光明初中2018-2019学年七年级下学期数学第一次月考试卷(9)
- 格式:doc
- 大小:293.50 KB
- 文档页数:15
七年级下学期第一次月考数学试卷一、选择题:1. 下列现象是数学中的平移的是()A . 树叶从树上落下B . 电梯从底楼升到顶楼C . 碟片在光驱中运行D . 卫星绕地球运动2. ∠1与∠2是内错角,∠1=30°,则∠2的度数为()A . 30°B . 150°C . 30°或150°D . 不能确定3. 下列运算正确的是()A . a2•a3=a6B . (﹣a2)3=﹣a6C . (ab)2=ab2D . a6÷a3=a24. 已知三角形的两边长分别为5和7,则第三边长不可能是()A . 1B . 3C . 5D . 75. 若(x﹣1)0=1,则()A . x≥1B . x≤1C . x≠1D . x≠06. 如图,在△ABC中,∠C=50°,按图中虚线将∠C剪去后,∠1+∠2等于()A . 230°B . 210°C . 130°D . 310°7. 把三张大小相同的正方形卡片A、B、C叠放在一个底面为正方形的盒底上,底面未被卡片覆盖的部分用阴影表示,若按图1摆放时,阴影部分的面积为S1;若按图2摆放时,阴影部分的面积为S2,则S1与S2的大小关系是()A . S1>S2B . S1<S2C . S1=S2D . 无法确定8. 如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1 .第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2017,最少经过多少次操作()A . 4B . 5C . 6D . 7二、填空题:9. 计算(﹣2x3)3=________.10. PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为________.11. 如果x+4y﹣3=0,那么2x•16y=________.12. 一个等腰三角形的两边长分别是3cm和7cm,则它的周长是________ cm.13. 一个多边形的内角和是1800°,这个多边形是________边形.14. 如图,把一副常用的三角板如图所示拼在一起,那么图中∠ABF=________.15. 如图,△ABC中,∠BAC、∠ABC、∠ACB的外角分别记为∠α,∠β,∠γ,若∠α:∠β:∠γ=3:4:5,则∠BAC:∠ABC:∠ACB等于________.16. 如图,小明在操场上从A点出发,沿直线前进10米后向左转40°,再沿直线前进10米后,又向左转40°,照这样走下去,他第一次回到出发地A点时,一共走了________米.17. 如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF ﹣S△BEF=________.18. 如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是________°.三、解答题:19. 计算:(1)x3•x•x2(2)(﹣a3)2•(﹣a2)3(3)|﹣2|﹣()﹣2+(π﹣3)0﹣(﹣1)2017(4)(p﹣q)3•(q﹣p)4÷(q﹣p)2 .20. 用简便方法计算下列各题:(1)()2016×(﹣1.25)2017(2)(2 )10×(﹣)10×()11 .21. 画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸中将△ABC 经过一次平移后得到△A′B′C′,图中标出了点C的对应点C′.(1)请画出平移后的△A′B′C′;(2)若连接AA′,BB′,则这两条线段之间的关系是________;(3)利用网格画出△ABC 中AC边上的中线BD;(4)利用网格画出△ABC 中AB边上的高CE;(5)△A′B′C′面积为________.22. 比较大小:2100与375(说明理由)23. 一个多边形,除一个内角外,其余各内角之和等于2012°,求这个内角的度数及多边形的边数.24. 如图,AD∥BE,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AB∥CD.25. 如图在四边形ABCD中,∠B=∠D=90°,AE、CF分别平分∠BAD和∠BCD.试问直线AE、CF的位置关系如何?请说明你的理由.26. 阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘2,得2S=2+22+23+24+25+…+22013+22014 .将下式减去上式,得2S﹣S=22014-1即S=22014-1,即1+2+22+23+24+…+22013=22014-1仿照此法计算:(1)1+3+32+33+…+3100(2)1+ +…+ .27. 如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM 交AB于点E,PN交CD于点F(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为________;(2)当△PMN所放位置如图②所示时,求证:∠PFD﹣∠AEM=90°;(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.28. 综合题。
七年级下学期第一次月考数学试卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第二章《相交线与平行线》班级姓名得分一、选择题(本大题共10小题,共30.0分)1.计算6m6÷(−2m2)3的结果为()A. −mB. −1C. 34D. −342.如果(3x2y−2xy2)÷m=−3x+2y,则单项式m为()A. xyB. −xyC. xD. −y3.已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A. 相等B. 互余C. 互补D. 互为对顶角4.如图,如果∠AOB=∠COD=90∘,那么∠1=∠2,这是根据()A. 直角都相等B. 等角的余角相等C. 同角的余角相等D. 同角的补角相等5.计算下列各式①(a3)2÷a5=1;②(−x4)2÷x4=x4;③(x−3)0=1(x≠3);④(−a3b)5÷12a5b2=2a4b,正确的有()A. 4个B. 3个C. 2个D. 1个6.要使(x2+ax+1)⋅(−6x3)的展开式中不含x4项,则a应等于()A. 6B. −1C. 16D. 07.如图,用尺规作图作∠AOC=∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,那么第二步的作图痕迹②的作法是()A. 以点F为圆心,OE长为半径画弧B. 以点F为圆心,EF长为半径画弧C. 以点E为圆心,OE长为半径画弧D. 以点E为圆心,EF长为半径画弧8.在平面中,如图,两条直线最多只有1个交点,三条直线最多有3个交点……若n条直线最多有55个交点,则n的值为()A. 9B. 10C. 11D. 129.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图1),把余下的部分拼成一个长方形(如图2),根据两个图形中阴影部分的面积相等,可以验证()A. (a+b)2=a2+2ab+b2B. (a−b)2=a2−2ab+b2C. (a+2b)(a−b)=a2+ab−2b2D. a2−b2=(a+b)(a−b)10.点P为直线l外一点,点A、B、C为直线l上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离是().A. 2cmB. 4cmC. 5cmD. 不超过2cm二、填空题(本大题共5小题,共20.0分)11.若(2x3y2)⋅(−3x m y3)⋅(5x2y n)=−30x7y6,则m+n=.12.天平的左边挂重为(2m+3)(2m−3)+12m,右边挂重为(2m+3)2,请你猜一猜,天平倾斜.(填“会”或“不会”)13.已知:OA⊥OC,∠AOB:∠AOC=2:3.则∠BOC的度数为__.14.如下图,直线AB,CD相交于点O,∠AOC=70°,∠BOC=2∠EOB,则∠AOE的度数为________.15.如图,直线AB,CD相交于点O,OE平分∠BOD,且∠AOE=140°,则∠AOC的度数为________________.三、解答题(本大题共10小题,共100.0分)16.(8分)计算:(1)2x⋅(3x2−x−5);ab2−4a2b)⋅(−4ab).(2)(1217.(10分)如图,直线AB、CD相交于点O,OE平分∠BOD,∠AOC=70°,∠COF=90°,求:(1)∠BOD的度数;(2)写出图中互余的角;(3)∠EOF的度数.18.(10分)如果两个角的差的绝对值等于60°,就称这两个角互为友好角,例如:∠1=100°,∠2=40°,|∠1−∠2|=60°,则∠1和∠2互为友好角(本题中所有角都指大于0°且小于180°的角),将两块直角三角板如图1摆放在直线EF上,其中∠AOB=∠COD=60°,保持三角板ODC不动,将三角板AOB绕O点以每秒2°的速度顺时针旋转,旋转时间为t秒.(1)如图2,当AO在直线CO左侧时,①与∠BOE互为友好角的是____,与∠BOC互为友好角的是____,②当t=____时,∠BOE与∠AOD互为友好角;(2)若在三角板AOB开始旋转的同时,另一块三角板COD也绕点O以每秒3°的速度逆时针旋转,当OC旋转至射线OE上时两三角板同时停止,当t为何值时,∠BOC 与∠DOF互为友好角(自行画图分析).19.(10分)【注重实践探究】我们知道对于一个图形,通过不同的方法计算图形的面积可以得到一个数学等式.例如:由图1可得到(a+b)2=a2+2ab+b2.(1)写出图2所表示的数学等式:;写出图3所表示的数学等式:;(2)利用上述结论,解决下列问题:已知a+b+c=11,bc+ac+ab=38,求a2+b2+c2的值.20.(10分)爱动脑筋的丽丽和娜娜在做数学小游戏,两个人各报一个整式,丽丽报的整式A作被除式,娜娜报的整式B作除式,要求商式必须为4xy(即A÷B=4xy).(1)若丽丽报的是x3y−6xy2,则娜娜应该报什么整式?(2)若娜娜也报x3y−6xy2,则丽丽应该报什么整式?21.(8分)一个棱长为103的正方体,在某种物体的作用下,其棱长以每秒扩大到原来的102倍的速度增长,求3秒后该正方体的棱长.22.(10分)已知x2−4x−1=0,求代数式(2x−3)2−(x+y)(x−y)−y2的值.23.(10分)如下图,直线AB,CD相交于点O.(1)若∠AOD比∠AOC大40°,求∠BOD的度数;(2)若∠AOD:∠AOC=3:2,求∠BOD的度数.24.(12分)在∠AOB和∠COD中,(1)如图1,已知∠AOB=∠COD=90°,当∠BOD=40°时,求∠AOC的度数;(2)如图2,已知∠AOB=82°,∠COD=110°,且∠AOC=2∠BOD时,请直接写出∠BOD的度数;(3)如图3,当∠AOB=α,∠COD=β,且∠AOC=n∠BOD(n>1)时,请直接用含有α,β,n的代数式表示∠BOD的值.25.(12分)如图,,平分,反向延长射线至.(1)和是否互补?说明理由;射线是的平分线吗?说明理由;反向延长射线至点,射线将分成了的两个角,求.答案1.D2.B3.B4.C5.C6.D7.D8.C9.D10.D11.312.会13.30°或150°14.125°15.80°16.解:(1)原式=6x3−2x2−10x(2)原式=−2a2b3+16a3b2.17.解:(1)∵∠AOC=70°∴∠BOD=∠AOC=70°;(2)∠AOC和∠BOF,∠BOD和∠BOF,∠EOF和∠EOD,∠BOE和∠EOF;(3)因为OE平分∠BOD,∠BOD=70°所以∠BOE=35°,因为∠COF=90°,且A、O、B三点在一条直线AB上,所以∠BOF=180°−70°−90°=20°,所以∠EOF=∠BOE+∠BOF=35°+20°=55°.18.解:(1)①∠AOE;∠BOD或∠AOC;②15s.(2)由题意可知:三角板旋转40秒停止,∠DOF=3t①当OB在OC左侧时,∠BOC=120°−5t|∠BOC−∠DOF|=60°,表示为|120°−5t−3t|=60°即|120°−8t|=60°去绝对值得120°−8t=60°(如图1)或8t−120°=60°(如图2)∴t=7.5或t=22.5②当OB在OC右侧时,∠BOC=5t−120°|∠BOC−∠DOF|=60°,表示为|5t−120°−3t|=60°即|2t−120°|=60°去绝对值得2t−120°=60°或120°−2t=60°(如图3)∴t=90(不符合题意,应舍去)或t=30综合①②,故当t为7.5s、22.5s、30s时,∠BOC与∠DOF互为友好角.19.解:(1)(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(a−b−c)2=a2+b2+c2+2bc−2ab−2ac;(2)由(1)可得a2+b2+c2=(a+b+c)2−(2ab+2bc+2ac)=(a+b+c)2−2(ab+bc+ac)=112−2×38=45.20.解:(1)∵A=x3y−6xy2,∴B=(x3y−6xy2)÷4xy=14x2−32y,∴娜娜应该报的整式为14x2−32y;(2)A=(x3y−6xy2)×4xy=4x4y2−24x2y3;21.解:3秒后该正方体的棱长为109.22.解:(2x−3)2−(x+y)(x−y)−y2=4x2−12x+9−x2+y2−y2=3x2−12x+9.因为x2−4x−1=0,所以x2−4x=1.所以原式=3(x2−4x)+9=3+9=12.23.解:(1)设∠AOC=x,则∠AOD=x+40°,∴x+x+40°=180°,∴∠BOD=x=70°.(2)设∠AOD=3x,∠AOC=2x,∴3x+2x=180°,x=36°,∴∠BOD=∠AOC=72°.24.解:(1)如图1,∵∠AOB=∠COD=90°,∠BOD=40°,∴∠AOC=∠AOB+∠COD−∠BOD=90°+90°−40°=140°,答:∠AOC的度数为140°;(2)如图2,∵∠AOB=82°,∠COD=110°,∴∠AOC=∠AOB+∠COD−∠BOD=82°+110°−∠BOD,又∵∠AOC=2∠BOD,∴2∠BOD=82°+110°−∠BOD,∴∠BOD=82°+110°=64°,3答:∠BOD的度数为64°;(3)如图3,∵∠AOB=α,∠COD=β,∴∠AOC=∠AOB+∠COD−∠BOD=α+β−∠BOD,又∵∠AOC=n∠BOD,∴n∠BOD=α+β−∠BOD,∴∠BOD=α+β,n+1答:∠BOD=α+β.n+125.解:(1)互补.理由:因为∠AOD+∠BOC=360°−∠AOB−∠DOC=360°−90°−90°=180°,所以∠AOD和∠BOC互补.(2)OF是∠BOC的平分线.理由:因为OE平分∠AOD,所以∠AOE=∠DOE,因为∠COF=180°−∠DOC−∠DOE=90°−∠DOE,∠BOF=180°−∠AOB−∠AOE=90°−∠AOE,所以∠COF=∠BOF,即OF是∠BOC的平分线.(3)因为OG将∠COF分成了4:3的两个部分,所以∠COG:∠GOF=4:3或者∠COG:∠GOF=3:4.①当∠COG:∠GOF=4:3时,设∠COG=4x°,∠GOF=3x°,由(2)得:∠BOF=∠COF=7x°因为∠AOB+∠BOF+∠FOG=180,所以90+7x+3x=180,解方程得:x=9,所以∠AOD=180−∠BOC=180−14x=54.②当∠COG:∠GOF=3:4时,设∠COG=3x°,∠GOF=4x°,同理可列出方程:90+7x+4x=180,,解得:x=9011所以∠AOD=180−∠BOC=180−14x=720.11)°.综上所述,∠AOD的度数是54°或(72011。
光明初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)如果2x a﹣2b﹣3y a+b+1=0是二元一次方程,那么a,b的值分别是()A.1,0B.0,1C.﹣1,2D.2,﹣1【答案】A【考点】二元一次方程的定义【解析】【解答】解:∵2x a﹣2b﹣3y a+b+1=0是二元一次方程,∴a﹣2b=1,a+b=1,解得:a=1,b=0.故答案为:A【分析】根据二元一次方程的定义:含有两个未知数,且两个未知数的最高次数是1次的整式方程,就可建立关于a、b的二元一次方程组,解方程组求出a、b的值。
2.(2分)在实数, ,,中,属于无理数是()A. 0B.C.D.【答案】D【考点】无理数的认识【解析】【解答】在实数, ,,中,属于无理数是,故答案为:D.【分析】根据无理数的定义可得.无限不循环小数叫无理数,常见形式有:开方开不尽的数、无限不循环小数和字母表示的无理数,如π等.3.(2分)用加减法解方程组时,要使方程中同一个未知数的系数相等或互为相反数,必须适当变形,以下四种变形正确的是()①②③④A. ①②B. ②③C. ③④D. ①④【答案】C【考点】解二元一次方程组【解析】【解答】解:试题分析:把y的系数变为相等时,①×3,②×2得,,把x的系数变为相等时,①×2,②×3得,,所以③④正确.故答案为:C.【分析】观察方程特点:若把y的系数变为相等时,①×3,②×2,就可得出结果;若把x的系数变为相等时,①×2,②×3,即可得出答案。
4.(2分)在数﹣,0,,0.101001000…,中,无理数有()A. 1个B. 2个C. 3个D. 4个【答案】B【考点】无理数的认识【解析】【解答】π/2,0.101001000…为无理数,﹣2/3,0,22/7为有理数,故无理数有两个.故答案为:B.【分析】根据无理数是无限不循环的小数,就可得出无理数的个数。
七年级下学期第一次月考数学试卷(含参考答案)(满分150分;时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题(共10小题,每题4分)1.计算:(12)﹣1=()A.2B.-2C.12D.﹣122.地球是人与自然共同生存的家园,在这个家园中,还住着许多常常被人们忽略的微小生命,在冰岛海岸的黄铁矿粘液池中的古菌身上,科学家发现了基因片段,并提取出了最小的生命体,它的直径仅为0.00 000 002米,将数字0.00 000 002用科学记数法表示为()A.2x10﹣7B.2x10﹣8C.2x10﹣9D.20x10﹣83.下面四个图形中,∠1与∠2是对顶角的图形是()A. B. C. D.4.下列计算正确的是( )A.a6+a2=a8B.a6÷a2=a3C.a6·a2=a12D.(a6)2=a125.下列乘法中,不能运用平方差公式进行运算的是( )A.(x+a)(x-a)B.(a+b)(-a-b)C.(-x-b)(x-b)D.(b+m)(m-b )6.如果"□×2ab=4a2b”,那么"口"内应填的代数式是()A.2bB.2abC.aD.2a7.如图,某污水处理厂要从A处把处理过的水引入排水渠PQ,为了节约用料,铺设垂直于排水渠的管道AB.这种铺设方法蕴含的数学原理是()A.两点确定一条直线B.两点之间,线段最短C.过一点可以作无数条直线D.垂线段最短(第7题图) (第10题图)8.如果a=(﹣2024)0,b=(﹣2022)﹣1,c=(-2)2024.则a ,b ,c 三数的大小关系是( ) A.c>a>b B.a>b>c C.a>c>b D.c>b>a9.若(3x+2)(3x+a )的化简结果中不含x 的一次项,则常数a 的值为( ) A.-2 B.-1 C.0 D.210.如图有两张正方形纸片A 和B ,图1将B 放置在A 内部,测得阴影部分面积为2,图2将正方形AB 开列放置后构造新正方形,测得阴影部分面积为20,若将3个正方形A 和2个正方形B 并列放置后构造新正方形如图3,(图2,图3中正方形AB 纸片均无重叠部分)则图3阴影部分面积( )A.22B.24C.42D.44 二.填空题(共6小题,每题4分) 11.计算:a(a+3)= .12.如图,用直尺和三角尺作出直线AB 、CD ,得到AB ∥CD 的理由是 .(第12题图) (第15题图)13.若x 2-kx+4一个完全平方式,则k 的值是 . 14.42020×(﹣0.25)2021= .15.一副三角板按如图方式摆放,且∠1比∠2大50°,则∠1= . 16.观察下列运算并填空: 1×2×3×4+1=25=52; 2×3×4×5+1=121=112; 3×4×5×6+1=361=192;根据以上结果,猜想并研究:(n+1)(n+2)(n+3)(n+4)+1= . 三.解答题(共16小题) 17.(12分)计算:(1)(﹣1)4+(3.14-π)0+(﹣13)﹣1 (2)(-1)3+(3+π)0-|﹣2|+(13)-2(3)(-1)2023-(3.14-π)0-(12)﹣2+|﹣3| (4)﹣12023×|﹣34|+(3.14-π)0-2﹣118.(12分)(1)(a+2b)(3a -b) (2)(12m ³-6m 2+2m)÷2m(3)x 2·x 6-(2x 2)4+x 9÷x (4)m 2·m 4+(m 3)2-m 8÷m 219.(12分)用乘法公式进行简便运算:(1)102x98 (2)10032(3)20242-20232 (4)20232-2023×2048+2024220.(6分)先化简,再求值:(2x+y)(2x -y)-(2x -y )2,其中x=﹣2,y=﹣1221.(4分)如图,已知∠2=∠3,求证:AB∥CD.证明:∵∠2=∠3(已知)又∠1=∠3()∴= ()∴AB∥CD()22.(6分)如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.23.(10分)观察以下等式:(x+1)(x2-x+1)=x3+1(x+3)(x2-3x+9)=x3+27(x+6)(x2-6x+36)=x3+216...(1)按以上等式的规律,填空:(a+b)(a2-ab+b2)= ;(2)利用多项式的乘法法则,说明(1)中的等式成立.(3)利用(1)中的公式化简:(x+y)(x2-xy+y2)-(x+2y)(x2-2xy+4y2)24.(12分)实践与探究,如图1,边长为a的大正方形有一个边长为b的小证方形,把图1中的阴影部分折成一个长方形(如图2所示)。
2018-2019年七年级下第一次月考数学试卷含答案七年级下册第一次数学月考试题一、选择题(每小题3分,共24分)1、下列运算中,正确的个数是()A、1个B、2个C、3个D、4个2、已知(-3a+m)(4b+n)=16b²-9b²,则m,n的值分别为()A、m=-4b,n=3aB、m=4b,n=-3aC、m=4b,n=3aD、m=3a,n=4b3、下列语句中,错误的有()A、1个B、2个C、3个D、4个4、若a=3π/2,b=-1,c=-π/2,则a、b、c的大小关系是()A、a>b>cB、c=b>aC、a>c>bD、c>a>b5、如图,有下列4个条件:①∠B+∠BCD=180°,②∠1=∠2,③∠3=∠4,④∠B=∠5,其中能判定AB∥CD的条件的个数是()A、1个B、2个C、3个D、4个图略)6、以长为3cm、5cm、7cm、10cm的四条线段中的三条线段为边,可以构成三角形的个数是()A、1个B、2个C、3个D、4个7、已知△XXX的内角分别是∠A、∠B、∠C,若∠1=∠A+∠B,∠2=∠B+∠C,∠3=∠C+∠A,则∠1,∠2,∠3中()A、至少有一个锐角B、至少有两个钝角C、可以有两个直角D、三个都是钝角8、某星期天下午,XXX和同学XXX相约在某公共汽车站起乘车回学校,XXX从家出发先步行到车站,等XXX到了后两人一起乘公共汽车回到学校。
图中折线表示XXX离开家的路程y(公里)和所用的时间x(分)之间的关系,下列说法错误的是()A、XXX从家到公共汽车站步行了2公里B、XXX在公共汽车站等XXX用了10分钟C、公共汽车的平均速度是30公里/小时D、XXX乘公共汽车用了20分钟图略)二、填空题(每小题3分,共24分)9、已知22x+1+4x=48,则x=(4)10、已知(x+3)²-x=1,则x的值可能是(-3,-1)(二选一即可,不用写两个答案)11、已知(9-a)(5-a)=10,则(9-a)²+(5-a)²=(83)(答案必须是数字,不要出现符号)12、绿色植物进行光合作用需要吸收光量子,每个光量子的波长大约为0.毫米,可用科学记数法表示为米。
第1页,共3页订……号:________订……2018--2019七年级数学试卷第一次阶段测试试卷考试时间:100分钟;满分:150分;命题人: 龙注意:本试卷包含Ⅰ、Ⅱ两卷。
第Ⅰ卷为试题卷,第Ⅱ卷为答题卷,所有答案必须填在答题卷的相应位置。
答案写在试卷上均无效,不予记分。
一、选择题(本大题共10小题,共40分) 1. ﹣(﹣2)等于( )A .﹣2B .2C .D .±22. 最大的负整数和绝对值最小的有理数分别是( )A .0 ,﹣1B .0 , 0C .﹣1 , 0D .﹣1 ,﹣13. 如果|x-1|+(y+2)2=0,那么x+y 的值是( )A .0B .-1C .1D .-24. 下列运算正确的是( )A .(﹣a 2)3=﹣a 5B .a 3•a 5=a 15C .(﹣a 2b 3)2=a 4b 6D .3a 2﹣2a 2=15. 为计算简便,把(﹣2.4)﹣(﹣4.7)﹣(+0.5)+(+3.4)+(﹣3.5)写成省略加号的和的形式,并按要求交换加数的位置正确的是( ) A .﹣2.4+3.4﹣4.7﹣0.5﹣3.5 B .﹣2.4+3.4+4.7+0.5﹣3.5 C .﹣2.4+3.4+4.7﹣0.5﹣3.5D .﹣2.4+3.4+4.7﹣0.5+3.56. 我市2018年的最高气温为39℃,最低气温为-3℃,则计算2018年温差列式正确的( )A .(+39)﹣(﹣3)B .(+39)+(+3)C .(+39)+(﹣3)D .(+39)﹣(+3)7. 如图,乐乐将 , , ,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,现在a 、b 、c 分别标上其中的一个数,则 的值为 A.B. 0C. 1D. 38. 下列说法: 所有有理数都能用数轴上的点表示; 符号不同的两个数互为相反数; 有理数包括整数和分数; 两数相加,和一定大于任意一个加数 正确的有A. 3个B. 2个C. 1个D. 0个9. 有这样的一列数,第一个数为 ,第二个数为 ,从第三个数开始,每个数都等于它相邻两个数之和的一半 如:,则 等于A.B.C.D.10. 数学活动中,王老师给同学们出了一道题:规定一种新运算“@”,对于任意有理数a 和b ,有a @b=a-b+1,请你根据新运算,计算(2@3)@2的值是( )A. 0B.C.D. 1二、填空题(本大题共4小题,共20分)11. 三个连续奇数中,最小的一个是2n ﹣1,则这三个连续奇数的和是 . 12. 观察一组数2,5,10,17,26,37,…,则第n 个数是 .13. 目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为 米. 14. 已知:,,, ,观察上面的计算过程,寻找规律并计算: ______. 三、计算题(本大题共4题,15-18题每题8分,共32分) 15. 直接写出计算结果:;;; .16. 计算下列各题:第2页,共3页(1)27 + 18﹣﹙﹣3﹚﹣18 (2)15+(﹣5)+ 7﹣(﹣3)17. 运用简便方法计算:()2123(1)3-23⨯1142(2)-1.54 2.75(-5)+++18. 观察图形,解答问题:按下表已填写的形式完成表中的空格:(2) 请用你发现的规律求出图 中的数x .四、解答题(本大题共5小题,共58分,其中19-20题每题10分,21-22题每题12分,23题14分)19. 在学习绝对值后,我们知道,|a|表示数a 在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A 、B 在数轴上分别表示有理数a 、b ,那么A 、B 之间的距离可表示为|a ﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)数轴上表示2和3的两点之间的距离是;数轴上P 、Q 两点的距离为3,点P表示的数是2,则点Q 表示的数是 .(2)点A 、B 、C 在数轴上分别表示有理数x 、﹣3、1,那么A 到B 的距离与A 到C 的距离之和可表示为 (用含绝对值的式子表示);满足|x ﹣3|+|x+2|=7的x 的值为 .(3)试求|x ﹣1|+|x ﹣2|+|x ﹣3|+…+|x ﹣100|的最小值.20. 在1, ,3, , 中任取两个数相乘,最大的积是a ,最小的积是b .求ab 的值;若 ,求 的值.第3页,共3页21.已知有理数a,b,c在数轴上的位置如图所示,且.________,;判断,,的符号;判断的符号.22.某出租车司机从西湖大道的汽车站出发在西湖大道西湖大道看作一条直线上来回载客假定向南行驶的路程记为正数,向北行驶的路程记为负数,行驶的各段路程依次为单位::,,,,,,出租车最后是否回到出发点汽车站?出租车离汽车站最远是多少km?(3)在行程中,如果每行驶4km载到一个顾客,则出租车一共载到多少顾客?23.有一个n位自然数能被整除,依次轮换个位数字得到的新数能被整除,再依次轮换个位数字得到的新数能被整除,按此规律轮换后,能被整除,,能被整除,则称这个n 位数是的一个“轮换数”。
2019-2020 年七年级下学期数学第一次月考试卷姓名:________班级:________成绩:________一、 单选题 (共 6 题;共 12 分)1. (2 分) (2017·庆云模拟) 下列计算中,结果是 a6 的是( )A . a2+a4B . a2•a3C . a12÷a2D . (a2)32. (2 分) 数轴上的点 M 对应的数是-2,那么将点 M 向右移动 4 个单位长度,此时点 M 表示的数是( )A . -6B.2C . -6 或 2D . 都不正确3. (2 分) (2019 七下·南京月考) 下列各式中计算正确的是( )A . (a3)2=a5B . (xy2)3=xy6C . t10÷t9=tD . x3x3=2x64. (2 分) (2020 八上·大东期末) 下列命题中的假命题是( )A . 两直线平行,内错角相等B . 同位角相等,两直线平行C . 两直线平行,同旁内角相等D . 平行于同一条直线的两直线平行5. (2 分) (2016 八上·庆云期中) 下面各组线段中,能组成三角形的是( )A . 5,11,6B . 8,8,16C . 10,5,4D . 6,9,146. (2 分) (2018 七下·市南区期中) 计算的结果是( )A.第1页共9页B.9 C. D.二、 填空题 (共 10 题;共 11 分)7. (1 分) (2017·河南模拟) 计算:|﹣ |+3﹣2=________. 8. (1 分) (2017·丹东模拟) 目前发现一种病毒直径约是 0.0000252 米,将 0.0000252 用科学记数法表示为 ________. 9. (1 分) 一个多边形的每一个外角都等于 36°,则该多边形的内角和等于________ °. 10. (1 分) (2017 七下·寿光期中) 若 m、n 互为相反数,则(3m)2(32)n=________. 11. (1 分) 如图,AB 为⊙O 直径,点 C、D 在⊙O 上,已知∠AOD=50°,AD∥OC,则∠BOC=________度.12. (1 分) 计算:(﹣8)2014×0.1252013=________. 13. (1 分) 如果一个多边形的内角和是外角和的 3 倍,则这个多边形边数为________. 14. (2 分) (2019 七上·句容期末) 如图,一个宽度相等的纸条按如图所示方法折叠压平,则∠1 的度数等 于________°.15. (1 分) (2020 七下·下陆月考) 如图,补充一个适当的条件________,使 AE∥BC.(填一个即可)第2页共9页16. (1 分) (2020·宁波模拟) 已知:如图,矩形 OABC 中,点 B 的坐标为,双曲线的一支与矩形两边 AB,BC 分别交于点 E,F. 若将△BEF 沿直线 EF 对折,B 点落在 y 轴上的点 D 处,则点 D 的坐标是________三、 解答题 (共 10 题;共 103 分)17. (10 分) 利用公式简便计算:+(﹣ )1999×(1 )2000×(﹣ )﹣3 .18. (10 分) 化简求值:(﹣ xy)2[xy(2x﹣y)﹣2x(xy﹣y2)],其中 x=﹣1 ,y=﹣2.19. (10 分) (2017·泾川模拟) 计算:|﹣2|﹣2cos60°+( ) ﹣1﹣(π﹣ )0 . 20. (11 分) (2019 八上·金坛月考) 在如图的方格中,每个小正方形的边长都为 1,△ABC 的顶点均在格点 上.在建立平面直角坐标系后,点 B 的坐标为(﹣1,2).(1) ①把△ABC 向下平移 8 个单位后得到对应的△A1B1C1,画出△A1B1C1;②画出与△A1B1C1 关于 y 轴对称的△A2B2C2;(2) 若点 P(a,b)是△ABC 边上任意一点,P2 是△A2B2C2 边上与 P 对应的点,写出 P2 的坐标为________;(3) 试在 y 轴上找一点 Q,使得点 Q 到 B2、C2 两点的距离之和最小,此时,QB2+QC2 的最小值为________.21. (10 分) (2019 八上·呼和浩特期中) 如图,在四边形中中,,,.第3页共9页(1) 求证:;(2) 若,求的度数.22. (10 分) (2019 七下·漳州期中) 如图,点 , 在线段 上,点 , 分别在线段 和上,,.(1) 判断 与 的位置关系,并说明理由;(2) 若是的平分线,,且怎样的位置关系?23. (10 分) (2018 八上·句容月考) 如图,在中,于 、 两点,与 相交于点 .,试说明 与有、 分别垂直平分 和 ,交(1) 若的周长为 15 cm,求 的长.(2) 若,求的度数.24. (7 分) (2019 七下·淮安月考)(1) 你发现了吗?,________;(2) 请你通过计算,判断与之间的关系;(3) 我们可以发现:________;第4页共9页,由上述计算,我们发;(4) 利用以上的发现计算:.25. (15 分) (2017·百色) 计算:+( ) ﹣1﹣(3﹣π)0﹣|1﹣4cos30°|26. (10 分) (2018 七下·长春月考) 感知:如图①,∠ACD 为△ABC 的外角,易得∠ACD=∠A+∠B(不需证明) ;(1) 探究:如图②,在四边形 ABDC 中,试探究∠BDC 与∠A、∠B.、∠C 之间的关系,并说明理由; (2) 应用:如图③,把一块三角尺 XYZ 放置在△ABC 上,使三角尺的两条直角边 XY、XZ 恰好经过点 B、C, 若∠A=50°,则∠ABX+∠ACX=________度;(直接填答案,不需证明) (3) 拓展:如图④,BE 平分∠ABD,CE 平分∠ACD,若∠BAC=100°,∠BDC=150°,则∠BEC=________度. (直 接填答案,不需证明)第5页共9页一、 单选题 (共 6 题;共 12 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、二、 填空题 (共 10 题;共 11 分)7-1、 8-1、 9-1、 10-1、 11、答案:略 12-1、 13-1、 14-1、 15-1、 16-1、三、 解答题 (共 10 题;共 103 分)参考答案17-1、第6页共9页18-1、 19、答案:略20-1、 20-2、 20-3、 21、答案:略22-1、第7页共9页22-2、 23-1、23-2、 24-1、 24-2、第8页共9页24-3、 24-4、 25-1、 26、答案:略第9页共9页。
光明初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)据中央气象台报道,某日上海最高气温是22 ℃,最低气温是11 ℃,则当天上海气温t(℃)的变化范围是()A.t>22B.t≤22C.11<t<22D.11≤t≤22【答案】D【考点】不等式及其性质【解析】【解答】解:气温最高是22℃,则t≤22;气温最低是11℃,则t≥11.故气温的变化范围11≤t≤22.故答案为:D.【分析】由最高气温是22℃,最低气温是18℃可得,气温变化范围是18≤t≤22,即可作出判断。
2、(2分)如图,现要从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,则这样做的理由是()A. 两点之间线段最短B. 两点确定一条直线C. 垂线段最短D. 过一点可以作无数条直线【答案】C【考点】垂线段最短【解析】【解答】解:∵从村庄A修建一条连接公路PQ的小路,过点A作AH⊥PQ于点H,∴AH最短(垂线段最短)故答案为:C【分析】根据垂线段最短,即可得出答案。
3、(2分)如图,∠1=100°,要使a∥b,必须具备的另一个条件是()A. ∠2=100°B. ∠3=80°C. ∠3=100°D. ∠4=80°【答案】C【考点】平行线的判定【解析】【解答】解:∠3=100°,∠1=100°,则∠1=∠3,则a∥b.故答案为:C.【分析】∠1和∠3是同位角,如果它们相等,那么两直线平行.4、(2分)如图,直线l1、l2、l3两两相交,则对于∠1、∠2,下列说法正确的是()A. ∠1、∠2是直线l1、l2被直线l3所截得的同位角B. ∠1、∠2是直线l1、l3被直线l2所截得的同位角C. ∠1、∠2是直线l2、l3被直线l1所截得的同位角D. ∠1、∠2是直线l1、l2被直线l3所截得的同旁内角【答案】B【考点】同位角、内错角、同旁内角【解析】【解答】∠1∠2是直线l1、l3被直线l2所截得的同位角.【分析】根据同位角的定义:∠1和∠2在直线l2的同一侧,在直线l1、l3的的同一方,即可得出答案。
光明乡初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________ 一、选择题1.(2分)如图,数轴上A,B两点分别对应实数a、b,则下列结论中正确的是()A. a+b>0B. ab>0C.D. a+ab-b<0【答案】C【考点】实数在数轴上的表示【解析】【解答】解:由数轴可知:b<-1<0<a<1,A.∵b<-1<0<a<1,∴a+b<0,故错误,A符号题意;B.∵b<0,a>0,∴ab<0,故错误,B不符号题意;C.∵b<0,a>0,∴原式=1-1=0,故正确,C符号题意;D.∵b<0,0<a<1,∴a-1<0,∴原式=b(a-1)+a>0,故错误,D不符号题意;故答案为:C.【分析】由数轴可知b<-1<0<a<1,再对各项一一分析即可得出答案.2.(2分)下列说法正确的是()A. 3与的和是有理数B. 的相反数是C. 与最接近的整数是4D. 81的算术平方根是±9【答案】B【考点】相反数及有理数的相反数,平方根,算术平方根,估算无理数的大小【解析】【解答】解:A.∵是无理数,∴3与2的和不可能是有理数,故错误,A不符合题意;B.∵2-的相反数是:-(2-)=-2,故正确,B符合题意;C.∵≈2.2,∴1+最接近的整数是3,故错误,C不符合题意;D.∵81的算术平方根是9,故错误,D不符合题意;故答案为:B.【分析】A.由于是无理数,故有理数和无理数的和不可能是有理数;B.相反数:数值相同,符号相反的数,由此可判断正确;C.根据的大小,可知其最接近的整数是3,故错误;D.根据算术平方根和平方根的定义即可判断对错.3.(2分)下列说法,正确的有()(1 )整数和分数统称为有理数;(2)符号不同的两个数叫做互为相反数;(3)一个数的绝对值一定为正数;(4)立方等于本身的数是1和﹣1.A. 1个B. 2个C. 3个D. 4个【答案】A【考点】相反数及有理数的相反数,绝对值及有理数的绝对值,立方根及开立方,有理数及其分类【解析】【解答】解:(1)整数和分数统称为有理数;正确.(2)符号不同的两个数叫做互为相反数;错误,比如2,-4符号不同,不是互为相反数.(3)一个数的绝对值一定为正数;错误,0的绝对值是0.(4)立方等于本身的数是1和-1.错误,0的立方等于本身,故答案为:A.【分析】根据有理数的定义,可对(1)作出判断;只有符号不同的两个数叫互为相反数,可对(2)作出判断;任何数的绝对值都是非负数,可对(3)作出判断;立方根等于它本身的数是1,-1和0,可对(4)作出判断,综上所述可得出说法正确的个数。
光明初中2018-2019学年初中七年级上学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)(2015•龙岩)﹣1的倒数是()A. ﹣1B. 0C. 1D. ±12.(2分)(2015•福州)计算3.8×107﹣3.7×107,结果用科学记数法表示为()A. 0.1×107B. 0.1×106C. 1×107D. 1×1063.(2分)(2015•眉山)某市在一次扶贫助残活动中,共捐款5280000元,将5280000用科学记数法表示为()A. 5.28×106B. 5.28×107C. 52.8×106D. 0.528×1074.(2分)(2015•厦门)如图,在△ABC中,∠C=90°,点D,E分别在边AC,AB上.若∠B=∠ADE,则下列结论正确的是()A. ∠A和∠B互为补角B. ∠B和∠ADE互为补角C. ∠A和∠ADE互为余角D. ∠AED和∠DEB互为余角5.(2分)(2015•无锡)方程2x﹣1=3x+2的解为()A. x=1B. x=-1C. x=3D. x=-36.(2分)(2015•贵港)3的倒数是()A. 3B. -3C.D.7.(2分)(2015•漳州)如图是一个长方体包装盒,则它的平面展开图是()A. B.C. D.8.(2分)(2015•深圳)某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A. 140B. 120C. 160D. 1009.(2分)(2015•南京)某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是()A. 2.3×105辆B. 3.2×105辆C. 2.3×106辆D. 3.2×106辆10.(2分)(2015•南京)计算:|﹣5+3|的结果是()A. -2B. 2C. -8D. 8二、填空题11.(1分)(2015•永州)国家森林城市的创建极大地促进了森林资源的增长,美化了城市环境,提升了市民的生活质量,截至2014年.全国已有21个省、自治区、直辖市的75个城市获得了“国家森林城市”乘号.永州市也在积极创建“国家森林城市”.据统计近两年全市投入“创森”资金约为365000000元,365000000用科学记数法表示为________ .12.(1分)(2015•湘潭)计算:23﹣(﹣2)=________ .13.(1分)(2015•三明)观察下列图形的构成规律,依照此规律,第10个图形中共有________ 个“•”.14.(1分)(2015•郴州)2015年5月在郴州举行的第三届中国(湖南)国际矿物宝石博览会中,成交额高达32亿元,3200000000用科学记数法表示为________ .15.(1分)(2015•湘潭)的倒数是________ .16.(1分)(2015•厦门)已知(39+)×(40+)=a+b,若a是整数,1<b<2,则a=________ .三、解答题17.(15分)双11购物节期间,某运动户外专营店推出满500送50元券,满800送100元券活动,先领券,再购物。
光明初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)如图,直线AB与CD相交于点O,若∠AOC= ∠AOD,则∠BOD的度数为()A. 30°B. 45°C. 60°D. 135°【答案】B【考点】对顶角、邻补角【解析】【解答】∵∠AOC= ∠AOD,∴∠AOD=3∠AOC,又∵∠AOC+AOD=180°,∴∠AOC+3∠AOC=180°,解得∠AOC=45°,∴∠BOD=∠AOC=45°(对顶角相等).故答案为:B.【分析】根据图形得到对顶角相等即∠AOC=∠BOD,再由已知∠AOD=3∠AOC,∠AOD+∠AOC=180°,求出∠BOD的度数.2.(2分)16的平方根与27的立方根的相反数的差是()A. 1B. 7C. 7或-1D. 7或1【答案】C【考点】平方根,立方根及开立方【解析】【解答】解:∵16的平方根为±4,27的立方根为3,∴3的相反数为-3,∴4-(-3)=7,或-4-(-3)=-1.故答案为:C.【分析】根据平方根和立方根的定义分别求出16的平方根和27的立方根的相反数,再列式、计算求出答案.3.(2分)若方程mx+ny=6有两个解,则m,n的值为()A. 4,2B. 2,4C. -4,-2D. -2,-4【答案】C【考点】解二元一次方程组【解析】【解答】解:把,代入mx+ny=6中,得:,解得:.故答案为:C.【分析】将x、y的两组值分别代入方程,建立关于m、n的方程组,再利用加减消元法求出m、n的值。
4.(2分)关于x、y的方程组的解x、y的和为12,则k的值为()A.14B.10C.0D.﹣14【答案】A【考点】二元一次方程组的解,解二元一次方程组【解析】【解答】解:解方程得:根据题意得:(2k﹣6)+(4﹣k)=12解得:k=14.故答案为:A【分析】先将k看作已知数解这个方程组,可将x、y用含k的代数式表示出来,由题意再将x、y代入x+y=12可得关于k的一元一次方程,解这个方程即可求得k的值。
5.(2分)已知方程5m-2n=1,当m与n相等时,m与n的值分别是()A.B.C.D.【答案】D【考点】解二元一次方程组【解析】【解答】解:根据已知,得解得同理,解得故答案为:D【分析】根据m与n相等,故用m替换方程5m-2n=1 的n即可得出一个关于m的方程,求解得出m的值,进而得出答案。
6.(2分)如图,直线AB、CD相交于点O,OE平分∠BOC,OF⊥OE于O,若∠AOD=70°,则∠AOF 等于()A. 35°B. 45°C. 55°D. 65°【答案】C【考点】角的平分线,角的运算,对顶角、邻补角【解析】【解答】∵∠B0C=∠AOD=70°,又∵OE平分∠BOC,∴∠BOE= ∠BOC=35°.∵OF⊥OE,∴∠EOF=90°.∴∠AOF=180°-∠EOF-∠BOE=55°.故答案为:C.【分析】有角平分线性质和对顶角相等,由角的和差求出∠AOF=180°-∠EOF-∠BOE的度数.7.(2分)下列各对数中,相等的一对数是().A. B. C. D.【答案】A【考点】实数的运算【解析】【解答】解:A.∵(-2)3=-8,-23=-8,∴(-2)3=-23,A符合题意;B.∵-22=-4,(-2)2=4,∴-22≠(-2)2,B不符合题意;C.∵-(-3)=3,-|-3|=-3,∴-(-3)≠-|-3|,C不符合题意;D.∵=,()2=,∴≠()2,D不符合题意;故答案为:A.【分析】根据乘方的运算,绝对值,去括号法则,分别算出每个值,再判断是否相等,从而可得出答案. 8.(2分)为了了解某区初中中考数学成绩情况,从中抽查了1000名学生的数学成绩,在这里样本是()A. 全区所有参加中考的学生 B. 被抽查的1000名学生C. 全区所有参加中考的学生的数学成绩D. 被抽查的1000名学生的数学成绩【答案】D【考点】总体、个体、样本、样本容量【解析】【解答】解:本题考查的对象是某区初中中考数学成绩,故样本是所抽查的1000名学生的数学成绩,D正确,符合题意.考查的对象是数学成绩而不是学生,因而A、B错误,不符合题意.全区所有参加中考的学生的数学成绩是总体,则C错误,不符合题意.故答案为:D【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体,再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量,根据样本、总体、个体、样本容量的定义即可进行判断.9.(2分)已知是方程组的解,则a+b+c的值是()A. 3B. 2C. 1D. 无法确定【答案】A【考点】三元一次方程组解法及应用【解析】【解答】解:将代入方程得,①+②+③得4(a+b+c)=12,∴a+b+c=3,故答案为:A.【分析】将x、y、z的值代入方程组中,再观察方程组中各未知数的系数特点:相同字母的系数之和都为4,因此由(①+②+③)÷4,就可求得a+b+c的值。
10.(2分)如图为雷锋中学八年级(2)班就上学方式作出调查后绘制的条形图,那么该班步行上学的同学比骑车上学的同学()A. 少8人B. 多8人C. 少16人D. 多16人【答案】A【考点】条形统计图【解析】【解答】解:该班步行上学的同学比骑车上学的同学少16﹣8=8(人),故答案为:A【分析】根据统计图得出步行上学的人数和骑车上学的人数,两个数的差即可确定结论.11.(2分)如图是某同学家拥有DVD碟的碟数统计图,则扇形图中的各部分分别表示哪一类碟片()A. ①影视,②歌曲,③相声小品B. ①相声小品,②影视,③歌曲C. ①歌曲,②相声小品,③影视D. ①歌曲,②影视,③相声小品【答案】A【考点】扇形统计图,条形统计图【解析】【解答】解:由条形统计图可知,影视最少,歌曲最多,相声小品其次,所以,①影视,②歌曲,③相声小品.故答案为:A【分析】根据条形统计图看到影视、歌曲、相声人数的大小关系,从而确定扇形统计图中所占的百分比的大小. 12.(2分)用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒。
现在仓库里有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好使库存的纸板用完,则的值可能是()A. 2013B. 2014C. 2015D. 2016【答案】C【考点】二元一次方程组的其他应用【解析】【解答】解:设做竖式和横式的两种无盖纸盒分别为x个、y个,根据题意得,两式相加得,m+n=5(x+y),∵x、y都是正整数,∴m+n是5的倍数,∵2013、2014、2015、2016四个数中只有2015是5的倍数,∴m+n的值可能是2015.故答案为:C.【分析】根据正方形纸板的数量为m张,长方形纸板的数量为n张,设未知数,列方程组,求出m+n=5(x+y),再由x、y都是正整数,且m+n是5的倍数,分析即可得出答案。
二、填空题13.(1分)如图,AB∥CD,EF分别交AB,CD于G,H两点,若∠1=50°,则∠EGB=________.【答案】50°【考点】对顶角、邻补角,平行线的性质【解析】【解答】解:∵AB∥CD,∴∠1=∠AGF,∵∠AGF与∠EGB是对顶角,∴∠EGB=∠AGF,∴∠1=∠EGB,∵∠1=50°,∴∠EGB=50°.故答案为:50°.【分析】根据平行线性质得∠1=∠AGF,由对顶角定义得∠EGB=∠AGF,等量代换即可得出答案.14.(1分)已知,那么=________。
【答案】-11【考点】解二元一次方程组,非负数之和为0【解析】【解答】解:∵,且,∴,∴,∴m=-3,n=-8,∴m+n=-11.故答案是:-11【分析】根据几个非负数之和为0的性质,可建立关于m、n的方程组,再利用加减消元法求出方程组的解,然后求出m与n的和。
15.(1分)判断是否是三元一次方程组的解:________(填:“是”或者“不是”).【答案】是【考点】三元一次方程组解法及应用【解析】【解答】解:∵把代入:得:方程①左边=5+10+(-15)=0=右边;方程②左边=2×5-10+(-15)=-15=右边;方程③左边=5+2×10-(-15)=40=右边;∴是方程组:的解.【分析】将已知x、y、z的值分别代入三个方程计算,就可判断;或求出方程组的解,也可作出判断。
16.(1分)已知方程组由于甲看错了方程①中a得到方程组的解为,乙看错了方程组②中的b得到方程组的解为,若按正确的a,b计算,则原方程组的解为________.【答案】【考点】二元一次方程组的解,解二元一次方程组【解析】【解答】解:将代入②得,﹣12+b=﹣2,b=10;将代入①,5a+20=15,a=﹣1.故原方程组为,解得.故答案为:.【分析】甲看错了方程①中的a 但没有看错b,所以可把x=-3和y=-1代入方程②得到关于b的方程,激发出可求得b的值;乙看错了方程组②中的b 但没有看错a,所以把x=5和y=4代入①可得关于a的方程,解方程可求得a的值;再将求得的a、b的值代入原方程组中,解这个新的方程组即可求解。
17.(1分)如果是关于的二元一次方程,那么=________【答案】【考点】二元一次方程的定义【解析】【解答】解:∵是关于的二元一次方程∴解之:a=±2且a≠2∴a=-2∴原式=-(-2)2-=故答案为:【分析】根据二元一次方程的定义,可知x的系数≠0,且x的次数为1,建立关于a的方程和不等式求解即可。
18.(1分)若x+y+z≠0且,则k=________.【答案】3【考点】三元一次方程组解法及应用【解析】【解答】解:∵,∴,∴,即.又∵,∴.【分析】将已知方程组转化为2y+z=kx;2x+y=kz;2z+x=ky,再将这三个方程相加,由x+y+z≠0,就可求出k 的值。
三、解答题19.(5分)如图,直线AB、CD相交于O,射线OE把∠BOD分成两个角,若已知∠BOE= ∠AOC,∠EOD=36°,求∠AOC的度数.【答案】解:∵∠AOC=∠BOD是对顶角,∴∠BOD=∠AOC,∵∠BOE=∠AOC,∠EOD=36º,∴∠EOD=2∠BOE=36º,∴∠EOD=18º,∴∠AOC=∠BOE=18º+36º=54º.【考点】角的运算,对顶角、邻补角【解析】【分析】根据对顶角相等可知∠BOD=∠AOC,再由∠BOE= ∠AOC知∠EOD=∠BOD,代入数据求得∠BOD,再求得∠AOC。