2017年春八年级数学下册5分式与分式方程章末复习(五)分式与分式方程试题(新版)北师大版
- 格式:doc
- 大小:95.50 KB
- 文档页数:3
第五章 分式与分式方程 综合测试题(时间: 满分:120分)(班级: 姓名: 得分: )一、 选择题(每小题3分,共30分)1. 下列各式:51(1 – x ),34-πx ,222y x -,x x 25,其中分式有( )A .1个B .2个C .3个D .4个2.计算5a a --55a -的结果是( ) A .1B .-1C .0D .a -53.若分式21x x -+的值为0,则x 的值为( ) A .-1 B .0 C .2D .-1或24.分式方程21x --31x +=0的解为( ) A .x=3B .x=-5C .x=5D .无解5.下列等式中成立的是( ) A .1a +2b =3a b + B .22a b +=1a b + C .2ab ab b -=aa b-D .a ab -+=-aa b+ 6.A ,B 两地相距48千米,一艘轮船从A 地顺流航行至B 地,又立即从B 地逆流返回A 地,共用去9小时.已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米/时,则可列方程( ) A .484x ++484x -=9 B .484x ++484x-=9 C .48x +4=9 D .964x ++964x -=9 7.计算2121211a a a a +⎛⎫÷+ ⎪-+-⎝⎭的结果是( )A .11a -B .11a + C .211a - D .211a + 8.若x=-1,y=2,则22264x x y --18x y -的值为( )A .-117 B .117 C .116 D .1159.关于x 的分式方程3x +61x --()1x k x x +-=0有解,则k 满足( )A .k≠-3B .k≠5C .k≠-3且k≠-5D .k≠-3且k≠510.如图,一个瓶身为圆柱体的玻璃瓶内装有高a 厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h 厘米,则瓶内墨水的体积约占玻璃瓶容积的( ) A .a a b+ B .b a b+ C .h a b+ D .h a h+二、填空题(每小题4分,共32分)11.若分式211x x -+有意义,则x 的取值范围为 .12.下列分式:2b a ,a bab a ++,4422a b a b -+,22864m m m --,其中最简分式有个.13.计算:2a a +-242a a+= .14.根据变化完成式子的变形:2233x xyxy y --=()3x . 15.若关于x 的方程15x x --=102mx-无解,则m= . 16.甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,则乙每分钟打 个字.17.若1(21)(21)2121a bn n n n =+-+-+,对任意自然数n 都成立,则a= ,b= .18.当y=x+13时,22112xy y x x xy y ⎛⎫- ⎪-+⎝⎭的值是 . 三、解答题(共58分)19.(每小题6分,共12分)计算:(1)22x --284x -; (2)22441m m m -+-÷21m m --+21m -.20.(每小题6分,共12分)解下列方程: (1)1x +32x -=222x x -; (2)32−231x x -=762x -.21.(10分)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天; 信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.22.(12分)小明解方程1x -2x x-=1的过程如下: 解:方程两边乘x ,得1-(x -2)=1.① 去括号,得1-x -2=1.② 移项,得-x=1-1+2.③ 合并同类项,得-x=2.④ 解得x=-2.⑤所以,原分式方程的解为x=-2.⑥请指出他解答过程中的错误,并写出正确的解答过程.23.(12分)已知A=22211x x x ++--1x x -. (1)化简A ;(2)当x 满足不等式组10,30x x -≥⎧⎨-⎩<,且x 为整数时,求A 的值.附加题(15分,不计入总分)24.甲、乙两商场自行定价销售某一商品.(1)甲商场将该商品提价15%后的售价为1.15元,则该商品在甲商场的原价为 元; (2)乙商场将该商品提价20%后,用6元钱购买该商品的件数比没提价前少买1件,求该商品在乙商场的原价为多少?(3)甲、乙两商场把该商品均按原价进行了两次价格调整. 甲商场:第一次提价的百分率是a ,第二次提价的百分率是b ;乙商场:两次提价的百分率都是2a b+.(a >0,b >0,a≠b ) 请问两次提价后,甲、乙两商场哪个商场的价格较高?请说明理由.参考答案一、1.A 2.A 3.C 4.C 5.C 6.A 7.A 8.D 9.D 10.A 二、11.x ≠-1 12.2 13.2a a- 14.y 15.-8 16.45 17.12 -1218.-3 三、19.解:(1)22x --284x -=()()()2222x x x ++--()()822x x +-=()()()2222x x x -+-=22x +. (2)22441m m m -+-÷21m m --+21m -=()()()2211m m m -+-•12m m --+21m -=21m m -++21m -= ()()()()()212111m m m m m --+++-=()()2411m m m m -++-. 20.解:(1)方程两边乘x (x -2),得x -2+3x=-2. 解得x=0.检验:当x=0时,x (x -2)=0,因此x=0不是原分式方程的解. 所以,原分式方程无解.(2)方程两边乘2(3x -1),得3(3x -1)-4x=7. 解得x=2.检验:当x=2时,2(3x -1)≠0. 所以,原分式方程的解为x=2.21.解:设甲工厂每天能加工x 件新产品,则乙工厂每天能加工1.5x 件新产品,根据题意,得1200x-12001.5x =10. 解得x=40.经检验,x=40是原方程的解,且符合题意. 1.5x=1.5×40=60.答:甲工厂每天能加工40件新产品,乙工厂每天能加工60件新产品. 22.解:小明的解法有三处错误,步骤①去分母有误; 步骤②去括号有误;步骤⑥少检验. 正确解法为:方程两边乘x ,得1-(x -2)=x . 去括号,得1-x +2=x . 移项,得-x -x =-1-2. 合并同类项,得-2x =-3. 解得x=32.经检验,x =32是原分式方程的解. 所以,原分式方程的解为x=32. 23.解:(1)A=22211x x x ++--1x x -=()()()2111x x x ++--1x x -=11x x +--1x x -=11x -. (2)∵10,30x x -≥⎧⎨-⎩<, ∴1≤x <3. ∵x 为整数, ∴x =1或x =2,又当x =1或x=-1时,A 无意义, ∴当x=2时,A=121-=1. 24.解:(1)1(2)设该商品在乙商场的原价为x 元,根据题意,得6x −61.2x=1. 解得x=1.经检验,x=1是原方程的解,且符合实际. 答:该商品在乙商场的原价为1元. (3)由于原价均为1元,则甲商场两次提价后的价格为(1+a )(1+b )=1+a+b+ab . 乙商场两次提价后的价格为:(1+2a b +)2=1+a+b+(2a b +)2. ∵(2a b +)2−ab =(2a b -)2>0. 故两次提价后乙商场价格较高.。
北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)一、选择题(共10小题,3*10=30)1. 在式子1a ,2xy π,3ab 2c 4,56+x ,x 7+y 8,9x +10y ,x 2x 中,分式的个数是( ) A .5 B .4 C .3 D .22. 下列式子:①x 3y 2·y 4x 2;②b -a ·2a 2bc ;③8xy÷4x y ;④x +y x 2-xy ÷1x -y,计算结果是分式的是( ) A .①② B .③④C .①③D .②④3. 已知2x x 2-2x =2x -2,则x 的取值范围是( ) A .x >0 B .x≠0且x≠2C .x <0D .x≠24. 若3-2x x -1÷( )=1x -1,则( )中式子为( ) A .-3 B .3-2xC .2x -3 D.13-2x5. 若将分式a +b 4a 2中的a 与b 的值都扩大为原来的2倍,则这个分式的值将( ) A .扩大为原来的2倍 B .分式的值不变C .缩小为原来的12D .缩小为原来的146. 分式3x -2(x -1)2,2x -3(1-x )3,4x -1的最简公分母是( ) A .(x -1)2 B .(x -1)3C .x -1D .(x -1)2(1-x)37. 将分式方程1x =2x -2去分母后得到的整式方程,正确的是( ) A .x -2=2x B .x 2-2x =2xC.x -2=x D .x =2x -48. 分式方程1x -1-2x +1=4x 2-1的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解9. 解关于x 的方程x x -1-k x 2-1=x x +1不会产生增根,则k 的值( ) A .为2 B .为1 C .不为±2 D .无法确定10. 新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( ) A.5000x +1=5000(1-20%)x B.5000x +1=5000(1+20%)x C.5000x -1=5000(1-20%)x D.5000x -1=5000(1+20%)x 二.填空题(共8小题,3*8=24)11. 计算:xy 2xy=__ __. 12. 当a =12时,代数式2a 2-2a -1-2的值为________. 13. 小松鼠为过冬储存m 天的坚果a 千克,要使储存的坚果能多吃n 天,则小松鼠每天应节约坚果_____________千克.14. 化简:x 2+4x +4x 2-4-x x -2=___________. 15. 若a 2+5ab -b 2=0,则b a -a b的值为___________. 16. 某单位全体员工在植树节义务植树240棵.原计划每小时植树m 棵,实际每小时植树的棵数比原计划每小时植树的棵数多10棵,那么实际比原计划提前了____________小时完成任务.(用含m 的代数式表示)17. 若关于x 的方程x -1x -5=m 10-2x无解,则m =________. 18. 已知关于x 的分式方程x -3x -2=2-m 2-x会产生增根,则m =____________. 三.解答题(7小题,共66分)19.(8分) 计算:(1)3a 2b·512ab 2÷(-5a 4b);(2)b a 2-b 2÷(a a -b -1);20.(8分) 先化简,再求值:(a -2ab -b 2a )÷a 2-b 2a,其中a =1+2,b =1- 2.21.(8分) 在数学课上,老师对同学们说:“你们任意说出一个x 的值(x≠-1,1,-2),我立刻就知道式子(1+1x +1)÷x +2x 2-1的结果.”请你说出其中的道理.22.(10分) 老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下: ⎝ ⎛⎭⎪⎫-x 2-1x 2-2x +1÷x x +1=x +1x -1. (1)求所捂部分化简后的结果;(2)原代数式的值能等于-1吗?为什么?23.(10分) 化简x 2-4x +4x 2-2x÷(x -4x ),然后从-5<x<5的范围内选取一个合适的整数作为x 的值代入求值.24.(10分) 已知:2+23=22×23,3+38=32×38,4+415=42×415…若10+a b =102×a b(a ,b 均为正整数). (1)探究a ,b 的值;(2)求分式a 2+4ab +4b 2a 2+2ab的值.25.(12分) 为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A 、B 两个工程公司承担建设,已知A 工程公司单独建设完成此项工程需要180天,A 工程公司单独施工45天后,B 工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B 工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划分成两部分,要求两工程公司同时开工,A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了n 天完成,其中m ,n 均为正整数,且m <46,n <92,求A 、B 两个工程公司各施工建设了多少天?参考答案1-5BDBBC 6-10BADCA11.y 12.1 13.an m (m +n ) 14.2x -2 15.5 16.2400m 2+10m17. -8 18.-1 19.解:(1)原式=-1(2)原式=1a +b20.解:原式=a -b a +b . 当a =1+2,b =1-2时,原式=222= 2. 21.解:∵原式=x +1+1x +1÷x +2(x +1)(x -1)=x +2x +1·(x +1)(x -1)x +2=x -1,∴只要学生说出x 的值,老师就可以说出答案22.解:(1)设所捂部分为A ,则A =x +1x -1·x x +1+x 2-1x 2-2x +1=x x -1+x +1x -1=x +x +1x -1=2x +1x -1. (2)若原代数式的值为-1,则x +1x -1=-1,即x +1=-x +1,解得x =0,当x =0时,除式x x +1=0,∴原代数式的值不能等于-1.23.解:原式=1x +2,∵-5<x<5且x 为整数,∴若使分式有意义,x =-1或x =1. 当x =1时,原式=13;当x =-1时,原式=1 24.解:(1)a =10,b =102-1=99(2)a 2+4ab +4b 2a 2+2ab =a +2b a ,将a ,b 的值代入得原式=104525. 解:(1)设B 工程公司单独完成需要x 天,根据题意得45×1180+54(1180+1x)=1,解得x =120,经检验,x =120是分式方程的解,且符合题意,答:B 工程公司单独完成需要120天 (2)根据题意得m ×1180+n ×1120=1,整理得n =120-23m ,∵m <46,n <92,∴120-23m <92,解得42<m <46,∵m 为正整数,∴m =43,44,45,又∵120-23m 为正整数,∴m =45,n =90.答:A ,B 两个工程公司分别施工建设了45天和90天。
八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)【新北师大版八年级数学(下)单元测试卷】第五《分式与分式方程》班级:___________ 姓名:___________ 得分:___________一选择题:(每小题3分共36分)1.在,,,中,是分式的有()A.1个B.2个.3个D.4个2.每千克元的糖果x千克与每千克n元的糖果千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为()A.元B.元.元D.元3.当x=2时,下列分式中,值为零的是()A.B..D.4.下列分式是最简分式的是()A.B..D..若,则的值为()A.1 B..D.6.计算所得的正确结论是()A B1 D-17.a÷b× ÷× ÷d×等于()A.a B..D.ab d8.计算的结果为:()A.B.-.-D.9.分式的分子分母都加1,所得的分式的值比()A.减小了B.不变.增大了D.不能确定10.若,则=()A B D11.关于x的方式方程的解是正数,则可能是()A.﹣4 B.﹣.﹣6 D.﹣712.如果关于x的方程的解不是负值,那么a与b的关系是()A.a>b B.b≥ a .a≥3b D.a=3b二、填空题:(每小题3分共12分)13.化简:= .14.已知,则的值是。
1.计算:= .16.若关于的分式方程无解,则= .三解答题:(共2分)17.(分)计算:(﹣)÷.18.(分)计算:.19.(6分)先化简再求值:,其中a=2,b=﹣1.20.(6分)A、B两地相距200千米,甲车从A地出发匀速开往B 地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.21.(10分)某商店经销一种纪念品,9月份的销售额为2000元,为扩大销售,10月份该商店对这种纪念品打九折销售,结果销售量增加20,销售额增加700元.(1)求这种纪念品9月份的销售价格?(2)若9月份销售这种纪念品获利800元,问10月份销售这种纪念品获利多少元?22.(10分)某工程承包方指定由甲、乙两个工程队完成某项工程,若由甲工程队单独做需要40天完成,现在甲、乙两个工程队共同做20天后,由于甲工程队另有其他任务不再做该工程,剩下的工程由乙工程队再单独做了20天才完成任务.(1)求乙工程队单独完成该工程需要多少天?(2)如果工程承包方要求乙工程队的工作时间不能超过30天,要完成该工程,甲工程队至少要工作多少天?23.(10分)一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间甲公司的1倍,乙公司每天的施工费比甲公司每天的施工费少100元。
压轴题05:分式与分式方程综合专练20题(解析版)一、单选题1.若关于x的方程3133x axx x++=--有正整数解,且关于y的不等式组252510ya y-⎧<⎪⎨⎪--≤⎩至少有两个奇数解,则满足条件的整数a有()个A.0B.1C.2D.3【答案】D【分析】分式方程去分母转化为整式方程,表示出正整数方程的解,代入检验确定出a的值,再表示出不等式组的解集,由解集至少有两个奇数解确定出整数a的值,求出之和即可.【详解】解:31 33x axx x++= --解得:6 xa =∴方程有正整数解且63a≠即2a≠∴136 a=、、解不等式组252510ya y-⎧<⎪⎨⎪--≤⎩解得1521yy a⎧<⎪⎨⎪≥-⎩关于y的不等式组至少有两个奇数解∴15a-≤∴6a≤∴满足条件得整数a有3个,故选:D.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.2.若关于x的分式方程61xx-=3+1axx-的解为整数,且一次函数y=(10﹣a)x+a的图象不经过第四象限,则符合题意的整数a的个数为()A.1B.2C.3D.4【答案】C【分析】根据题意求得满足条件的a 的值,从而可以得到满足条件的所有整数a 的个数.【详解】解:∴一次函数y =(10﹣a )x +a 的图象不经过第四象限,∴1000a a ->⎧⎨≥⎩, 解得010a ≤<, 由分式方程61x x -=3+1ax x -得,x =33a -, ∴分式方程61x x -=3+1ax x -的解为整数,且x≠1, ∴a =0,2,4,∴符合题意的整数a 的个数3个,故选:C .【点睛】本题主要考查分式方程的解和一次函数的图象及性质,掌握一次函数的图象及性质以及正确的解分式方程是解题的关键.3.若整数a 使得关于x 的不等式组341242()x x x a x +⎧+>⎪⎨⎪-≤-⎩的解集为2x <-,且关于y 的分式方程2311a y y y -=+++的解为负数,则所有符合条件的整数a 的和为( )A .0B .-3C .-5D .-8【答案】D【分析】先解不等式组中的两个不等式,由不等式组的解集可得5,a ≥- 再解分式方程,由分式方程的解为负数可得:a <5, 且3,a ≠ 结合a 为整数,从而可得答案.【详解】 解:341242()x x x a x +⎧+>⎪⎨⎪-≤-⎩①②由∴得:22x +>34+x , x <2,-由∴得:324,x a ≤+24,3a x +∴≤ 又由不等式组的解集为2x <-,242,3a +∴≥- 246,a ∴+≥-5,a ∴≥-2311a y y y -=+++ 233,a y y ∴=-++5,2a y -∴= 方程2311a y y y -=+++的解为负数, 52a -∴<0, a ∴<5,由10,y +≠1,y ∴≠-51,2a -∴≠- 3,a ∴≠综上:5a -≤<5且3,a ≠由a 为整数,5a ∴=-或4a =±或3a =-或2a =±或1a =±或0a =,则所有符合条件的整数a 的和为:8.-故选:.D【点睛】本题考查的是由一元一次不等式组的解集求解参数的取值范围,分式方程的负数解问题,掌握以上知识是解题的关键.4.若整数a 使得关于x 的分式方程2x x -+12a x+-=2的解为非负数,且一次函数y =﹣(a +3)x +a +2的图象经过一、二、四象限,则所有符合条件的a 的和为( )A .﹣3B .2C .1D .4【答案】D【分析】先求出方程的解x =3﹣a ≥0,求出a ≤3,根据分式方程的分母x ﹣2≠0求出a ≠1,根据一次函数y =﹣(a +3)x +a +2的图象经过一、二、四象限求出﹣(a +3)<0且a +2>0,求出a >﹣2,再求出答案即可.【详解】 解:2x x -+12a x+-=2, 方程两边乘以x ﹣2得:x ﹣a ﹣1=2x ﹣4,解得:x =3﹣a ,∴关于x 的分式方程2x x -+12a x +-=2的解为非负数, ∴3﹣a ≥0,解得:a ≤3,∴一次函数y =﹣(a +3)x +a +2的图象经过一、二、四象限,∴﹣(a +3)<0且a +2>0,解得:a >﹣2,∴﹣2<a ≤3,∴分式方程的分母x ﹣2≠0,∴x =3﹣a ≠2,即a ≠1,∴a 为整数,∴a 为﹣1,0,2,3,和为﹣1+0+2+3=4,故选:D .【点睛】本题考查了解分式方程,一次函数的图象和性质,解一元一次不等式等知识点,能灵活运用知识点进行计算是解此题的关键.5.在ABC 中,AE 、BF 、CP 分别在边BC 、CA 、AB 上的高线,已知AE 、BF 、CP 相交于一点D ,且2019AD BD CD DE DF DP ++=,则AD BD CD DE DF DP⋅⋅的值等于( )A .2019B .2020C .2021D .2022 【答案】C【分析】设BDC S a ,ADC S b ,ABD S c ,则AD b c DE a +=,BD a c DF b +=,cD DP C a b +=,然后对所求式子变形整理,整体代入计算即可.【详解】解:设BDC S a ,ADC S b ,ABD S c , 则ADC ABD ADC ABD BDE DEC BDE DEC S S S S S S S S AD b c DE a+====++, 同理可得:BD a c DF b +=,c D DP C a b +=, ∴2019a c a b b c b c a +++++=, ∴AD BD CD DE DF DP ⋅⋅ b c a c a b a b c+++=⋅⋅ ()()()b c a c a b abc+++= 222222a b a c abc ac ab abc b c bc abc+++++++= ()()()()ac a c ab a c ab b c bc b c abc abc++++++=+ a c a c b c b c b c c a++++=+++ 2a c a b b c b c a+++=+++ 20192=+2021=,故选:C .【点睛】本题考查了三角形的面积计算,分式的混合运算,正确化简所求式子是解题的关键.6.若数a 使关于x 的不等式组36222()4x x x a x +⎧<+⎪⎨⎪-+⎩的解集为x <﹣2,且使关于y 的分式方1311--=-++y a y y 的解为负数,则符合条件的所有整数a 的个数为( )A .4B .5C .6D .7【答案】C【分析】表示出不等式组的解集,由不等式组的解集为x <﹣2确定出a 的范围,再由分式方程的解为负数以及分式有意义的条件求出满足题意整数a 的值,进而求出符合条件的a 的个数.【详解】 解:解不等式组36222()4x x x a x +⎧<+⎪⎨⎪-+⎩,得:224x x a <-⎧⎨+⎩, 由不等式组的解集为x <﹣2,得到2a +4≥﹣2,解得:a ≥﹣3; 分式方程1311--=-++y a y y 去分母得:1﹣y ﹣a =﹣3(y +1), 解得:y =42a -, 由分式方程的解为负数以及分式有意义的条件,得412402a a -⎧≠-⎪⎪⎨-⎪<⎪⎩, 解得:a <4且a ≠2;∴﹣3≤a <4且a ≠2,∴a =﹣3,﹣2,﹣1,0,1,3,∴符合条件的所有整数a 的个数为6个;故选:C .【点睛】此题主要考查分式方程与不等式组的求解运用,解题的关键是熟知分式方程与不等式组的解法.7.若关于x 的不等式组()3222x x a x x ⎧-->-⎪⎨+<⎪⎩有解,关于y 的分式方程13244ay y y -+=---有整数解,则符合条件的所有整数a 的和为( )A .0B .1C .2D .5【答案】B【分析】先解不等式组,由不等式组有解,可得a <4,再解分式方程,当2a ≠且1a ≠时,分式方程的解为:4,2y a =--再由,y a 为整数,分类讨论可得答案. 【详解】解:()3222x x a x x ⎧-->-⎪⎨+<⎪⎩①② 由∴得:36x x -+>2,-2x ∴->8,- x <4,由∴得:a x +<2,x x >,a关于x 的不等式组()3222x x a x x ⎧-->-⎪⎨+<⎪⎩有解, a ∴<4, 13244ay y y -+=---, ()1324,ay y ∴--=--24,ay y ∴-=-()24,a y ∴-=-当2a =时,方程无解,则2,a ≠44,22y a a -∴==--- 检验:40,y -≠440,2a ∴--≠- 44,2a ∴≠-- 21,a ∴-≠-1,a ∴≠,y a 为整数,21a ∴-=± 或22a -=±或24,a -=±3a ∴=或1a =或4a =或0a =或6a =或2,a =-a ∴<4, 2,a ≠1,a ≠∴ 3a =或0a =或 2.a =-经检验:3a =或0a =或2a =-符合题意,()302 1.∴++-=故选:.B本题考查的是一元一次不等式组的解法,分式方程的解法,分类讨论数学思想,掌握以上知识是解题的关键.8.若关于x 的不等式组52(+)11231x x a ⎧>⎪⎨⎪-<⎩无解,且关于y 的分式方程34122y a y y ++=--有非负整数解,则满足条件的所有整数a 的和为( )A .8B .10C .16D .18 【答案】C【分析】先由不等式组无解,求解8a ≤,再求解分式方程的解22a y +=,由方程的解为非负整数,求解2a ≥-且2a ≠,再逐一确定a 的值,从而可得答案. 【详解】 解:52+11{231x x a ⎛⎫> ⎪⎝⎭-<①②由∴得:2511x +>,∴3x >,由∴得:31x a <+, ∴13x a <+, ∴关于x 的不等式组52+11{231x x a ⎛⎫> ⎪⎝⎭-<无解, ∴1+33a ≤, ∴19a +≤,∴8a ≤, ∴34122y a y y++=--, ∴()342y a y -+=-, ∴22a y +=, ∴20y -≠, ∴222a +≠,∴关于y 的分式方程34122y a y y++=--有非负整数解, ∴202a +≥, ∴2a ≥-, ∴22a +为整数, ∴2a =-或0a =或4a =或6a =或8a =.∴2046816-++++=.故选:C .【点睛】本题考查的由不等式组无解求解字母系数的范围,分式方程的非负整数解,熟练掌握解不等式组的方法和解分式方程是解题关键,解题时要注意分式方程的解得到y ≠2这一隐含条件.二、填空题9.若223411a a a ++-为不超过3的整数,则整数=a ______. 【答案】0或-1或-3【分析】 先将223411a a a ++-整理得到4331a +≤-,根据题意即可确定a 的值. 【详解】 解:22341(3+1)(1)313(1)4431(1)(1)111a a a a a a a a a a a a ++++-+====+-+----, 因为223411a a a ++-为不超过3的整数, ∴4331a +≤-,且431a +-为整数, ∴ 401a ≤-, 因为a 为整数,所以符合条件的a=0或-1或-3,故答案为:0或-1或-3.【点睛】 本题主要考查了分式的化简,解题的关键是将将223411a a a ++-整理得到431a +-.10.若数a 使关于x 的不等式组2122274x x x a-⎧≤-+⎪⎨⎪+>-⎩,有且仅有四个整数解,且使关于y 的分式方程2222a y y+=--有非负数解,则所有满足条件的整数a 的值之和是________________. 【答案】1【分析】先解不等式组,根据不等式组有且仅有四个整数解,得出−4<a≤3,再解分式方程2222a y y+=--,根据分式方程有非负数解,得到a≥−2且a≠2,进而得到满足条件的整数a 的值之和.【详解】 解不等式组2122274x x x a -⎧≤-+⎪⎨⎪+>-⎩①②,由∴得,x≤3;由∴得,x >47a +-; ∴不等式组有且仅有四个整数解, ∴−1≤47a +-<0, ∴−4<a≤3, 解分式方程2222a y y+=--,可得y =12(a +2), 又∴分式方程有非负数解,∴y≥0,且y≠2, 即12(a +2)≥0,12(a +2)≠2,解得a≥−2且a≠2,∴−2≤a≤3,且a≠2,∴满足条件的整数a 的值为−2,−1,0,1,3,∴满足条件的整数a 的值之和是1.故答案为:1.【点睛】本题主要考查了分式方程的解,解题时注意:使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.11.2022年北京冬奥会正在火热举办中,冰雪项目中高质量的“人造雪”受到人们的广泛关注,它的生产实际上是一个科学技术难题:要首先通过过滤装置将自然水过滤成纯净的水,接着用制冰装置将纯净的水制成片状的纯冰,再通过碎冰装置把已经造好的纯冰粉碎成粉末,最后,通过把粉末状的冰晶和空气等原料混合加工成“人造雪”.现有若干千克自然水和100千克纯冰,准备将它们加工成人造雪,共8名技术人员,分为甲、乙两组同时工作,甲组负责自然水提纯后加工成纯冰,乙组负责将纯冰加工成人造雪.已知甲组人员每人每小时可将10千克自然水加工成5千克纯冰,乙组人员每人每小时可将10千克纯冰加工成20千克人造雪(不考虑冰雪融化及其他损耗);若加工t 小时后,纯冰质量与人造雪的质量之比为1:8;又加工了几个小时后,自然水全部使用完;接着继续将所有纯冰都加工成人造雪,一共加工产生了700千克人造雪;当自然水正好全部使用完,此时纯冰质量与人造雪质量之比为______. 【答案】1:12##112【分析】设有x 人在甲组,则有(8-x )在乙组,根据纯冰质量与人造雪的质量之比为1:8,列出方程()():20158010018:8t tx t x ⎡⎤+=⎣⎦--,从而()4017t x t-=,根据,x t 都为正整数(<8x ),且40不能被7整除,从而得出x =5,于是得出共加工了8小时,乙组为3人,然后根据将所有纯冰都加工成人造雪,一共加工产生了700千克人造雪,得出自然水正好全部使用完时,纯冰质量和人造雪质量,即可求出答案. 【详解】解:设有x 人在甲组,则有(8-x )在乙组, t 小时后,有纯冰的质量为:()5100108tx t x +--51008010tx t tx =+-+ 1580100tx t =-+(千克)有人造雪的质量为()208t x -千克根据题意可得:()():20158010018:8t tx t x ⎡⎤+=⎣⎦-- ()()815801002108t x tx t ⎡⎤⨯=--+⨯⎣⎦12064080016020tx t t tx -+=- 140800800tx t =-()4017t x t-=,x t 都为正整数(<8x ),且40不能被7整除,∴40能被t整除,t-1能被7整除;∴t=8,x=5.∴ 8-x =3,因此甲组有5人,乙组有3人.生产700千克人造雪需要纯冰的质量为:7002010350÷⨯= (千克),原有纯冰100千克, ∴自然水加工而成的纯冰的质量为:350100250-= (千克),∴甲组生产纯冰的总时间为:2505510÷÷=(小时),自然水用完时,乙组共生产的人造雪的质量为10320600⨯⨯=(千克),此时还剩下的纯冰的质量为:100250600201050+-÷⨯=(千克), ∴此时纯冰与人造雪的质量比为:150:6001:1212==故答案为:1:12或112【点睛】本题主要考查了列方程解应用题,根据题意找出题目中的等量关系列出方程是解题的关键.12.某知名服装品牌在北碚共有A 、B 、C 三个实体店.由于疫情的影响,第一季度A 、B 、C 三店的营业额之比为3:4:5,随着疫情得到有效的控制和缓解,预计第二季度这三个店的总营业额会增加,其中B店增加的营业额占总增加的营业额的27,第二季度B 店的营业额占总营业额的413,为了使A 店与C 店在第二季度的营业额之比为5∴4,则第二季度A 店增加的营业额与第二季度总营业额的比值为______________. 【答案】726【分析】设第一季度A 、B 、C 三店的营业额分别为34,5x x x ,,第二季度A 店、C 店的营业额为5y 、4y ,根据题意求得y 与x 的关系2y x =,第二季度B 店的营业额4y ,第二季度总营业额为13y ,则第二季度A 店增加的营业额与第二季度总营业额的比值为5313y xy-,即可求解. 【详解】解:∴第一季度A 、B 、C 三店的营业额之比为3:4:5∴设第一季度A 、B 、C 三店的营业额分别为34,5x x x ,∴第二季度A 店与C 店在第二季度的营业额之比为5∴4∴设第二季度A 店、C 店的营业额为5y 、4y ,B 店的营业额为z ∴第二季度B 店的营业额占总营业额的413, ∴45413z y y z =++,解得4z y =∴第二季度总营业额为13y∴B店增加的营业额占总增加的营业额的2 7∴44213127y xy x-=-,解得2y x=第二季度A店增加的营业额与第二季度总营业额的比值为537 1326 y xy-=【点睛】此题考查了分式方程的应用,理解题意设合适的未知数,弄清楚题中的等量关系是解题的关键.13.随着我国疫情的有效控制,各地打造了众多春游景点供市民休闲娱乐.某区特别打造了多彩植物园、亲子游乐园、劳动体验园吸引游客.3月份多彩植物园、亲子游乐园、劳动体验园接待游客数量之比为3:3:4.为增加游客数量,该地区通过发抖音、转发朋友圈等多种方式加大宣传力度,预计4月份三个园区接待的游客总人数在3月份的基础上会增加.但因为多彩植物园中部分花期已过,多彩植物园的游客人数在3月份的基础上将减少13.这样4月份,多彩植物园接待的游客总人数占三个园区接待游客总人数的17,而亲子游乐园、劳动体验园4月份接待游客人数之比将达到3:2,则亲子游乐园新增的人数与4月份这三个园区的总人数之比是___________【答案】3 10【分析】设3月多彩植物园、亲子游乐园、劳动体验园接待游客数量分别为3a,3a,4a,求出4月多彩植物园的人数,得到4月接待总人数,设4月亲子游乐园人数为m,根据4月亲子游乐园、劳动体验园4月份接待游客人数之比将达到3:2,得到365m a=,再根据题意求出比值.【详解】解:设3月多彩植物园、亲子游乐园、劳动体验园接待游客数量分别为3a,3a,4a,则4月多彩植物园的游客人数为3a(1-13)=2a,∴4月接待总人数为2a÷17=14a,∴4月亲子游乐园、劳动体验园接待游客数量为12a,设4月亲子游乐园人数为m,则劳动体验园人数为12a-m,由题意可得:3 122ma m=-,解得:365m a =,∴4月亲子游乐园新增的人数与4月份这三个园区的总人数之比为:363514a a a-=310, 故答案为:310. 【点睛】本题考查了分式方程的实际应用,题干较长,解题时要细心认真读题,理清题中的条件,用字母表示出相关量,再进行运算.14.今年是脱贫攻坚关键年,大学生小赵利用电商平台帮助家乡售卖当地土特产。
第五章 分式与分式方程一、选择题(本大题共8小题,每小题3分,共24分)1.有下列各式:12(1-x ),4x π-3,x2-y22,1+a b ,5x2y ,其中分式共有( )A .2个B .3个C .4个D .5个2.下列各式中,正确的是( ) A.a +b ab =1+b b B.x +y x -y =x2-y2(x -y )2 C.x -3x2-9=1x -3 D.-x +y 2=-x +y 23.在分式15b2c -5a ,5(x -y )2y -x ,a2+b23(a +b ),4a2-b22a -b ,a -2b 2b -a 中,最简分式有( )A .1个B .2个C .3个D .4个4.解分式方程x 3+x -22+x =1时,去分母后可得到( )A .x (2+x )-2(3+x )=1B .x (2+x )-2=2+xC .x (2+x )-2(3+x )=(2+x )(3+x )D .x -2(3+x )=3+x5.化简⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x 的结果是( ) A.1x B .x -1 C.x -1x D.xx -1 6.如果解关于x 的分式方程mx -2-2x2-x =1时出现增根,那么m 的值为( ) A .-2 B .2 C .4 D .-47.某工厂生产一种零件,计划在20天内完成.若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )A.20x +10x +4=15B.20x -10x +4=15C.20x +10x -4=15D.20x -10x -4=158.若关于x 的方程a x -1+1=x +ax +1的解为负数,且关于x 的不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13无解,则所有满足条件的整数a 的值之和是( )A .5B .7C .9D .10二、填空题(本大题共6小题,每小题4分,共24分)9.若分式1x -5在实数范围内有意义,则x 的取值范围是________.10.计算:x2x +1-1x +1=________.11.化简:m2-4mn +4n2m2-4n2=________.12.某学校为了增强学生体质,准备购买一批体育器材,已知A 类器材比B 类器材的单价低10元,用150元购买A 类器材与用300元购买B 类器材的数量相同,则B 类器材的单价为________元/件.13.若关于x 的方程x +m m (x -1)=-45的解为x =-15,则m =________.14.若关于x 的分式方程2x +mx -3=3的解为正数,则m 的取值范围是________.三、解答题(本大题共6小题,共52分) 15.(10分)解下列方程: (1) xx -3-2=-33-x;(2)x x +3+2x2+3x =1.16.(6分)化简:9-a2a2+6a +9÷a2-3a a +3+1a .17.(8分)先化简,再求值:⎝⎛⎭⎫1+1a ·a2a2-1,其中a =3.18.(9分)已知关于x 的方程2xx -2+m x -2=3. (1)当m 取何值时,此方程的解为x =3? (2)当m 取何值时,此方程会产生增根?(3)当此方程的解是正数时,求m的取值范围.19.(9分)某校组织学生去9 km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.已知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少.20.(10分)某班到毕业时共节余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为母校购买纪念品,其余经费用于在毕业晚会上给50名同学每人购买一件文化衫或一本相册作为留念.已知每件文化衫的价格比每本相册贵9元,用175元购买文化衫和用130元购买相册的数量相等.(1)求每件文化衫和每本相册的价格分别为多少元;(2)有哪几种购买文化衫和相册的方案?1.[解析] A12(1-x),4x π-3,x2-y22的分母中均不含有字母,因此不是分式,是整式;1+a b,5x2y的分母中含有字母,因此是分式.故选A .2.[答案] B3.[解析] A 15b2c -5a =3b2c -a ;5(x -y )2y -x =5(y -x);4a2-b22a -b =(2a +b )(2a -b )2a -b=2a +b ;a -2b2b -a=-1.所以只有一个最简分式.故选A .4.[解析] C 在方程x 3+x -22+x=1的两边同乘最简公分母(3+x)(2+x),得x(2+x)-2(3+x)=(2+x)(3+x).故选C .5.[解析] B ⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x =x2-2x +1x ÷x -1x =(x -1)2x ·x x -1=x -1.故选B . 6.[答案] D 7.[答案] A8.[解析] C a x -1+1=x +ax +1,方程两边同乘(x -1)(x +1),得a(x +1)+(x -1)(x +1)=(x -1)(x +a), 整理得x =1-2a , 由题意得1-2a <0,解得a >12.解不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13,得4≤x <a.∵不等式组无解,∴a ≤4, 则12<a ≤4. ∵1-2a ≠±1, ∴a ≠0,a ≠1,∴所有满足条件的整数a 的值之和为2+3+4=9. 故选C .9.[答案] x ≠5 10.[答案] x -111.[答案] m -2nm +2n[解析] 原式=(m -2n )2(m +2n )(m -2n )=m -2nm +2n.12.[答案] 20[解析] 设B 类器材的单价为x 元/件,则A 类器材的单价是(x -10)元/件,由题意得150x -10=300x, 解得x =20.经检验,x =20是原方程的解. 即B 类器材的单价为20元/件. 故答案为:20. 13.[答案] 5[解析] 把x =-15代入方程即可求得m 的值.14.[答案] m >-9且m ≠-6[解析] 去分母,得2x +m =3x -9,解得x =m +9.由分式方程的解为正数,得到m +9>0,且m +9≠3,解得m >-9且m ≠-6.15.解:(1)方程两边同乘(x -3),得x -2(x -3)=3. 去括号,得x -2x +6=3. 移项、合并同类项,得x =3. 检验:当x =3时,x -3=0, ∴原分式方程无解.(2)方程两边同乘x(x +3),得 x 2+2=x 2+3x ,移项、合并同类项,得3x =2,解得x =23.经检验,x =23是原方程的解.16.[解析] 先算乘除,再算加减.解:原式=-(a +3)(a -3)(a +3)2·a +3a (a -3)+1a=-1a +1a=0. 17.解:原式=a +1a ·a2(a -1)(a +1)=aa -1.当a =3时,原式=32.18.解:(1)把x =3代入方程2x x -2+mx -2=3,得m =-3.(2)方程的增根为x =2,原方程去分母得2x +m =3x -6,将x =2代入,得m =-4.(3)原方程去分母得2x +m =3x -6,解得x =m +6.因为方程的解是正数,所以m +6>0,解得m >-6.因为x ≠2,所以m ≠-4.综上,m 的取值范围是m>-6且m ≠-4.19.[解析] 设自行车的速度为x km /h ,则公共汽车的速度为3xkm /h ,根据时间=路程÷速度结合乘公共汽车比骑自行车少用12h ,即可得出关于x 的分式方程,解之经检验即可得出结论.解:设自行车的速度为x km /h ,则公共汽车的速度为3x km /h .根据题意,得9x -93x =12,解得x =12.经检验,x =12是原分式方程的解, ∴3x =36.答:自行车的速度是12 km /h ,公共汽车的速度是36 km /h .20.解:(1)设每件文化衫的价格为x 元,则每本相册的价格为(x -9)元,由题意得175x=130x -9, 解得x =35.经检验,x =35是原分式方程的解, 则x -9=35-9=26(元).答:每件文化衫的价格为35元,每本相册的价格为26元.(2)设购买文化衫m 件,则购买相册(50-m)件.由题意得1800-300≤35m +26(50-m)≤1800-270,解得2229≤m ≤2559.共有3种购买方案:①购买文化衫23件,购买相册27件;②购买文化衫24件,购买相册26件;③购买文化衫25件,购买相册25件.。
北师大版八年级数学下册第五章分式与分式方程专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列变形正确的是( )A .33y y x x +=+B .y y x x -=-C .22y y x x =D .y x x y= 2、关于x 的分式方程231x m x -=+的解是正数,则字母m 的取值范围是( ) A .3m <-B .3m <C .3m >且2m ≠D .3m >-且2m ≠ 3、分式12x x --有意义,则x 满足的条件是( ) A .1x ≠ B .2x ≠ C .2x = D .2x >4、x 满足什么条件时分式211x x --有意义( ). A .1x ≠ B .1x ≠- C .0x ≠ D .1x ≠±5、下列各式从左到右变形正确的是( )A .2362x x x =B .11n n m mC .n m n m m n mn --=D .22n n m m= 6、把0.0813写成科学记数法的形式,正确的是( )A .28.1310-⨯B .38.1310-⨯C .28.1310⨯D .381.310-⨯7、如果把223xy x y-中的x 和y 都扩大到原来的5倍,那么分式的值( ) A .扩大到原来的5倍 B .不变 C .缩小为原来的15 D .无法确定8、若把x 、y 的值同时扩大为原来的2倍,则下列分式的值保持不变的是( )A .11x y ++B .2x y x y -+C .2x yD .xy x y+ 9、PM 2.5是大气中直径小于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( )A .50.2510-⨯B .60.2510-⨯C .62.510-⨯D .52.510-⨯ 10、若a b ,则下列分式化简正确的是( )A .22a a b b +=+B .22a a b b -=-C .0.20.2a a b b =D .22a a b b= 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若2x =5y ,则x y x+=_____. 2、开学在即,由于新冠疫情学校决定共用8000元分两次购进口罩6000个免费发放给学生.若两次购买口罩的费用相同,且第一次购买口罩的单价是第二次购买口罩单价的1.5倍,则第二次购买口罩的单价是 __元.3、分式方程1213x x=+的解是______. 4、当x =______ 时,分式21(3)(1)x x x ---的值为零 5、若0ab ≠,且5a b ab +=,则11a b+的值为________. 三、解答题(5小题,每小题10分,共计50分)1、一粥一饭当思来之不易,半丝半缕恒念物力维艰.开展“光盘行动”,拒绝“舌尖上的浪费”,已经成为一种时尚. 某学校食堂为了鼓励同学们做到光盘不浪费,针对每餐后光盘的学生奖励苹果或砂糖橘一份.近日,学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,砂糖橘每千克的价格比苹果每千克的价格低40%.求苹果每千克的价格.2、在《开学第一课》中,东京奥运会的奥运健儿们向新开学的同学们送上了“希望你们能像运动员一样,努力奔跑,刻苦学习,实现你们的梦想”的祝福.为了提高学生的体育锻炼的意识和能力,丰富学生的体育锻炼的内容,学校准备购买一批体育用品. 在购买跳绳时,甲种跳绳比乙种跳绳的单价低10元,用1600元购买甲种跳绳与用2100元购买乙种跳绳的数量相同,求甲乙两种跳绳的单价各是多少元?3、解方程:(1)32133x x x +-=-+ (2)()()31112x x x x -=--+ 4、(1)21(1)(2)2⎛⎫--+- ⎪⎝⎭x x x ; (2)计算:211a a a ---; (3)先化简,再请你用喜爱的数代入求值2232122444x x x x x x x x x+-+⎛⎫-÷⎪--+-⎝⎭. 5、计算:2243342x x x x x x +---÷--.-参考答案-一、单选题1、B【分析】分式的基本性质:分式的分子与分母都乘以或除以同一个不为0的数(或整式),分式的值不变,利用分式的基本性质逐一分析判断即可.【详解】 解:3,3y y x x ++不一定相等,变形不符合分式的基本性质,变形错误,故A 不符合题意; y y x x-=-,变形符合分式的基本性质,故B 符合题意; 22,y y x x 不一定相等,变形不符合分式的基本性质,变形错误,故C 不符合题意; ,y x x y不一定相等,变形不符合分式的基本性质,变形错误,故D 不符合题意; 故选B【点睛】本题考查的是分式的基本性质,掌握“利用分式的基本性质判断分式变形是否正确”是解本题的关键.2、A【分析】解分式方程,得到含字母m 的方程,解此方程,再根据该方程的解是整数,结合分式方程的分母不为零,得到两个关于字母m 的不等式,解之即可.【详解】 解:231x m x -=+ 方程两边同时乘以(x +1),得到233x m x -=+3x m ∴=--+10x ≠1x ∴≠-31m ∴--≠-2m ∴≠-因为分式方程的解是正数,x∴>30m∴-->3m∴<-故选:A.【点睛】本题考查分式方程的解、解一元一次不等式等知识,难度较易,掌握相关知识是解题关键.3、B【分析】根据分式有意义的条件,分母不为0,即可求解.【详解】解:∵分式12xx--有意义,∴20x-≠2x∴≠故选B【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件即分母不为0是解题的关键.4、D【分析】直接利用分式有意义的条件解答即可.【详解】解:要使分式21 1x x --有意义,∴210x-≠,解得:1x≠±,故选:D【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件—分母不等于零,是解题的关键.5、A【分析】根据分式的基本性质逐个判断即可.【详解】解:A.2362x xx=,故本选项正确,符合题意;B.11nm mn++≠,故本选项错误,不符合题意;C.22n m n mm n mn--=,故本选项错误,不符合题意;D.22n nm m≠,例如1,2n m==,1124≠,故本选项错误,不符合题意;故选:A.【点睛】本题考查了分式的基本性质,解题的关键是能熟记分式的基本性质,注意:分式的基本型性质是:分式的分子和分母都乘或除以同一个不等于0的整式,分式的值不变.6、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0813=28.1310-⨯.故选A.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7、A【分析】把分式中的x与y分别用5x与5y代替,再化简即可判断.【详解】分式223xyx y-中的x与y分别用5x与5y代替后,得2(5)(5)50252(5)3(5)5(23)23x y xy xyx y x y x y⨯⨯==⨯⨯-⨯--,由此知,此时分式的值扩大到原来的5倍.故选:A【点睛】本题考查了分式的基本性质,一般地,本题中把x与y均扩大n倍,则分式的值也扩大n倍.8、B【分析】根据分式的基本性质逐项判断即可得.【详解】解:A、211211x xy y++≠++,此项不符题意;B、222222x y x yx y x y⨯--=++,此项符合题意;C 、222(2)4222x x x y y y==,此项不符题意; D 、22222x y xy x y x y ⋅=++,此项不符题意; 故选:B .【点睛】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题关键.9、C【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 2.5a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数.本题小数点往右移动到2的后面,所以 6.n =-【详解】解:0.000002562.510-=⨯故选C【点睛】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响.10、C【分析】找出分子分母的公因式进行约分,化为最简形式.【详解】解:a bA选项中,22ab++已是最简分式且不等于ab,所以错误,故不符合题意;B选项中,22ab--已是最简分式且不等于ab,所以错误,故不符合题意;C选项中,0.20.20.20.2a a ab b b=⨯=,所以正确,故符合题意;D选项中,22a a a ab b b b⨯=≠⨯,所以错误,故不符合题意;故选C.【点睛】本题考查了分式的化简.解题的关键是找出分式中分子、分母的公因式进行约分.二、填空题1、7 5【分析】先用含y的代数式表示出x,然后代入x yx+计算.【详解】解:∵2x=5y,∴52x y =,∴x yx+=572552y y yyy+==75.故答案为:75.【点睛】本题考查了分式的化简求值,用含y的代数式表示出x是解答本题的关键.2、109【分析】设第二次购买口罩的单价是x 元,则第一次购买口罩的单价是1.5x 元,根据两次购买口罩的费用相同,两次购进口罩6000个,列出方程求解即可.【详解】解:8000÷2=4000(元).设第二次购买口罩的单价是x 元,则第一次购买口罩的单价是1.5x 元, 依题意得:40001.5x +4000x=6000, 解得:x =109, 经检验,x =109是原方程的解,且符合题意. 故答案为:109. 【点睛】 本题考查了分式方程的应用,解题关键是准确把握题目中的数量关系,找出等量关系列方程. 3、2x =【分析】按照解分式方程的方法解方程即可.【详解】 解:1213x x=+, 方程两边同乘3(1)x x +得,32(1)=+x x ,解整式方程得,2x =,当2x =时,3(1)0x x +≠,2x =是原方程的解,故答案为:2x =.【点睛】本题考查了解分式方程,解题关键是熟练运用解分式方程的方法解方程,注意:分式方程要检验. 4、1-【分析】由分式的值为0的条件可得:()()210310x x x ⎧-=⎪⎨--≠⎪⎩,再解方程与不等式即可得到答案. 【详解】解: 分式21(3)(1)x x x ---的值为零, ()()210310x x x ⎧-=⎪∴⎨--≠⎪⎩①② 由①得:1,x =±由②得:3x ≠且1,x ≠综上: 1.x =-故答案为: 1.-【点睛】本题考查的是分式的值为0的条件,利用平方根解方程,掌握“分式的值为0的条件:分子为0,分母不为0”是解本题的关键.5、5【分析】先通分,再整体代入求值即可得到结果.【详解】解:∵0ab ≠,且5a b ab +=, ∴1155a b ab a b ab ab++===. 故答案为:5.【点睛】解答本题的关键是熟练掌握最简公分母的确定方法:系数取各分母系数的最小公倍数,相同字母的最高次幂及单独字母的幂的乘积.三、解答题1、14元【分析】设苹果每千克的价格为x 元,则砂糖橘每千克的价格为(140%)x -元.根据“学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,”列出方程,即可求解.【详解】解:设苹果每千克的价格为x 元,则砂糖橘每千克的价格为(140%)x -元. 根据题意,得1500180050(140%)x x-=- 解得14x =经检验:14x =是原分式方程的解,且符合题意,∴苹果每千克的价格为14元.【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键.2、乙种跳绳的单价为42元,甲种跳绳的单价为32元【分析】设乙种跳绳的单价为x 元,则甲种跳绳的单价为(10)x -元,根据题意列出方程求解即可【详解】设乙种跳绳的单价为x 元,则甲种跳绳的单价为(10)x -元, 依据题意列出方程为:1600210010x x =-, 解得:42x =,经检验:42x =是所列方程的解,并且符合实际意义,∴1032x -=,答:乙种跳绳的单价为42元,则甲种跳绳的单价为32元.【点睛】本题考查分式方程的应用,根据题意列出方程是解题的关键,分式方程注意检验.3、(1)6x =-;(2)无解【分析】(1)分式方程两边乘以()()33x x +-,去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.(2)分式方程两边乘以()()21x x +-去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)32133x x x +-=-+, 解:()()()()232333x x x x +--=+-,2269269x x x x ++-+=-,424x =-,6x =-,检验:当6x =-时,()()330x x +-≠,所以,原方程的解是6x =-,(2)()()31112x x x x -=--+,解:()()()2213+-+-=x x x x ,22223x x x x +--+=,1x =,检验:当1x =时,()()210x x +-=,所以,1x =不是原方程的解.【点睛】本题考查了解分式方程,解题的关键是利用“转化思想”,把分式方程转化为整式方程求解,解分式方程一定注意要验根.4、(1)94;(2)11a -;(3)42x x --,当x =1时,原式=3. 【分析】(1)分别运用完全平方公式和多项式乘多项式法则展开后,合并即可;(2)先通分,再计算加减即可;(3)先计算括号内的减法(通分后按同分母的分式相加减法则计算)同时把除法变成乘法,再根据分式的乘法法则约分,最后代入求出即可.【详解】解:(1)21(1)(2)2⎛⎫--+- ⎪⎝⎭x x x=221(22)4x x x x x -+--+- =221224x x x x x -+-+-+ =94;(2)211a a a --- =2(1)(1)11a a a a a -+--- =22111a a a a ---- =11a -; (3)2232122444x x x x x x x x x +-+⎛⎫-÷⎪--+-⎝⎭ =2212(2)(2)(2)(2)x x x x x x x x x ⎡⎤+-+-÷⎢⎥--+-⎣⎦=22(2)(2)(1)1(2)(2)(2)x x x x x x x x x x ⎡⎤+---÷⎢⎥---⎣⎦=24(2)(2)x x x x x -⋅-- =42x x --, ∵要使式子有意义,∴x 2−2x ≠0,x 2−4x +4≠0,x 3−4x ≠0,x +2≠0,∴x 不能是0、2、−2,当x =1时,原式=1412--=3.【点睛】本题考查了整式的乘法、分式的混合运算及化简求值等知识点,分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.5、22x -+. 【分析】先把除化乘,再因式分解同时约分,通分合并化简为最简分式即可.【详解】 解:2243342x x x x x x+---÷--, =2243423x x x x x x +--⋅---, =()()()()()2242222x x x x x x x ++-+--+, =()()224222x x x x x +--+-, =()()()2222x x x --+-, =22x -+. 【点睛】本题考查分数加减乘除混合运算,掌握分式混合运算法则是解题关键.。
期末备考:第五章《分式与分式方程》实际应用之选择易错试题(一)1.小军家距学校5千米,原来他骑自行车上学,学校为保障学生安全,新购进校车接送学生,若校车速度是他骑自行车速度的2倍,现在小军乘班车上学可以从家晚出发10分钟,结果与原来到校的时间相同,那么校车的速度是()A.12千米/小时B.15千米/小时C.18千米/小时D.36千米/小时2.某学校食堂需采购部分餐桌,现有A、B两个商家,A商家每张餐桌的售价比B商家的优惠13元.若该校花费2万元采购款在B商家购买餐桌的张数等于花费1.8万元采购款在A商家购买餐桌的张数,则A商家每张餐桌的售价为()A.117元B.118元C.119元D.120元3.某人沿正在向下运动的自动扶梯从楼上走到楼下,用了24秒;若他站在自动扶梯上不动,从楼上到楼下要用56秒.若扶梯停止运动,他从楼上走到楼下要用()A.32秒B.38秒C.42秒D.48秒4.甲、乙两个清洁队参加了某社区“城乡清洁工程”,甲队单独做2天完成了工程的三分之一,这时乙队加入,两队又共同做了1天,完成了全部工程.则乙队单独完成此项工程需要()A.6天B.4天C.2天D.3天5.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍这种计算器,于是又用2580元购进所需计算器,由于量大每个进价比上次优惠1元,该店仍按每个50元销售,最后剩下4个按九折卖出.这笔生意该店共盈利()元.A.508 B.520 C.528 D.5606.某市为解决部分市民冬季集中取暖问题需铺设一条长3000米的管道,为尽量减少施工对交通造成的影响,实施施工时“…”,设实际每天铺设管道x米,则可得方程,根据此情景,题中用“…”表示的缺失的条件应补为()A.每天比原计划多铺设10米,结果延期15天才完成B.每天比原计划少铺设10米,结果延期15天才完成C.每天比原计划多铺设10米,结果提前15天才完成D.每天比原计划少铺设10米,结果提前15天才完成7.甲乙两人同时从同一地点出发,相背而行1小时后他们分别到达各自的终点A与B,若仍从原地出发,互换彼此的目的地,则甲在乙到达A之后50分钟到达B,甲乙的速度之比为()A.2:3 B.3:5 C.3:2 D.3:48.某工程队承接了60万平方米的绿化工程,由于情况有变,….设原计划每天绿化的面积为x万平方米,列方程为,根据方程可知省略的部分是()A.实际工作时每天的工作效率比原计划提高了20%,结果提前30天完成了这一任务B.实际工作时每天的工作效率比原计划提高了20%,结果延误30天完成了这一任务C.实际工作时每天的工作效率比原计划降低了20%,结果延误30天完成了这一任务D.实际工作时每天的工作效率比原计划降低了20%,结果提前30天完成了这一任务9.一艘轮船在静水中的最大航速为30千米/小时,它沿江以最大航速顺流航行100千米所用的时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x千米/时,则可列方程()A.=B.=C.=D.=10.随着快递业务的增加,某快递公司为快递员更换了快捷的交通工具,公司投递快件的能力由每周3000件提高到4200件,平均每人每周比原来多投递40件,若快递公司的快递员人数不变,求原来平均每人每周投递快件多少件?设原来平均每人每周投递快件x件,根据题意可列方程为()A.=B.C.=﹣40 D.=11.在学校组织的秋季登山活动中,某班分成甲、乙两个小组同时开始攀登一座450m高的山,乙组的攀登速度是甲组的1.2倍,乙组到达顶峰所用时间比甲组少15min.如果设甲组的攀登速度为xm/min,那么下面所列方程中正确的是()A.=+1.2 B.=﹣15C.=1.2×D.=+1512.一艘轮船在静水中的最大航速为50km/h,它以最大航速沿河顺流航行80km所用时间和它以最大航速沿河逆流航行60km所用时间相等,设河水的流速为xkm/h,则可列方程()A.=B.=C.=D.=13.2021年是中国共产党建党100周年,某校为了纪念党的生日,计划组织540名学生去外地参观学习.现有A,B两种不同型号的客车可供选择,在每辆车刚好满座的前提下,每辆B型客车比每辆A型客车多坐15人,单独选择B型客车比单独选择A型客车少租6辆,设A型客车每辆坐x人,则根据题意可列方程为()A.﹣=6 B.﹣=6C.﹣=6 D.﹣=614.甲乙两港口相距50千米,一艘轮船从甲港口顺流航行至乙港口,又立即从乙港口逆流返回甲港口,共用去8小时,已知水流速度为4km/h,若设该轮船在静水中的速度为xkm/h,则可列方程()A.B.C.D.15.某工厂计划x天内生产120件零件,由于采用新技术,每天增加生产3件,因此提前2天完成计划,列方程为()A.B.C.D.16.当前,国内多地呈现新冠零星散发病例、局部聚集性疫情连发态势,市教育局紧急对全市初一、初二学生15万人进行核酸检测,由于志愿者的加入,实际每天检测人数比原计划多50%,结果提前3天完成任务,设原计划每天检测x万人,则依题意列出的方程是()A.=3 B.=3C.+3=D.=317.某种罐装凉茶一箱的价格为84元,某商场实行促销活动,买一箱送四罐,每罐的价格比原来便宜0.5元.设每箱凉茶有x罐,则下列方程正确的是()A.B.C.D.18.某果品分拣车间有甲、乙两组工人负责将猕猴桃装箱,已知每小时甲组比乙组少装16箱,甲组装260箱与乙组装340箱所用的时间相等,设甲组每小时装x箱,所列方程正确的是()A.B.C.D.19.某童装店有几件不同款式的衣服,每件衣服的原价一样,6月1日儿童节那天,全场打7折,某宝妈在儿童节那天去购买该款式的衣服时发现:平时花350元购买到的衣服件数比现在少2件,设原价是x元,则根据题意可列出方程()A.=B.=C.﹣2=D.=﹣220.某校组织540名学生去外地参观,现有A,B两种不同型号的客车可供选择.在每辆车刚好满座的前提下,每辆B型客车比每辆A型客车多坐15人,单独选择B型客车比单独选择A型客车少租6辆.设A型客车每辆坐x人,根据题意可列方程()A.﹣=6 B.﹣=6C.﹣=6 D.﹣=6参考答案1.解:设小军骑车的速度为x千米/小时,则校车的速度为2x千米/小时,根据题意得:﹣=,解得:x=7.5,经检验,x=7.5是原方程的解,且符合题意,则2x=15,即校车的速度为15千米/小时,故选:B.2.解:设A商家每张餐桌的售价为x元,则B商家每张餐桌的售价为(x+13),根据题意列方程得:=,解得:x=117,经检验:x=117是原方程的解.故选:A.3.解:设楼上到楼下的路程为1,∴人的速度为﹣,∴(﹣)x=1,解得x=42.故选:C.4.解:设乙队单独完成此项工程需要的时间为x天,由题意,得×1+×1=1﹣,解得:x=2,经检验,x=2是原方程的根.∴x=2.故选:C.5.解:设第一次购进计算器x个,则第二次购进计算器3x个,根据题意得:=+1,解得:x=20,经检验x=20是原方程的解,则这笔生意该店共盈利:[50×(20+60﹣4)+4×50×90%]﹣(880+2580)=520(元);故选:B.6.解:设实际每天铺设管道x米,原计划每天铺设管道(x﹣10)米,方程,则表示实际用的时间﹣原计划用的时间=15天,那么就说明实际每天比原计划多铺设10米,结果提前15天完成任务.故选:C.7.解:设甲的速度为v1千米/时,乙的速度为v2千米/时,根据题意知,从出发地点到A的路程为v1千米,到B的路程为v2千米,从而有方程:,化简得:,解得:,﹣是负数,应该舍去故选:A.8.解:设原计划每天绿化的面积为x万平方米,∵所列分式方程为﹣=30,∴为实际工作时间,为原计划工作时间,∴省略的条件为:实际工作时每天的工作效率比原计划降低了20%,结果延误30天完成了这一任务.故选:C.9.解:设江水的流速为x千米/时,由题意得:=,故选:D.10.解:设原来平均每人每周投递快件x件,则更换了快捷的交通工具后平均每人每周投递快件(x+40)件,依题意得:=.故选:D.11.解:设甲组的攀登速度为xm/min,则乙组的攀登速度为1.2xm/min,依题意得:﹣15=.故选:B.12.解:设河水的流速xkm/h,则以最大航速沿江顺流航行的速度为(50+x)km/h,以最大航速逆流航行的速度为(50﹣x)km/h,根据题意得,=,故选:C.13.解:设A型客车每辆坐x人,则B型客车每辆坐(x+15)人,依题意得:﹣=6.故选:A.14.解:设该轮船在静水中的速度为xkm/h,根据题意得,,故选:A.15.解:设该工厂计划x天内生产120件零件,则实际生产了(x﹣2)天,依题意得:=+3.故选:B.16.解:由题意可得,=3,故选:A.17.解:由题意可得,=0.5,故选:B.18.解:设甲组每小时装x箱,则乙组每小时装(x+16)箱,依题意得:=.故选:B.19.解:设原价是x元,则打折后的价格为0.7x元,依题意得:=﹣2.故选:D.20.解:由题意可得:﹣=6,故选:B.。
一、选择题1.已知113x y -=,则代数式21422x xy yx xy y----的值( )A .4B .9C .-4D .-82.若关于x 的方程 2033x a x x ++=++有增根,则 a 的值为( ) A .1B .3C .4D .53.分式293x x --等于0的条件是( )A .3x =B .3x =-C .3x =±D .以上均不对4.若整数a 使得关于x 的不等式组3(1)32(1)x ax x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .2 5.下列变形不正确...的是( ) A .1a ba b a b -=-- B .1a ba b a b+=++ C .221a b a b a b+=++ D .221-=-+a b a b a b6.已知x 为整数,且分式2221x x --的值为整数,满足条件的整数x 可能是( ) A .0、1、2B .﹣1、﹣2、﹣3C .0、﹣2、﹣3D .0、﹣1、﹣27.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值( )A .扩大到原来的3倍B .缩小到原来的13C .保持不变D .无法确定8.下列变形不正确的是( ) A .1122x xx x+-=--- B .b a a bc c--+=- C .a b a bm m-+-=- D .22112323x x x x--=--- 9.若分式12x -有意义,则x 的取值范围是( ) A .0x ≠B .2x ≠-C .2x ≠D .x 取任意实数10.小红和小丽分别将9000字和7500字的两篇文稿录入计算机,…,求两人每分钟各录入多少字?设小红每分钟录入x 个字,则可得方程90007500220x x=-,根据此情景,题中用“…”表示的缺失的条件应为( ) A .两人每分钟录入字数的和是220字B .所用时间相同,两人每分钟录入字数的和是220字C .所用时间相同,小红每分钟录入字数比小丽多220字D .所用时间相同,小丽每分钟录人字数比小红多200字 11.如果a ,b ,c 是正数,且满足1a b c ++=,1115a b b c a c++=+++,那么a ba b b a cc c +++++的值为( ) A .1- B .1C .2D .1212.某生产小组计划生产3000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务,设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( ) A .3000300052x x -=+ B .3000300052x x -= C .3000300052x x -=+ D .3000300052x x-= 二、填空题13.先化简再求值:214111x x x -⎛⎫-÷ ⎪--⎝⎭,其中2x =. 14.对于实数a 、b ,定义一种新运算“⊗”为:21a b a b⊗=-,这里等式右边是实数运算.例如:21113138⊗==--,则方程2(2)14x x ⊗-=--的解是__________. 15.一艘轮船在静水中的速度为a 千米/时,若A 、B 两个港口之间的距离为50千米,水流的速度为b 千米/时,轮船往返两个港口之间一次需____________小时. 16.若分式11x -值为整数,则满足条件的整数x 的值为_____. 17.我们知道,假分数可以化为整数与真分数的和的形式,例如:31122=+,在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”;如果假分式2412+++x x x 的值为整数,则x 的负整数值为______.18.氢原子的半径约为0.00000000005m ,用科学记数法表示为______ m . 19.若关于x 的方程12x -+3=12ax x --有增根,则a =_____. 20.已知114y x-=,则分式2322x xy yx xy y +---的值为______.三、解答题21.某工程限期完成,甲队单独做正好按期完成,乙队单独做则要误期3天.现两队合作2天后,余下的工程再由乙队单独做,也正好如期完成,该工程限期多少天?22.先化简,再求值:222422244x x xxx x x--⎛⎫-+÷⎪+++⎝⎭,其中22x=-.23.在函数学习中,我们经历了“确定函数表达式——画函数图象——利用函数图象研究函数性质——利用图象解决问题”的学习过程,以下是我们研究函数51()32127()2ax xybx xx⎧+<⎪⎪=⎨⎪--+≥⎪⎩的性质及其用的部分过程,请你按要求完成下列问题:(1)列表:函数自变量x的取值范围是全体实数,下表列出了变量x与y的几组对应数值:x…52--1122314325234...y (012)8331762651332-…____________(2)描点、连线:在平面直角坐标系中,画出该函数的图象,并写出该函数的一条性质:__________________(3)已知函数12733y x=-+,并结合两函数图象,直接写出当y1>y时,x的取值范围____________________24.阅读下列材料:我们在使用完全平方公式222()2a b a ab b ±=±+时,可以把这个公式分成三部分:a b ±称为加减项;②22a b +称为平方项;③ab 称为乘积项在以上三部分中,已知任意两部分都可以求得第三部分. 例:若225,21a b a b +=+=,求ab 的值. 解:由5a b +=可得22()5a b +=22225a b ab ++=把2221a b +=代入上式得21225ab += 2ab =请结合以上方法解决下列问题:(1)若2238,13a b ab +==,求+a b 的值;(2)若2410a a -+=,求221a a +的值. 25.计算:()22163x y x⋅. 26.今年新冠疫情期间,某公司计划将1200 套新型防护服进行加工,分给甲乙两个工厂,甲工厂单独完成任务,比乙工厂单独完成任务多用10天,乙工厂每天加工数量是甲的1.5倍.(1)求甲乙两个工厂每天分别能加工多少套?(2)如果甲工厂每天费用200元,乙工厂每天费用350元,从经济角度考虑,选用哪个工厂较好?【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 由11x y=3,变形得y -x =3xy ,然后整体代入代数式,计算化简,即可得到结论.【详解】 解:由11xy =3,得y xxy -=3,即y -x =3xy ,x -y =-3xy ,则21422x xy y x xy y ----=2()142x y xy x y xy ----=61432xy xyxy xy----=4.故选:A . 【点睛】本题主要考查了分式化简求值,利用整体代入法是解决本题的关键.2.A解析:A 【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+3=0,求出x 的值,代入整式方程求出a 的值即可. 【详解】解:分式方程去分母得:20x a ++=, 由分式方程有增根,得到x+3=0,即x=-3, 把x=-3代入整式方程得:320a -++=,解得1a = 故选:A . 【点睛】本题主要考查了分式方程的增根,牢牢掌握增根的概念是解答本题的重难点.3.B解析:B 【分析】根据分式等于0的条件:分子为0,分母不为0解答. 【详解】由题意得:290,30x x -=-≠, 解得x=-3, 故选:B . 【点睛】此题考查分式的值等于0的条件,熟记计算方法是解题的关键.4.D解析:D 【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和. 【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①②解不等式①得,x a >; 解不等式②得,2x >; ∵不等式组的解集为2x >,∴a≤2,解方程21111ax x x+=---得:21x a =-∵分式方程的解为整数, ∴11a -=±或2± ∴a=0、2、-1、3 又x≠1,∴211a≠-,∴a≠-1, ∴a≤2且a≠-1, 则a=0、2,∴符合条件的所有整数a 的和=0+2=2, 故选:D . 【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.5.C解析:C 【分析】A 、B 两项利用同分母分式的加减法法则计算,约分即可得到结果;C 、D 通过能否继续进行因式分解,继续化简,即可得到答案. 【详解】 A. =1a b a b a b a b a b--=---,故此项正确; B. =1a b a b a b a b a b++=+++,故此项正确; C.22a ba b ++为最简分式,不能继续化简,故此项错误;D. ()()221a b a b a b a b a b a b--==-+-+,故此项正确;故选C . 【点睛】此题考查了分式的加减法、约分,熟练掌握运算法则是解本题的关键.6.C解析:C 【分析】根据分式有意义的条件得到x ≠±1,把分式化简,根据题意解答即可. 【详解】解:由题意得,x 2﹣1≠0,解得,x ≠±1,2221x x --=2(1)(1)(1)x x x -+-=21x +, 当21x +为整数时,x =﹣3、﹣2、0、1, ∵x ≠1,∴满足条件的整数x 可能是0、﹣2、﹣3, 故选:C . 【点睛】本题考查的是求分式的值、分式有意义的条件,掌握分式的分母不为0是解题的关键.7.A解析:A 【分析】将x 变为3x ,y 变为3y 计算后与原式比较即可得到答案. 【详解】222(3)93333()x x x x y x y x y==⨯+++,故分式的值扩大到原来的3倍, 故选:A . 【点睛】此题考查分式的基本性质,正确掌握积的乘方运算,分解因式是解题的关键.8.A解析:A 【分析】答题首先清楚分式的基本性质,然后对各选项进行判断. 【详解】 解:A 、1122x xx x+--=---,故A 不正确; B 、b a a b c c --+=-,故B 正确; C 、a b a bm m-+-=-,故C 正确; D 、22112323x x x x --=---,故D 正确. 故答案为:A . 【点睛】本题主要考查了分式的基本性质,掌握分式的基本性质是解题的关键.9.C【分析】根据分式有意义的基本条件计算即可. 【详解】∵分式12x -有意义, ∴x-2≠0,∴2x ≠, 故选C . 【点睛】本题考查了分式有意义的条件,熟记有意义的条件,熟练转化成不等式是解题的关键.10.B解析:B 【分析】根据工作时间=工作总量÷工作效率,从而得出正确答案. 【详解】解:设小红每分钟录入x 个字,则可得方程90007500220x x=-,根据此情景,题中用“…“表示的缺失的条件应补为所用时间相同,两人每分钟录入字数的和是220字, 故选:B . 【点睛】本题主要考查了由实际问题抽象出分式方程,根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.11.C解析:C 【分析】先根据题意得出a=1-b-c ,b=1-a-c ,c=1-a-b ,再代入原式进行计算即可. 【详解】解:∵a ,b ,c 是正数,且满足a+b+c=1, ∴a=1-b-c ,b=1-a-c ,c=1-a-b , ∴a b a b b a cc c +++++ =111a ca b b c a ca b b c ----++--+++ =1113a b b c a c++-+++ =53- =2 故选:C本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.12.D解析:D 【分析】找出等量关系:原计划所用时间-实际所用时间=提前5小时,据此即可得出分式方程,得解. 【详解】解:设原计划每小时生产口罩x 个,则实际每小时生产口罩2x 个, 依题意得:3000300052x x-= 故选:D . 【点睛】本题考查了由实际问题抽象出分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.二、填空题13.;【分析】先计算括号内的代数式然后化除法为乘法进行化简然后代入求值【详解】当时原式【点睛】本题考查了分式的化简求值注意先把代数式化简然后再代入求值解析:12x -+;-【分析】先计算括号内的代数式,然后化除法为乘法进行化简,然后代入求值. 【详解】214111x x x -⎛⎫-÷ ⎪--⎝⎭22114x x x x --=⋅-- 12x -=+当2x =时,原式== 【点睛】本题考查了分式的化简求值.注意先把代数式化简,然后再代入求值.14.【分析】根据题中的新运算法则列出分式方程再根据分式方程的解法解答即可【详解】解:∴方程为:去分母得解得:经检验是原方程的解故答案为:x=5【点睛】本题考查了新定义的运算法则的计算分式方程的解法解题的 解析:5x =【分析】根据题中的新运算法则列出分式方程,再根据分式方程的解法解答即可. 【详解】 解:211(2)(2)4x x x ⊗-==---∴方程为:12144x x =--- 去分母得124x =-+, 解得:5x =,经检验,5x =是原方程的解, 故答案为:x=5. 【点睛】本题考查了新定义的运算法则的计算、分式方程的解法,解题的关键是理解题中给出的新运算法则及分式方程的解法.15.【分析】假设A 到B 顺流B 到A 逆流根据流程速度时间的关系可得A 到B 需要花费的时长和B 到A 需要花费的时长两式相加即可求解【详解】解:假设A 到B 顺流B 到A 逆流∵轮船在静水中的速度为千米/时水流的速度为千米解析:22100aa b - 【分析】假设A 到B 顺流,B 到A 逆流,根据流程、速度、时间的关系可得A 到B 需要花费的时长和B 到A 需要花费的时长,两式相加即可求解. 【详解】解:假设A 到B 顺流,B 到A 逆流,∵轮船在静水中的速度为a 千米/时,水流的速度为b 千米/时,A 、B 两个港口之间的距离为50千米∴轮船往返A 到B 需要花费的时长为:5050a b a b++- ()()()()5050a b a b a b a b -++=+-()()50505050a b a ba b a b -++=+-22100aa b =-故答案为:22100a a b -. 【点睛】 本题考查列代数式,解题的关键是明确题意,熟练掌握路程、时间、速度三者之间的关系,列出相应的代数式.16.0或2【分析】根据分式有意义的情况得出的范围再根据分式的值为整数得出分母x-1=±1求解即可【详解】解:因为分式有意义所以x-1≠0即x≠1当分式值为整数时有x-1=±1解得x=0或x=2故答案为:解析:0或2【分析】根据分式有意义的情况得出x 的范围,再根据分式的值为整数得出分母x-1=±1求解即可.【详解】 解:因为分式11x -有意义,所以x-1≠0,即x≠1, 当分式11x -值为整数时, 有x-1=±1,解得x=0或x=2,故答案为:0或2.【点睛】本题考查分式的意义,分式的值,理解分式的值的意义是解决问题的关键.17.【分析】先把分式化为真分式再根据分式的值为整数确定的值【详解】解:分式的值为整数或的负整数值为故答案为:【点睛】本题考查了利用分式的性质对分式进行变形解题的关键是理解真分式的定义解析:1-、3-、5-【分析】先把分式化为真分式,再根据分式的值为整数确定x 的值.【详解】 解:2412+++x x x ()223=2x x +-+ 3=22x x +-+ 分式2412+++x x x 的值为整数, 21x ∴+=±或3x =±1x ∴=-、3-、5-、1∴x 的负整数值为1x =-、3-、5-,故答案为:1-、3-、5-.【点睛】本题考查了利用分式的性质对分式进行变形,解题的关键是理解真分式的定义. 18.【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:用科学记数法 解析:11510-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:用科学记数法把0.0000 0000 005表示为5×10-11.故答案为:5×10-11.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.19.1【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根因此可将原方程去分母然后将增根代入求a 的值【详解】解:去分母得1+3x ﹣6=ax ﹣1∵方程有增根所以x ﹣2=0x =2是方程的增根将解析:1【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根,因此可将原方程去分母,然后将增根代入求a 的值.【详解】解:去分母,得 1+3x ﹣6=ax ﹣1,∵方程有增根,所以x ﹣2=0,x =2是方程的增根,将x =2代入上式,得1+6﹣6=2a ﹣1,解得a =1,故答案为1.【点睛】本题考查分式方程的增根,掌握增根是分式方程化为整式方程后产生的使分式方程的分母为0的根是解答的关键.20.【分析】先根据题意得出x-y=4xy 然后代入所求的式子进行约分就可求出结果【详解】∵∴x-y=4xy ∴原式=故答案为:【点睛】此题考查分式的基本性质正确对已知式子进行化简约分正确进行变形是关键解析:11 2【分析】先根据题意得出x-y=4xy,然后代入所求的式子,进行约分就可求出结果.【详解】∵114 y x-=,∴x-y=4xy,∴原式=2()383112422x y xy xy xyx y xy xy xy-++==---,故答案为:112.【点睛】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键.三、解答题21.6天【分析】设该工程期限是x天,则乙队需要(x+3)天完成工程,根据题意可得,甲乙合作2天完成的任务+乙做(x-2)天完成的任务=1,据此列方程.【详解】解:设该工程限期x天根据题意,得1122133xx x x-⎛⎫++= ⎪++⎝⎭解得6x=经检验,6x=是原分式方程的解,且符合题意答:该工程限期6天.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.22.2x--;【分析】首先把括号里进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.【详解】解:222422244 x x xxx x x--⎛⎫-+÷⎪+++⎝⎭=222244(2)22x x x x x x--+++- =222(2)(2)22x x x x xx --++- =2x --当2x =时,原式=2)2=--【点睛】本题是分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.23.(1)251()3322127()2x x y x x x ⎧+<⎪⎪=⎨⎪--+≥⎪⎩;(2)函数图象见解析;当1x >时,y 随x 的增大而减小;(3)12x <或3x > 【分析】(1)代入1x =-和12x =即可求解; (2)利用描点作图法画出图象,再根据图象写出性质即可;(3)联立函数解析式,求出交点,即可得出结论.【详解】解:(1)当1x =-时,513a -+=,解得23a =; 当12x =时,1272b --+=,解得2b =; ∴y 与x 的函数关系式为:251()3322127()2x x y x x x ⎧+<⎪⎪=⎨⎪--+≥⎪⎩; (2)函数图象如下:函数性质:当1x >时,y 随x 的增大而减小;(3)当1x ≤时,25332733y x y x ⎧=+⎪⎪⎨⎪=-+⎪⎩,可得122x y ⎧=⎪⎨⎪=⎩;当1x >时,2272733y x x y x ⎧=--+⎪⎪⎨⎪=-+⎪⎩,可得313x y =⎧⎪⎨=⎪⎩, ∴当y 1>y 时,x 的取值范围为12x <或3x >. 【点睛】本题考查函数图象,掌握待定系数法求解析式、描点作图等方法是解题的关键. 24.(1)±8;(2)14【分析】(1)根据示例提供的方法可以求得a+b 的值;(2)根据a 2-4a+1=0,通过变形可以求得所求式子的值.【详解】解:(1)∵a ,b 满足a 2+b 2=38,ab=13,∴222()2a b a b ab +=+-,即:38=(a+b )2-2×13,解得,a+b=8或a+b=-8,(2)∵a 2-4a+1=0, ∴140a a -+=, ∴14a a+=,∴21()16a a +=, ∴221216a a ++=, ∴22114a a +=. 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法,利用数形结合的思想解答.25.3212x y【分析】按照分式乘法和幂的运算法则计算即可.【详解】 解:()22163x y x⋅. 421363x y x=⨯, 3212x y =.【点睛】本题考查了分式乘法和幂的运算,解题关键是熟练运用分式乘法和幂的运算法则进行计算.26.(1)甲工厂每天能加工40套新型防护服,乙工厂每天能加工60套新型防护服;(2)选择甲工厂较好.【分析】(1)设甲工厂每天能加工x 套新型防护服,则乙工厂每天能加工1.5x 套新型防护服,根据工作时间=工作总量÷工作效率结合甲工厂单独完成任务比乙工厂单独完成任务多用10天,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用总费用=每天需要的费用×工作时间,可分别求出选择甲、乙两工厂所需费用,比较后即可得出结论.【详解】解:(1)设甲工厂每天能加工x 套新型防护服,则乙工厂每天能加工1.5x 套新型防护服, 依题意得:12001200101.5x x-=, 解得:x=40, 经检验,x=40是原方程的解且符合题意,∴1.5x=60.答:甲工厂每天能加工40套新型防护服,乙工厂每天能加工60套新型防护服.(2)选择甲工厂所需费用为200×120040=6000(元);选择乙工厂所需费用为350×120060=7000(元).∵6000<7000,∴从经济角度考虑,选用甲工厂较好.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.。
一、选择题1.为做好校园卫生防控,某校计划购买甲乙两种品牌的消毒液.乙品牌消毒液每桶的价格比甲品牌消毒液每桶价格的2倍少25元,已知用1200元购买甲品牌的数量与用1900元购买乙品牌的数量相同.设甲品牌消毒液每桶的价格是x 元,根据题意可列方程为( ) A .12001900225x x =- B .12001900225x x =+ C .12001900225x x =- D .12001900225x x=+ 2.分式293x x --等于0的条件是( ) A .3x = B .3x =- C .3x =± D .以上均不对 3.在一只不透明的口袋中放入5个红球,4个黑球,n 个黄球,这些球除颜色不同外,其他无任何差别.搅匀后随机从中摸出一个球恰好是黄球的概率为25,则放入口袋中的黄球的个数n 是( )A .6B .5C .4D .3 4.若关于x 的方程121m x -=-的解为正数,则m 的取值范围是( ) A .1m >- B .1m ≠ C .1m D .1m >-且1m ≠ 5.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600 6.下列各式中,正确的是( )A .22a a b b = B .11a a b b +=+ C .2233a b a ab b = D .232131a a b b ++=-- 7.已知2,1x y xy +==,则y x x y +的值是( ) A .0 B .1 C .-1 D .28.a b c 三个有理数满足0a b c <<<,且1a b c ++=,b c M a +=,a c N b +=,a b P c+=,则M ,N ,P 之间的大小关系是( ) A .M P N <<B .M N P <<C .N P M <<D .P M N << 9.已知:x 是整数,12,21x x M N x +==+.设2y N M =+.则符合要求的y 的正整数值共有( )A .1个B .2个C .3个D .4个10.若关于x 的分式方程222x m x x =---的解为正数,则满足条件的正整数m 的值为( )A .1,2,3B .1,2C .2,3D .1,311.如图,在数轴上表示2224411424x x x x x x-++÷-+的值的点是( )A .点PB .点QC .点MD .点N12.某生产小组计划生产3000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务,设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( ) A .3000300052x x -=+ B .3000300052x x -= C .3000300052x x -=+ D .3000300052x x-= 二、填空题13.对于实数a 、b ,定义一种新运算“⊗”为:21 a b a b ⊗=-,这里等式右边是实数运算.例如:21113138⊗==--,则方程2(2)14x x ⊗-=--的解是__________. 14.若231x x +=-,则11x x _______________________.15.一艘轮船在静水中的速度为a 千米/时,若A 、B 两个港口之间的距离为50千米,水流的速度为b 千米/时,轮船往返两个港口之间一次需____________小时.16.关于x 的分式方程21122m x x x +-=--有增根,则m =______. 17.新冠疫情期间,口罩成为了人们出行必备的防护工具.某药店抓住商机购进甲、乙、丙三种口罩进行销售.已知销售每件甲种口罩的利润率为30%,每件乙种口罩的利润率为20%,每件丙种口罩的利润率为5%.当售出的甲、乙、丙口罩件数之比为1:3:2时,药店得到的总利润率为20%;当售出的甲、乙、丙口罩件数之比为3:2:2时,药店得到的总利润率为24%.因丙种口罩利润较低,现药店准备只购进甲、乙两种口罩进行销售,若该药店想要获得的总利润率为28%,则该药店应购进甲、乙两种口罩的数量之比是______.18.已知215a a+=,那么2421a a a =++________. 19.若关于x 的分式方程232x m x +=-的解是正数,则实数m 的取值范围是_________ 20.一项工程,甲乙合作b 天能完成,甲单独做需要a 天完成,则乙独做需_____天完成.三、解答题21.一辆汽车开往距离出发地180km 的目的地,出发后第1小时内按原计划的速度匀速行驶,1小时后按原来速度的1.5倍匀速行驶,结果比原计划提前40min 到达目的地. (1)求前1小时这辆汽车行驶的速度;(2)汽车出发时油箱有油7.5升油,到达目的地时还剩4.3升油,若汽车提速后每小时耗油量比原来速度每小时耗油量多0.3升,问这辆汽车要回到出发地,是以原来速度省油还是以提速后的速度省油?22.先化简2454111x x x x x --⎫⎛+-÷ ⎪--⎝⎭,再从22x -≤≤中取一个合适的整数x 代入求值. 23.先化简,再求值:222444142x x x x x x+-++⎛⎫-÷- ⎪-⎝⎭,其中22150x x +-=. 24.解下列方程:(1)322x x=-;(2)214111x x x +-=-- 25.计算: (1)()()()3223m n m n mn ⋅-÷-; (2)()()()22x y x y x y y ⎡⎤+-+-÷⎣⎦; (3)2269243a a a a a-+-⋅--. 26.哈尔滨市松北新区某中学去年购买了一批图书,其中A 类书的单价比B 类书的单价多4元,用1200元购买的A 类书与用800元购买的B 类书数量相等.(1)求去年购买的B 类书和A 类书的单价各是多少元?(2)若今年B 类书的单价比去年提高了25%,A 类书的单价与去年相同,这所中学今年计划再购买A 类书和B 类书共200本,且购买A 类书和B 类书的总费用不超过2300元,这所中学今年至少要购买多少本B 类书?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设甲品牌消毒液每桶的价格是x 元,乙品牌消毒液每桶的价格(2x-25)元,根据题意列方程即可【详解】解:设甲品牌消毒液每桶的价格是x 元,乙品牌消毒液每桶的价格(2x-25)元,根据用1200元购买甲品牌的数量与用1900元购买乙品牌的数量相同列方程得.12001900225x x =-, 故选:A .【点睛】本题考查了分式方程的应用,解题关键是理清数量关系,找对等量关系列方程. 2.B解析:B【分析】根据分式等于0的条件:分子为0,分母不为0解答.【详解】由题意得:290,30x x -=-≠,解得x=-3,故选:B .【点睛】此题考查分式的值等于0的条件,熟记计算方法是解题的关键. 3.A解析:A【分析】根据摸到黄球的概率已知列式计算即可;【详解】 由题可得:2545nn =++, 解得:6n =;经检验,6n =是原方程的根,故选:A .【点睛】本题主要考查了概率的求解,准确计算是解题的关键.4.D解析:D【分析】分式方程去分母转化为整式方程,表示出解,由解为正数确定出m 的范围即可.【详解】去分母得:m-1=2x-2,解得:x=12+m ,由方程的解为正数,得到12+m >0,且12+m ≠1, 解得:1m >-且1m ≠,故答案为:1m >-且1m ≠【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 5.A解析:A【分析】先设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x 的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x 箱口罩,则甲厂房每天生产2x 箱口罩, 依题意得:6000600052x x-=, 解得:x =600, 经检验,x =600是原分式方程的解,且符合题意,∴2x =1200.故答案选:A .【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键. 6.C解析:C【分析】利用分式的基本性质变形化简得出答案.【详解】A .22a a b b=,从左边到右边是分子和分母同时平方,不一定相等,故错误; B .11a a b b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误; C .2233a b a ab b=,从左边到右边分子和分母同时除以ab ,分式的值不变,故正确; D .232131a ab b ++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误. 故选:C .【点睛】 本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.7.D解析:D【分析】 将y x x y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】 解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D .【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.8.A解析:A【分析】根据a+b+c=1可以把M 、N 、P 分别化为1111,1,1a b c ---,再根据a<0<b<c 得到111,,a b c的大小关系后可以得到解答.【详解】解:∵a+b+c=1, ∴1111,1,1M N P a b c=-=-=-, ∵a<0<b<c , ∴1110,0,c b b c bc a--=>< ∴111a c b<<, ∴M<P<N ,故选A .【点睛】 本题考查分式的大小比较,熟练掌握分式的大小比较方法是解题关键.9.C解析:C【分析】先求出y 的值,再根据x ,y 是整数,得出x +1的取值,然后进行讨论,即可得出y 的正整数值.【详解】解:∵12,21x x M N x +==+∴42222221111x x y x x x x ++=+==+++++. ∵x ,y 是整数, ∴21x +是整数, ∴x +1可以取±1,±2. 当x +1=1,即x =0时2241y =+=>0; 当x +1=−1时,即x =−2时,2201y =+=-(舍去); 当x +1=2时,即x =1时,2232y =+=>0; 当x +1=−2时,即x =−3时,2212y =+=->0; 综上所述,当x 为整数时,y 的正整数值是4或3或1.故选:C .【点睛】此题考查了分式的加减法,熟练掌握分式的加减运算法则,求出y 的值是解题的关键. 10.D解析:D【分析】根据等式的性质,可得整式方程,根据解整式方程,可得答案.【详解】等式的两边都乘以(x - 2),得x = 2(x-2)+ m ,解得x=4-m ,且x≠2,由关于x 的分式方程的解为正数,∴4-m >0,4-m≠2∴m<4且m≠2则满足条件的正整数 m 的值为m=1,m=3,故选: D.【点睛】本题考查了分式方程的解,利用等式的性质得出整式方程是解题关键,注意要检验分式方程的根.11.C解析:C【分析】先进行分式化简,再确定在数轴上表示的数即可.【详解】22424x x x x-+2(2)14(2)(2)(2)x x x x x x -=+⨯+-+, 2422x x x -=+++, 242x x -+=+, 22x x +=+, =1, 在数轴是对应的点是M ,故选:C .【点睛】本题考查了分式化简和数轴上表示的数,熟练运用分式计算法则进行化简是解题关键. 12.D解析:D【分析】找出等量关系:原计划所用时间-实际所用时间=提前5小时,据此即可得出分式方程,得解.【详解】解:设原计划每小时生产口罩x 个,则实际每小时生产口罩2x 个,依题意得:3000300052x x-= 故选:D .【点睛】本题考查了由实际问题抽象出分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.二、填空题13.【分析】根据题中的新运算法则列出分式方程再根据分式方程的解法解答即可【详解】解:∴方程为:去分母得解得:经检验是原方程的解故答案为:x=5【点睛】本题考查了新定义的运算法则的计算分式方程的解法解题的 解析:5x =【分析】根据题中的新运算法则列出分式方程,再根据分式方程的解法解答即可.【详解】2(2)4x x ---∴方程为:12144x x =--- 去分母得124x =-+,解得:5x =,经检验,5x =是原方程的解,故答案为:x=5.【点睛】本题考查了新定义的运算法则的计算、分式方程的解法,解题的关键是理解题中给出的新运算法则及分式方程的解法.14.【分析】先将化为再由得然后代入计算即可【详解】解:先把原式变为:∵∴∴故填:-2【点睛】本题主要考查了代数式求值和分式的加减运算根据题意对已有等式和代数式灵活变形是解答本题的关键解析:2-【分析】 先将11x x 化为211x x x +-+,再由231x x +=-得213x x =--,然后代入计算即可. 【详解】 解:先把原式变为:211111111x x x x xx x x x ∵231x x +=-∴213x x =-- ∴22111312111x x x x x x x x .故填:-2.【点睛】本题主要考查了代数式求值和分式的加减运算,根据题意对已有等式和代数式灵活变形是解答本题的关键.15.【分析】假设A 到B 顺流B 到A 逆流根据流程速度时间的关系可得A 到B 需要花费的时长和B 到A 需要花费的时长两式相加即可求解【详解】解:假设A 到B 顺流B 到A 逆流∵轮船在静水中的速度为千米/时水流的速度为千米 解析:22100a a b - 【分析】假设A 到B 顺流,B 到A 逆流,根据流程、速度、时间的关系可得A 到B 需要花费的时长和B 到A 需要花费的时长,两式相加即可求解.【详解】解:假设A 到B 顺流,B 到A 逆流,∵轮船在静水中的速度为a 千米/时,水流的速度为b 千米/时,A 、B 两个港口之间的距离为50千米∴轮船往返A 到B 需要花费的时长为: 5050a b a b++- ()()()()5050a b a b a b a b -++=+- ()()50505050a b a ba b a b -++=+-22100a a b =- 故答案为:22100a a b -. 【点睛】本题考查列代数式,解题的关键是明确题意,熟练掌握路程、时间、速度三者之间的关系,列出相应的代数式.16.5【分析】根据已知有增根即使分式方程分母为0的根即满足x-2=0;解题中分式方程先通分再去分母化成整式方程后用x 表示出未知参数m 最后将x 的值代入即可求得m 的值【详解】解:分式方程有增根得:x=2通分解析:5【分析】根据已知有增根,即使分式方程分母为0的根,即满足x-2=0;解题中分式方程,先通分,再去分母,化成整式方程后,用x 表示出未知参数m ,最后将x 的值代入即可求得m 的值.【详解】解:分式方程有增根20x ∴-=得:x=221122m x x x +-=-- 通分得:()2112m x x -+=-去分母得:212m x x --=-化简得:31m x =-将x=2代入得m=5故答案为5.【点睛】这道题考察的是分式方程增根的概念和分式方程未知参数的解法.解决这类题的关键在于:确定增根,化分为整,增根代入.17.【分析】设甲乙丙三种口罩的进价分别为xyz 根据题意可分别求出甲乙丙三种口罩的利润再根据当销售出的甲乙丙口罩件数之比为1:3:2时的总利润为20和当销售出的甲乙丙口罩件数之比为3:2:2时的总利润为2 解析:83【分析】设甲、乙、丙三种口罩的进价分别为x 、y 、z ,根据题意可分别求出甲、乙、丙三种口罩的利润.再根据当销售出的甲、乙、丙口罩件数之比为1:3:2时的总利润为20%和当销售出的甲、乙、丙口罩件数之比为3:2:2时的总利润为24%,列出等式,求出x 、y 、z 之间的关系.最后即可求出只购进甲、乙两种口罩,使总利润为28%时的甲、乙两种口罩的数量比.【详解】设甲、乙、丙三种口罩的进价分别为x 、y 、z ,则销售甲口罩的利润为30%x ,乙口罩的利润为20%y ,丙口罩的利润为5%z .当销售出的甲、乙、丙口罩件数之比为1:3:2时,设甲口罩售出a 件,则乙口罩售出3a 件,丙口罩售出2a 件. 根据题意可列等式:30%320%25%20%32a x a y a z a x a y a z++=++, 整理得:x =3z .当销售出的甲、乙、丙口罩件数之比为3:2:2时,设甲口罩售出3b 件,则乙口罩售出2b 件,丙口罩售出2b 件.根据题意可列等式:330%220%25%24%322b x b y b z b x b y b z++=++, 整理得:9x-4y =19z .∴y =2z . 现只购进甲、乙两种口罩,使总利润为28%,设甲口罩售出A 件,乙口罩售出B 件. 则30%20%28%A x B y A x B y +=+,即30%320%228%32A z B z A z B z ⨯⨯+⨯⨯=⨯+⨯. ∴83A B =. 故答案为:83. 【点睛】本题考查分式方程的实际应用.根据题意列出每一步的分式方程是解答本题的关键. 18.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】 ∵215a a+=, ∴21a +=5a , ∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 19.且m-4【分析】先解方程求出x=m+6根据该方程的解是正数且x-20列得计算即可【详解】2x+m=3(x-2)x=m+6∵该方程的解是正数且x-20∴解得且x-4故答案为:且m-4【点睛】此题考查分解析:6m >-且m ≠-4【分析】先解方程求出x=m+6,根据该方程的解是正数,且x-2≠0列得60620m m +>⎧⎨+-≠⎩,计算即可. 【详解】232x m x +=- 2x+m=3(x-2)x=m+6,∵该方程的解是正数,且x-2≠0,∴60620m m +>⎧⎨+-≠⎩, 解得6m >-且x ≠-4,故答案为:6m >-且m ≠-4.【点睛】此题考查分式的解的情况求字母的取值范围,解题中注意不要忽略分式的分母不等于零的情况.20.【分析】乙独做的天数是1÷()天然后计算化简即可【详解】解:设乙独做需要的天数=(天)故答案为:【点睛】本题考查了分式混合运算的应用正确列式熟练掌握运算法则是解题的关键 解析:ab a b- 【分析】 乙独做的天数是1÷(11b a-)天,然后计算化简即可. 【详解】 解:设乙独做需要的天数=111ab b a a b ⎛⎫÷-=⎪-⎝⎭(天). 故答案为:ab a b-. 【点睛】本题考查了分式混合运算的应用,正确列式、熟练掌握运算法则是解题的关键. 三、解答题21.(1)60km/h ;(2)以提速后的速度行驶更省油【分析】(1)设前1小时行驶的速度为xkm/h ,则1小时后行驶的速度为1.5xkm/h ,根据时间=路程÷速度结合提速后比原计划提前23h (40min )到达目的地,解之经检验后即可得出结论;(2)设以原来速度行驶每小时耗油y 升,则提速后每小时耗油(y+0.3)升,根据总油耗=每小时油耗×运动时间,即可得出关于y 的一元一次方程,解之即可求出y 值,再分别求出返程时按两种速度所需总油耗,比较后即可得出结论.【详解】解:(1)设前1小时行驶的速度为/xkm h ,则1小时后行驶的速度为1.5xkm/h , 依题意,得:18018021.53x x x x ---=, 解得:60x =, 经检验,60x =是原方程的解,且符合题意.答:前1小时行驶的速度为60km/h .(2)设以原来速度行驶每小时耗油y 升,则提速后每小时耗油()0.3y +升, 依题意,得:18060(0.3)7.5 4.3,1.560y y -+⋅+=-⨯ 解得: 1.2y =,∴回来时若以原速度行驶总耗油180 1.2 3.660=⨯=(升), 若以提速后的速度行驶总耗油180(1.20.3)31.560=⨯+=⨯(升). ∵3.63>,∴以提速后的速度行驶更省油.【点睛】 本题考查了一元一次方程的应用以及分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.22.22x x -+,-1(x 取-1时值为-3) 【分析】 先按照分式运算的顺序和法则化简,再选取数值代入计算即可.【详解】 解:原式2145111(2)(2)x x x x x x x ⎫⎛---=-⋅⎪ --+-⎝⎭ 2(2)11(2)(2)x x x x x --=⋅-+- 22x x -=+ 22x -≤≤且x 为整数2,1,0,1,2x ∴=-- 又当1x ≠且2x ≠±时,原分式有意义x ∴只能取1-或0①当x 0=时,原式212-==-(或②当x 1=-时,原式331-==-) 【点睛】本题考查分式的化简求值,解题关键是准确应用分式运算法则按照正确的运算顺序进行化简,代入求值时要使分式有意义. 23.242x x +;415【分析】 先根据分式混合运算的法则把原式进行化简,再把22150x x +-=变形为2215x x +=,最后代入化简结果中进行计算即可.【详解】 解:222444142x x x x x x+-++⎛⎫-÷- ⎪-⎝⎭=22(2)4(2)(2)2x x x x x x x+--+÷-+- =22(2)(2)4(2)2x x x x x x x+-+-+⨯-- =242x x x x+++- =22444(2)x x x x x x ++--+ 242x x=+ 22150x x +-=2215x x ∴+=∴原式415=. 【点睛】 本题考查了分式的化简求值,解答本题的关键是明确分式化简求值的方法.24.(1)4x =-;(2)无解.【分析】(1)去分母转化为整式方程,求出整式方程的解,检验即可得到分式方程的解. (2)去分母转化为整式方程,求出整式方程的解,检验即可得到分式方程的解.【详解】(1)解:方程两边同乘()2x x -得:()322x x =-,解得4x =-,检验:当4x =-时,()()24420x x -=-⨯--≠,∴4x =-是原方程的解.(2)解:去分母得:()()()()11411x x x x ++-=+-去括号得:222141x x x ++-=-移项、合并同类项得:22x =解得:1x =当1x =时,()()110x x +-=,∴原方程无解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.25.(1)72m n -;(2)x y +;(3)32a a --+ 【分析】(1)先根据积的乘方和幂的乘方化简原式中的各项后再进行乘除运算即可得到结果; (2)将中括号内的运用完全平方公式和平方差公式把小括号展开合并后,根据多项式除以单项式的运算法则计算出结果即可;(3)把分式中的分子与分母因式分解后约分即可得到答案.【详解】解:(1)()()()3223m n m n mn ⋅-÷- =()63322m n m n m n ⋅-÷=9422m n m n -÷=72m n -;(2)()()()22x y x y x y y ⎡⎤+-+-÷⎣⎦ ()222222x xy y x y y =++-+÷()2222xy y y =+÷x y =+;(3)2269243a a a a a-+-⋅-- ()()()232223a a a a a--=⋅+-- 32a a -=-+. 【点睛】此题主要考查了整式的运算和分式的化简,熟练掌握相关运算法则是解答此题的关键. 26.(1)A 类书的单价是12元,B 类书的单价是8元;(2)50本【分析】(1)设去年购买的B 类书的单价为x 元,则A 类书的单价为(x+4)元,根据数量=总价÷单价结合用1200元购买的A 类书与用800元购买的B 类书数量相等,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设这所中学今年要购买m 本B 类书,则要购买(200-m )本A 类书,根据总价=单价×数量结合总价不超过2300元,即可得出关于m 的一元一次不等式,解之取其中的最小值即可得出结论.【详解】解:(1)设去年购买的B 类书的单价为x 元,则A 类书的单价为(x+4)元, 依题意得:12008004x x=+, 解得:x=8, 经检验,x=8是原方程的解,且符合题意,∴x+4=12.答:去年购买的A 类书的单价为12元,B 类书的单价为8元;(2)设这所中学今年要购买m 本B 类书,则要购买(200-m)本A 类书,依题意得:12(200-m)+8×(1+25%)m≤2300,解得:m≥50.答:这所中学今年至少要购买50本B类书.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.。
章末复习(五) 分式与分式方程
基础题
知识点1 分式的有关概念
1.已知分式x -1
2-3x ,当x 取何值时,
(1)分式的值是零;(2)分式无意义?
解:(1)x =1.(2)x =23.
知识点2 分式的基本性质
2.下列运算中,错误的是(D)
A.a b =ac bc (c ≠0)
B.-a -b
a +
b =-1
C.0.5a +b 0.2a -0.3b =5a +10b 2a -3b
D.x -y x +y =y -x
y +x
3.若a =23,则(a -3)(a +1)(a -4)(a -3)的值等于-1
2.
4.通分:x +2x 2-2x ,x -1
x 2-4x +4.
解:x +2x 2-2x =x 2
-4
x (x -2)2;
x -1x 2-4x +4=x 2
-x
x (x -2)2.
知识点3 分式的运算
5.下列各式计算错误的是(D)
A.-3ab 4x 2y ·10xy 21b =-5a
14x
B.xy
22yz ÷3x 2
y 8yz =4y
3x C.a -b
a ÷(a 2-ab)=1
a 2
D .(-a)3÷a
3
b =b
6.化简:a 2
-ab a 2÷(a b -b a )=b
a +
b .
7.计算:
(1)x -2
x +3·x 2
-9
x 2-4x +4;
解:原式=x -2x +3·(x +3)(x -3)(x -2)2=x -
3
x -2.
(2)(1+1m +1)÷m 2
-4
m 2+m .
解:原式=m +2
m +1·m (m +1)
(m +2)(m -2)=m
m -2.
知识点4 分式方程及其应用
8.某校用420元钱到商场去购买“84”消毒液.经过还价,每瓶便宜0.5元,结果比用原价多买了20瓶,求原价每瓶多少元?设原价每瓶x 元,则可列出方程为(B)
A.420x -420x -0.5=20
B.420x -0.5-420x
=20 C.420x -420x -20=0.5 D.420x -20-420x
=0.5 9.(佛山中考)解方程:2a -1=a +41-a 2. 解:去分母,两边同乘以(a +1)(a -1),
得2a +2=-a -4.
解得a =-2.
经检验,a =-2是分式方程的解.
10.为响应低碳号召,刘老师上班的交通方式由自驾车改为骑自行车,刘老师家距学校15千米,因为自驾车的速度是自行车速度的3倍,所以刘老师每天比原来早出发40分钟,才能按原来时间到校,刘老师骑自行车每小时走多少千米?
解:设刘老师骑自行车每小时走x 千米,则自驾车每小时走3x 千米.根据题意,得
15x -4060=153x
.解得x =15. 经检验,x =15是原方程的解,且符合题意.
答:刘老师骑自行车每小时走15千米.
中档题
11.(河北中考)下列运算结果为x -1的是(B)
A .1-1x B.x 2
-1x ·x x +1
C.x +1x ÷1x -1
D.x 2+2x +1x +1
12.观察下面一列有规律的数:13,28,315,424,535,648,…根据其规律可知第n 个数应是:n n (n +2)
(n 为正整数). 13.当a =2+1,b =2-1时,代数式a 2-2ab +b 2a 2-b 2的值是2
14.解方程:
(1)(天门、仙桃、潜江中考)3x +1=x x -1
-1; 解:去分母,两边同乘以(x +1)(x -1),得
3(x -1)=x(x +1)-(x +1)(x -1).
解得x =2.
检验:当x =2时,(x +1)(x -1)≠0,
∴原方程的解是x =2.
(2)3x +2+2x 2-4=1x -2
. 解:去分母,两边都乘以(x +2)(x -2),得
3(x -2)+2=x +2,解得x =3.
经检验x =3是原方程的根.
15.(东营中考)先化简,再求值:(a +1-4a -5a -1)÷(1a -1a 2-a
),其中a =2+ 3.
解:原式=a 2
-1-4a +5a -1÷a -1-1a (a -1)
=a 2-4a +4a -1·a (a -1)a -2
=(a -2)2a -1·a (a -1)a -2
=a(a -2)
=a 2-2a.
当a =2+3时,
原式=(2+3)2-2(2+3)=3+2 3.
16.某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3 600米
道路的任务,按原计划完成总任务的13
后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务. (1)按原计划完成总任务的13
时,已抢修道路1_200米; (2)原计划每小时抢修道路多少米?
解:设原计划每小时抢修道路x 米,根据题意,得
1 200x +3 600-1 200(1+50%)x
=10. 解得x =280.
经检验,x =280是原方程的解,且符合题意.
答:原计划每小时抢修道路280米.
综合题
17.某饲养场为保障出品的猪肉不含任何激素,打算从源头——饲料抓起,于是派采购员去外地购买卫生饲料(不含激素).现有甲、乙两位采购员两次去同一家饲料公司购买卫生饲料,两次卫生饲料的价格有变化,两位采购员的购货方式不同,其中,甲每次购买1 000 kg ,乙每次购买用800元,设两次购买的卫生饲料的单价分别是x 元/kg 和y 元/kg(x ,y 是正数,且x ≠y),那么甲、乙两人谁的购货方式更实惠?
解:甲两次购买卫生饲料的平均单价为1 000x +1 000y 2 000=x +y 2; 乙两次购买卫生饲料的平均单价为1 600÷(800x +800y )=2xy x +y
; 甲、乙所购卫生饲料的平均单价的差为x +y 2-2xy x +y =(x -y )22(x +y )
>0,所以乙所购的卫生饲料的平均单价较低,乙的购货方式更实惠.。