最新高三一轮复习——空间向量与立体几何(含解析)
- 格式:doc
- 大小:506.00 KB
- 文档页数:6
空间向量1. 如图,正四棱柱1111ABCD A BC D -中,124AA AB ==,点E 在1CC 上且EC E C 31=.(Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB ==,,,,,,11(224)(204)AC DA =--= ,,,,,. (Ⅰ)证明 因为10AC DB = ,10AC DE =, 故1AC BD ⊥,1AC DE ⊥. 又DB DE D = , 所以1AC ⊥平面DBE . (Ⅱ)解 设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥ n ,1DA ⊥ n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . 1AC,n 等于二面角1A DE B --的平面角,4214=∙=C A n . 所以二面角1A DE B --的大小为AB CD E A 1B 1C 1D 12.如图,四棱锥P ABCD-中,PA ABCD ⊥底面,2,4,3BC CD AC ACB ACD π===∠=∠=,F 为PC 的中点,AF PB ⊥.(1)求PA 的长; (2)求二面角B AF D --的正弦值.【答案】3.已知点H 在正方体ABCD A B C D ''''-的对角线'B D '上,∠HDA =060. (Ⅰ)求DH 与CC '所成角的大小;(Ⅱ)求DH 与平面AA D D ''所成角的大小.解:以D 为原点,DA 为单位长建立空间直角坐标系D xyz -.设(1)(0)H m m m >,,则(100)DA = ,,,(001)CC '=,,.连结BD ,B D ''. 设(1)(0)DH m m m =>,,,由已知60DH DA <>= ,, 由cos DA DH DA DH DADH =<>,可得2m2m =,所以1DH ⎫=⎪⎪⎝⎭.(Ⅰ)因为0011cos 2DH CC ++⨯'<>== ,,所以45DH CC '<>=,.即DH 与CC '所成的角为45 .(Ⅱ)平面AA D D ''的一个法向量是(010)DC =,,.因为01101cos 2DH DC +⨯<>== ,, 所以60DH DC <>= ,.可得DH 与平面AA D D ''所成的角为30.4.如图,在四面体BCD A -中,⊥AD 平面BCD ,22,2,==⊥BD AD CD BC .M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.(1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为060,求BDC ∠的大小.【答案】解:证明(Ⅰ)方法一:如图6,取MD 的中点F ,且M 是AD 中点,所以3AF FD =.因为P 是BM 中点,所以//PF BD ;又因为(Ⅰ)3AQ QC =且3AF FD =,所以//QF BD ,所以面//PQF 面BDC ,且PQ ⊂面BDC ,所以//PQ 面BDC ;ABDPQM方法二:如图7所示,取BD 中点O ,且P 是BM 中点,所以1//2PO MD ;取CD 的三等分点H ,使3DH CH =,且3AQ QC =,所以11////42QH AD MD ,所以////P O Q H P Q OH ∴,且OH BCD ⊂,所以//PQ 面BDC ; (Ⅱ)如图8所示,由已知得到面ADB ⊥面BDC ,过C 作CG BD ⊥于G ,所以CG BMD ⊥,过G 作GH BM ⊥于H ,连接CH ,所以CHG ∠就是C BM D --的二面角;由已知得到3BM ==,设BDC α∠=,所以cos ,sin ,sin ,,CD CG CBCD CG BC BD CD BDαααααα===⇒===,在RT BCG ∆中,2sin BGBCG BG BCααα∠=∴=∴=,所以在RT BHG ∆中2133HG α=∴=,所以在RT CHG ∆中tan tan 603CG CHG HG ∠====tan (0,90)6060BDC ααα∴=∈∴=∴∠= ;5. 如图,在四棱锥O ABCD -中,底面ABCD 四边长 为1的菱形,4ABC π∠=, OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点(Ⅰ)证明:直线MN OCD平面‖;(Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。
第2节空间几何体的表面积和体积考试要求了解球、棱柱、棱锥、台的表面积和体积的计算公式。
知识梳理1。
多面体的表(侧)面积多面体的各个面都是平面,则多面体的侧面积就是所有侧面的面积之和,表面积是侧面积与底面面积之和。
2.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrlS圆锥侧=πrlS圆台侧=π(r1+r2)l3.空间几何体的表面积与体积公式名称几何体表面积体积柱体S表面积=S侧+V=S底h(棱柱和圆柱)2S底锥体(棱锥和圆锥)S表面积=S侧+S底V=错误!S底h台体(棱台和圆台)S表面积=S侧+S上+S下V=错误!(S上+S下+错误!)h球S=4πR2V=错误!πR3[常用结论与微点提醒]1。
正方体与球的切、接常用结论正方体的棱长为a,球的半径为R,(1)若球为正方体的外接球,则2R=错误!a;(2)若球为正方体的内切球,则2R=a;(3)若球与正方体的各棱相切,则2R=错误!a。
2。
长方体的共顶点的三条棱长分别为a,b,c,外接球的半径为R,则2R=错误!。
3。
正四面体的外接球与内切球的半径之比为3∶1。
诊断自测1。
判断下列结论正误(在括号内打“√”或“×")(1)锥体的体积等于底面面积与高之积。
()(2)两个球的体积之比等于它们的半径比的平方。
()(3)台体的体积可转化为两个锥体的体积之差.()(4)已知球O的半径为R,其内接正方体的边长为a,则R=错误!a。
()解析(1)锥体的体积等于底面面积与高之积的三分之一,故不正确.(2)球的体积之比等于半径比的立方,故不正确.答案(1)×(2)×(3)√(4)√2。
(新教材必修第二册P120T5改编)一个正方体的顶点都在球面上,若球的表面积为4π,则正方体的棱长为()A。
33 B.错误! C.错误!D。
错误!解析由S=4πR2=4π,得R=1,故2×1=3a,得a=错误!。
【最新】数学《空间向量与立体几何》专题解析一、选择题1.如图,在正三棱柱111ABC A B C -中,2AB =,123AA =,D ,F 分别是棱AB ,1AA 的中点,E 为棱AC 上的动点,则DEF ∆的周长的最小值为()A .222+B .232+C .62+D .72+【答案】D 【解析】 【分析】根据正三棱柱的特征可知ABC ∆为等边三角形且1AA ⊥平面ABC ,根据1AA AD ⊥可利用勾股定理求得2DF =;把底面ABC 与侧面11ACC A 在同一平面展开,可知当,,D E F 三点共线时,DE EF +取得最小值;在ADF ∆中利用余弦定理可求得最小值,加和得到结果. 【详解】Q 三棱柱111ABC A B C -为正三棱柱 ABC ∆∴为等边三角形且1AA ⊥平面ABCAD ⊂Q 平面ABC 1AA AD ∴⊥ 132DF ∴=+=把底面ABC 与侧面11ACC A 在同一平面展开,如下图所示:当,,D E F 三点共线时,DE EF +取得最小值 又150FAD ∠=o ,3AF =1AD =()22min32cos 42372DE EF AF AD AF AD FAD ⎛⎫∴+=+-⋅∠=-⨯-= ⎪ ⎪⎝⎭DEF ∴∆周长的最小值为:72+本题正确选项:D 【点睛】本题考查立体几何中三角形周长最值的求解问题,关键是能够将问题转化为侧面上两点间最短距离的求解问题,利用侧面展开图可知三点共线时距离最短.2.如图所示是一个组合几何体的三视图,则该几何体的体积为( )A .163π B .643 C .16643π+ D .1664π+ 【答案】C【解析】由三视图可知,该几何体是有一个四棱锥与一个圆锥的四分之一组成,其中四棱锥的底面是边长为4 的正方形,高为4 ,圆锥的底面半径为4 ,高为4,该几何体的体积为, 221116644444333V ππ+=⨯⨯+⨯⨯⨯=, 故选C.3.如图,在底面边长为4,侧棱长为6的正四棱锥P ABCD -中,E 为侧棱PD 的中点,则异面直线PB 与CE 所成角的余弦值是( )A 34B 234C 517D 317【解析】 【分析】首先通过作平行的辅助线确定异面直线PB 与CE 所成角的平面角,在PCD ∆中利用余弦定理求出cos DPC ∠进而求出CE ,再在GFH ∆中利用余弦定理即可得解. 【详解】如图,取PA 的中点F ,AB 的中点G ,BC 的中点H ,连接FG ,FH ,GH ,EF ,则//EF CH ,EF CH =,从而四边形EFHC 是平行四边形,则//EC FH , 且EC FH =.因为F 是PA 的中点,G 是AB 的中点,所以FG 为ABP ∆的中位线,所以//FG PB ,则GFH ∠是异面直线PB 与CE 所成的角.由题意可得3FG =,1222HG AC ==. 在PCD ∆中,由余弦定理可得2223636167cos 22669PD PC CD DPC PD PC +-+-∠===⋅⨯⨯,则2222cos 17CE PC PE PC PE DPC =+-⋅∠=,即17CE =在GFH ∆中,由余弦定理可得222cos 2FG FH GH GFH FG FH +-∠=⋅317172317==⨯⨯. 故选:D 【点睛】本题考查异面直线所成的角,余弦定理解三角形,属于中档题.4.设α、β是两个不同的平面,m 、n 是两条不同的直线,下列说法正确的是( ) A .若α⊥β,α∩β=m ,m ⊥n ,则n ⊥β B .若α⊥β,n ∥α,则n ⊥β C .若m ∥α,m ∥β,则α∥β D .若m ⊥α,m ⊥β,n ⊥α,则n ⊥β 【答案】D 【解析】 【分析】根据直线、平面平行垂直的关系进行判断.由α、β是两个不同的平面,m 、n 是两条不同的直线,知:在A 中,若α⊥β,α∩β=m ,m ⊥n ,则n 与β相交、平行或n ⊂β,故A 错误; 在B 中,若α⊥β,n ∥α,则n 与β相交、平行或n ⊂β,故B 错误; 在C 中,若m ∥α,m ∥β,则α与β相交或平行,故C 错误; 在D 中,若m ⊥α,m ⊥β,则α∥β, ∴若n ⊥α,则n ⊥β,故D 正确. 故选:D. 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的益关系等基础知识,考查运算求解能力,是中档题.5.已知正方体1111ABCD A B C D -的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体1111ABCD A B C D -被平面α截得的截面面积为( )A .36B .26C .5D .534【答案】B 【解析】 【分析】先根据平面的基本性质确定平面,然后利用面面平行的性质定理,得到截面的形状再求解. 【详解】 如图所示:1,,A P C 确定一个平面α,因为平面11//AA DD 平面11BB CC , 所以1//AQ PC ,同理1//AP QC , 所以四边形1APC Q 是平行四边形. 即正方体被平面截的截面. 因为12B P PC =, 所以112C B PC =, 即1PC PB ==所以11AP PC AC ===由余弦定理得:22211111cos 25AP PC AC APC AP PC +-∠==⨯所以1sin 5APC ∠=所以S 四边形1APQC 1112sin 2AP PC APC =⨯⨯⨯∠=故选:B 【点睛】本题主要考查平面的基本性质,面面平行的性质定理及截面面积的求法,还考查了空间想象和运算求解的能力,属于中档题.6.四面体ABCD 的四个顶点都在球O 的表面上,AB BCD ⊥平面,BCD V 是边长为3的等边三角形,若2AB =,则球O 的表面积为( ) A .16π B .323π C .12π D .32π【答案】A 【解析】 【分析】先求底面外接圆直径,再求球的直径,再利用表面积2S D π=求解即可. 【详解】BCD V外接圆直径sin CD d CBD ===∠ ,故球的直径平方22222216D AB d =+=+=,故外接球表面积216S D ππ== 故选:A 【点睛】本题主要考查侧棱垂直底面的锥体外接球表面积问题,先利用正弦定理求得底面直径d ,再利用锥体高h ,根据球直径D =.属于中等题型.7.已知平面α∩β=l ,m 是α内不同于l 的直线,那么下列命题中错误的是( ) A .若m ∥β,则m ∥l B .若m ∥l ,则m ∥β C .若m ⊥β,则m ⊥l D .若m ⊥l ,则m ⊥β【答案】D 【解析】 【分析】A 由线面平行的性质定理判断.B 根据两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面判断.C 根据线面垂直的定义判断.D 根据线面垂直的判定定理判断. 【详解】A 选项是正确命题,由线面平行的性质定理知,可以证出线线平行;B 选项是正确命题,因为两个平面相交,一个面中平行于它们交线的直线必平行于另一个平面;C 选项是正确命题,因为一个线垂直于一个面,则必垂直于这个面中的直线;D 选项是错误命题,因为一条直线垂直于一个平面中的一条直线,不能推出它垂直于这个平面; 故选:D. 【点睛】本题主要考查线线关系和面面关系,还考查了推理论证的能力,属于中档题.8.在三棱锥P ABC -中,PA ⊥平面ABC ,且ABC ∆为等边三角形,2AP AB ==,则三棱锥P ABC -的外接球的表面积为( ) A .272π B .283π C .263π D .252π 【答案】B 【解析】 【分析】计算出ABC ∆的外接圆半径r,利用公式R =可得出外接球的半径,进而可得出三棱锥P ABC -的外接球的表面积. 【详解】ABC ∆的外接圆半径为32sin3AB r π==,PA ⊥Q 底面ABC ,所以,三棱锥P ABC -的外接球半径为3R ===,因此,三棱锥P ABC -的外接球的表面积为222128443R πππ⎛⎫=⨯= ⎪ ⎪⎝⎭. 故选:B. 【点睛】本题考查三棱锥外接球表面积的计算,解题时要分析几何体的结构,选择合适的公式计算外接球的半径,考查计算能力,属于中等题.9.《九章算术》卷五商功中有如下问题:今有刍甍(音meng ,底面为矩形的屋脊状的几何体),下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.已知该刍甍的三视图如图所示,则此刍甍的体积等于( )A .3B .5C .6D .12【答案】B 【解析】 【分析】首先由三视图还原几何体,再将刍甍分为三部分求解体积,最后计算求得刍甍的体积. 【详解】由三视图换元为如图所示的几何体,该几何体分为三部分,中间一部分是直棱柱,两侧是相同的三棱锥,并且三棱锥的体积113113⨯⨯⨯=, 中间棱柱的体积131232V =⨯⨯⨯= , 所以该刍甍的体积是1235⨯+=.【点睛】本题考查组合体的体积,重点考查空间想象能力和计算能力,属于中档题型.10.如图,在棱长为2的正方体1111ABCD A B C D -中,点M 是AD 的中点,动点P 在底面ABCD 内(不包括边界),若1B P P 平面1A BM ,则1C P 的最小值是( )A .305B .2305C .27D .47【答案】B 【解析】 【分析】在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD ,根据面面平行的判定定理可知平面1//B QDN 平面1A BM ,从而可得P 的轨迹是DN (不含,D N 两点);由垂直关系可知当CP DN ⊥时,1C P 取得最小值;利用面积桥和勾股定理可求得最小值. 【详解】如图,在11A D 上取中点Q ,在BC 上取中点N ,连接11,,,DN NB B Q QD//DN BM Q ,1//DQ A M 且DN DQ D =I ,1BM A M M =I∴平面1//B QDN 平面1A BM ,则动点P 的轨迹是DN (不含,D N 两点)又1CC ⊥平面ABCD ,则当CP DN ⊥时,1C P 取得最小值此时,22512CP ==+ 221223025C P ⎛⎫∴≥+= ⎪⎝⎭本题正确选项:B本题考查立体几何中动点轨迹及最值的求解问题,关键是能够通过面面平行关系得到动点的轨迹,从而找到最值取得的点.11.如图,在正方体1111ABCD A B C D -中,M , N 分别为棱111,C D CC 的中点,以下四个结论:①直线DM 与1CC 是相交直线;②直线AM 与NB 是平行直线;③直线BN 与1MB 是异面直线;④直线AM 与1DD 是异面直线.其中正确的个数为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】根据正方体的几何特征,可通过判断每个选项中的两条直线字母表示的点是否共面;如果共面,则可能是相交或者平行;若不共面,则是异面. 【详解】①:1CC 与DM 是共面的,且不平行,所以必定相交,故正确;②:若AM BN 、平行,又AD BC 、平行且,AM AD A BN BC B ⋂=⋂=,所以平面BNC P 平面ADM ,明显不正确,故错误;③:1BN MB 、不共面,所以是异面直线,故正确; ④:1AM DD 、不共面,所以是异面直线,故正确; 故选C. 【点睛】异面直线的判断方法:一条直线上两点与另外一条直线上两点不共面,那么两条直线异面;反之则为共面直线,可能是平行也可能是相交.12.设三棱锥V ﹣ABC 的底面是A 为直角顶点的等腰直角三角形,VA ⊥底面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A ﹣VC ﹣B 为γ,则( ) A .2παββγ+<,> B .2παββγ+<,<C .2παββγ+>,>D .2παββγ+>,<【解析】 【分析】由最小角定理得αβ>,由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠,推导出BVA γ>∠,由VA ⊥平面ABC ,得VMA β=∠,推导出MVA γ>∠,从而2πβγ+>,即可得解.【详解】由三棱锥V ABC -的底面是A 为直角顶点的等腰直角三角形,VA ⊥平面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A VC B --为γ,由最小角定理得αβ>,排除A 和B ; 由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠, ∴tan tan ABBNA ANγ=∠=, 而tan ABBVA AV∠=,AN AV <,∴tan tan BNA BVA ∠>∠, ∴BVA γ>∠,∵VA ⊥平面ABC ,∴VMA β=∠, ∴2MVA πβ+∠=,∵tan AMMVA AV∠=,AB AM >,∴tan tan BVA MVA ∠>∠, ∴MVA γ>∠,∴2πβγ+>.故选:C .【点睛】本题查了线线角、线面角、二面角的关系与求解,考查了空间思维能力,属于中档题.13.已知四面体P ABC -的外接球的球心O 在AB 上,且PO ⊥平面ABC ,23AC AB =,若四面体P ABC -的体积为32,求球的表面积( ) A .8πB .12πC .83πD .123π 【答案】B【解析】【分析】 依据题意作出图形,设四面体P ABC -的外接球的半径为R ,由题可得:AB 为球的直径,即可求得:2AB R =,3AC R =, BC R =,利用四面体P ABC -的体积为32列方程即可求得3R =,再利用球的面积公式计算得解。
空间向量与立体几何一.空间向量及其运算1.空间向量及有关概念(1)共线向量定理:如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。
a 平行于b 记作a ∥b。
推论:如果l 为经过已知点A 且平行于已知非零向量a的直线,那么对任一点O ,点P 在直线l 上的充要条件是存在实数t ,满足等式 A O P O =a t+①其中向量a叫做直线l 的方向向量。
在l 上取a AB =,则①式可化为.)1(OB t OA t OP +-=②当21=t 时,点P 是线段AB 的中点,则 ).(21OB OA OP += ③①或②叫做空间直线的向量参数表示式,③是线段AB 的中点公式。
(2)向量与平面平行:如果表示向量a 的有向线段所在直线与平面α平行或a在α平面内,我们就说向量a 平行于平面α,记作a ∥α。
注意:向量a∥α与直线a ∥α的联系与区别。
共面向量:我们把平行于同一平面的向量叫做共面向量。
共面向量定理:如果两个向量a 、b 不共线,则向量p与向量a 、b 共面的充要条件是存在实数对x 、y ,使.b y a x p+=①推论:空间一点P 位于平面MAB 内的充要条件是存在有序实数对x 、y ,使,MB y MA x MP +=④或对空间任一定点O ,有.MB y MA x OM OP ++=⑤在平面MAB 内,点P 对应的实数对(x, y )是唯一的。
①式叫做平面MAB 的向量表示式。
又∵.,OM OA MA -=.,OM OB MB -=代入⑤,整理得.)1(OB y OA x OM y x OP ++--= ⑥由于对于空间任意一点P ,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P 就在平面MAB 内;对于平面MAB 内的任意一点P ,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量MA 、MB (或不共线三点M 、A 、B )确定的空间平面的向量参数方程,也是M 、A 、B 、P 四点共面的充要条件。
新数学高考《空间向量与立体几何》专题解析一、选择题1.设m 、n 是两条不同的直线,α、β是两个不同的平面,给出下列四个命题: ①若m α⊥,//n α,则m n ⊥;②若//αβ,m α⊥,则m β⊥;③若//m α,//n α,则//m n ;④若m α⊥,αβ⊥,则//m β.其中真命题的序号为( )A .①和②B .②和③C .③和④D .①和④ 【答案】A【解析】【分析】逐一分析命题①②③④的正误,可得出合适的选项.【详解】对于命题①,若//n α,过直线n 作平面β,使得a αβ⋂=,则//a n ,m α⊥Q ,a α⊂,m a ∴⊥,m n ∴⊥,命题①正确;对于命题②,对于命题②,若//αβ,m α⊥,则m β⊥,命题②正确;对于命题③,若//m α,//n α,则m 与n 相交、平行或异面,命题③错误; 对于命题④,若m α⊥,αβ⊥,则m β⊂或//m β,命题④错误.故选:A.【点睛】本题考查有关线面、面面位置关系的判断,考查推理能力,属于中等题.2.一个几何体的三视图如图所示,其中正视图和俯视图中的四边形是边长为2的正方形,则该几何体的表面积为( )A .132πB .7πC .152πD .8π【答案】B【解析】【分析】画出几何体的直观图,利用三视图的数据求解表面积即可.【详解】由题意可知:几何体是一个圆柱与一个14的球的组合体,球的半径为:1,圆柱的高为2, 可得:该几何体的表面积为:22141212274ππππ⨯⨯+⨯⨯+⨯=.故选:B .【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.3.正方体1111ABCD A B C D -的棱长为1,动点M 在线段1CC 上,动点P 在平面..1111D C B A 上,且AP ⊥平面1MBD .线段AP 长度的取值范围为( )A .2⎡⎣B .3⎡⎣C .32⎣D .62⎣ 【答案】D【解析】【分析】 以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,设(),,1P x y ,()0,1,M t ,由AP ⊥平面1MBD ,可得+11x t y t=⎧⎨=-⎩,然后用空间两点间的距离公式求解即可. 【详解】以1,,DA DC DD 分别为,,x y z 建立空间直角坐标系,则()()()()11,0,0,1,1,0,0,1,,0,0,1A B M t D ,(),,1P x y .()1,,1AP x y =-u u u r ,()11,1,1BD =--u u u u r ,()[]1,0,0,1,BM t t =-∈u u u u r 由AP ⊥平面1MBD ,则0BM AP ⋅=u u u u r u u u r 且01BD AP ⋅=u u u u r u u u r所以10x t -+=且110x y --+=得+1x t =,1y t =-. 所以()2221311222AP x y t ⎛⎫=-++=-+ ⎪⎝⎭u u u r 当12t =时,min 6AP =u u u r ,当0t =或1t =时,max 2AP =u u u r , 所以62AP ≤≤u u u r 故选:D【点睛】本题考查空间动线段的长度的求法,考查线面垂直的应用,对于动点问题的处理用向量方法要简单些,属于中档题.4.在以下命题中: ①三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r ,c r 共面; ②若两个非零向量a r ,b r 与任何一个向量都不能构成空间的一个基底,则a r ,b r 共线; ③对空间任意一点O 和不共线的三点A ,B ,C ,若222OP OA OB OC =--u u u r u u u r u u u u r u u u u r ,则P ,A ,B ,C 四点共面 ④若a r ,b r 是两个不共线的向量,且(,,,0)c a b R λμλμλμ=+∈≠r r r ,则{},,a b c r r r 构成空间的一个基底 ⑤若{},,a b c r r r 为空间的一个基底,则{},,a b b c c a +++r r r r r r 构成空间的另一个基底; 其中真命题的个数是( )A .0B .1C .2D .3【答案】D【解析】【分析】根据空间向量的运算法则,逐一判断即可得到结论.【详解】①由空间基底的定义知,三个非零向量a r ,b r ,c r 不能构成空间的一个基底,则a r ,b r ,c r 共面,故①正确;②由空间基底的定义知,若两个非零向量a r ,b r 与任何一个向量都不能构成空间的一个基底,则a r ,b r 共线,故②正确;③由22221--=-≠,根据共面向量定理知,,,P A B C 四点不共面,故③错误; ④由c a b λμ=+r r r ,当1λμ+=时,向量c r 与向量a r ,b r 构成的平面共面,则{},,a b c r r r 不能构成空间的一个基底,故④错误; ⑤利用反证法:若{},,a b b c c a +++r r r r r r 不构成空间的一个基底,设()()()1a b x b c x c a +=++-+r r r r r r ,整理得()1c xa x b =+-r r r ,即,,a b c r r r 共面,又因{},,a b c r r r 为空间的一个基底,所以{},,a b b c c a +++r r r r r r 能构成空间的一个基底,故⑤正确. 综上:①②⑤正确.故选:D.【点睛】本题考查空间向量基本运算,向量共面,向量共线等基础知识,以及空间基底的定义,共面向量的定义,属于基础题.5.如图,直三棱柱ABC A B C '''-的侧棱长为3,AB BC ⊥,3AB BC ==,点E ,F 分别是棱AB ,BC 上的动点,且AE BF =,当三棱锥B EBF '-的体积取得最大值时,则异面直线A F '与AC 所成的角为( )A .2πB .3πC .4πD .6π 【答案】C【解析】【分析】设AE BF a ==,13B EBF EBF V S B B '-'=⨯⨯V ,利用基本不等式,确定点 E ,F 的位置,然后根据//EF AC ,得到A FE '∠即为异面直线A F '与AC 所成的角,再利用余弦定理求解.【详解】设AE BF a ==,则()()23119333288B EBF a aV a a '-+-⎡⎤=⨯⨯⨯-⨯≤=⎢⎥⎣⎦,当且仅当3a a =-,即32a =时等号成立, 即当三棱锥B EBF '-的体积取得最大值时,点E ,F 分别是棱AB ,BC 的中点, 方法一:连接A E ',AF ,则352A E '=,352AF =,2292A F AA AF ''=+=,13222EF AC ==, 因为//EF AC ,所以A FE '∠即为异面直线A F '与AC 所成的角,由余弦定理得222819452424cos 93222222A F EF A E A FE A F EF +-''+-'∠==='⋅⋅⨯⨯, ∴4A FE π'∠=. 方法二:以B 为坐标原点,以BC 、BA 、BB '分别为x 轴、y 轴、z 轴建立空间直角坐标系,则()0,3,0A ,()3,0,0C ,()0,3,3A ',3,0,02F ⎛⎫ ⎪⎝⎭, ∴3,3,32A F ⎛⎫'=-- ⎪⎝⎭u u u u r ,()3,3,0AC =-u u u r , 所以9922cos ,92322A F AC A F AC A F AC +'⋅'==='⋅⨯u u u u r u u u r u u u u r u u u r u u u u r u u u r , 所以异面直线A F '与AC 所成的角为4π. 故选:C【点睛】本题主要考查异面直线所成的角,余弦定理,基本不等式以及向量法求角,还考查了推理论证运算求解的能力,属于中档题.6.棱长为2的正方体被一个平面所截,得到几何体的三视图如图所示,则该截面的面积为( )A .92B .922C .32D .3【答案】A【解析】【分析】由已知的三视图可得:该几何体是一个正方体切去一个三棱台,其截面是一个梯形,分别求出上下底边的长和高,代入梯形面积公式可得答案. 【详解】由已知的三视图可得:该几何体是一个正方体切去一个三棱台ABC DEF -,所得的组合体,其截面是一个梯形BCFE , 22112+=22222+= 222322()2+= 故截面的面积1329(222)222S =⨯=, 故选:A .【点睛】 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.7.三棱柱111ABC A B C -中,底面边长和侧棱长都相等,1160BAA CAA ︒∠=∠=,则异面直线1AB 与1BC 所成角的余弦值为( )A 3B .66C .34D .36【答案】B【解析】【分析】设1AA c =u u u v v ,AB a =u u u v v ,AC b =u u u v v ,根据向量线性运算法则可表示出1AB u u u v 和1BC u u u u v;分别求解出11AB BC ⋅u u u v u u u u v 和1AB u u u v ,1BC u u u u v ,根据向量夹角的求解方法求得11cos ,AB BC <>u u u v u u u u v ,即可得所求角的余弦值.【详解】设棱长为1,1AA c=u u u v v ,AB a =u u u v v ,AC b =u u u v v 由题意得:12a b ⋅=v v ,12b c ⋅=v v ,12a c ⋅=v v 1AB a c =+u u u v v v Q ,11BC BC BB b a c =+=-+u u u u v u u u v u u u v v v v()()22111111122AB BC a c b a c a b a a c b c a c c ∴⋅=+⋅-+=⋅-+⋅+⋅-⋅+=-++=u u u v u u u u v v v v v v v v v v v v v v v v 又()222123AB a c a a c c =+=+⋅+=u u u v v v v v v v ()222212222BC b a c b a c a b b c a c =-+=++-⋅+⋅-⋅=u u u u v v v v v v v v v v v v v 1111116cos ,66AB BC AB BC AB BC ⋅∴<>===⋅u u u v u u u u v u u u v u u u u v u u u v u u u u v 即异面直线1AB 与1BC 6本题正确选项:B【点睛】 本题考查异面直线所成角的求解,关键是能够通过向量的线性运算、数量积运算将问题转化为向量夹角的求解问题.8.如图,正方体ABCD ﹣A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E 、F ,且EF=12.则下列结论中正确的个数为①AC ⊥BE ;②EF ∥平面ABCD ;③三棱锥A ﹣BEF 的体积为定值;④AEF ∆的面积与BEF ∆的面积相等,A .4B .3C .2D .1【答案】B【解析】试题分析:①中AC ⊥BE ,由题意及图形知,AC ⊥面DD1B1B ,故可得出AC ⊥BE ,此命题正确;②EF ∥平面ABCD ,由正方体ABCD-A1B1C1D1的两个底面平行,EF 在其一面上,故EF 与平面ABCD 无公共点,故有EF ∥平面ABCD ,此命题正确;③三棱锥A-BEF 的体积为定值,由几何体的性质及图形知,三角形BEF 的面积是定值,A 点到面DD1B1B 距离是定值,故可得三棱锥A-BEF 的体积为定值,此命题正确;④由图形可以看出,B 到线段EF 的距离与A 到EF 的距离不相等,故△AEF 的面积与△BEF 的面积相等不正确考点:1.正方体的结构特点;2.空间线面垂直平行的判定与性质9.在四面体ABCD 中,AB ,BC ,BD 两两垂直,4AB BC BD ===,E 、F 分别为棱BC 、AD 的中点,则直线EF 与平面ACD 所成角的余弦值( )A .13B 3C .23D 6 【答案】C【解析】【分析】因为AB ,BC ,BD 两两垂直,以BA 为X 轴,以BD 为Y 轴,以BC 为Z 轴建立空间直角坐标系,求出向量EF u u u r 与平面ACD 的法向量n r ,再根据cos ,||||EF n EF n EF n ⋅〈〉=u u u r r u u u r r u u u r r ,即可得出答案.【详解】因为在四面体ABCD 中,AB ,BC ,BD 两两垂直,以BA 为X 轴,以BD 为Y 轴,以BC 为Z 轴建立空间直角坐标系,又因为4AB BC BD ===;()4,0,0,(0,0,0),(0,4,0),(0,0,4)A B D C ,又因为E 、F 分别为棱BC 、AD 的中点 所以(0,0,2),(2,2,0)E F 故()2,2,2EF =-u u u r ,(4,4,0)AD =-u u u r ,(4,0,4)AC =-u u u r .设平面ACD 的法向量为(,,)n x y z =r ,则00n AD n AC ⎧⋅=⎨⋅=⎩u u u v v u u uv v 令1,x = 则1y z ==; 所以(1,1,1)n =r 1cos ,3||||332EF n EF n EF n ⋅〈〉===⨯u u u r r u u u r r u u u r r 设直线EF 与平面ACD 所成角为θ ,则sin θ= cos ,EF n 〈〉u u u r r 所以222cos 1sin θθ=-=故选:C【点睛】本题主要考查线面角,通过向量法即可求出,属于中档题目.10.如图是正方体的平面展开图,则在这个正方体中:①BM 与ED 平行 ②CN 与BE 是异面直线③CN 与BM 成60︒角 ④DM 与BN 是异面直线以上四个命题中,正确命题的个数是( )A .1B .2C .3D .4【答案】B【解析】【分析】 把平面展开图还原原几何体,再由棱柱的结构特征及异面直线定义、异面直线所成角逐一核对四个命题得答案.【详解】把平面展开图还原原几何体如图:由正方体的性质可知,BM 与ED 异面且垂直,故①错误;CN 与BE 平行,故②错误;连接BE ,则BE CN P ,EBM ∠为CN 与BM 所成角,连接EM ,可知BEM ∆为正三角形,则60EBM ∠=︒,故③正确;由异面直线的定义可知,DM 与BN 是异面直线,故④正确.∴正确命题的个数是2个.故选:B .【点睛】本题考查棱柱的结构特征,考查异面直线定义及异面直线所成角,是中档题.11.已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点).设SE 与BC 所成的角为α,SE 与平面ABC D 所成的角为β,二面角S-AB-C 的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .a βγ≤≤D .γβα≤≤【答案】C 【解析】 【分析】根据题意,分别求出SE 与BC 所成的角α、SE 与平面ABC D 所成的角β、二面角S-AB-C 的平面角γ的正切值,由正四棱锥的线段大小关系即可比较大小. 【详解】四棱锥S ABCD -的底面是正方形,侧棱长均相等, 所以四棱锥为正四棱锥,(1)过E 作//EF BC ,交CD 于F ,过底面中心O 作ON EF ⊥交EF 于N ,连接SN ,取AB 中点M ,连接OM ,如下图(1)所示:则tan SN SN NE OMα==;(2)连接,OE 如下图(2)所示,则tan SO OEβ=;(3)连接OM ,则tan SOOMγ=,如下图(3)所示:因为,,SN SO OE OM ≥≥ 所以tan tan tan αγβ≥≥, 而,,αβγ均为锐角, 所以,αγβ≥≥ 故选:C. 【点睛】本题考查了异面直线夹角、直线与平面夹角、平面与平面夹角的求法,属于中档题.12.设α,β是两个不同的平面,m 是直线且m α⊂.“m βP ”是“αβP ”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 试题分析:,得不到,因为可能相交,只要和的交线平行即可得到;,,∴和没有公共点,∴,即能得到;∴“”是“”的必要不充分条件.故选B .考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.13.若圆锥的高等于底面直径,则它的底面积与侧面积之比为 A .1∶2 B .1∶3 C .1∶5 D .3∶2【答案】C 【解析】 【分析】由已知,求出圆锥的母线长,进而求出圆锥的底面面积和侧面积,可得答案 【详解】设圆锥底面半径为r ,则高h =2r ,∴其母线长l =r .∴S 侧=πrl =πr 2,S 底=πr 故选C . 【点睛】本题考查的知识点是旋转体,圆锥的表面积公式,属于基础题.14.设三棱锥V ﹣ABC 的底面是A 为直角顶点的等腰直角三角形,VA ⊥底面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A ﹣VC ﹣B 为γ,则( ) A .2παββγ+<,> B .2παββγ+<,<C .2παββγ+>,>D .2παββγ+>,<【答案】C 【解析】 【分析】由最小角定理得αβ>,由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠,推导出BVA γ>∠,由VA ⊥平面ABC ,得VMA β=∠,推导出MVA γ>∠,从而2πβγ+>,即可得解.【详解】由三棱锥V ABC -的底面是A 为直角顶点的等腰直角三角形,VA ⊥平面ABC ,M 是线段BC 上的点(端点除外),记VM 与AB 所成角为α,VM 与底面ABC 所成角为β,二面角A VC B --为γ,由最小角定理得αβ>,排除A 和B ; 由已知条件得AB ⊥平面VAC ,过A 作AN VC ⊥,连结BN ,得BNA γ=∠, ∴tan tan ABBNA ANγ=∠=, 而tan ABBVA AV∠=,AN AV <,∴tan tan BNA BVA ∠>∠, ∴BVA γ>∠,∵VA ⊥平面ABC ,∴VMA β=∠, ∴2MVA πβ+∠=,∵tan AMMVA AV∠=,AB AM >,∴tan tan BVA MVA ∠>∠, ∴MVA γ>∠,∴2πβγ+>.故选:C .【点睛】本题查了线线角、线面角、二面角的关系与求解,考查了空间思维能力,属于中档题.15.在正方体1111ABCD A B C D -中,E 为棱1CC 上一点且12CE EC =,则异面直线AE 与1A B 所成角的余弦值为( ) A 11B 11 C 211D 11【答案】B 【解析】 【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,利用向量法能求出异面直线AE 与1A B 所成角的余弦值. 【详解】解:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 设3AB =,则()3,0,0A ,()0,3,2E ,()13,0,3A ,()3,3,0B,()3,3,2AE =-u u u r ,()10,3,3A B =-u u u r,设异面直线AE 与1A B 所成角为θ, 则异面直线AE 与1A B 所成角的余弦值为:1111cos 2218AE A B AE A Bθ⋅===⋅⋅u u u r u u u r u u u r u u u r .故选:B .【点睛】本题考查利用向量法求解异面直线所成角的余弦值,难度一般.已知1l 的方向向量为a r,2l 的方向向量为b r,则异面直线12,l l 所成角的余弦值为a b a b⋅⋅r rr r .16.等腰三角形ABC 的腰5AB AC ==,6BC =,将它沿高AD 翻折,使二面角B ADC --成60︒,此时四面体ABCD 外接球的体积为( )A .7πB .28πC 1919D 287【答案】D 【解析】 分析:详解:由题意,设BCD ∆所在的小圆为1O ,半径为r ,又因为二面角B AD C --为060,即060BDC ∠=,所以BCD ∆为边长为3的等边三角形,又正弦定理可得,03223sin 60r ==3BE =设球的半径为R ,且4=AD ,在直角ADE ∆中,()22222244(23)28R AD DE R =+⇒=+=, 所以7R =,所以球的体积为3344287(7)33V R πππ==⨯=,故选D .点睛:本题考查了有关球的组合体问题,以及三棱锥的体积的求法,解答时要认真审题,注意球的性质的合理运用,求解球的组合体问题常用方法有(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径.17.某几何体的三视图如图所示,三个视图中的曲线都是圆弧,则该几何体的体积为( )A .152πB .12πC .112π D .212π【答案】A 【解析】 【分析】由三视图可知,该几何体为由18的球体和14的圆锥体组成,结合三视图中的数据,利用球和圆锥的体积公式求解即可. 【详解】由三视图可知,该几何体为由18的球体和14的圆锥体组成, 所以所求几何体的体积为11+84V V V =球圆锥,因为31149=3=8832V ππ⨯⨯球,221111=34344312V r h πππ⨯⨯=⨯⨯⨯=圆锥, 所以915322V πππ=+=,即所求几何体的体积为152π. 故选:A 【点睛】本题考查三视图还原几何体及球和圆锥的体积公式;考查学生的空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.18.某多面体的三视图如图所示,则该多面体的各棱中,最长棱的长度为( )A .6B .5C .2D .1【答案】A 【解析】由三视图可知该多面体的直观图为如图所示的四棱锥P ABCD -:其中,四边形ABCD 为边长为1的正方形,PE ⊥面ABCD ,且1AE =,1PE =. ∴222AP AE PE =+=2BE AB AE =+=,222DE AD AE =+=∴225CE BE BC =+=225PB BE PE =+223PD PE DE =+=∴226PC CE PE =+=∴最长棱为PC 故选A.点睛: 思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:①首先看俯视图,根据俯视图画出几何体地面的直观图;②观察正视图和侧视图找到几何体前、后、左、右的高度;③画出整体,然后再根据三视图进行调整.19.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为( )时,其容积最大.A .34B .23C .13D .12【答案】B 【解析】 【分析】设正六棱柱容器的底面边长为x ,)31x -,则可得正六棱柱容器的容积为()())()32339214V x x x x x x x =+-=-+,再利用导函数求得最值,即可求解. 【详解】设正六棱柱容器的底面边长为x ,)31x -, 所以正六棱柱容器的容积为()())()32339214V x x x x x x x =+-=-+, 所以()227942V x x x '=-+,则在20,3⎛⎫ ⎪⎝⎭上,()0V x '>;在2,13⎛⎫ ⎪⎝⎭上,()0V x '<,所以()V x 在20,3⎛⎫ ⎪⎝⎭上单调递增,在2,13⎛⎫⎪⎝⎭上单调递减, 所以当23x =时,()V x 取得最大值, 故选:B 【点睛】本题考查利用导函数求最值,考查棱柱的体积,考查运算能力.20.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( )A .15 B .5 C .6 D .10 【答案】D 【解析】 【分析】取AC 的中点N ,连接1C N ,则1//AM C N ,所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角,在1BNC ∆中,利用余弦定理,即可求解.【详解】由题意,取AC 的中点N ,连接1C N ,则1//AM C N , 所以异面直线AM 与1BC 所成角就是直线AM 与1C N 所成角, 设正三棱柱的各棱长为2,则115,22,3C N BC BN ===, 设直线AM 与1C N 所成角为θ,在1BNC ∆中,由余弦定理可得222(5)(22)(3)10cos 42522θ+-==⨯⨯, 即异面直线AM 与1BC 所成角的余弦值为10,故选D .【点睛】本题主要考查了异面直线所成角的求解,其中解答中把异面直线所成的角转化为相交直线所成的角是解答的关键,着重考查了推理与运算能力,属于基础题.。
考点7 空间向量与立体几何—高考数学一轮复习考点创新题训练1.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮廓,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若,,且等腰梯形所在的平面、等腰三角形所在的平面与平面ABCD 的夹角的正切值均为,则该五面体的所有棱长之和为( )A. B. C. D.2.中和殿是故宫外朝三大殿之一,位于紫禁城太和殿与保和殿之间,中和殿建筑的亮点是屋顶为单檐四角攒(cuán )尖顶,体现天圆地方的理念,其屋顶部分的轮廓可近似看作一个正四棱锥.已知此正四棱锥的侧棱长为,这个角接近30°,若取,则下列结论正确的是( )A.正四棱锥的底面边长为48mB.正四棱锥的高为4mC.正四棱锥的体积为D.正四棱锥的侧面积为3.两个相交平面构成四个二面角,其中较小的二面角称为这两个相交平面的夹角.由正方体的四个顶点所确定的平面统称为该正方体的“表截面”.则在正方体中,两个不重合的“表截面”的夹角大小不可能为( )A. B. C. D.25m AB =10m BC AD ==102m 112m 117m 125m30θ=︒2230︒45︒60︒90︒4.海口钟楼的历史悠久,最早是为适应对外通商而建立,已成为海口的最重要的标志性与象征性建筑物之一,如图所示,海口钟楼的主体结构可以看成一个长方体,四个侧面各有一个大钟,则从8:00到10:00这段时间内,相邻两面钟的分针所成角为的次数为( )A.2B.4C.6D.85.在空间直角坐标系Oxyz 中,,,若直线AB 与平面xOy 交于点,( )6.在空间直角坐标系中,经过点且一个法向量为的平面的方程为,经过点P 且一个方向向量为的直的方程为的距离为( )7.阅读材料:空间直角坐标系中,过点且一个法向量为的平面的方程为,阅读上面材料,解决下面问题:已知平面的方程为,点,则点Q 到平面距离为( )8.《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1000多年.在《九章算术》60︒()1,,2A m (),0,1B n (),,0P x y 2y +=O xyz -()000,,P x y z (),,m a b c = α()()()0000a x x b y y c z z -+-+-=()(),,0n v v μωμω=≠ 0y y v -==3541x y z -++=5y ==O xyz -()000,,P x y z (),,n a b c = α()()()0000a x x b y y c z z -+-+-=α21x y z -+=()3,1,1Q -α中,将底面为矩形且一侧棱垂直于底面的四棱锥称为阳马.如图是阳马,平面,,,.则该阳马的外接球的表面积为( )C.9.(多选)如图所示的空间几何体是由高度相等的半个圆柱和直三棱柱组合而成,,,G 是上的动点.则( )A.平面平面B.G 为的中点时,C.存在点G ,使得直线与的距离为D.存在点G ,使得直线与平面所成的角为10.(多选)布达佩斯的伊帕姆维泽蒂博物馆收藏的达芬奇方砖是在正六边形上画了具有视觉效果的正方体图案(如图1)把三片这样的达芬奇方砖拼成图2的组合,这个组合再转换成图3所示的几何体.若图3中每个正方体的棱长为1,则( )P ABCD -PA ⊥ABCD 5PA =3AB =4BC =π100ABF DCE -AB AF ⊥4AB AD AF ===»CDADG ⊥BCG»CD//BF DG EF AG CF BCG 60︒··A.B.异面直线与C.点P 到直线D.M 为线段上的一个动点,则的最大值为311.有很多立体图形都体现了数学的对称美,其中半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体因其最早由阿基米德研究发现,故也被称作阿基米德体.如图,这是一个棱数为24,棱长都相等的半正多面体,它的所有顶点都在同一个正方体的表面上,可以看成是由一个正方体截去八个一样的四面体所得.已知点为线段上一点且,,则______.12.如图,在棱长为8的正方体中,E 是棱上的一个动点,给出下列三个结论:①若F 为上的动点,则EF 的最小值为到平面③M 为BC 的中点,P 为空间中一点,且与平面ABCD 所成的角为,PM 与平面ABCD122QC AD AB AA =++ CQ AD CQ ME MC ⋅ E BC BE BC λ= λ=1111ABCD A B C D -1AA 1BD D BED PD 30︒所成的角为,则P 在平面ABCD 上射影的轨迹长度为,其中所有正确结论的序号是___________.13.六氟化硫,化学式为,在常压下是一种无色、无臭、无毒、不燃的稳定气体,有良好的绝缘性,在电器工业方面具有广泛用途.六氟化硫结构为正八面体结构(正八面体每个面都是正三角形,可以看作是将两个棱长均相等的正四棱锥将底面粘接在一起的几何体),如图所示,硫原子位于正八面体的中心,6个氟原子分别位于正八面体的6个顶点,若相邻两个氟原子之①该八面体的表面积为③若点P 为棱上一动点,存在点P ,使得;④若点P 为棱上的动点,则三棱锥的体积为定值..若为空间向量与232323a ab bc c =123231312321213132a b c a b c a b c a b c a b c a b c ++---1122a b x y x j i y ⨯= b ⨯ a 60︒6SF EC AP BE ⊥EC F ABP -b的叉乘,其中,,为单位正交基底.以O 为坐标原点,分别以的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,已知A ,B 是空间直角坐标系中异于O 的不同两点.(1)①若,求;②证明:.(2)记的面积为,证明:(3)问:的几何意义表示以15.在①,②这三个条件中任选一个,补充在下面的横线中,并完成问题.问题:如图,在正方体中,以D 为坐标原点,建立空间直角坐标系.已知点的坐标为,E 为棱上的动点,F 为棱上的动点,_________,试问是否存在点E ,F 满足?若存在,求出的值;若不存在,请说明理由.()()DE CF DE CF +⊥- ||DE = cos ,1EF DB <〈〉< 1111ABCD A B C D -D xyz -1D (0,0,2)11D C 11B C 1EF A C ⊥AE BF ⋅ ()111111,,a x y z x y i j k z =++∈R ()222222,,b x i y j z k x y z =++∈R {},,i j k ,,i j k ()()0,2,1,1,3,2A B -OA OB ⨯ 0OA OB OB OA ⨯+⨯= AOB △AOB S △12AOB S OA =⨯ △2()OA OB ⨯ △⨯答案以及解析1.答案:C解析:如图,过E 作平面ABCD ,垂足为O ,过E 分别作,,垂足分别为G ,M ,连接OG ,OM ,由题意得等腰梯形所在的平面、等腰三角形所在的平面与底面夹角分别为和,所以.因为平面,平面ABCD ,所以.因为,,平面,,所以平面EOG .因为平面EOG ,所以.同理,.又,故四边形OMBG 是正方形,所以由得,所以,所以,所以在直角三角形EOG 中,,在直角三角形EBG 中,,,又因为,所有棱长之和为.故选C.2.答案:C解析:如图,在正四棱锥中,O为正方形的中心,,则H为的中点,连接,,,则平面,,则为侧面与底面所成的锐二面角,EO ⊥EG BC⊥EM AB ⊥EMO ∠EGO∠tan tan EMO EGO ∠=∠=MO CO =EO ⊥ABCD BC ⊂EO BC ⊥EG BC ⊥EO EG ⊂EOG EO EG E = BC ⊥OG ⊂BC OG ⊥OM BM ⊥BM BG ⊥10BC =5OM =EO =5OG =EG ===5BG OM ==8EB ===55255515EF AB =--=--=2252101548117(m)⨯+⨯++⨯=S ABCD -ABCD SH AB ⊥AB SO OH AO SO ⊥ABCD OH AB ⊥SHO ∠设底面边长为.正四棱谁的则面与底两所成的䌼二面但为,这个角接近,取,,则,,.在中,,解得,故底面边长为,正四棱锥的高为,侧面积为,体积.故选C 3.答案:A 解析:在正方体中,平面ABCD 和平面的夹角为,D 选项错误.平面和平面的夹角为,B 选项错误.设正方体的棱长为1,建立如图所示的空间直角坐标系,则,,,,,,,设平面的法向量为,则令,可得.设平面的法向量为,则令,可得,设平面与平面的夹角为,则由于,所以,所以C 选项错误.平面ABCD 与平面的夹角为.由图可知两个不重合的“表截面”的夹角的大小不可能为.故选A.2a θ30︒30θ=︒30SHO ∴∠=︒OH a =OS =SH =Rt SAH △222a ⎫+=⎪⎪⎭12a =24()m 12=21424122S =⨯⨯=3124243V =⨯⨯⨯=1111ABCD A B C D -11ADD A 90︒11BDD B 11ADD A 45︒1111ABCD A B C D -(1,0,0)A (1,1,0)B 1(0,0,1)D (0,1,0)C (0,1,0)AB ∴= 1(1,1,1)BD =-- (1,0,0)CB = 11ABC D 111,)(,x y z =m 111110,0,AB y BD x y z ⎧⋅==⎪⎨⋅=--+=⎪⎩ m m 11x =(1,0,1)=m 11A BCD 222,)(,x y z =n 212220,0,CB x BD x y z ⎧⋅==⎪⎨⋅=--+=⎪⎩ n n 21y =(0,1,1)=n 11ABC D 11A BCD θcos ||||θ⋅===m n m n 090θ︒≤≤︒60θ=︒1111A B C D 0︒30︒4.答案:D 解析:在长方体中,以点A 为原点,,,所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.设矩形的对角线的交点为E ,矩形的对角线的交点为F ,分针长为a .考查到这个时间段,设t 时刻,侧面和侧面内的钟的分针的位置分别为M ,N ,,其中,则,所以.由题意得.因为,所以的取值为,,,,即在到这个时间段,相邻两面钟的分针所成角为的次数为4,因此,从到这段时间内,相邻两面钟的分针所成角为的次数为8.故选D.5.答案:B解析:依题意,,显然,解得,即,6.答案:C解析:由题可知点在直线l 上,取平面内一点根据题设材料可知平面一个法向量为,所以的距离为11AA B B 11AA D D 8:009:0011AA B B 11AA D D (sin ,0,cos )EM a a θθ= 3600θ-︒≤≤︒(0,sin ,cos )FN a a θθ=- EM FN ⋅=22cos a θ2|||cos ,|cos ||||EM FN EM FN EM FN θ⋅〈〉=== θ=3600θ-︒≤≤︒1111ABCD A B C D -AB AD 1AA θ45-︒135-︒225-︒315-︒8:009:0060︒8:0010:0060︒(1,,1),(,,1)BA n m BP x n y =-=-- //BP 11y m -==2x n y m=-⎧⎨=-⎩2()1m -=22(1)1n m -+==(0,0,0)O α(0,0,P α()3,5,4m =- (0,0,OP = cos ,OP m OP m OP m ⋅<>===7.答案:A解析:平面的法向量,在平面上任取一点,则,8.答案:B解析:因,平面,平面,则,,又因四边形为矩形,则.则阳马的外接球与以,,为长宽高的长方体的外接球相同.又,,.则外接球的直径为长方体体对角线,故外接球半径为:.故选:B 9.答案:AB解析:对于选项A ,由题意知,,平面,因为平面,所以,又,、平面,所以平面,因为平面,所以平面平面,即选项A 正确;对于选项B ,当G 为的中点时,取的中点H ,连接,,则,,所以四边形是平行四边形,所以,因为和都是等腰直角三角形,所以,所以,所以,即选项B 正确;对于选项C ,因为,且平面,平面,所以平面,所以直线与的距离等价于直线到平面的距离,也等价于点F 到平面的距离,以A 为坐标原点,,,所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则 ,,,设点,其中,,由射影定理知,,即,所以,,,1cos ,4OP OP m <>== α()1,1,2n =- α()1,0,1A -()4,1,0QA =- QA n d n⋅=== PA ABCD ⊥平面AB ⊂ABCD AD ⊂ABCD PA AB ⊥PA AD ⊥ABCD AB AD ⊥PA AB AD 5PA =3AB =4AD BC ==R ===2504π4π50π4S R ==⋅=DG CG ⊥AD ⊥CDG CG ⊂CDG AD CG ⊥DG AD D = DG AD ⊂ADG CG ⊥ADG CG ⊂BCG ADG ⊥BCG »CD »AB AH GH //AD GH AD GH =ADGH //DG AH ABF △ABH △45ABF HAB ∠=∠=︒//AH BF //BF DG //EF AD EF ⊂/ADG AD ⊂ADG //EF ADG EF AG EF ADG ADG AF AB AD ()4,0,0F ()0,0,0A ()0,0,4D (),,4G m n -04m <≤04n <≤2(4)m n n =-224m n n +=()4,0,0AF = ()0,0,4AD = (),,4AG m n =-设平面的法向量为,则,取,则,,所以,若直线与的距离为到平面的距离为而点F 到平面的距离G ,使得直线与的距离为对于选项D ,,,所以,,,设平面的法向量为,则,取,则,,所以,若直线与平面所成的角为,则由,知,此方程无解,所以不存在点G ,使得直线与平面所成的角为,即选项D 错误.故选:AB.10.答案:BD解析:如图建立空间直角坐标系:ADG (),,n x y z = 4040n AD z n AG mx ny z ⎧⋅==⎪⎨⋅=-++=⎪⎩ x n =y m =0z =(),,0n n m = EF AG F ADG ADG 4AF n d n ⋅====≤=< EF AG ()0,4,4C ()0,4,0B ()0,0,4BC = (),4,0CG m n =-- ()4,4,4CF =-- BCG (),,m a b c = 40(4)0m BC c m CG ma n b ⎧⋅==⎪⎨⋅=-+-=⎪⎩ b m =4a n =-0c =()4,,0m n m =- CF BCG 60︒sin 60cos ,CF m CF m CF m ⋅︒====⋅ ()24m n n =-4n -=2850m m n n ⎛⎫⋅-⋅+= ⎪⎝⎭CF BCG 60︒则,,,,,,,,故,,,,,,,,对于A ,所以,A 错误;对于C ,记同向的单位向量为,则点P 到直线的距离,故C 错误;对于D ,设点,使,,,,,则,故,则因,则时,即点M 与点Q 重合时,取得最大值3,故D 项正确.故选:BD.122,,333||QC a QC ⎛⎫==-- ⎪⎝⎭ d ==QM tQC = (1,0,2)Q (0,2,0)C (1,2,22)M t t t -+-+(1,2,22)(1,22,22)ME MC t t t t t t ⋅=+--⋅--- 2229123913t t t ⎛⎫=-+=-- ⎪⎝⎭01t ≤≤0t =ME MC ⋅ (1,0,2)Q (0,2,0)C (1,1,0)A (1,2,0)B (0,1,0)D 1(1,1,1)A 1(0,1,1)D (2,0,1)P (1,2,2)QC =-- (1,0,0)AD =- (0,1,0)AB = 1(0,0,1)AA = (0,2,2)BC =- (1,1,0)BD =-- (1,0,1)QP =- 1(1,0,1)AD =- 122(1,0,0)2(0,1,0)2(0,0,1)(1,2,2)AD AB AA QC ++=-++=-≠ (1,2,2)QC =-- CQ (,,)M x y z 01t ≤≤(2,0,0)E (1,,2)(1,2,2)x y z t --=--解析:将半正多面体补成正方体,建立如图所示的空间直角坐标系.,,,,,,,所以,,则,.设直线DE 与直线AF 所成角为,则即,解得12.答案:①②③解析:①平面,EF 取最小值即为E到平面的距离,为分别为,的中点.故①正确.②由①知,三角形到平面的距离为,③建立如图所示的空间直角坐标系,()2,1,0A ()2,2,1F ()1,0,2B ()0,1,2C ()1,2,2D ()0,1,1AF = ()1,1,0BC =- (),,0BE BC λλλ==- []0,1λ∈()1,,2E λλ-(),2,0DE λλ=-- θcos cos ,AF DE AF DE AF DE θ⋅==== 2610λλ+-=λ==1//AA 11BB D D 11BB D D 1AA 1BD BED =1BED h 18883h =⨯⨯⨯=则,作平面ABCD 于点H ,由题意及几何关系得,设点,则,即点H 的轨迹方程为迹长度为.故③正确.13.答案:①③④八面体的表面积为②连接,相交于点O ,连接,在八面体中,平面是正方形,且平面,,在中,,所以该八面体的体积为③若点P 为棱上一动点,当点P 与点重合时,因为在正方形中,,且平面,平面,所以,又因为,是平面内两条相交直线,所以平面,平面可得,③正确;④在正八面体中,,平面,平面所以平面,若点P 为棱上的动点,则点P 到平面的距离与直线到平面的距离相等且是一个定值,三棱锥的体积为是定值,④正确;14.答案:(1)①;()4,8,0M PH ⊥3DH MH =(),y,0H x 22229(4)(8)x y x y ⎡⎤+=-+-⎣⎦229(9)2x y ⎛⎫-+-= ⎪⎝⎭2π=182⨯=AC BD OE ABCD OE ⊥ABCD 2AC BD ==DBE △1OE ===1213⨯=EC C ABCD AC BD ⊥EO ⊥ABCD AC ⊂ABCD AC EO ⊥BD EO BED AC ⊥BED BE ⊂BED AP BE ⊥//EC AF EC ⊄ABF AF ⊂ABF //EC ABF EC ABF EC ABF F ABP -13FAB F ABP P ABF V V S h --==⨯⨯△()1,1,2-②证明见解析(2)证明见解析(3)6解析:(1)①因为,,则.②证明:设,,则,与互换,与互换,与互换,可得,故.(2)证明:因为故.由(1),,,()0,2,1A ()1,3,2B -()021*******,1,2132i j k OA OB i j k i i j k ⨯==-++--=-+=-- ()111,,A x y z ()222,,B x y z 121212212121OA OB y z i z x j x y k x y k z x j y z i⨯=++---()122112211221,,y z y z z x z x x y x y =---2x 1x 2y 1y 2z 1z ()211221122112,,OB OA y z y z z x z x x y x y ⨯=--- ()0,0,00OA OB OB OA ⨯+⨯== sin AOB ∠===1sin 2AOB S OA OB AOB =⋅∠= △AOB ⨯2222()OB OA OB OA OB ⨯-⋅= ()111,,OA x y z = ()222,,OB x y z =()122112211221,,OA OB y z y z z x z x x y x y ⨯=--- ()()()2222122112211221OB y z y z z x z x x y x y ⨯=-+-+-,成立,故,故的几何意义表示:以15.答案:选择①:存在点,,满足;选择②:存在点,,满足;选择③:不存在点E ,F 满足,理由见解析解析:由题意知,正方体的棱长为2,则,,,,,设,,则,,,,所以,.选择①:因为,所以,即,得,若,则,则,故存在点,,满足,142()EF AC a b ⋅=-+ 82AE BF b ⋅=- ()()DE CF DE CF +⊥- ()()0DE CF DE CF +⋅-= 22DE CF = a b =10EF AC ⋅= 42()0a b -+=1a b ==(0,1,2)E 22111x y z ++222222x y z ++()22121212()OA OB x x y y z z ⋅=++2()OA OB ⋅ ⨯1222AOB OA OB OA OB S OA =⨯⋅⨯=⋅⨯ △21()63AOB OA OB S OA OB ⨯=⋅⨯⨯ △2()OA OB ⨯ △⨯(0,1,2)E (1,2,2)F 1EF A C ⊥6AE BF ⋅= 10,,22E ⎛⎫ ⎪⎝⎭3,2,22F ⎛⎫ ⎪⎝⎭1EF A C ⊥5AE BF ⋅= 1EF A C ⊥1111ABCD A B C D -(2,0,0)A (2,2,0)B 1(2,0,2)A (0,0,0)D (0,2,0)C (0,,2)(02)E a a ≤≤(,2,2)(02)F b b ≤≤(,2,0)EF b a =- 1(2,2,2)AC =-- (2,,2)AE a =- (2,0,2)BF b =- (1,2,2)F 1EF A C ⊥此时.选择②:因为,若,则,得故存在点,,满足,此时.选择③:因为,所以与不共线,又,所以,即,则,故不存在点E ,F 满足.826AE BF b ⋅=-= ||DE = (0,,2)DE a = ==10EF AC ⋅= 42()0a b -+=b =10,,22E ⎛⎫ ⎪⎝⎭3,2,22F ⎛⎫ ⎪⎝⎭1EF A C ⊥825AE BF b ⋅=-= 0cos ,1EF DB <〈〉< EF DB (2,2,0)DB = 2b a ≠-2a b +≠142()0EF AC a b ⋅=-+≠ 1EF A C ⊥。
一、利用向量处理平行与垂直问题例1、 在直三棱柱111C B A ABC -中,090=∠ACB , 030=∠BAC ,M A A BC ,6,11==是1CC 得中点。
求证:AM B A ⊥1练习:棱长为a 的正方体ABCD —A 1B 1C 1D 1中,在棱DD 1上是否存在点P 使B 1D ⊥面P AC ?例2 如图,已知矩形ABCD 和矩形ADEF 所在平面互相垂直,点N M ,分别在对角线AE BD ,上,且AE AN BD BM 31,31==,求证://MN 平面CDE练习1、在正方体1111D C B A ABCD -中,E,F 分别是BB 1,,CD 中点,求证:D 1F ⊥平面ADE2、如图,在底面是菱形的四棱锥P —ABCD 中, ︒=∠60ABC ,,2,a PD PB a AC PA ====点E 在PD 上,且PE :ED = 2: 1.在棱PC 上是否存在一点F, 使BF ∥平面AEC?证明你的结论.二、利用空间向量求空间的角的问题例1 在正方体1111D C B A ABCD -中,E 1,F 1分别在A 1B 1,,C 1D 1上,且E 1B 1=41A 1B 1,D 1F 1=41D 1C 1,求BE 1与DF 1所成的角的大小。
例2 在正方体1111D C B A ABCD -中, F 分别是BC 的中点,点E 在D 1C 1上,且=11E D 41D 1C 1,试求直线E 1F 与平面D 1AC例3 在正方体1111D C B A ABCD -中,求二面角1C BD A --的大小。
zx1CFD CBA例4 已知E,F分别是正方体1111DCBAABCD-的棱BC和CD的中点,求:(1)A1D与EF所成角的大小;(2)A1F与平面B1EB所成角的大小;(3)二面角BBDC--11的大小。
三、利用空间向量求空间的距离的问题例1 直三棱柱AB C-A1B1C1的侧棱AA1,底面ΔAB C求点B1到平面A1B C的距离。
空间向量的概念与运算考试要求 1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示,掌握空间向量的数量积及其坐标表示,能用向量的数量积判断向量的共线和垂直.3.理解直线的方向向量及平面的法向量,能用向量方法证明立体几何中有关线面位置关系的一些简单定理.知识梳理1.空间向量的有关概念名称定义空间向量在空间中,具有大小和方向的量相等向量方向相同且模相等的向量相反向量方向相反且模相等的向量共线向量表示若干空间向量的有向线段所在的直线互相平行或重合的向量(或平行向量)共面向量平行于同一个平面的向量2.空间向量的有关定理(1)共线向量定理:对任意两个空间向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a =λb.(2)共面向量定理:如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b.(3)空间向量基本定理如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯一的有序实数组(x,y,z),使得p=x a+y b+z c,{a,b,c}叫做空间的一个基底.3.空间向量的数量积及运算律(1)数量积非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.(2)空间向量的坐标表示及其应用设a=(a1,a2,a3),b=(b1,b2,b3).向量表示坐标表示数量积a·b a1b1+a2b2+a3b3共线a =λb(b ≠0,λ∈R )a 1=λb 1,a 2=λb 2,a 3=λb 3 垂直 a ·b =0(a ≠0,b ≠0)a 1b 1+a 2b 2+a 3b 3=0模 |a |a 21+a 22+a 23夹角余弦值 cos 〈a ,b 〉=a ·b|a ||b |(a ≠0,b ≠0)cos 〈a ,b 〉=a 1b 1+a 2b 2+a 3b 3a 21+a 22+a 23·b 21+b 22+b 234.空间位置关系的向量表示(1)直线的方向向量:如果表示非零向量a 的有向线段所在直线与直线l 平行或重合,则称此向量a 为直线l 的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 为平面α的法向量. (3)空间位置关系的向量表示位置关系向量表示直线l 1,l 2的方向向量分别为n 1,n 2 l 1∥l 2 n 1∥n 2⇔n 1=λn 2(λ∈R ) l 1⊥l 2 n 1⊥n 2⇔n 1·n 2=0 直线l 的方向向量为n ,平面α的法向量为m ,l ⊄αl ∥α n ⊥m ⇔n ·m =0 l ⊥α n ∥m ⇔n =λm (λ∈R ) 平面α,β的法向量分别为n ,mα∥β n ∥m ⇔n =λm (λ∈R )α⊥βn ⊥m ⇔n ·m =0常用结论1.在平面中,A ,B ,C 三点共线的充要条件是:OA →=xOB →+yOC →(其中x +y =1),O 为平面内任意一点.2.在空间中,P ,A ,B ,C 四点共面的充要条件是:OP →=xOA →+yOB →+zOC →(其中x +y +z =1),O 为空间中任意一点.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”) (1)直线的方向向量是唯一确定的.( × )(2)若直线a 的方向向量和平面α的法向量平行,则a ∥α.( × )(3)在空间直角坐标系中,在Oyz 平面上的点的坐标一定是(0,b ,c ).( √ ) (4)若a ·b <0,则〈a ,b 〉是钝角.( × ) 教材改编题1.若{a ,b ,c }为空间向量的一个基底,则下列各项中,能构成空间向量的一个基底的是( ) A .{a ,a +b ,a -b } B .{b ,a +b ,a -b } C .{c ,a +b ,a -b } D .{a +b ,a -b ,a +2b } 答案 C解析 ∵λa +μb (λ,μ∈R )与a ,b 共面. ∴A,B ,D 不正确.2.如图,在平行六面体ABCD -A 1B 1C 1D 1中,M 为A 1C 1与B 1D 1的交点.若AB →=a ,AD →=b ,AA 1—→=c ,则下列向量中与BM →相等的向量是( )A .-12a +12b +cB.12a +12b +c C .-12a -12b +cD.12a -12b +c 答案 A解析 由题意,根据向量运算的几何运算法则, BM →=BB 1—→+B 1M —→=AA 1—→+12(AD →-AB →)=c +12(b -a )=-12a +12b +c .3.设直线l 1,l 2的方向向量分别为a =(-2,2,1),b =(3,-2,m ),若l 1⊥l 2,则m =________. 答案 10解析 ∵l 1⊥l 2,∴a ⊥b , ∴a ·b =-6-4+m =0,∴m =10.题型一 空间向量的线性运算例1 如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,设AA 1—→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量:(1)AP →;(2)A 1N —→;(3)MP →+NC 1—→. 解 (1)∵P 是C 1D 1的中点, ∴AP →=AA 1—→+A 1P —→=AA 1—→+A 1D 1—→+D 1P —→ =AA 1—→+AD →+12DC →=a +c +12AB →=a +c +12b .(2)∵N 是BC 的中点, ∴A 1N —→=A 1A —→+AB →+BN → =-a +b +12BC →=-a +b +12AD →=-a +b +12c .(3)∵M 是AA 1的中点, ∴MP →=MA →+AP →=12A 1A —→+AP →=-12a +(a +c +12b )=12a +12b +c . 又NC 1—→=NC →+CC 1—→=12BC →+AA 1—→=12AD →+AA 1—→=12c +a .∴MP →+NC 1—→=⎝ ⎛⎭⎪⎫12a +12b +c +⎝ ⎛⎭⎪⎫12c +a =32a +12b +32c . 教师备选如图,在三棱锥O -ABC 中,M ,N 分别是OA ,BC 的中点,G 是△ABC 的重心,用基向量OA →,OB →,OC →表示OG →,则下列表示正确的是( )A.14OA →+12OB →+13OC →B.12OA →+12OB →+12OC → C .-16OA →+13OB →+13OC →D.13OA →+13OB →+13OC → 答案 D解析 MG →=MA →+AG →=12OA →+23AN →=12OA →+23(ON →-OA →)=12OA →+23⎣⎢⎡⎦⎥⎤12OB →+OC →-OA → =-16OA →+13OB →+13OC →.OG →=OM →+MG →=12OA →-16OA →+13OB →+13OC →=13OA →+13OB →+13OC →.思维升华 用基向量表示指定向量的方法 (1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来.跟踪训练1 (1)(2022·宁波模拟)如图,在三棱锥O -ABC 中,点P ,Q 分别是OA ,BC 的中点,点D 为线段PQ 上一点,且PD →=2DQ →,若记OA →=a ,OB →=b ,OC →=c ,则OD →等于( )A.16a +13b +13cB.13a +13b +13cC.13a +16b +13cD.13a +13b +16c 答案 A解析 OD →=OP →+PD →=12OA →+23PQ →=12OA →+23(OQ →-OP →) =12OA →+23OQ →-23OP → =12OA →+23×12(OB →+OC →)-23×12OA → =16OA →+13OB →+13OC → =16a +13b +13c . (2)在正方体ABCD -A 1B 1C 1D 1中,点F 是侧面CDD 1C 1的中心,若AF →=xAD →+yAB →+z AA 1—→,则x -y +z 等于( )A.12B .1C.32D .2 答案 B解析 AF →=AD →+DF →=AD →+12(DD 1—→+D 1C 1—→)=AD →+12(AA 1—→+A 1B 1—→)=AD →+12(AA 1—→+AB →)=AD →+12AB →+12AA 1—→,则x =1,y =12,z =12,则x -y +z =1.题型二 空间向量基本定理及其应用例2 已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,若点M 满足OM →=13(OA →+OB →+OC →).(1)判断MA →,MB →,MC →三个向量是否共面; (2)判断点M 是否在平面ABC 内. 解 (1)由题知OA →+OB →+OC →=3OM →, 所以OA →-OM →=(OM →-OB →)+(OM →-OC →), 即MA →=BM →+CM →=-MB →-MC →, 所以MA →,MB →,MC →共面.(2)方法一 由(1)知,MA →,MB →,MC →共面且基线过同一点M , 所以M ,A ,B ,C 四点共面,从而点M 在平面ABC 内. 方法二 因为OM →=13(OA →+OB →+OC →)=13OA →+13OB →+13OC →, 又因为13+13+13=1,所以M ,A ,B ,C 四点共面,从而M 在平面ABC 内. 教师备选如图所示,已知斜三棱柱ABC -A 1B 1C 1,点M ,N 分别在AC 1和BC 上,且满足AM →=k AC 1—→,BN →=kBC →(0≤k ≤1).判断向量MN →是否与向量AB →,AA 1—→共面.解 因为AM →=k AC 1—→,BN →=kBC →, 所以MN →=MA →+AB →+BN → =k C 1A —→+AB →+kBC →=k (C 1A —→+BC →)+AB →=k (C 1A —→+B 1C 1—→)+AB → =k B 1A —→+AB →=AB →-k AB 1—→=AB →-k (AA 1—→+AB →) =(1-k )AB →-k AA 1—→,所以由共面向量定理知向量MN →与向量AB →,AA 1—→共面. 思维升华 证明空间四点P ,M ,A ,B 共面的方法 (1)MP →=xMA →+yMB →;(2)对空间任一点O ,OP →=OM →+xMA →+yMB →;(3)对空间任一点O ,OP →=xOM →+yOA →+zOB →(x +y +z =1); (4)PM →∥AB →(或PA →∥MB →或PB →∥AM →).跟踪训练2 (1)(多选)(2022·武汉质检)下列说法中正确的是( ) A .|a |-|b |=|a +b |是a ,b 共线的充要条件 B .若AB →,CD →共线,则AB ∥CDC .A ,B ,C 三点不共线,对空间任意一点O ,若OP →=34OA →+18OB →+18OC →,则P ,A ,B ,C 四点共面D .若P ,A ,B ,C 为空间四点,且有PA →=λPB →+μPC →(PB →,PC →不共线),则λ+μ=1是A ,B ,C 三点共线的充要条件答案 CD解析 由|a |-|b |=|a +b |,可得向量a ,b 的方向相反,此时向量a ,b 共线,反之,当向量a ,b 同向时,不能得到|a |-|b |=|a +b |,所以A 不正确; 若AB →,CD →共线,则AB ∥CD 或A ,B ,C ,D 四点共线,所以B 不正确; 由A ,B ,C 三点不共线,对空间任意一点O , 若OP →=34OA →+18OB →+18OC →,因为34+18+18=1,可得P ,A ,B ,C 四点共面,故C 正确; 若P ,A ,B ,C 为空间四点,且有PA →=λPB →+μPC →(PB →,PC →不共线), 当λ+μ=1时,即μ=1-λ,可得PA →-PC →=λ(PB →+CP →), 即CA →=λCB →,所以A ,B ,C 三点共线,反之也成立,即λ+μ=1是A ,B ,C 三点共线的充要条件,所以D 正确.(2)已知A ,B ,C 三点不共线,点O 为平面ABC 外任意一点,若点M 满足OM →=15OA →+45OB →+25BC →,则点M ________(填“属于”或“不属于”)平面ABC . 答案 属于解析 ∵OM →=15OA →+45OB →+25BC →=15OA →+45OB →+25(OC →-OB →)=15OA →+25OB →+25OC →,∵15+25+25=1, ∴M ,A ,B ,C 四点共面. 即点M ∈平面ABC .题型三 空间向量数量积及其应用例3 如图所示,已知空间四边形ABCD 的每条边和对角线长都等于1,点E ,F ,G 分别是AB ,AD ,CD 的中点,计算:(1)EF →·BA →.(2)求异面直线AG 和CE 所成角的余弦值. 解 设AB →=a ,AC →=b ,AD →=c . 则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, (1)EF →=12BD →=12c -12a ,BA →=-a ,EF →·BA →=⎝ ⎛⎭⎪⎫12c -12a ·(-a )=12a 2-12a ·c =14. (2)AG →=12(AC →+AD →)=12b +12c ,CE →=CA →+AE →=-b +12a ,cos 〈AG →,CE →〉=AG →·CE →|AG →||CE →|=⎝ ⎛⎭⎪⎫12b +12c ·⎝⎛⎭⎪⎫-b +12a ⎝ ⎛⎭⎪⎫12b +12c 2·⎝ ⎛⎭⎪⎫12a -b 2=-1232×32=-23,由于异面直线所成角的范围是⎝⎛⎦⎥⎤0,π2,所以异面直线AG 与CE 所成角的余弦值为23.教师备选已知MN 是正方体内切球的一条直径,点P 在正方体表面上运动,正方体的棱长是2,则PM →·PN →的取值范围为( )A.[]0,4B.[]0,2C.[]1,4D.[]1,2 答案 B解析 设正方体内切球的球心为O , 则OM =ON =1,PM →·PN →=()PO →+OM →·()PO →+ON →=PO →2+PO →·()OM →+ON →+OM →·ON →, ∵MN 为球O 的直径, ∴OM →+ON →=0,OM →·ON →=-1, ∴PM →·PN →=PO →2-1, 又P 在正方体表面上移动,∴当P 为正方体顶点时,||PO →最大,最大值为3;当P 为内切球与正方体的切点时,||PO →最小,最小值为1, ∴PO →2-1∈[]0,2,即PM →·PN →的取值范围为[]0,2.思维升华 由向量数量积的定义知,要求a 与b 的数量积,需已知|a |,|b |和〈a ,b 〉,a 与b 的夹角与方向有关,一定要根据方向正确判定夹角的大小,才能使a·b 计算准确.跟踪训练3如图所示,在四棱柱ABCDA 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值. (1)解 记AB →=a ,AD →=b ,AA 1—→=c , 则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1—→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝ ⎛⎭⎪⎫12+12+12=6, ∴|AC 1—→|=6,即AC 1的长为 6. (2)证明 ∵AC 1—→=a +b +c ,BD →=b -a , ∴AC 1—→·BD →=(a +b +c )·(b -a )=a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =0. ∴AC 1—→⊥BD →,∴AC 1⊥BD .(3)解 BD 1—→=b +c -a ,AC →=a +b , ∴|BD 1—→|=2,|AC →|=3, BD 1—→·AC →=(b +c -a )·(a +b ) =b 2-a 2+a ·c +b ·c =1.∴cos〈BD 1—→,AC →〉=BD 1—→·AC →|BD 1—→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.题型四 向量法证明平行、垂直例4 如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.证明:(1)BE ⊥DC ; (2)BE ∥平面PAD ; (3)平面PCD ⊥平面PAD .证明 依题意,以点A 为坐标原点建立空间直角坐标系(如图),可得B (1,0,0),C (2,2,0),D (0,2,0),P (0,0,2).由E 为棱PC 的中点,得E (1,1,1).(1)BE →=(0,1,1), DC →=(2,0,0),故BE →·DC →=0, 所以BE ⊥DC .(2)因为AB ⊥AD ,又PA ⊥平面ABCD ,AB ⊂平面ABCD ,所以AB ⊥PA ,PA ∩AD =A ,PA ,AD ⊂平面PAD , 所以AB ⊥平面PAD ,所以AB →=(1,0,0)为平面PAD 的一个法向量, 而BE →·AB →=(0,1,1)·(1,0,0)=0, 所以BE ⊥AB , 又BE ⊄平面PAD , 所以BE ∥平面PAD .(3)由(2)知平面PAD 的法向量AB →=(1,0,0), PD →=(0,2,-2), DC →=(2,0,0),设平面PCD 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PD →=0,n ·DC →=0,即⎩⎪⎨⎪⎧2y -2z =0,2x =0,令y =1,可得n =(0,1,1)为平面PCD 的一个法向量. 且n ·AB →=(0,1,1)·(1,0,0)=0, 所以n ⊥AB →.所以平面PAD ⊥平面PCD . 教师备选如图,已知AA 1⊥平面ABC ,BB 1∥AA 1,AB =AC =3,BC =25,AA 1=7,BB 1=27,点E 和F 分别为BC 和A 1C 的中点.(1)求证:EF ∥平面A 1B 1BA ; (2)求证:平面AEA 1⊥平面BCB 1.证明 因为AB =AC ,E 为BC 的中点,所以AE ⊥BC . 因为AA 1⊥平面ABC ,AA 1∥BB 1,所以以过E 作平行于BB 1的垂线为z 轴,EC ,EA 所在直线分别为x 轴、y 轴, 建立如图所示的空间直角坐标系.因为AB =3,BE =5, 所以AE =2,所以E (0,0,0),C (5,0,0),A (0,2,0),B (-5,0,0),B 1(-5,0,27). A 1(0,2,7),则F ⎝⎛⎭⎪⎫52,1,72.(1)EF →=⎝ ⎛⎭⎪⎫52,1,72,AB →=(-5,-2,0),AA 1→=(0,0,7).设平面AA 1B 1B 的一个法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·AB →=0,n ·AA 1—→=0,所以⎩⎨⎧-5x -2y =0,7z =0,取⎩⎨⎧x =-2,y =5,z =0,所以n =(-2,5,0).因为EF →·n =52×(-2)+1×5+72×0=0,所以EF →⊥n . 又EF ⊄平面A 1B 1BA , 所以EF ∥平面A 1B 1BA . (2)因为EC ⊥平面AEA 1,所以EC →=(5,0,0)为平面AEA 1的一个法向量. 又EA ⊥平面BCB 1,所以EA →=(0,2,0)为平面BCB 1的一个法向量. 因为EC →·EA →=0,所以EC →⊥EA →, 故平面AEA 1⊥平面BCB 1.思维升华 (1)利用向量法证明平行、垂直关系,关键是建立恰当的坐标系(尽可能利用垂直条件,准确写出相关点的坐标,进而用向量表示涉及到直线、平面的要素).(2)向量证明的核心是利用向量的数量积或数乘向量,但向量证明仍然离不开立体几何的有关定理.跟踪训练4 如图,在四棱锥P -ABCD 中,底面ABCD 是边长为a 的正方形,侧面PAD ⊥底面ABCD ,且PA =PD =22AD ,设E ,F 分别为PC ,BD 的中点.求证:(1)EF ∥平面PAD ; (2)平面PAB ⊥平面PDC .证明 (1)如图,取AD 的中点O ,连接OP ,OF .因为PA =PD ,所以PO ⊥AD .又侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PO ⊂平面PAD , 所以PO ⊥平面ABCD .又O ,F 分别为AD ,BD 的中点, 所以OF ∥AB .又四边形ABCD 是正方形, 所以OF ⊥AD . 因为PA =PD =22AD , 所以PA ⊥PD ,OP =OA =a2.如图,以O 为坐标原点,OA ,OF ,OP 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则A ⎝ ⎛⎭⎪⎫a 2,0,0,F ⎝ ⎛⎭⎪⎫0,a2,0,D ⎝ ⎛⎭⎪⎫-a 2,0,0,P ⎝ ⎛⎭⎪⎫0,0,a 2,B ⎝ ⎛⎭⎪⎫a 2,a ,0,C ⎝ ⎛⎭⎪⎫-a 2,a ,0.因为E 为PC 的中点,所以E ⎝ ⎛⎭⎪⎫-a 4,a 2,a4. 易知平面PAD 的一个法向量为 OF →=⎝⎛⎭⎪⎫0,a 2,0,因为EF →=⎝ ⎛⎭⎪⎫a4,0,-a 4,OF →·EF →=⎝ ⎛⎭⎪⎫0,a 2,0·⎝ ⎛⎭⎪⎫a 4,0,-a 4=0.且EF ⊄平面PAD ,所以EF ∥平面PAD .(2)因为PA →=⎝ ⎛⎭⎪⎫a2,0,-a 2,CD →=(0,-a ,0),所以PA →·CD →=⎝ ⎛⎭⎪⎫a2,0,-a 2·(0,-a ,0)=0,所以PA →⊥CD →, 所以PA ⊥CD .又PA ⊥PD ,PD ∩CD =D ,PD ,CD ⊂平面PDC ,所以PA ⊥平面PDC .又PA ⊂平面PAB ,所以平面PAB ⊥平面PDC .课时精练1.已知a =(2,1,-3),b =(0,-3,2),c =(-2,1,2),则a ·(b +c )等于( ) A .18B .-18C .32D .-3 2 答案 B解析 因为b +c =(-2,-2,4), 所以a ·(b +c )=-4-2-12=-18.2.已知空间任意一点O 和不共线的三点A ,B ,C ,若OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),则“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件 答案 B解析 由x +y +z =1,得P ,A ,B ,C 四点共面,当P ,A ,B ,C 四点共面时,x +y +z =1,显然不止2,-3,2.故“x =2,y =-3,z =2”是“P ,A ,B ,C 四点共面”的充分不必要条件.3.已知空间向量a =(1,0,1),b =(1,1,n ),且a·b =3,则向量a 与b 的夹角为( ) A.π6B.π3C.2π3D.5π6答案 A解析 由题意,a ·b =1+0+n =3, 解得n =2,又|a |=1+0+1=2,|b |=1+1+4=6,所以cos 〈a ,b 〉=a·b |a ||b |=32×6=32,又〈a ,b 〉∈[0,π], 所以a 与b 的夹角为π6.4.直线l 的一个方向向量为(2,1,1),平面α的一个法向量为(4,2,2),则( ) A .l ∥α B .l ⊥α C .l ∥α或l ⊂αD .l 与α的位置关系不能判断 答案 B解析 直线l 的一个方向向量为(2,1,1),平面α的一个法向量为(4,2,2), 显然它们共线,所以l ⊥α.5.(多选)已知空间三点A (1,0,3),B (-1,1,4),C (2,-1,3),若AP →∥BC →,且|AP →|=14,则点P 的坐标为( ) A .(4,-2,2) B .(-2,2,4) C .(-4,2,-2) D .(2,-2,4)答案 AB解析 因为B (-1,1,4),C (2,-1,3), 所以BC →=(3,-2,-1), 因为AP →∥BC →,所以可设AP →=λBC →=(3λ,-2λ,-λ), 因为|AP →|=3λ2+-2λ2+-λ2=14,解得λ=±1,所以AP →=(3,-2,-1)或AP →=(-3,2,1), 设点P (x ,y ,z ),则AP →=(x -1,y ,z -3),所以⎩⎪⎨⎪⎧ x -1=3,y =-2,z -3=-1或⎩⎪⎨⎪⎧ x -1=-3,y =2,z -3=1,解得⎩⎪⎨⎪⎧x =4,y =-2,z =2或⎩⎪⎨⎪⎧x =-2,y =2,z =4.所以点P 的坐标为(4,-2,2)或(-2,2,4).6.(多选)已知空间中三点A (0,1,0),B (2,2,0),C (-1,3,1),则下列结论正确的有( ) A.AB →与AC →是共线向量B .与AB →共线的单位向量是(1,1,0) C.AB →与BC →夹角的余弦值是-5511D .平面ABC 的一个法向量是(1,-2,5) 答案 CD解析 对于A ,AB →=(2,1,0),AC →=(-1,2,1),不存在实数λ,使得AB →=λAC →, 所以AB →与AC →不是共线向量,所以A 错误;对于B ,因为AB →=(2,1,0),所以与AB →共线的单位向量为⎝ ⎛⎭⎪⎫255,55,0或⎝ ⎛⎭⎪⎫-255,-55,0,所以B 错误;对于C ,向量AB →=(2,1,0),BC →=(-3,1,1), 所以cos 〈AB →,BC →〉=AB →·BC →|AB →||BC →|=-5511,所以C 正确;对于D ,设平面ABC 的法向量是n =(x ,y ,z ), 因为AB →=(2,1,0),AC →=(-1,2,1), 所以⎩⎪⎨⎪⎧n ·AB →=0,n ·AC →=0,即⎩⎪⎨⎪⎧2x +y =0,-x +2y +z =0.令x =1,则n =(1,-2,5),所以D 正确.7.已知a =(x ,1,1),b =(-2,2,y ),a ·b =0,则2x -y =________. 答案 2解析 因为a =(x ,1,1),b =(-2,2,y ),a ·b =0,所以-2x +2+y =0,2x -y =2.8.已知点A (-1,1,0),B (1,2,0),C (-2,-1,0),D (3,4,0),则AB →在CD →上的投影向量为________.答案 ⎝ ⎛⎭⎪⎫32,32,0 解析 由已知得AB →=(2,1,0),CD →=(5,5,0), ∴AB →·CD →=2×5+1×5+0=15, 又|CD →|=52,∴AB →在CD →上的投影向量为AB →·CD →|CD →|·CD →|CD →|=1552×CD →52=310CD →=⎝ ⎛⎭⎪⎫32,32,0. 9.如图所示,在直三棱柱ABC -A 1B 1C 1中,CA =CB =1,∠BCA =90°,棱AA 1=2,M ,N 分别是A 1B 1,A 1A 的中点.(1)求BN →的长;(2)求cos 〈BA 1—→,CB 1—→〉的值; (3)求证:A 1B ⊥C 1M .(1)解 以C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图.B (0,1,0),N (1,0,1),∴BN →=(1,-1,1), ∴|BN →|=12+-12+12= 3.(2)解 ∵A 1(1,0,2),B (0,1,0),C (0,0,0),B 1(0,1,2),∴BA 1—→=(1,-1,2),CB 1—→=(0,1,2),∴BA 1—→·CB 1—→=3,|BA 1—→|=6,|CB 1—→|= 5. ∴cos〈BA 1—→,CB 1—→〉=BA 1—→·CB 1—→|BA 1—→||CB 1—→|=3010.(3)证明 ∵C 1(0,0,2),M ⎝ ⎛⎭⎪⎫12,12,2, ∴A 1B —→=(-1,1,-2),C 1M —→=⎝ ⎛⎭⎪⎫12,12,0,∴A 1B —→·C 1M —→=-12+12+0=0.∴A 1B —→⊥C 1M —→, ∴A 1B ⊥C 1M .10.如图,在四棱锥P -ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E ,F 分别是AB ,PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 内求一点G ,使GF ⊥平面PCB .(1)证明 如图,以D 为坐标原点,分别以DA ,DC ,DP 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AD =a ,则D (0,0,0),A (a ,0,0),B (a ,a ,0),C (0,a ,0),E ⎝⎛⎭⎪⎫a ,a 2,0,P (0,0,a ), F ⎝ ⎛⎭⎪⎫a 2,a 2,a 2. EF →=⎝ ⎛⎭⎪⎫-a2,0,a 2,DC →=(0,a ,0).因为EF →·DC →=0,所以EF →⊥DC →,即EF ⊥CD .(2)解 设G (x ,0,z ),则FG →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a2,CB →=(a ,0,0),CP →=(0,-a ,a ),若使GF ⊥平面PCB ,则需FG →·CB →=0,且FG →·CP →=0,由FG →·CB →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a2·(a ,0,0)=a ⎝ ⎛⎭⎪⎫x -a2=0,得x =a2,由FG →·CP →=⎝ ⎛⎭⎪⎫x -a 2,-a 2,z -a2·(0,-a ,a ) =a 22+a ⎝ ⎛⎭⎪⎫z -a2=0,得z =0.所以G 点坐标为⎝ ⎛⎭⎪⎫a2,0,0,即G 为AD 的中点时,GF ⊥平面PCB .11.(多选)(2022·山东百师联盟大联考)下面四个结论正确的是( )A .向量a ,b (a ≠0,b ≠0),若a⊥b ,则a·b =0B .若空间四个点P ,A ,B ,C ,PC →=14PA →+34PB →,则A ,B ,C 三点共线C .已知向量a =(1,1,x ),b =(-3,x ,9),若x <310,则〈a ,b 〉为钝角D .任意向量a ,b ,c 满足(a·b )·c =a·(b·c )答案 AB解析 由向量垂直的充要条件可得A 正确;∵PC →=14PA →+34PB →,∴14PC →-14PA →=34PB →-34PC →,即AC →=3CB →,∴A ,B ,C 三点共线,故B 正确;当x =-3时,两个向量共线,夹角为π,故C 错误;由于向量的数量积运算不满足结合律,故D 错误.12.(多选)(2022·重庆市第七中学月考)给出下列命题,其中为假命题的是( )A .已知n 为平面α的一个法向量,m 为直线l 的一个方向向量,若n ⊥m ,则l ∥αB .已知n 为平面α的一个法向量,m 为直线l 的一个方向向量,若〈n ,m 〉=2π3,则l 与α所成角为π6C .若两个不同的平面α,β的法向量分别为u ,v ,且u =(1,2,-2),v =(-2,-4,4),则α∥βD .已知空间的三个向量a ,b ,c ,则对于空间的任意一个向量p ,总存在实数x ,y ,z 使得p =x a +y b +z c答案 AD解析 对于A ,由题意可得l ∥α或l ⊂α,故A 错误;对于B ,由图象可得,∠CAD =2π3,则∠DAB =π3,所以∠ADB =π6, 根据线面角的定义可得,l 与α所成角为π6,故B 正确; 对于C ,因为u =-12v =-12(-2,-4,4) =(1,2,-2),所以u ∥v ,故α∥β,故C 正确;对于D ,当空间的三个向量a ,b ,c 不共面时,对于空间的任意一个向量p ,总存在实数x ,y ,z 使得p =x a +y b +z c ,故D 错误.13.(2022·杭州模拟)在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别为A 1D 1,BB 1的中点,则cos∠EAF =________;EF =________.答案 25 62 解析 如图,以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,∵正方体棱长为1,则E ⎝ ⎛⎭⎪⎫0,12,1,F ⎝⎛⎭⎪⎫1,0,12, ∴AE →=⎝ ⎛⎭⎪⎫0,12,1,AF →=⎝⎛⎭⎪⎫1,0,12, EF →=⎝ ⎛⎭⎪⎫1,-12,-12, cos 〈AE →,AF →〉=AE →·AF →|AE →||AF →|=1252×52=25, ∴cos∠EAF =25, EF =|EF →|=12+⎝ ⎛⎭⎪⎫-122+⎝ ⎛⎭⎪⎫-122=62. 14.如图,已知四棱柱ABCD -A 1B 1C 1D 1的底面A 1B 1C 1D 1为平行四边形,E 为棱AB 的中点,AF →=13AD →,AG →=2GA 1—→,AC 1与平面EFG 交于点M ,则AM AC 1=________.答案 213解析 由题图知,设AM →=λAC 1—→(0<λ<1),由已知AC 1—→=AB →+AD →+AA 1—→=2AE →+3AF →+32AG →,所以AM →=2λAE →+3λAF →+3λ2AG →,因为M ,E ,F ,G 四点共面,所以2λ+3λ+3λ2=1, 解得λ=213.15.已知O 点为空间直角坐标系的原点,向量OA →=(1,2,3),OB →=(2,1,2),OP →=(1,1,2),且点Q 在直线OP 上运动,当QA →·QB →取得最小值时,OQ →的坐标是______.答案 ⎝ ⎛⎭⎪⎫43,43,83 解析 因为点Q 在直线OP 上,所以设点Q (λ,λ,2λ),则QA →=(1-λ,2-λ,3-2λ),QB →=(2-λ,1-λ,2-2λ),QA →·QB →=(1-λ)(2-λ)+(2-λ)(1-λ)+(3-2λ)·(2-2λ)=6λ2-16λ+10=6⎝⎛⎭⎪⎫λ-432-23. 即当λ=43时,QA →·QB →取得最小值-23, 此时OQ →=⎝ ⎛⎭⎪⎫43,43,83. 16.(2022·株州模拟)如图,棱柱ABCD -A 1B 1C 1D 1的所有棱长都等于2,∠ABC 和∠A 1AC 均为60°,平面AA 1C 1C ⊥平面ABCD .(1)求证:BD ⊥AA 1;(2)在直线CC 1上是否存在点P ,使BP ∥平面DA 1C 1,若存在,求出点P 的位置,若不存在,请说明理由.(1)证明 设BD 与AC 交于点O ,则BD ⊥AC ,连接A 1O ,在△AA 1O 中,AA 1=2,AO =1,∠A 1AO =60°,所以A 1O 2=AA 21+AO 2-2AA 1·AO cos60°=3,所以AO 2+A 1O 2=AA 21,所以A 1O ⊥AO .由于平面AA 1C 1C ⊥平面ABCD ,且平面AA 1C 1C ∩平面ABCD =AC ,A 1O ⊂平面AA 1C 1C ,所以A 1O ⊥平面ABCD .以O 为坐标原点,OB ,OC ,OA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,则A (0,-1,0),B (3,0,0),C (0,1,0),D (-3,0,0),A 1(0,0,3),C 1(0,2,3).由于BD →=(-23,0,0),AA 1—→=(0,1,3),AA 1—→·BD →=0×(-23)+1×0+3×0=0,所以BD →⊥AA 1—→,即BD ⊥AA 1.(2)解 假设在直线CC 1上存在点P ,使BP ∥平面DA 1C 1,设CP →=λCC 1—→,P (x ,y ,z ),则(x ,y -1,z )=λ(0,1,3).从而有P (0,1+λ,3λ),BP →=(-3,1+λ,3λ). 设平面DA 1C 1的一个法向量为n 1=(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧n 1·A 1C 1—→=0,n 1·DA 1—→=0, 又A 1C 1—→=(0,2,0),DA 1—→=(3,0,3),则⎩⎨⎧ 2y 1=0,3x 1+3z 1=0,取n 1=(1,0,-1),因为BP ∥平面DA 1C 1,所以n 1⊥BP →,即n 1·BP →=-3-3λ=0,解得λ=-1,即点P 在C 1C 的延长线上,且|CP →|=|CC 1—→|.。
空间向量
1. 如图,正四棱柱1111ABCD A B C D -中,124AA AB ==,点E 在1
CC 上且EC E C 31=.
(Ⅰ)证明:1A C ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小.
以D 为坐标原点,射线DA 为x 轴的正半轴,
建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,. (021)(220)DE DB ==u u u r u u u r
,,,,,,
1
1(224)(204)AC DA =--=u u u r u u u u r ,,,,,. (Ⅰ)证明 因为10AC DB =u u u r u u u r g ,10AC DE =u u u r u u u r g
, 故1A C BD ⊥,1A C DE ⊥. 又DB DE D =I , 所以1A C ⊥平面DBE .
(Ⅱ)解 设向量()x y z =,,n 是平面1DA E 的法向量,则
DE ⊥u u u r n ,1DA ⊥u u u u r n .
故20y z +=,240x z +=.
令1y =,则2z =-,4x =,(412)=-,,n .
1
AC u u u r ,n 等于二面角1A DE B --的平面角,
42
14
=
•=
. 所以二面角1A DE B --
的大小为arccos
42
.
A
B C
D E A 1
B 1
C 1
D 1
2.如图,四棱锥P ABCD
-中,PA ABCD ⊥底面,2,4,3
BC CD AC ACB ACD π
===∠=∠=,F 为PC 的中
点,AF PB ⊥.
(1)求PA 的长; (2)求二面角B AF D --的正弦值.
【答案】
3.已知点H 在正方体ABCD A B C D ''''-的对角线'B D '上,∠HDA =0
60. (Ⅰ)求DH 与CC '所成角的大小;
(Ⅱ)求DH 与平面AA D D ''所成角的大小.
解:以D 为原点,DA 为单位长建立空间直角坐标系D xyz -. 设(1)(0)H m m m >,,
则(100)DA =u u u r ,
,,(001)CC '=u u u u r
,,.连结BD ,B D ''. 设(1)(0)DH m m m =>u u u u r
,,
,由已知60DH DA <>=o u u u u r u u u r ,, 由cos DA DH DA DH DA
DH =<>u u u r u u u u r u u u r u u u u r u u u r u u u u r
g ,
可得2m =
2
m =
,
所以122DH ⎛⎫= ⎪
⎪⎝
⎭
u u u u r ,.
(Ⅰ)因为0011cos DH CC ++⨯'<>==u u u u r u u u u r ,,
所以45DH CC '<>=o u u u u r u u u u r
,
.即DH 与CC '所成的角为45o . (Ⅱ)平面AA D D ''的一个法向量是(010)DC =u u u r
,
,.
因为01101cos 2DH DC ++⨯<>==u u u u r u u u r ,
, 所以60DH DC <>=o u u u u r u u u r ,.
可得DH 与平面AA D D ''所成的角为30o
.
4.如图,在四面体BCD A -中,⊥AD 平面BCD ,2
2,2,==⊥BD AD CD BC .M 是
AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且QC AQ 3=.
(1)证明://PQ 平面BCD ;(2)若二面角D BM C --的大小为060,求BDC ∠的大小.
【答案】解:证明(Ⅰ)方法一:如图6,取MD 的中点
F ,且M 是AD 中点,所以
3AF FD =.因为P 是BM 中点,所以//PF BD ;又因为(Ⅰ)3AQ QC =且3AF FD =,所以//QF BD ,所以面//PQF 面BDC ,且PQ ⊂面BDC ,所以
//PQ 面BDC ;
方法二:如图7所示,取BD 中点O ,且P 是BM 中点,所以1
//
2PO MD ;取CD 的三等分点H ,使3DH CH =,且3AQ QC =,所以11
////42
QH AD MD ,所以
////PO QH PQ OH ∴,且OH BCD ⊂,所以//PQ 面BDC ;
(Ⅱ)如图8所示,由已知得到面ADB ⊥面BDC ,过C 作CG BD ⊥于G ,所以A
B
C
D
P
Q
M
N
M
A B
D
C
O
CG BMD ⊥,过G 作GH BM ⊥于H ,连接CH ,所以CHG ∠就是C BM D --的
二面角;由已知得到813BM =
+=,设BDC α∠=,所以
cos ,sin 22cos ,22cos sin ,22sin ,CD CG CB
CD CG BC BD CD BD
αααααα===⇒===,
在RT BCG ∆中,2sin 22sin BG
BCG BG BC
ααα∠=∴=
∴=,所以在RT BHG ∆中, 22
122sin 3322sin HG α
α
=∴=,所以在RT CHG ∆中 2
22cos sin tan tan 60322sin 3
CG CHG HG αα
α
∠===
=o tan 3(0,90)6060BDC ααα∴=∈∴=∴∠=o o o ;
5. 如图,在四棱锥O ABCD -中,底面ABCD 四边长 为1的菱形,4
ABC π
∠=
, OA ABCD ⊥底面, 2OA =,M 为
OA 的中点,N 为BC 的中点
(Ⅰ)证明:直线MN OCD
平面‖;
(Ⅱ)求异面直线AB 与MD 所成角的大小;
(Ⅲ)求点B 到平面OCD 的距离。
作AP CD ⊥于点P ,如图,分别以AB ,AP ,AO 所在直线为
,,x y z 轴建立坐标系
x
y
z N
M
A
B
D C O
P
22222(0,0,0),(1,0,0),((0,0,2),(0,0,1),(122244A B P D O M N --,
(1)证明 22222(11),(0,,2),(,2)44222MN OP OD =-
-=-=--u u u u r u u u r u u u r 设平面OCD 的法向量为(,,)n x y z =,则0,0n OP n OD ==u u u r u u u r
g
g
即 2
202222022
y z x y z -=⎪⎪⎨⎪-+-=⎪⎩
取2z =
解得(0,2)n =
22
(11)(0,2)0MN n =-=u u u u r g g ∵
MN OCD ∴平面‖
(2)解 设AB 与MD 所成的角为θ,22
(1,0,0),(1)AB MD ==-u u u r u u u u r ∵
1cos ,2
3AB MD AB MD π
θθ===⋅u u u r u u u u r g u u u r u u u u r ∴∴ , AB 与MD 所成角的大小为3π.
(3)解 设点B 到平面OCD 的距离为d ,
则d 为OB uuu r
在向量(0,2)n =上的投影的绝对值,
由 (1,0,2)OB =-u u u r
, 得23
OB n d n ⋅==u u u r
.所以点B 到平面OCD 的距离为
2
3。