° ∴∠ABD =∠A 6分 ∴AD =BD 又∵AE =BE∴△ADE ≌△BDE 8分22.(1)50 50 2分 (2)正确作出图形。
(见下图) 4分 (3)90 6分(4)不了解和很少了解的约占60﹪,说明同学们对北海历史文化关注不够,建议加强有关北海历史文化的教育,多种形式的开展有关活动(只要说得有理就给分)。
8分第22题图23.解:(1)设男生有6x 人,则女生有5x 人。
1分 依题意得:6x +5x =55 2分 ∴x =5∴6x =30,5x =253分ED C BA答:该班男生有30人,女生有25人。
4分(2)设选出男生y人,则选出的女生为(20-y)人。
5分由题意得:2027y yy-->⎧⎨≥⎩6分解之得:7≤y<9∴y的整数解为:7、8。
7分当y=7时,20-y=13当y=8时,20-y=12答:有两种方案,即方案一:男生7人,女生13人;方案二:男生8人,女生12人。
8分24.解:(1)设y=kx+b1分由题意得:1020014160k bk b+=⎧⎨+=⎩3分解之得:k=-10;b=300。
∴y=-10x+300。
4分(2)由上知超市每星期的利润:W=(x-8)·y=(x-8)(-10x+300) 5分=-10(x-8)(x-30)=-10(x2-38x+240)=-10(x-19)2+1210 6分∴当x=19即定价19元/个时超市可获得的利润最高。
7分最高利润为1210元。
8分25.(1)证明:连接OC。
1分∵CD是⊙O的切线∴CD⊥OC又∵CD⊥AE∴OC∥AE∴∠1=∠3 2分∵OC=OA∴∠2=∠3∴∠1=∠2即∠EAC=∠CAB 3分(2)解:①连接BC。
∵AB是⊙O的直径,CD⊥AE于点D∴∠ACB=∠ADC=90°∵∠1=∠2∴△ACD∽△ABC∴AD ACAC AB=5分∵AC2=AD2+CD2=42+82=80∴AB=2ACAD808==10∴⊙O的半径为10÷2=5。
6分②连接CF与BF。
∵四边形ABCF是⊙O的内接四边形∴∠ABC+∠AFC=180°∵∠DFC+∠AFC=180°∴∠DFC=∠ABC∵∠2+∠ABC=90°,∠DFC+∠DCF=90°∴∠2=∠DCF∵∠1=∠2∴∠1=∠DCF∵∠CDF=∠CDF∴△DCF∽△DAC∴CD DFAD CD=8分∴DF=22CDAD48==2∴AF=AD-DF=8-2=6 ∵AB是⊙O的直径∴∠BFA=90°∴BF=8∴tan∠BAD=BFAF8463==。
10分26.解:(1)作CN⊥x轴于点N。
1分在Rt△CNA和Rt△AOB中∵NC=OA=2,AC=AB∴Rt△CNA≌Rt△AOB 2分则AN=BO=1,NO=NA+AO=3,且点C在第二象限,∴d=-3 3分(2)设反比例函数为kyx=,点C′和B′在该比例函数图像上,设C′(E,2),则B′(E+3,1)4分把点C′和B′的坐标分别代入kyx=,得k=2E;k=E+3,∴2E=E+3,E=3,则k=6,反比例函数解析式为6yx=。
5分得点C′(3,2);B′(6,1)。
设直线C′B′的解析式为y=ax+b,把C′、B′两点坐标代入得3261a ba b+=⎧⎨+=⎩6分∴解之得:133ab⎧=-⎪⎨⎪=⎩;∴直线C′B′的解析式为133y x=-+。