水泵机组的振动分析及故障诊断
- 格式:doc
- 大小:16.50 KB
- 文档页数:3
水泵机组振动及故障诊断发布时间:2021-06-04T04:25:30.702Z 来源:《中国科技人才》2021年第9期作者:冯武辄郑随成胡广伟[导读] 在水泵机组运行过程中,水力稳定性是指水流状态是否随时间而变化的情况。
如果水流状态不随时间变化,水流就是稳定的;若变化较小,就是比较稳定的;变化比较大并引起其它问题或故障,就是不稳定的。
中国石油化工股份有限公司洛阳分公司水务部河南洛阳 471012摘要:减少或降低水泵机组振动对提高机组安全稳定运行、延长机组使用寿命具有重要的作用。
简述水泵机组振动的特点及分类,讲解了转动部件质量不均、机组轴线不正以及轴承缺陷等机械因素引起的水泵机组振动的机理、产生的影响,介绍了转轮的静平衡试验、转子的动平衡试验、盘车等措施来消除或减少水泵机组的振动。
关键词:水泵机组,机械振动,静平衡,动平衡1 水泵机组振动概述1.1 水力稳定性在水泵机组运行过程中,水力稳定性是指水流状态是否随时间而变化的情况。
如果水流状态不随时间变化,水流就是稳定的;若变化较小,就是比较稳定的;变化比较大并引起其它问题或故障,就是不稳定的。
水泵机组工作的稳定性是水泵机组工作性能的重要指标,克服机组运行的不稳定,就成了机组设计、制造、安装、运行和检修中突出要解决的问题。
1.2 振动的基本形态及共振任何物体或机件,都具有一定的质量和弹性,而本身具有弹性的质量或和他相连的弹性部分组合体,称为弹性系统。
当弹性系统中的物体处在稳定状态下,受到某一外力的扰动后,它就按一定节奏在其原来静止位置的两侧,作周期性的往复运动,该运动即称为振动。
每一弹性体系发生振动时均存在某一振动频率,该频率称为该弹性体系的自振频率,当施于弹性体系的外干扰力频率与弹性体系的自振频率一致时,使弹性体系的振动越来越大,这一现象称为共振。
故任何机器或结构都应该尽量避免发生共振。
2 水泵机组振动的分类水利机组振动按不同特性可分为不同的类型。
摘要:文章以中宁发电有限公司循环泵运行情况为例,分别从电气、机械等几方面深入探讨循环水泵运行中振动大的原因,并提出处理方法。
关键词:循环水泵振动原因分析处理方法由湖南湘潭电机厂生产的中宁发电有限公司循环泵,型号为YKSL1600-12/1730-1,额定功率1600KW,转速496r/min。
1循泵运行情况简介中宁电厂循环水泵从安装运行开始就存在不同程度的振动现象。
机组持续试运行168H后发生了大幅度振动,因此不得不停工检修循泵。
经现场拆解发现轴承已弯曲,导流片破损,轴承支架已破裂,外接管上法兰处完全断裂,内套管下段法兰处断裂。
这次检修更换了3根株洲、导叶体及轴套部件。
维修后运行六个月设备再次发生大幅振动。
班组快速反应立刻停泵才有效控制了设备损坏程度,但轴承已弯曲,且无法维持正常生产活动。
设备经大修后振动问题未得到改善,因而不得不将所有的备品备件换新,然后重新量测并调整泵筒的垂直度以及泵安装垫板和支持板的水平位置,主要通过电焊的方式来焊接转动部位,由此完成设备的安装工作。
2循泵振动大原因分析2.1电气方面循泵电机内部磁力及其相关电气系统运行状态失衡,设备运行过程中就可能发生振动,并且伴有不同程度的噪音。
异步电动机在工作状态下,由定转子齿谐波磁通相互作用产生的定转子间径向交变磁拉力;大型电机同步运行时,定转子磁力中心位置存在偏差,或各方向上栖息气隙大于限值,很可能使电机运行过程中伴有噪音和周期性振动。
2.2机械方面电机和循环水泵转动部分质量不均衡,安装流程与设计要求不符,机组轴线不完全对称,摆动幅度超出设计限值,电机元部件的刚度和机械强度稍差,而且密封元件和轴承都发生了不同程度的磨损,循泵临界转速出现与机组固有频率一直引起的共振等,都可能使设备出现大幅振动,并伴有噪音。
2.3其他方面循泵进水通道结构设计不科学,或循泵结构整体性差,循泵淹没程度与实际要求不符,循泵启停操作不符合设计规程,均可能导致水条件恶化出现涡流,使设备振动幅度加大,严重时可能发生汽蚀。
水泵振动原因分析及解决措施本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March56LKSB-25型泵振动与异响原因分析及解决措施广东省电力工业局第一工程局安装公司何志军一、摘要:广石化热电资源综合利用改造工程2×100MW汽轮发电机组1#机组循环冷却水系统循环水泵为3台56LKSB-25型立式斜流水泵。
在循环水泵分部试运行时,3台循环水泵均出现间断性的异响,并伴随超标的振动。
经过分析,间断性异响主要由于循环水泵吸水夹带汽体,内部形成了水力冲击,造成了间断性异响,并产生振动,影响循环水泵的运行。
经过对产生水力冲击的原因分析,采取合理的措施,最终消除了水力冲击,解决了循环水泵的异响及振动问题。
二、关键词:循环水泵异响水力冲击导流锥三、前言:立式水泵在分部试运出现异响、振动情况是常见,引起立式水泵的异响、振动的原因比较多:⑴从责任主体方面划分,有设备制造质量原因、安装施工质量原因及设计原因,但安装施工质量不合格引起的立式水泵异响、振动原因较常见。
⑵从起因方面划分,有机械原因引起的异响、振动和水力冲击引起的异响、振动,而机械原因引起的异响、振动的情况是较常见的。
该机组3台循环水泵异响、振动的主因是设计原因引起的水力冲击造成的异响、振动,在工程施工中较为少见。
通过对循环水泵异响、振动原因分析,问题解决,以达到引起相关部门在关心安装施工质量和设备制造质量的同时,也注重设计质量问题的目的。
四、正文:泵的结构参数简介广石化热电资源综合利用改造工程2×100MW汽轮发电机组1#机组循环水泵共有3台,其中2台工作泵,1台备用泵,均为露天安装。
循环水泵采用长沙水泵有限公司生产的56LKSB-25型水泵。
该型水泵为立式、单吸、转子可抽式、斜流泵,具体参数如附表1所示。
附表1:问题产生及原因分析问题产生2#循环水泵首次带负荷运行时,主要发现两大问题:1)循环水泵运行过程中,伴随着间断性、频率不等的异响,类似水泥搅拌机搅拌时发出的响声;2)循环水泵泵体振动超标(如附表2)。
电动给水泵振动原因分析及处理方法在我国经济实力逐渐壮大,科学技术不断创新的今天,电动给水泵是火电燃煤机组给水系统的重要附属机械,液力耦合器连接电动机与给水泵,传递驱动,调节转速。
文章通过分析电动给水泵几种常见振动故障的原因,介绍了处理措施。
标签:电动给水泵;振动原因;处理方法引言随着我国经济实力不断加强,我国电动给水泵的应用愈加广泛,电站用主给水泵机组轴承振动的大小直接关系到机组能否安全运行,而引起主给水泵机组轴承振动过大或者异常的原因有很多。
1电动给水泵振动原因分析1.1振动随泵运行时间而增大1)由于热应力而造成泵体变形过大或弯曲;2)轴瓦顶部间隙过小或瓦盖紧力过大,造成轴与上瓦部分接触;3)油内有杂质,润滑不良;4)泵体保温厚度不够,上下泵壳存在温差,暖泵不均匀;5)电泵进出口管道安装对口产生附加应力,支架安装错误影响管道热膨胀。
1.2启动振动高原因1)测点问题。
开始由于电泵上下缸温差偏大,认为是温度测点有问题,热工校验振动测点后,确认热工测点正确。
2)泵体积存空气。
电泵上下缸存在温差,主要是上缸温度偏低造成,认为是电泵注水排气时速度较快,排空气不充分,上部积存空气所致。
因此对电泵进行重新注水排气,使泵体内空气完全排出,但上下缸温差无明显变化。
3)暖泵流量不足。
机组调峰时,不同负荷段如350MW,和660MW时热备用中的电泵进口流量(即倒暖流量)显示波动变化,而且负荷350MW,时,备用中的电泵几乎显示不出倒暖流量,而660MW,高负荷时由于压力高,倒暖流量显示有28T/H。
怀疑倒暖流量有问题,因此在负荷660MW,时将备用中的电泵再循环阀前手动阀隔离,其倒暖流量明显上升,减小了电泵的倒暖流量经再循环调节阀分流部分,进一步提高了其倒暖效果,稳定一个多小时,但电泵上下缸温度基本不变。
4)倒暖阀故障。
由于倒暖手动阀(靠泵侧)阀杆曾经出现过漏汽,并经过了焊接处理,因此运行人员充分开大四个倒暖泵手动阀的开度,试图增加暖泵效果,但是上下缸温差未得到解决。
水泵振动原因及对策一、水泵振动的原因引起水泵振动的原因很多,也很复杂,大致可分为三种情况:1.1机械原因引起的振动1.1.1水泵叶轮或电动机转子质量分布不均水泵叶轮或电动机转子质量分布不均,叶轮叶片的厚薄不匀,或者叶轮前后板有局部地方厚薄不一致。
这种叶轮旋转起来就会对整个泵体产生周期性激振力,使泵体产生强迫振动此外这种叶轮旋转起来会前后晃动,使水泵轴承受到侧向力,加速了轴承的磨损。
1.1.2水泵轴与电机轴不在一条直线上如果水泵轴与电机轴不同心接合面不平行度达不到要求(机械加工精度差或安装不合要求)就会使联轴器间隙随轴旋转而忽大忽小,因而发生和质量不平衡一样的周期性强迫振动,其频率和转速成倍数关系,振幅随泵轴与电动机偏心距大小而定。
1.1.3联轴器螺栓间距不良联轴器螺栓间距精度误差造成只有一部分螺栓传递扭矩,这部分螺栓受力大,因而产生不平衡的力作用在轴上,与上述两种情况一样产生周期性强迫振动。
其频率与转速成倍数关系,若法兰形联轴器橡皮圈配合不均匀也会产生性质完全相同的振动。
1.1.4轴的临界转速当泵轴转速逐渐增加并接近泵转子的固有振动频率时,泵就会猛烈地振动起来,转速高于或低于这一转速时,泵就能平稳地工作,通常把泵发生共振时的转速称为临界转速n c。
泵的临界转速有好几个,这些转速由低到高分为第一临界转速n c1、第二临界转速n c2等等。
泵的工作转速不能与临界转速相重合、相接近或成倍数,否则将发生共振而使泵遭到破。
泵的工作转速低于第一临界转速的轴为刚性轴,高于第一临界转速的轴为柔性轴,过去许多泵采用刚性轴,现在随着泵的尺寸的增加或采用多级泵,泵的工作转速经常高于第一临界转速n c1,一般柔性轴工作转速必须满足1.3n c1<n<0.7n c2的关系。
1.1.5由摩擦引起的振动由于某种原因泵轴弯曲时,转动部分与衬套或轴瓦接触,接触点的摩擦力对轴有阻碍作用,作用方向与轴旋转方向相反,有时使轴偏转而产生振动。
水泵震动的原因分析和处理方法水泵震动的原因及处理方法水泵机组的各部件存在的振动,从水泵的水力、机械结构设计,到泵的安装、运行、维护等方面几提出了减轻泵振动的措施。
结果表明,保证泵零部件结构尺寸、精度与泵的无过载性能等水力特性相适应;保证泵的实际运行工况点与泵的设计工况点吻合;保证加工精度与设计精度的一致性;保证零部件安装质量与其运行要求的一致性;保证检修质量与零部件磨损规律的一致性,可以减轻泵的振动。
振动超标可造成的主要危害有:造成泵机组不能正常运行;引发电机和管路的振动,造成机毁人伤;造成轴承等零部件的损坏;造成连接部件松动,基础裂纹或电机损坏;造成与水泵连接的管件或阀门松动、损坏;形成振动噪声。
引起水泵振动的原因是多方面的。
泵的转轴一般与驱动电机轴直接相连,使得泵的动态性能和电机的动态性能相互干涉;高速旋转部件多,动、静平衡沐能满足要求;与流体作用的部件受水流状况影响较大;流体运动本身的复杂性,也是限制泵动态性能稳定性的一个因素。
1对引起泵振动原因的分析1.1电机电机结构件松动,轴承定位装置松动,铁芯硅钢片过松,轴承因磨损而导致支撑刚度下降,会引起振动。
质量偏心,转子弯曲或质量分布问题导致的转子质量分布不均,造成静、动平衡量超标川。
另外,鼠笼式电动机转子的鼠笼笼条有断裂,造成转子所受的磁场力和转子的旋转惯性力不平衡而引起振动,电机缺相,各相电源不平衡等原因也能引起振动。
电机定子绕组,由于安装工序的操作质量问题,造成各相绕组之间的电阻不平衡,因而导致产生的磁场不均匀,产生了不平衡的电磁力,这种电磁力成为激振力引发振动。
1.2基础及泵支架驱动装置架与基础之间采用的接触固定形式不好,基础和电机系统吸收、传递、隔离振动能力差,导致基础和电机的振动都超标。
水泵基础松动,或者水泵机组在安装过程中形成弹性基础,或者由于油浸水泡造成基础刚度减弱,水泵就会产生与振动相位差1800的另一个临界转速,从而使水泵振动频率增加,如果增加的频率与某一外在因素频率接近或相等,就会使水泵的振幅加大。
水泵振动分析及处理随着现代工业的发展,水泵已经成为了生产过程中不可或缺的一部分,而随着水泵的普及和使用范围的扩大,其故障问题也时有发生。
其中,水泵振动问题是最常见的一种故障,本文将尝试对水泵振动问题进行分析及处理。
一、水泵振动的原因在使用水泵的过程中,会出现各种各样的振动现象,根据振动的具体性质和原因,可以将水泵振动分为以下几种类型:1、轴向振动轴向振动属于一般的过度杂乱振动,在水泵的轴与支座之间及轴与密封件之间的振动频率出现的感觉效果。
该振动主要是由于旋转机构的不平衡、叶轮间隙过大、轴弯和泵的基础设计不良等原因造成的。
2、径向振动径向振动是指水泵轴与垂直轴线的振荡运动。
水泵叶轮形状的不同、动平衡的不良、轴承间隙过大以及启动和停止频繁等都可能会导致径向振动问题的发生。
3、涡流振动涡流振动是一种由于流体内部涡流、涡旋等形成的振动,其频率与在叶轮中产生的涡流相同。
涡流振动可能会导致叶轮腐蚀、弹性不足以及失重等问题的发生。
4、共振振动共振振动是由于泵、管道、支撑结构等元件相互作用而造成的振动。
当泵的输出频率与支撑结构或管道的自然振动频率相同时,将发生共振振动。
共振振动能够导致机体振动加速度增加、壳体和外壳失效、托架之间产生相对位移等问题。
二、水泵振动的处理方法为了有效地解决水泵振动问题,一般需要从以下几个方面进行处理:1、改善设备结构如果水泵的振动问题是由设备结构不良所致,可以通过优化水泵的结构和传动机构,如更换梳齿轮、增加过滤器、更换机体等来解决振动问题。
2、进行机体平衡处理对于由不平衡导致的振动问题,可以通过进行机体平衡来解决该问题。
在进行平衡时,需要注意使用合适的平衡设备,以确保平衡效果真正达到要求。
3、修整叶轮如发现叶轮的形状不够完美或存在损伤等问题,可以对叶轮进行修整或更换。
为了确保修整后的叶轮满足要求,必须严格按照设计要求进行加工和检验。
4、增加防护措施在水泵的基础和支撑结构上增加减震效果,可以有效地降低水泵振动的影响。
循环泵振动异常原因分析与处理摘要:文章以某厂#7循环水泵振动故障为例,分析了其原因及处理措施。
即笔者根据出现振动的特点,从安装、检修、运行情况和发生振动的经过等实际情况出发,分析振动的原因,排除了设计、安装、水力和制造等方面对振动的影响因素,査明该设备转静子存在严重的不同心是造成振动的根本原因,并据此提出校正电机转静子、泵体部件与泵轮转子中心及规范检修作业等具体处理措施。
关键词:循环泵;振动异常;原因分析;处理措施1问题的背景某厂#1水泵房共有7台循环水泵,向I期2台125MW机组和D期2台250MW 机组提供循环冷却用水,属于单元制的公用系统。
#7循环水泵是2015年9月改造的YJG系列循环水泵,由长沙水泵厂设计生产,型号YJG48-45。
该泵改造前为长沙水泵厂的沅江系列泵,改造后运行正常,但自2021年1月以来该泵振动值一直偏高或超标,频繁发生振动而造成部件损坏,已难于稳定运行。
经过多次处理,但均未根本解决。
此前该泵振动值已发展到0.16mm,只能作为备用泵在紧急情况下投入短时间运行(不超过24小时),尤其在夏季大负荷期间该系统经常处于无备用设备的状态下运行,系统的可靠性大为降低。
所以#7循环泵的振动问题已经对该厂的安全稳定运行构成严重威胁。
2泵改造后的检修与运行概况(1)该泵于2015年9月完成改造并投运,至2002年1月期间只经过2次轴承检查加油外无其他任何检修。
2次检修分别于2017年9月和2018年10月随机组小修时轴承检査加油。
检修记录内容:轴承滚珠转动灵活,油脂干净,并加入了新油。
(2)2021年1月电机大修,汽机检修人员配合找电机静子水平度。
试运转时电机、泵的振动均出现增大现象,泵的振动超出0.08mm的标准。
(3)2021年7月23H,#7循环泵在运行中双列轴承声音异常,且单列轴承温度偏高。
在解体检査时发现盘根室有6条均布裂纹大约170mm左右,底部已裂透,填料衬套与轴磨损严重,填料衬套出现了3条裂纹,并有50cm2左右的裂块脱落。
第1篇一、前言水泵作为工业生产中常用的机械设备,其运行稳定性和安全性对整个生产过程至关重要。
然而,在实际运行过程中,水泵可能会出现振动现象,这不仅会影响水泵的正常工作,还可能导致设备损坏和安全事故。
为了确保水泵的安全运行,本文通过对水泵振动数据进行采集、分析,对水泵振动原因进行探讨,并提出相应的解决措施。
二、水泵振动数据采集1. 数据采集设备本次水泵振动数据采集采用加速度传感器和振动分析仪。
加速度传感器用于测量水泵的振动加速度,振动分析仪用于实时采集和分析振动数据。
2. 数据采集方法首先,将加速度传感器安装在泵体上,确保传感器与泵体接触良好。
然后,启动水泵,使其进入稳定运行状态。
在此过程中,通过振动分析仪实时采集水泵的振动数据,包括振动加速度、振动速度、振动位移等。
三、水泵振动数据分析1. 振动频率分析通过对水泵振动数据进行分析,可以得到水泵的振动频率。
通常情况下,水泵的振动频率与电机转速、叶轮转速等因素有关。
在本案例中,水泵振动频率为50Hz,与电机转速相符。
2. 振动幅值分析振动幅值是衡量水泵振动强度的重要指标。
通过对振动数据进行分析,可以得到水泵在不同工况下的振动幅值。
在本案例中,水泵在正常运行状态下的振动幅值为0.5mm,属于正常范围。
3. 振动相位分析振动相位分析有助于判断水泵振动原因。
在本案例中,通过对振动相位进行分析,发现水泵振动相位主要分布在0°和180°,表明水泵振动主要来源于电机和叶轮。
4. 振动频谱分析振动频谱分析可以直观地展示水泵振动频率成分。
在本案例中,水泵振动频谱图显示,振动频率主要集中在50Hz及其倍频,这与电机转速有关。
四、水泵振动原因分析1. 电机问题电机问题可能导致水泵振动,如电机不平衡、轴承磨损、定子线圈故障等。
在本案例中,振动相位分析显示水泵振动主要来源于电机和叶轮,因此,电机问题可能是导致水泵振动的主要原因。
2. 叶轮问题叶轮问题也可能导致水泵振动,如叶轮不平衡、叶轮磨损、叶轮变形等。
水泵机组的振动分析及故障诊断
作者:马毅杨帅
来源:《科学与财富》2018年第08期
摘要:作为火力发电厂的重要辅助设备之一,锅炉给水泵能否安全、高效运转直接影响着电厂的经济效益。
在实际运行过程中,锅炉给水泵经常发生振动故障,威胁着给水泵的稳定运转。
为此,本文着重分析了锅炉给水泵振动的原因,并就如何防治振动故障给出切实可行的应对措施。
关键词:水泵机组;振动;故障诊断
一、水泵情况
某电厂9、10号机组为2台东汽300MW供热凝汽式汽轮发电机组,单机配备2台
50%B—MCR汽动给水泵组运行,1台50%B—MCR电动给水泵备用。
汽动给水泵型号
300QTSB 1I—JA,结构形式为卧式、离心、多级节段、双壳体全抽芯结构,进出、口及抽头接El均垂直向下布置,电动给水泵型号300TSBlI—JB,其结构形式与汽动给水泵基本相同,区别在于进出口及抽头接口均垂直向上布置,厂家设计2种泵型芯包完全一致,可以互换。
该型锅炉给水泵芯包共5级叶轮,并采用诱导轮技术,诱导轮安装在首级叶轮之前,提高首级叶轮入口压力,降低泵的必须汽蚀余量,给水泵前可不设前置泵。
该电厂给水系统现场布置为汽动给水泵有前置泵,电动给水泵无前置泵。
该厂9、10号机组分别于2010年1月、5月投产,在168 h试运及投产初期,6台给水泵发生多起振动超标被迫停泵故障。
二、振动原因分析
现场每1台给水泵出现振动异常后,都会根据锅炉给水泵振动常见原因进行排查,首先检查排除引起给水泵振动的外部因素,最终确定给水泵内部存在缺陷。
给水泵芯包返厂后,解体检查轴瓦无异常磨损,转子与壳体动静部件无碰摩痕迹,多数存在诱导轮断裂缺陷。
通过对上述多台次给水泵振动情况对比及芯包返厂解体检修情况综合分析,导致该电厂给水泵频繁发生振动超标的主要原因如下。
(1)某一转速范围内的振动增大原因为水力激振。
9号机电动给水泵是第1台投运的给水泵,与其余5台给水泵同一批次,因此将10号机尚未安装的电动给水泵返厂检查,经厂家设计部门试验分析在4000r/min以上某一转速区间内的振动超标原因,并非转子刚性不足导致存在临界转速,而是由于水流经过叶轮流道后进入中段内的导叶产生水力冲击,当水力冲击的激振频率与转子或泵壳的固有频率接近时,便会产生共振。
通过对泵内各级导叶流道进行分析,发现泵内流体从叶轮流出后在导叶内流动时,在圆周方向上并不均匀,在大流量、高压力
的工况下,水力流动不均衡必然产生较强的水力激振,当泵转速达到某一范围时,水力激振引发共振,导致泵振动增大。
(2)振动突增原因为诱导轮叶片断裂导致的转子质量不平衡。
诱导轮为轴流式叶轮,即使在发生汽蚀时,性能也不会突然下降,而且诱导轮本身的结构设计使其具有更好的抗汽蚀性能。
但在该电厂的实际使用中,给水泵诱导轮叶片断裂几乎是该型给水泵的共性缺陷,通过对诱导轮的工况条件和叶片断裂形貌特征进行分析,发现诱导轮的设计叶片厚度、入口型线与水力特性不能完全匹配,导致诱导轮进口处易发生汽蚀,因汽蚀而产生的复杂非定常流动引发压力脉动,与诱导轮叶片的固有频率接近或成一定的比例关系时产生共振,最终叶片疲劳断裂。
诱导轮叶片断裂位置均处于进口边缘较薄部位。
(3)转子动平衡不合格。
2010年6月17日,10号机1号汽动给水泵返修后初次投运便出现振动超标,且振动值随着转速升高而增大,坚持运行一个月后将芯包返厂解体检查,经测量发现该泵转子第4级、第6级叶轮晃度超标(第4级叶轮晃度0.14mm、第6级0.18mm,标准≤0.05mm),转子残余不平衡量达1050g?mm,大于该转子许用不平衡量799g?mm,振动超标原因为转子动平衡不合格。
三、处理措施及效果
根据上述不同振动原因,制定针对性的处理措施,并利用机组临停和检修机会对每台给水泵芯包进行检修和改进。
(1)改善流体在导叶中的水力特性。
针对给水泵在某一转速范围内的轴承振动增大问题,经厂家设计部门分析确定对泵的设计进行更改,将部分导叶在圆周方向旋转一定角度,即:二级中段、六级中段上的导叶固定销孔在原位置逆时针旋转15°,三级中段、五级中段上的导叶固定销孔在原位置顺时针旋转15°,经更改后各导叶流道位置依次错开60°,保证流体在导叶中流动的均匀性,有效改善导叶内的异常水力激振,对每台给水泵芯包返厂时均按照更改设计实施,振动消除。
(2)改进诱导轮。
原诱导轮重新设计改进为加强型诱导轮,优化诱导轮入口型线,加大进口边后掠角,由90°增加到120°,使叶片进口后掠部位延长,高度降低,改变诱导轮入口的液体流动,提高汽蚀性能,改善给水泵首级叶轮入口条件;对诱导轮叶片整体加厚,改善铸造工艺和热处理工艺,加大叶片与轮毂结合处的圆角,减小应力集中,提高诱导轮结构强度,经无损探伤合格的诱导轮方可使用。
先后对2台电动给水泵更换加强型诱导轮,使用效果良好。
对4台汽动给水泵,去除诱导轮,用相应的轴套代替。
厂家初期设计汽动给水泵安装诱导轮,目的是使得300MW机组电动给水泵和汽动给水泵芯包完全相同,以保证2种泵芯包的互换性。
由于电动给水泵没有前置泵,在该泵的设计中为降低泵的必须汽蚀余量NPSHr,保证不发生汽蚀,在首级叶轮前设计了诱导轮增压,诱导轮的设计扬程28m,加上除氧器高度25m,才可以满足抗汽蚀要求。
汽动给水泵设有前置泵,前置泵扬程82m,远远超过诱导轮扬程,因此汽动给水泵取消诱导轮也能满足必须汽蚀余量要求,同时不会对泵的流量、扬程产生不利影
响,还可降低汽动给水泵缺陷发生几率。
先对9号机1号汽动给水泵去除诱导轮,运行一段时间,监测压力、流量等参数无变化,陆续对其他3台汽动给水泵去除诱导轮。
(3)提高检修工艺质量。
给水泵芯包检修中,严格按照检修工艺要求执行。
重点检测转子小装后各主要部位的晃度值、瓢偏值,检验、校正转子静平衡和动平衡,分别按照《机械振动恒态(刚性)转子平衡品质要求》G6.3级和G2.5级精度进行。
芯包组装时各轴瓦间隙、转子抬量、转子窜量和平衡装置间隙等动静间隙调整合格,减少装配误差,确保检修工艺质量。
经过采取一系列的处理措施后,该电厂6台锅炉给水泵运行状态良好,解决了泵振动超标问题。
四、结束语
根据该电厂多台锅炉给水泵运行中发生的振动缺陷情况,逐步分析排查引起振动的因素,并结合给水泵芯包解体检查情况,最终确定振动的真正原因,导叶内水力激振、诱导轮叶片断裂和转子动平衡不合格。
通过实施针对性的处理措施,解决了给水泵振动超标问题,保证了机组安全稳定运行。
参考文献:
[1]曹崇宏,仇伟伟,孔江峰.水泵振动和噪声的解决方法[J].中国新技术新产品,2018(01):121-122.
[2]刘亚昆,吴兴伟.火电厂给水泵振动原因分析及处理[J].沈阳工程学院学报(自然科学版),2013,9(04):337-341.
[3]张建茹. 水泵振动原因分析与减振方法研究[D].大连理工大学,2013.
[4]淮慧梅,朱晓辉.水泵振动原因及对策[J].机械工程与自动化,2004(01):59-61.。