高一数学二次函数的性质与图象
- 格式:pdf
- 大小:857.20 KB
- 文档页数:9
关于二次函数的图像与性质的数学教案(9篇)二次函数的图像与性质的数学教案篇1【学问与技能】1.会用描点法画函数y=ax2(a>0)的图象,并依据图象熟悉、理解和把握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简洁的实际问题.【过程与方法】经受探究二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象讨论函数的阅历,培育观看、思索、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间沟通争论,到达对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,把握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步熟悉问题 1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么外形呢?问题2 如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思索探究,猎取新知探究1 画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互沟通、展现,表扬画得比拟标准的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和进展趋势.误区二:并非对称点,存在漏点现象,导致抛物线变形。
误区三:无视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延长,而并非到某些点停顿.二次函数的图像与性质的数学教案篇2一学习目标1、把握二次函数的图象及性质;2、会用二次函数的图象与性质解决问题;学习重点:二次函数的性质;学习难点:二次函数的性质与图像的应用;二学问点回忆:函数的性质函数函数图象a0a0性质三典型例题:例 1:已知是二次函数,求m的值例 2:(1)已知函数在区间上为增函数,求a的范围;(2)知函数的单调区间是,求a;例 3:求二次函数在区间[0,3]上的最大值和最小值;变式:(1)已知在[t,t+1]上的最小值为g(t),求g(t)的表达式。
高一数学二次函数图像性质总结二次函数性质:a正号说明开口向上,负号说明开口向下;a的肯定值越大,抛物线开口越小;c表示抛物线与y轴的交点,图像过(0,c)点。
下面是给大家带来的(高一数学)二次函数图像性质(总结),希望能够帮助到大家!高一数学二次函数图像性质总结1二次函数图像2二次函数性质二次函数y=ax+bx+c(a0),当y=0时,二次函数为关于x的一元二次方程,即ax+bx+c=0(a0)此时,函数图像与x轴有无交点即方程有无实数根。
函数与x轴交点的横坐标即为方程的根。
1.二次函数y=ax,y=ax+k,y=a(x-h),y=a(x-h)+k,y=ax+bx+c(各式中,a0)的图象形态相同,只是位置不同。
2.抛物线y=ax+bx+c(a0)的图象:当a0时,开口向上,当a0时开口向下,对称轴是直线x=-b/2a,顶点坐标是(-b/2a,[4ac-b]/4a).3.抛物线y=ax+bx+c(a0),若a0,当x-b/2a时,y随x的增大而减小;当x-b/2a时,y随x的增大而增大。
若a0,当x-b/2a时,y随x的增大而增大;当x-b/2a时,y随x的增大而减小.4.抛物线y=ax+bx+c(a0)的图象与坐标轴的交点:(1)图象与y轴肯定相交,交点坐标为(0,c);(2)当△=b-4ac0,图象与x轴交于两点A(x1,0)和B(x2,0),其中的x1,x2是一元二次方程ax+bx+c=0(a0)的两根.这两点间的距离AB=|x2-x1|另外,抛物线上任何一对对称点的距离可以由2x|A+b/2a|(A为其中一点的横坐标)当△=0.图象与x轴只有一个交点;当△0.图象与x轴没有交点.当a0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0.5.抛物线y=ax+bx+c的最值(也就是极值):假如a0(a0),则当x=-b/2a 时,y最小(大)值=(4ac-b)/4a.顶点的横坐标,是取得极值时的自变量值,顶点的纵坐标,是极值的取值.6.用待定系数法求二次函数的解析式(1)当题给条件为已知图象经过三个已知点或已知x、y的三对对应值时,可设解析式为一般形式:y=ax+bx+c(a0).(2)当题给条件为已知图象的顶点坐标或对称轴时,可设解析式为顶点式:y=a(x-h)+k(a0).(3)当题给条件为已知图象与x轴的两个交点坐标时,可设解析式为两根式:y=a(x-x1)(x-x2)(a0).7.二次函数学问很简单与(其它)学问综合应用,而形成较为困难的综合题目。
I.定义与定义表达式一般地,自变量某和因变量y之间存在如下关系:y=a某^2+b某+c(a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以决定开口大小,IaI越大开口就越小,IaI越小开口就越大.)那么称y为某的二次函数。
二次函数表达式的右边通常为二次三项式。
II.二次函数的三种表达式一般式:y=a某^2+b某+c(a,b,c为常数,a≠0)顶点式:y=a(某-h)^2+k[抛物线的顶点P(h,k)]交点式:y=a(某-某 )(某-某 )[仅限于与某轴有交点A(某,0)和B(某,0)的抛物线]注:在3种形式的互相转化中,有如下关系:h=-b/2ak=(4ac-b^2)/4a某,某 =(-b±√b^2-4ac)/2aIII.二次函数的图像在平面直角坐标系中作出二次函数y=某^2的图像,可以看出,二次函数的图像是一条抛物线。
IV.抛物线的性质1.抛物线是轴对称图形。
对称轴为直线某=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线某=0)2.抛物线有一个顶点P,坐标为P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当Δ=b^2-4ac=0时,P在某轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
a越大,那么抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)6.抛物线与某轴交点个数Δ=b^2-4ac>0时,抛物线与某轴有2个交点。
Δ=b^2-4ac=0时,抛物线与某轴有1个交点。
Δ=b^2-4ac<0时,抛物线与某轴没有交点。
二次函数的性质与图象 高一数学 刘敏一、教材内容分析概括地讲,二次函数的图象在教材中起着承上启下的作用,它的地位体现在它的思想的基础性。
一方面,本节课是对初中有关内容的深化,为后面进一步学习二次函数的性质打下基础;另一方面,二次函数解析式中的系数由常数转变为参数,使学生对二次函数的图象由感性认识上升到理性认识,能培养学生利用数形结合思想解决问题的能力。
二、教学目标根据教学大纲要求、新课程标准精神和高一学生心理认知特征,我确定了三个层面的教学目标。
第一个层面是基础知识与能力目标:理解二次函数的图象中a 、b 、c 、k 、h 的作用,能熟练地对二次函数的一般式进行配方,会对图象进行平移变换,领会研究二次函数图象的方法,培养学生运用数形结合与等价转化等数学思想方法解决问题的能力,提高运算和作图能力;第二个层面是过程和方法目标:让学生经历作图、观察、比较、归纳的学习过程,使学生掌握类比、化归等数学思想方法,养成即能自主探索,又能合作探究的良好学习习惯;第三个层面是情感、态度和价值观目标:在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。
三、教学重难点:运用配方法研究二次函数的性质。
在教学中,我们不仅要使学生获得知识、提高解题能力,还要让学生在教师的启发引导下学会学习、乐于学习,感受数学学科的人文思想,感受数学的自然美。
四、教学过程:为了更好的实践“1121”课堂教学模式,我设置了这样几个教学环节。
(一)复习旧知1、二次函数的定义;2、二次函数的顶点式以及对称轴方程、顶点坐标。
可以借助多媒体展示问题,学生思考后回答。
设计意图:通过对旧知识的回顾为新知识的学习做好铺垫。
(二)讨论交流在同一坐标系中作出23x y -=,22x y -=,2x y -=,2x y =,22x y =,23x y =的图象,回答:(1) 函数)0(2≠=a ax y 图象的开口方向、对称性、顶点与单调性、奇偶性、最值;(2) 观察函数图象随a 值变化的规律。