山东省淄博市周村区大姜中学2019年中考数学二模试卷(含解析)
- 格式:doc
- 大小:552.31 KB
- 文档页数:22
2019—2020学年度淄博市周村初三中考二模初中数学数学试卷本卷须知:1.答题前请考生务必在答题卡及试卷的规定位置将自己的姓名、考试号、考试科目、座号等内容填写〔涂〕准确。
2.本试题分第一卷和第二卷两部分。
第一卷〔1~4页〕为选择题,36分;第二卷〔5~12页〕为非选择题,84分;共120分。
考试时刻为120分钟。
3.第一卷每题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号〔ABCD 〕涂黑。
如需改动,须先用橡皮擦洁净,再改涂其它答案。
第二卷须用蓝黑钢笔或圆珠笔直截了当答在试卷上。
考试时,不承诺使用运算器。
4.考试终止后,由监考教师把第一卷〔讲评用〕和第二卷及答题卡一并收回。
第一卷〔选择题 共36分〕一、选择题:此题共12小题,在每题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上。
每题3分,错选、不选或选出的答案超过一个,均记0分。
1.以下运算正确的选项是A .321x x -=B .22122x x--=- C .()632a a a =⋅-D .()632a a -=-2AB C 1 D 3.今年3月5日,温家宝总理在«政府工作报告»中,讲述了六大民生新亮点,其中之一确实是全部免除了西部地区和部分中部地区农村义务教育时期约52000000名学生的学杂费。
那个数据保留两个有效数字用科学记数法表示为 A .52×107B .5.2×107C .5.2×108D .52×1084.如图,是由一些相同的小正方体搭成的几何体的三视图,那么搭成那个几何体的小正方体的个数是A .4B .5C .6D .75.在一个不透亮的袋中装有2个红球和3个白球,它们除了颜色外都相同,从中随机摸出1个球,那么摸出红球的概率是 A .12B .23C .15D .256.如图,O 内切于ABC △,切点分不为D E F ,,。
山东省淄博市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.计算-3-1的结果是( )A .2B .-2C .4D .-42.整数a 、b 在数轴上对应点的位置如图,实数c 在数轴上且满足a c b ≤≤,如果数轴上有一实数d ,始终满足0c d +≥,则实数d 应满足( ).A .d a ≤B .a d b ≤≤C .d b ≤D .d b ≥3.如果一组数据6、7、x 、9、5的平均数是2x ,那么这组数据的方差为( )A .4B .3C .2D .14.某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下折线统计图,则符合这一结果的实验最有可能的是( )A .袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球B .掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数C .先后两次掷一枚质地均匀的硬币,两次都出现反面D .先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过95.如图,E 为平行四边形ABCD 的边AB 延长线上的一点,且BE:AB=2:3,△BEF 的面积为4,则平行四边形ABCD 的面积为()A .30B .27C .14D .326.-5的相反数是( )A .5B .15C 5D .15- 7.如图,在△ABC 中,∠AED=∠B ,DE=6,AB=10,AE=8,则BC 的长度为( )A .152B .154C .3D .838.四组数中:①1和1;②﹣1和1;③0和0;④﹣23和﹣112,互为倒数的是( ) A .①② B .①③ C .①④D .①③④ 9.若关于x 的不等式组324x a x a <+⎧⎨>-⎩无解,则a 的取值范围是( ) A .a≤﹣3 B .a <﹣3 C .a >3 D .a≥310.若a=10,则实数a 在数轴上对应的点的大致位置是( )A .点EB .点FC .点GD .点H11.(3分)学校要组织足球比赛.赛制为单循环形式(每两队之间赛一场).计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛.根据题意,下面所列方程正确的是( )A .221x =B .1(1)212x x -=C .21212x = D .(1)21x x -= 12.如图,点D 在△ABC 边延长线上,点O 是边AC 上一个动点,过O 作直线EF ∥BC ,交∠BCA 的平分线于点F ,交∠BCA 的外角平分线于E,当点O 在线段AC 上移动(不与点A ,C 重合)时,下列结论不一定成立的是( )A .2∠ACE=∠BAC+∠BB .EF=2OC C .∠FCE=90°D .四边形AFCE是矩形 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知a+ =3,则的值是_____.14.已知图中Rt △ABC ,∠B=90°,AB=BC,斜边AC 上的一点D ,满足AD=AB ,将线段AC 绕点A 逆时针旋转α (0°<α <360°),得到线段AC’,连接DC’,当DC’//BC 时,旋转角度α 的值为_________,15.分解因式6xy2-9x2y-y3 = _____________.16.已知一粒米的质量是1.111121千克,这个数字用科学记数法表示为__________.17.如图,已知圆锥的母线SA 的长为4,底面半径OA 的长为2,则圆锥的侧面积等于.18.已知:a(a+2)=1,则a2+41a=_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.(Ⅰ)如图①,当∠BOP=300时,求点P的坐标;(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).20.(6分)某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.21.(6分)剪纸是中国传统的民间艺术,它画面精美,风格独特,深受大家喜爱,现有三张不透明的卡片,其中两张卡片的正面图案为“金鱼”,另外一张卡片的正面图案为“蝴蝶”,卡片除正面剪纸图案不同外,其余均相同.将这三张卡片背面向上洗匀从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求抽出的两张卡片上的图案都是“金鱼”的概率.(图案为“金鱼”的两张卡片分别记为A 1、A 2,图案为“蝴蝶”的卡片记为B )22.(8分)如图,AB 为⊙O 的直径,点C 在⊙O 上,AD ⊥CD 于点D ,且AC 平分∠DAB ,求证: (1)直线DC 是⊙O 的切线;(2)AC 2=2AD•AO .23.(8分)如图,圆O 是ABC V 的外接圆,AE 平分BAC ∠交圆O 于点E ,交BC 于点D ,过点E 作直线//l BC .(1)判断直线l 与圆O 的关系,并说明理由;(2)若ABC ∠的平分线BF 交AD 于点F ,求证:BE EF =;(3)在(2)的条件下,若5DE =,3DF =,求AF 的长.24.(10分)如图,直线y =﹣x+2与反比例函数k y x= (k≠0)的图象交于A (a ,3),B (3,b )两点,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D .求a ,b 的值及反比例函数的解析式;若点P 在直线y =﹣x+2上,且S △ACP =S △BDP ,请求出此时点P 的坐标;在x 轴正半轴上是否存在点M ,使得△MAB 为等腰三角形?若存在,请直接写出M点的坐标;若不存在,说明理由.25.(10分)如图,在等边△ABC中,点D是AB边上一点,连接CD,将线段CD绕点C按顺时针方向旋转60°后得到CE,连接AE.求证:AE∥BC.26.(12分)某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:(1)这次知识竞赛共有多少名学生?(2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;(3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率.27.(12分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=nx(n≠0)的图象交于第二、四象限内的A、B两点,与x轴交于点C,点B 坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=32.求该反比例函数和一次函数的解析式;求△AOB的面积;点E是x轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】试题解析:-3-1=-3+(-1)=-(3+1)=-1.故选D.2.D【解析】【分析】根据a≤c≤b,可得c的最小值是﹣1,根据有理数的加法,可得答案.【详解】由a≤c≤b,得:c最小值是﹣1,当c=﹣1时,c+d=﹣1+d,﹣1+d≥0,解得:d≥1,∴d≥b.故选D.【点睛】本题考查了实数与数轴,利用a≤c≤b得出c的最小值是﹣1是解题的关键.3.A【解析】分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.详解:根据题意,得:67955x++++=2x解得:x=3,则这组数据为6、7、3、9、5,其平均数是6,所以这组数据的方差为15[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故选A.点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.4.D【解析】【分析】根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,计算四个选项的概率,约为0.33者即为正确答案.【详解】解: 根据统计图可知,试验结果在0.33附近波动,即其概率P≈0.33,A、袋中装有大小和质地都相同的3个红球和2个黄球,从中随机取一个,取到红球的概率为35,不符合题意;B、掷一枚质地均匀的正六面体骰子,向上的面的点数是偶数的概率为12,不符合题意;C、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率为14,不符合题意;D、先后两次掷一枚质地均匀的正六面体骰子,两次向上的面的点数之和是7或超过9的概率为13,符合题意,故选D.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:概率=所求情况数与总情况数之比.5.A【解析】∵四边形ABCD是平行四边形,∴AB//CD,AB=CD,AD//BC,∴△BEF∽△CDF,△BEF∽△AED,∴22 BEF BEFCDF AEDS SBE BES CD S AE∆∆∆∆⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,,∵BE:AB=2:3,AE=AB+BE,∴BE:CD=2:3,BE:AE=2:5,∴44925 BEF BEFCDF AEDS SS S∆∆∆∆==,,∵S△BEF=4,∴S△CDF=9,S△AED=25,∴S四边形ABFD=S△AED-S△BEF=25-4=21,∴S平行四边形ABCD=S△CDF+S四边形ABFD=9+21=30,故选A.【点睛】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.6.A【解析】由相反数的定义:“只有符号不同的两个数互为相反数”可知-5的相反数是5.故选A.7.A【解析】∵∠AED=∠B,∠A=∠A ∴△ADE∽△ACB∴AE DE AB BC=,∵DE=6,AB=10,AE=8,∴8610BC=,解得BC=15 2.故选A.8.C【解析】【分析】根据倒数的定义,分别进行判断即可得出答案.【详解】∵①1和1;1×1=1,故此选项正确;②-1和1;-1×1=-1,故此选项错误;③0和0;0×0=0,故此选项错误;④−23和−112,-23×(-112)=1,故此选项正确;∴互为倒数的是:①④,故选C.【点睛】此题主要考查了倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.9.A【解析】【分析】利用不等式组取解集的方法,根据不等式组无解求出a的取值范围即可.【详解】∵不等式组324x ax a<+⎧⎨>-⎩无解,∴a﹣4≥3a+2,解得:a≤﹣3,故选A.【点睛】本题考查了一元一次不等式组的解集,熟知一元一次不等式组的解集的确定方法“同大取大、同小取小、大小小大中间找、大大小小无处找”是解题的关键.10.C【解析】【分析】根据被开方数越大算术平方根越大,可得答案.【详解】∴3<4,∵,∴3<a<4,故选:C.【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出3<4是解题关键.11.B.【解析】试题分析:设有x个队,每个队都要赛(x﹣1)场,但两队之间只有一场比赛,由题意得:1(1)21 2x x-=,故选B.考点:由实际问题抽象出一元二次方程.12.D【解析】【分析】依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,进而得到结论.【详解】解:∵∠ACD是△ABC的外角,∴∠ACD=∠BAC+∠B,∵CE平分∠DCA,∴∠ACD=2∠ACE,∴2∠ACE=∠BAC+∠B,故A选项正确;∵EF∥BC,CF平分∠BCA,∴∠BCF=∠CFE,∠BCF=∠ACF,∴∠ACF=∠EFC,∴OF=OC,同理可得OE=OC,∴EF=2OC,故B选项正确;∵CF平分∠BCA,CE平分∠ACD,∴∠ECF=∠ACE+∠ACF=12×180°=90°,故C选项正确;∵O不一定是AC的中点,∴四边形AECF不一定是平行四边形,∴四边形AFCE不一定是矩形,故D选项错误,故选D.【点睛】本题考查三角形外角性质,角平分线的定义,以及平行线的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.7【解析】【详解】根据完全平方公式可得:原式=.14.15或255°【解析】如下图,设直线DC′与AB相交于点E,∵Rt△ABC中,∠B=90°,AB=BC,DC′//BC,∴∠AED=∠ABC=90°,∠ADE=∠ACB=∠BAC=45°,AB=22AC,∴AE=22AD,又∵AD=AB,AC′=AC,∴22212AC′,∴∠C′=30°,∴∠EAC′=60°,∴∠CAC′=60°-45°=15°,即当DC′∥BC时,旋转角α=15°;同理,当DC′′∥BC时,旋转角α=180°-45°-60°=255°;综上所述,当旋转角α=15°或255°时,DC′//BC.故答案为:15°或255°.15.-y(3x-y)2【解析】【分析】先提公因式-y,然后再利用完全平方公式进行分解即可得.【详解】6xy2-9x2y-y3=-y(9x2-6xy+y2)=-y(3x-y)2,故答案为:-y(3x-y)2.【点睛】本题考查了利用提公因式法与公式法分解因式,熟练掌握因式分解的方法及步骤是解题的关键.因式分解的一般步骤:一提(公因式),二套(套用公式),注意一定要分解到不能再分解为止.16.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×11-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.【详解】解:1.111121=2.1×11-2.故答案为:2.1×11-2.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×11-n,其中1≤|a|<11,n由原数左边起第一个不为零的数字前面的1的个数所决定.【解析】 【分析】圆锥的侧面积就等于母线长乘底面周长的一半.依此公式计算即可. 【详解】侧面积=4×4π÷2=8π. 故答案为8π. 【点睛】本题主要考查了圆锥的计算,正确理解圆锥的侧面积的计算可以转化为扇形的面积的计算,理解圆锥与展开图之间的关系. 18.3 【解析】 【分析】先根据a (a+2)=1得出a 2=1-2a,再把a 2=1-2a 代入a 2+41a +进行计算. 【详解】a (a+2)=1得出a 2=1-2a,a 2+4a 1=+1-2a+4a 1+= 2251a a a --++=2(12)51a a a ---++=3(1)1a a ++=3. 【点睛】本题考查的是代数式求解,熟练掌握代入法是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(Ⅰ)点P 的坐标为(1).(Ⅱ)2111m t t 666=-+(0<t <11).(Ⅲ)点P 1,1).【解析】 【分析】(Ⅰ)根据题意得,∠OBP=90°,OB=1,在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t ,然后利用勾股定理,即可得方程,解此方程即可求得答案.(Ⅱ)由△OB′P 、△QC′P 分别是由△OBP 、△QCP 折叠得到的,可知△OB′P ≌△OBP , △QC′P ≌△QCP ,易证得△OBP ∽△PCQ ,然后由相似三角形的对应边成比例,即可求得答案. (Ⅲ)首先过点P 作PE ⊥OA 于E ,易证得△PC′E ∽△C′QA ,由勾股定理可求得C′Q 的长,然后利用相似三角形的对应边成比例与2111m t t 666=-+,即可求得t 的值:(Ⅰ)根据题意,∠OBP=90°,OB=1.在Rt △OBP 中,由∠BOP=30°,BP=t ,得OP=2t .∵OP 2=OB 2+BP 2,即(2t )2=12+t 2,解得:t 1=23,t 2=-23(舍去). ∴点P 的坐标为(23,1).(Ⅱ)∵△OB′P 、△QC′P 分别是由△OBP 、△QCP 折叠得到的, ∴△OB′P ≌△OBP ,△QC′P ≌△QCP . ∴∠OPB′=∠OPB ,∠QPC′=∠QPC .∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°. ∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ . 又∵∠OBP=∠C=90°,∴△OBP ∽△PCQ .∴OB BPPC CQ=. 由题意设BP=t ,AQ=m ,BC=11,AC=1,则PC=11-t ,CQ=1-m .∴6t 11t 6m =--.∴2111m t t 666=-+(0<t <11). (Ⅲ)点P 的坐标为(11133-,1)或(11+133,1).过点P 作PE ⊥OA 于E ,∴∠PEA=∠QAC′=90°.∴∠PC′E+∠E PC′=90°.∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A .∴△PC′E ∽△C′QA .∴''=PE PC AC C Q. ∵PC′=PC=11-t ,PE=OB=1,AQ=m ,C′Q=CQ=1-m , ∴22AC C Q AQ 3612m ''=-=-. ∴.∵6116=--t t m ,即6116-=-tt m,∴63612=-t m ,即.将2111m t t 666=-+代入,并化简,得2322360-+=t t .解得:1211131113t t -+==.∴点P ,1)或(1131). 20. (1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析. 【解析】【分析】(1)根据“总利润=A 型电脑每台利润×A 电脑数量+B 型电脑每台利润×B 电脑数量”可得函数解析式;(2)根据“B 型电脑的进货量不超过A 型电脑的2倍且电脑数量为整数”求得x 的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a )x+500(100﹣x ),即y=(a ﹣100)x+50000,分三种情况讨论,①当0<a <100时,y 随x 的增大而减小,②a=100时,y=50000,③当100<m <200时,a ﹣100>0,y 随x 的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x )=﹣100x+50000;(2)∵100﹣x≤2x , ∴x≥1003, ∵y=﹣100x+50000中k=﹣100<0, ∴y 随x 的增大而减小, ∵x 为正数,∴x=34时,y 取得最大值,最大值为46600,答:该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元; (3)据题意得,y=(400+a )x+500(100﹣x ),即y=(a ﹣100)x+50000, 3313≤x≤60, ①当0<a <100时,y 随x 的增大而减小, ∴当x=34时,y 取最大值,即商店购进34台A 型电脑和66台B 型电脑的销售利润最大. ②a=100时,a ﹣100=0,y=50000, 即商店购进A 型电脑数量满足3313≤x≤60的整数时,均获得最大利润; ③当100<a <200时,a ﹣100>0,y 随x 的增大而增大, ∴当x=60时,y 取得最大值.即商店购进60台A 型电脑和40台B 型电脑的销售利润最大.【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.21.4 9【解析】【分析】列表得出所有等可能结果,然后根据概率公式列式计算即可得解【详解】列表如下:A1A2 BA1(A1,A1)(A2,A1)(B,A1)A2(A1,A2)(A2,A2)(B,A2)B (A1,B)(A2,B)(B,B)由表可知,共有9种等可能结果,其中抽出的两张卡片上的图案都是“金鱼”的4种结果,所以抽出的两张卡片上的图案都是“金鱼”的概率为49.【点睛】本题考查了列表法和树状图法,用到的知识点为:概率=所求情况数与总情况数之比.22.(1)证明见解析.(2)证明见解析.【解析】分析:(1)连接OC,由OA=OC、AC平分∠DAB知∠OAC=∠OCA=∠DAC,据此知OC∥AD,根据AD⊥DC即可得证;(2)连接BC,证△DAC∽△CAB即可得.详解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴OC∥AD,又∵AD⊥CD,∴OC⊥DC,∴DC是⊙O的切线;(2)连接BC,∵AB 为⊙O 的直径, ∴AB=2AO ,∠ACB=90°, ∵AD ⊥DC ,∴∠ADC=∠ACB=90°, 又∵∠DAC=∠CAB , ∴△DAC ∽△CAB , ∴AC ADAB AC=,即AC 2=AB•AD , ∵AB=2AO , ∴AC 2=2AD•AO .点睛:本题主要考查圆的切线,解题的关键是掌握切线的判定、圆周角定理及相似三角形的判定与性质. 23.(1)直线l 与O e 相切,见解析;(2)见解析;(3)AF=245. 【解析】 【分析】()1连接.OE 由题意可证明BE CE =n n,于是得到BOE COE ∠=∠,由等腰三角形三线合一的性质可证明OE BC ⊥,于是可证明OE l ⊥,故此可证明直线l 与O e 相切;()2先由角平分线的定义可知ABF CBF ∠=∠,然后再证明CBE BAF ∠=∠,于是可得到EBF EFB ∠=∠,最后依据等角对等边证明BE EF =即可;()3先求得BE 的长,然后证明BED V ∽AEB V ,由相似三角形的性质可求得AE 的长,于是可得到AF的长. 【详解】()1直线l 与O e 相切.理由:如图1所示:连接OE .AE Q 平分BAC ∠,BAE CAE ∴∠=∠.BE CE nn∴=,OE BC ∴⊥.//l BC Q , OE l ∴⊥.∴直线l 与O e 相切.()2BF Q 平分ABC ∠,ABF CBF ∴∠=∠.又CBE CAE BAE Q ∠=∠=∠,CBE CBF BAE ABF ∴∠+∠=∠+∠.又EFB BAE ABF ∠=∠+∠Q ,EBF EFB ∴∠=∠. BE EF ∴=.()3由()2得8BE EF DE DF ==+=.DBE BAE ∠=∠Q ,DEB BEA ∠=∠, BED ∴V ∽AEB V .DE BE BE AE ∴=,即588AE =,解得;645AE =. 6424855AF AE EF ∴=-=-=.故答案为:(1)直线l 与O e 相切,见解析;(2)见解析;(3)AF=245. 【点睛】本题主要考查的是圆的性质、相似三角形的性质和判定、等腰三角形的性质、三角形外角的性质、切线的判定,证得EBF EFB ∠=∠是解题的关键.24.(1)y =3x-;(2)P (0,2)或(-3,5);(3)M (1-,0)或(3+0). 【解析】 【分析】(1)利用点在直线上,将点的坐标代入直线解析式中求解即可求出a ,b ,最后用待定系数法求出反比例函数解析式;(2)设出点P 坐标,用三角形的面积公式求出S △ACP =12×3×|n +1|,S △BDP =12×1×|3−n|,进而建立方程求解即可得出结论;(3)设出点M 坐标,表示出MA 2=(m +1)2+9,MB 2=(m−3)2+1,AB 2=32,再三种情况建立方程求解即可得出结论. 【详解】(1)∵直线y =-x +2与反比例函数y =kx(k≠0)的图象交于A (a ,3),B (3,b )两点,∴-a +2=3,-3+2=b ,∴a=-1,b=-1,∴A(-1,3),B(3,-1),∵点A(-1,3)在反比例函数y=kx上,∴k=-1×3=-3,∴反比例函数解析式为y=3x ;(2)设点P(n,-n+2),∵A(-1,3),∴C(-1,0),∵B(3,-1),∴D(3,0),∴S△ACP=12AC×|x P−x A|=12×3×|n+1|,S△BDP=12BD×|x B−x P|=12×1×|3−n|,∵S△ACP=S△BDP,∴12×3×|n+1|=12×1×|3−n|,∴n=0或n=−3,∴P(0,2)或(−3,5);(3)设M(m,0)(m>0),∵A(−1,3),B(3,−1),∴MA2=(m+1)2+9,MB2=(m−3)2+1,AB2=(3+1)2+(−1−3)2=32,∵△MAB是等腰三角形,∴①当MA=MB时,∴(m+1)2+9=(m−3)2+1,∴m=0,(舍)②当MA=AB时,∴(m+1)2+9=32,∴m=−1m=,∴M(−10)③当MB=AB时,(m−3)2+1=32,∴m=3m=,∴M(30)即:满足条件的M(−10)或(30).【点睛】此题是反比例函数综合题,主要考查了待定系数法,三角形的面积的求法,等腰三角形的性质,用方程的思想解决问题是解本题的关键. 25.见解析 【解析】试题分析:根据等边三角形的性质得出AC=BC,∠B=∠ACB=60°,根据旋转的性质得出CD=CE,∠DCE=60°,求出∠BCD=∠ACE,根据SAS 推出△BCD ≌△ACE,根据全等得出∠EAC=∠B=60°,求出∠EAC=∠ACB,根据平行线的判定得出即可. 试题解析:∵△ABC 是等边三角形, ∴AC=BC,∠B=∠ACB=60°,∵线段CD 绕点C 顺时针旋转60°得到CE, ∴CD=CE,∠DCE=60°,∴∠DCE=∠ACB,即∠BCD+∠DCA=∠DCA+∠ACE, ∴∠BCD=∠ACE, 在△BCD 与△ACE 中,BC ACBCD ACE DC EC =⎧⎪∠=∠⎨⎪=⎩, ∴△BCD ≌△ACE, ∴∠EAC=∠B=60°, ∴∠EAC=∠ACB, ∴AE ∥BC.26. (1)200;(2)72°,作图见解析;(3)310. 【解析】 【分析】(1)用一等奖的人数除以所占的百分比求出总人数;(2)用总人数乘以二等奖的人数所占的百分比求出二等奖的人数,补全统计图,再用360°乘以二等奖的人数所占的百分比即可求出“二等奖”对应的扇形圆心角度数; (3)用获得一等奖和二等奖的人数除以总人数即可得出答案. 【详解】解:(1)这次知识竞赛共有学生2010%=200(名); (2)二等奖的人数是:200×(1﹣10%﹣24%﹣46%)=40(人), 补图如下:“二等奖”对应的扇形圆心角度数是:360°×40200=72°;(3)小华获得“一等奖或二等奖”的概率是:2040200+=310.【点睛】本题主要考查了条形统计图以及扇形统计图,利用统计图获取信息是解本题的关键.27.(1)y=﹣6x,y=﹣12x+2;(2)6;(3)当点E(﹣4,0130130)或(﹣134,0)时,△AOE是等腰三角形.【解析】【分析】(1)利用待定系数法,即可得到反比例函数和一次函数的解析式;(2)利用一次函数解析式求得C(4,0),即OC=4,即可得出△AOB的面积=12×4×3=6;(3)分类讨论:当AO为等腰三角形腰与底时,求出点E坐标即可.【详解】(1)如图,在Rt△OAD中,∠ADO=90°,∵tan∠AOD=32ADOD=,AD=3,∴OD=2,∴A(﹣2,3),把A(﹣2,3)代入y=nx,考点:n=3×(﹣2)=﹣6,所以反比例函数解析式为:y=﹣6x,把B(m,﹣1)代入y=﹣6x,得:m=6,把A(﹣2,3),B(6,﹣1)分别代入y=kx+b,得:23 61k bk b-+=⎧⎨+=-⎩,解得:122kb⎧=-⎪⎨⎪=⎩,所以一次函数解析式为:y=﹣12x+2;(2)当y=0时,﹣12x+2=0,解得:x=4,则C(4,0),所以14362AOCS=⨯⨯=V;(3)当OE3=OE2=AO=,即E20),E30);当OA=AE1OE1=2OD=4,即E1(﹣4,0);当AE4=OE4时,由A(﹣2,3),O(0,0),得到直线AO解析式为y=﹣32x,中点坐标为(﹣1,1.5),令y=0,得到y=﹣134,即E4(﹣134,0),综上,当点E(﹣4,000)或(﹣134,0)时,△AOE是等腰三角形.【点睛】本题考查了反比例函数与一次函数的交点问题,熟练掌握各自的性质是解题的关键.。
2019淄博数学中考真题(解析版)2019淄博数学中考真题(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共12小题)1.比﹣2小1的数是()A.﹣3 B.﹣1 C.1 D.32.国产科幻电影《流浪地球》上映17日,票房收入突破40亿元人民币,将40亿用科学记数法表示为()A.40×108B.4×109C.4×1010D.0.4×10103.下列几何体中,其主视图、左视图和俯视图完全相同的是()A.B.C.D.4.如图,小明从A处沿北偏东40°方向行走至点B处,又从点B处沿东偏南20方向行走至点C处,则∠ABC等于()A.130°B.120°C.110°D.100°5.解分式方程=﹣2时,去分母变形正确的是()A.﹣1+x=﹣1﹣2(x﹣2)B.1﹣x=1﹣2(x﹣2)C.﹣1+x=1+2(2﹣x)D.1﹣x=﹣1﹣2(x﹣2)6.与下面科学计算器的按键顺序:对应的计算任务是()A.0.6×+124B.0.6×+124C.0.6×5÷6+412D.0.6×+4127.如图,矩形内有两个相邻的正方形,其面积分别为2和8,则图中阴影部分的面积为()A.B.2 C.2D.68.如图,在△ABC中,AC=2,BC=4,D为BC边上的一点,且∠CAD=∠B.若△ADC的面积为a,则△ABD的面积为()A.2a B.a C.3a D.a9.若x1+x2=3,x12+x22=5,则以x1,x2为根的一元二次方程是()A.x2﹣3x+2=0 B.x2+3x﹣2=0 C.x2+3x+2=0 D.x2﹣3x﹣2=010.从某容器口以均匀地速度注入酒精,若液面高度h随时间t的变化情况如图所示,则对应容器的形状为()A.B.C.D.11.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位.若得到的函数图象与直线y=2有两个交点,则a的取值范围是()A.a>3 B.a<3 C.a>5 D.a<512.如图,△OA1B1,△A1A2B2,△A2A3B3,…是分别以A1,A2,A3,…为直角顶点,一条直角边在x轴正半轴上的等腰直角三角形,其斜边的中点C1(x1,y1),C2(x2,y2),C3(x3,y3),…均在反比例函数y=(x>0)的图象上.则y1+y2+…+y10的值为()A.2B.6 C.4D.2二、填空题(共5小题)13.单项式a3b2的次数是.14.分解因式:x3+5x2+6x=.15.如图,在正方形网格中,格点△ABC绕某点顺时针旋转角α(0<α<180°)得到格点△A1B1C1,点A与点A1,点B与点B1,点C与点C1是对应点,则α=度.16.某校欲从初三级部3名女生,2名男生中任选两名学生代表学校参加全市举办的“中国梦•青春梦“演讲比赛,则恰好选中一男一女的概率是.17.如图,在以A为直角顶点的等腰直角三角形纸片ABC中,将B角折起,使点B落在AC边上的点D(不与点A,C重合)处,折痕是EF.如图1,当CD=AC时,tanα1=;如图2,当CD=AC时,tanα2=;如图3,当CD=AC时,tanα3=;……依此类推,当CD=AC(n为正整数)时,tanαn=.三、解答题(共7小题)18.解不等式+1>x﹣3.19.已知,在如图所示的“风筝”图案中,AB=AD,AC=AE,∠BAE=∠DAC.求证:∠E=∠C.20.文明交流互鉴是推动人类文明进步和世界和平发展的重要动力.2019年5月“亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注.某市一研究机构为了了解10~60岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:组别年龄段频数(人数)第1组10≤x<20 5第2组20≤x<30 a第3组30≤x<40 35第4组40≤x<50 20第5组50≤x<60 15(1)请直接写出a=,m=,第3组人数在扇形统计图中所对应的圆心角是度.(2)请补全上面的频数分布直方图;(3)假设该市现有10~60岁的市民300万人,问40~50岁年龄段的关注本次大会的人数约有多少?21.“一带一路”促进了中欧贸易的发展,我市某机电公司生产的A,B两种产品在欧洲市场热销.今年第一季度这两种产品的销售总额为2060万元,总利润为1020万元(利润=售价﹣成本).其每件产品的成本和售价信息如下表:A B成本(单位:万元/件) 2 4售价(单位:万元/件) 5 7问该公司这两种产品的销售件数分别是多少?22.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.23.如图1,正方形ABDE和BCFG的边AB,BC在同一条直线上,且AB=2BC,取EF的中点M,连接MD,MG,MB.(1)试证明DM⊥MG,并求的值.(2)如图2,将图1中的正方形变为菱形,设∠EAB=2α(0<α<90°),其它条件不变,问(1)中的值有变化吗?若有变化,求出该值(用含α的式子表示);若无变化,说明理由.24.如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(3,0),B(﹣1,0)两点,与y轴交于点C.(1)求这条抛物线对应的函数表达式;(2)问在y轴上是否存在一点P,使得△PAM为直角三角形?若存在,求出点P的坐标;若不存在,说明理由.(3)若在第一象限的抛物线下方有一动点D,满足DA=OA,过D作DG⊥x轴于点G,设△ADG的内心为I,试求CI的最小值.2019淄博数学中考真题(解析版)参考答案一、单选题(共12小题)1.【解答】解:﹣2﹣1=﹣(1+2)=﹣3.故选:A.【知识点】有理数的减法2.【解答】解:40亿用科学记数法表示为:4×109,故选:B.【知识点】科学记数法—表示较大的数3.【解答】解:A、圆柱的主视图和左视图都是矩形,但俯视图也是一个圆形,不符合题意;B、三棱柱的主视图和左视图、俯视图都不相同,不符合题意;C、长方体的主视图和左视图是相同的,都为一个长方形,但是俯视图是一个不一样的长方形,不符合题意;D、球的三视图都是大小相同的圆,符合题意.故选:D.【知识点】简单组合体的三视图4.【解答】解:如图:∵小明从A处沿北偏东40°方向行走至点B处,又从点B处沿东偏南20方向行走至点C处,∴∠DAB=40°,∠CBF=20°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∵∠EBF=90°,∴∠EBC=90°﹣20°=70°,∴∠ABC=∠ABE+∠EBC=40°+70°=110°,故选:C.【知识点】方向角5.【解答】解:去分母得:1﹣x=﹣1﹣2(x﹣2),故选:D.【知识点】解分式方程6.【解答】解:与下面科学计算器的按键顺序对应的计算任务是0.6×+124,故选:B.【知识点】有理数的混合运算、计算器—有理数7.【解答】解:由题意可得,大正方形的边长为=2,小正方形的边长为,∴图中阴影部分的面积为:×(2﹣)=2,故选:B.【知识点】二次根式的应用8.【解答】解:∵∠CAD=∠B,∠ACD=∠BCA,∴△ACD∽△BCA,∴=()2,即=,解得,△BCA的面积为4a,∴△ABD的面积为:4a﹣a=3a,故选:C.【知识点】相似三角形的判定与性质9.【解答】解:∵x12+x22=5,∴(x1+x2)2﹣2x1x2=5,而x1+x2=3,∴9﹣2x1x2=5,∴x1x2=2,∴以x1,x2为根的一元二次方程为x2﹣3x+2=0.故选:A.【知识点】根与系数的关系10.【解答】解:根据图象可知,容器大致为:容器底部比较粗,然后逐渐变细,然后又逐渐变粗,最后又变得细小,并且最后非常细,推断可能是C容器.故选:C.【知识点】函数的图象11.【解答】解:∵y=x2﹣4x+a=(x﹣2)2﹣4+a,∴将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,得到的函数解析式为y=(x﹣2+1)2﹣4+a+1,即y=x2﹣2x+a﹣2,将y=2代入,得2=x2﹣2x+a﹣2,即x2﹣2x+a﹣4=0,由题意,得△=4﹣4(a﹣4)>0,解得a<5.故选:D.【知识点】二次函数图象与几何变换12.【解答】解:过C1、C2、C3…分别作x轴的垂线,垂足分别为D1、D2、D3…其斜边的中点C1在反比例函数y=,∴C(2,2)即y1=2,∴OD1=D1A1=2,设A1D2=a,则C2D2=a此时C2(4+a,a),代入y=得:a(4+a)=4,解得:a=,即:y2=,同理:y3=,y4=,……∴y1+y2+…+y10=2+++……=,故选:A.【知识点】反比例函数图象上点的坐标特征二、填空题(共5小题)13.【解答】解:单项式a3b2的次数是3+2=5.故答案为5.【知识点】单项式14.【解答】解:x3+5x2+6x,=x(x2+5x+6),=x(x+2)(x+3).【知识点】因式分解-十字相乘法等15.【解答】解:如图,连接CC1,AA1,作CC1,AA1的垂直平分线交于点E,连接AE,A1E∵CC1,AA1的垂直平分线交于点E,∴点E是旋转中心,∵∠AEA1=90°∴旋转角α=90°故答案为:90【知识点】旋转的性质16.【解答】解:画树状图为:共20种等可能的结果数,其中选中一男一女的结果数为12,∴恰好选中一男一女的概率是=,故答案为:.【知识点】列表法与树状图法17.【解答】解:观察可知,正切值的分子是3,5,7,9,…,2n+1,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,2n+1,,中的中间一个.∴tanαn==.故答案为:.【知识点】规律型:图形的变化类、翻折变换(折叠问题)、等腰直角三角形、解直角三角形三、解答题(共7小题)18.【解答】解:将不等式两边同乘以2得,x﹣5+2>2x﹣6解得x<3.【知识点】解一元一次不等式19.【解答】证明:∵∠BAE=∠DAC∴∠BAE+∠CAE=∠DAC+∠CAE∴∠CAB=∠EAD,且AB=AD,AC=AE∴△ABC≌△ADE(SAS)∴∠C=∠E【知识点】全等三角形的判定与性质20.【解答】解:(1)a=100﹣5﹣35﹣20﹣15=25,m%=(20÷100)×100%=20%,第3组人数在扇形统计图中所对应的圆心角是:360°×=126°,故答案为:25,20,126;(2)由(1)值,20≤x<30有25人,补全的频数分布直方图如右图所示;(3)300×=60(万人),答:40~50岁年龄段的关注本次大会的人数约有60万人.【知识点】用样本估计总体、频数(率)分布直方图、频数(率)分布表、扇形统计图21.【解答】解:设A,B两种产品的销售件数分别为x件、y件;由题意得:,解得:;答:A,B两种产品的销售件数分别为160件、180件.【知识点】二元一次方程组的应用22.【解答】解:(1)①连接OD,∵AD是∠BAC的平分线,∴∠DAB=∠DAO,∵OD=OA,∴∠DAO=∠ODA,∴∠DAO=∠ADO,∴DO∥AB,而∠B=90°,∴∠ODB=90°,∴BC是⊙O的切线;②连接DE,∵BC是⊙O的切线,∴∠CDE=∠DAC,∠C=∠C,∴△CDE∽△CAD,∴CD2=CE•CA;(2)连接DE、OE、DF、OF,设圆的半径为R,∵点F是劣弧AD的中点,∴是OF是DA中垂线,∴DF=AF,∴∠FDA=∠FAD,∵DO∥AB,∴∠ODA=∠DAF,∴∠ADO=∠DAO=∠FDA=∠FAD,∴AF=DF=OA=OD,∴△OFD、△OFA是等边三角形,∴∠C=30°,∴OD=OC=(OE+EC),而OE=OD,∴CE=OE=R=3,S阴影=S扇形DFO=×π×32=.【知识点】圆的综合题23.【解答】(1)证明:如图1中,延长DM交FG的延长线于H.∵四边形ABCD,四边形BCFG都是正方形,∴DE∥AC∥GF,∴∠EDM=∠FHM,∵∠EMD=∠FMH,EM=FM,∴△EDM≌△FHM(AAS),∴DE=FH,DM=MH,∵DE=2FG,BG=DG,∴HG=DG,∵∠DGH=∠BGF=90°,MH=DM,∴GM⊥DM,DM=MG,连接EB,BF,设BC=a,则AB=2a,BE=2a,BF=a,∵∠EBD=∠DBF=45°,∴∠EBF=90°,∴EF==a,∵EM=MF,∴BM=EF=a,∵HM=DM,GH=FG,∴MG=DF=a,∴==.(2)解:(1)中的值有变化.理由:如图2中,连接BE,AD交于点O,连接OG,CG,BF,CG交BF 于O′.∵DO=OA,DG=GB,∴GO∥AB,OG=AB,∵GF∥AC,∴O,G,F共线,∵FG=AB,∴OF=AB=DF,∵DF∥AC,AC∥OF,∴DE∥OF,∴OD与EF互相平分,∵EM=MF,∴点M在直线AD上,∵GD=GB=GO=GF,∴四边形OBFD是矩形,∴∠OBF=∠ODF=∠BOD=90°,∵OM=MD,OG=GF,∴MG=DF,设BC=m,则AB=2m,易知BE=2OB=2•2m•sinα=4m sinα,BF=2BO°=2m•cosα,DF=OB=2m•sinα,∵BM=EF==,GM=DF=m•sinα,∴==.【知识点】菱形的性质、相似三角形的判定与性质、列代数式24.【解答】解:(1)∵抛物线y=ax2+bx+3过点A(3,0),B(﹣1,0)∴解得:∴这条抛物线对应的函数表达式为y=﹣x2+2x+3(2)在y轴上存在点P,使得△PAM为直角三角形.∵y=﹣x2+2x+3=﹣(x﹣1)2+4∴顶点M(1,4)∴AM2=(3﹣1)2+42=20设点P坐标为(0,p)∴AP2=32+p2=9+p2,MP2=12+(4﹣p)2=17﹣8p+p2①若∠PAM=90°,则AM2+AP2=MP2∴20+9+p2=17﹣8p+p2解得:p=﹣∴P(0,﹣)②若∠APM=90°,则AP2+MP2=AM2∴9+p2+17﹣8p+p2=20解得:p1=1,p2=3∴P(0,1)或(0,3)③若∠AMP=90°,则AM2+MP2=AP2∴20+17﹣8p+p2=9+p2解得:p=∴P(0,)综上所述,点P坐标为(0,﹣)或(0,1)或(0,3)或(0,)时,△PAM为直角三角形.(3)如图,过点I作IE⊥x轴于点E,IF⊥AD于点F,IH⊥DG于点H∵DG⊥x轴于点G∴∠HGE=∠IEG=∠IHG=90°∴四边形IEGH是矩形∵点I为△ADG的内心∴IE=IF=IH,AE=AF,DF=DH,EG=HG∴矩形IEGH是正方形设点I坐标为(m,n)∴OE=m,HG=GE=IE=n∴AF=AE=OA﹣OE=3﹣m∴AG=GE+AE=n+3﹣m∵DA=OA=3∴DH=DF=DA﹣AF=3﹣(3﹣m)=m∴DG=DH+HG=m+n∵DG2+AG2=DA2∴(m+n)2+(n+3﹣m)2=32∴化简得:m2﹣3m+n2+3n=0配方得:(m﹣)2+(n+)2=∴点I(m,n)与定点Q(,﹣)的距离为∴点I在以点Q(,﹣)为圆心,半径为的圆在第一象限的弧上运动∴当点I在线段CQ上时,CI最小∵CQ=∴CI=CQ﹣IQ=∴CI最小值为.【知识点】二次函数综合题。
2019年山东省中考数学二模试卷含解析一、选择题(每小题3分,共30分)1.(3分)2019相反数的绝对值是()A.9102B.﹣2019C.D.20192.(3分)下列计算正确的是()A.a+2b=2ab B.+=C.x6÷x2=x4D.(a+b)2=a2+b23.(3分)如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.4.(3分)直线a∥b,直角三角形如图放置,若∠1+∠A=65°,则∠2的度数为()A.15°B.20°C.25°D.30°5.(3分)一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分.则小明至少答对的题数是()A.11道B.12道C.13道D.14道6.(3分)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.7.(3分)有下列命题:①若x2=x,则x=1;②若a2=b2,则a=b;③线段垂直平分线上的点到线段两端的距离相等;④相等的弧所对的圆周角相等;其中原命题与逆命题都是真命题的个数是()A.1个B.2个C.3个D.4个8.(3分)正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.9.(3分)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.10.(3分)如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②BF2=PB•EF;③PF•EF =2AD2;④EF•EP=4AO•PO.其中正确的是()A.①②③B.①②④C.①③④D.③④二、填空题:(本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.)11.(3分)据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.12.(3分)分解因式:9﹣12t+4t2=.13.(3分)已知一组数据是3,4,7,a,中位数为4,则a=.14.(3分)“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O 的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD长为寸.15.(4分)如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为30°,看这栋大楼底部C 的俯角为60°,热气球A的高度为270米,则这栋大楼的高度为米.16.(4分)若关于x的方程﹣=﹣1无解,则m的值是.17.(4分)如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要cm.18.(4分)如图,在平面直角坐标系xOy中,已知抛物线y=﹣x(x﹣3)(0≤x≤3)在x轴上方的部分,记作C1,它与x轴交于点O,A1,将C1绕点A1旋转180°得C2,C2与x轴交于另一点A2.请继续操作并探究:将C2绕点A2旋转180°得C3,与x轴交于另一点A3;将C3绕点A3旋转180°得C4,与x轴交于另一点A4,这样依次得到x轴上的点A1,A2,A3,…,A n,…,及抛物线C1,C2,…,∁n,…则∁n的顶点坐标为(n为正整数,用含n的代数式表示).三、解答题(共7小题,62分)19.(7分)(1)计算4cos30°﹣||+()0+(﹣)﹣2(2)化简求值:÷(x+2﹣),其中x=﹣3.20.(8分)主题班会课上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟,根据同学们的选择情况,小明绘制了如图两幅不完整的图表,请根据图表中提供的信息,解答下列问题:(1)参加本次讨论的学生共有人;(2)表中a=,b=;(3)将条形统计图补充完整;(4)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.21.(8分)如图,一次函数y=kx+3的图象分别交x轴、y轴于点B、点C,与反比例函数y=的图象在第四象限的相交于点P,并且P A⊥y轴于点A,已知A(0,﹣6),且S△CAP=18.(1)求上述一次函数与反比例函数的表达式;(2)设Q是一次函数y=kx+3图象上的一点,且满足△OCQ的面积是△BCO面积的2倍,求出点Q的坐标.22.(8分)如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是上的一个动点,过点P作BC 的平行线交AB的延长线于点D.(1)当点P在什么位置时,DP是⊙O的切线?请说明理由;(2)当DP为⊙O的切线时,求线段DP的长.23.(9分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?24.(10分)问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=2cm,AC=4cm.操作发现:(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图2所示的△AC′D,过点C作AC′的平行线,与DC'的延长线交于点E,则四边形ACEC′的形状是.(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B、A、D三点在同一条直线上,得到如图3所示的△AC′D,连接CC',取CC′的中点F,连接AF并延长至点G,使FG=AF,连接CG、C′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论.实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A'点,A'C与BC′相交于点H,如图4所示,连接CC′,试求tan∠C′CH的值.25.(12分)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△P AC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2019年山东省东营市中考数学二模试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)2019相反数的绝对值是()A.9102B.﹣2019C.D.2019【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数;负数的绝对值是它的相反数可得答案.【解答】解:2019相反数是﹣2019,﹣2019的绝对值是2019,故选:D.【点评】此题主要考查了绝对值和相反数,关键是掌握相反数定义,绝对值性质.2.(3分)下列计算正确的是()A.a+2b=2ab B.+=C.x6÷x2=x4D.(a+b)2=a2+b2【分析】直接利用二次根式加减运算法则以及同底数幂的除法运算法则以及完全平方公式分别化简得出答案.【解答】解:A、a+2b无法计算,故此选项错误;B、+无法计算,故此选项错误;C、x6÷x2=x4,正确;D、(a+b)2=a2++2ab+b2,故此选项错误;故选:C.【点评】此题主要考查了二次根式加减运算以及同底数幂的除法运算以及完全平方公式,正确掌握相关运算法则是解题关键.3.(3分)如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(3分)直线a∥b,直角三角形如图放置,若∠1+∠A=65°,则∠2的度数为()A.15°B.20°C.25°D.30°【分析】先根据三角形外角性质,求得∠BDE,进而根据平行线的性质,得到∠DBF=∠BDE=65°,最后根据平角求得∠2.【解答】解:如图所示,∵∠BDE是△ADE的外角,∴∠BDE=∠3+∠A=∠1+∠A=65°,∵a∥b,∴∠DBF=∠BDE=65°,又∵∠ABC=90°,∴∠2=180°﹣90°﹣65°=25°.故选:C.【点评】本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.5.(3分)一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分.小明有两道题未答.至少答对几道题,总分才不会低于60分.则小明至少答对的题数是()A.11道B.12道C.13道D.14道【分析】设小明至少答对的题数是x道,答错的为(20﹣2﹣x)道,根据总分才不会低于60分,这个不等量关系可列出不等式求解.【解答】解:设小明至少答对的题数是x道,5x﹣2(20﹣2﹣x)≥60,x≥13,故应为14.故选:D.【点评】本题考查理解题意的能力,关键是设出相应的题目数,以得分做为不等量关系列不等式求解.6.(3分)在平面直角坐标系中,二次函数y=a(x﹣h)2(a≠0)的图象可能是()A.B.C.D.【分析】根据二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,即可解答.【解答】解:二次函数y=a(x﹣h)2(a≠0)的顶点坐标为(h,0),它的顶点坐标在x轴上,故选:D.【点评】本题考查了二次函数的图象,解决本题的关键是明二次函数的顶点坐标.7.(3分)有下列命题:①若x2=x,则x=1;②若a2=b2,则a=b;③线段垂直平分线上的点到线段两端的距离相等;④相等的弧所对的圆周角相等;其中原命题与逆命题都是真命题的个数是()A.1个B.2个C.3个D.4个【分析】分别写出四个命题的逆命题,然后分别通过解一元二次方程、平方根的定义、根据线段垂直平分线的性质、圆周角定理进行判断.【解答】解:若x2=x,则x=1或x=0,所以原命题错误;若x=1,则x2=x,所以原命题的逆命题正确;若a2=b2,则a=±b,所以原命题错误;若a=b,则a2=b2,所以原命题的逆命题正确;线段垂直平分线上的点到线段两端的距离相等,所以原命题正确;到线段两端的距离相等的点在线段的垂直平分线上,所以原命题的逆命题正确;相等的弧所对的圆周角相等,所以原命题正确;相等的圆周角所对弧不一定相等,所以原命题的逆命题错误.故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论;命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8.(3分)正方形ABCD的边长为2,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A.B.C.D.【分析】求得阴影部分的面积后除以正方形的面积即可求得概率.【解答】解:如图,连接P A、PB、OP;则S半圆O==,S△ABP=×2×1=1,由题意得:图中阴影部分的面积=4(S半圆O﹣S△ABP)=4(﹣1)=2π﹣4,∴米粒落在阴影部分的概率为=,故选:A.【点评】本题考查了几何概率的知识,解题的关键是求得阴影部分的面积,难度不大.9.(3分)如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.4B.C.D.【分析】PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,由于OC=3,PC=a,易得D点坐标为(3,3),则△OCD为等腰直角三角形,△PED也为等腰直角三角形.由PE⊥AB,根据垂径定理得AE=BE=AB=2,在Rt△PBE中,利用勾股定理可计算出PE=1,则PD=PE=,所以a=3+.【解答】解:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,∵⊙P的圆心坐标是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D点坐标为(3,3),∴CD=3,∴△OCD为等腰直角三角形,∴△PED也为等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故选:B.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理和等腰直角三角形的性质.10.(3分)如图,矩形ABCD中,E为DC的中点,AD:AB=:2,CP:BP=1:2,连接EP并延长,交AB的延长线于点F,AP、BE相交于点O.下列结论:①EP平分∠CEB;②BF2=PB•EF;③PF•EF =2AD2;④EF•EP=4AO•PO.其中正确的是()A.①②③B.①②④C.①③④D.③④【分析】由条件设AD=x,AB=2x,就可以表示出CP=x,BP=x,用三角函数值可以求出∠EBC的度数和∠CEP的度数,则∠CEP=∠BEP,运用勾股定理及三角函数值就可以求出就可以求出BF、EF的值,从而可以求出结论.【解答】解:设AD=x,AB=2x,∵四边形ABCD是矩形,∴AD=BC,CD=AB,∠D=∠C=∠ABC=90°.DC∥AB,∴BC=x,CD=2x,∵CP:BP=1:2,∴CP=x,BP=x.∵E为DC的中点,∴CE=CD=x,∴tan∠CEP===,tan∠EBC==,∴∠CEP=30°,∠EBC=30°,∴∠CEB=60°,∴∠PEB=30°,∴∠CEP=∠PEB,∴EP平分∠CEB,故①正确;∵DC∥AB,∴∠CEP=∠F=30°,∴∠F=∠EBP=30°,∠F=∠BEF=30°,∴△EBP∽△EFB,∴,∴BE.BF=BP.EF.∵∠F=BEF,∴BE=BF,∴②BF2=PB•EF.故②正确;∵∠F=30°,∴PF=2PB=x,过点E作EG⊥AF于G,∴∠EGF=90°,∴EF=2EG=2x,∴PF•EF=x•2x=8x2,2AD2=2×(x)2=6x2,∵6x2≠8x2,∴PF•EF≠2AD2,故本答案错误;在Rt△ECP中,∵∠CEP=30°,∴EP=2PC=x.∵tan∠P AB==,∴∠P AB=30°,∴∠APB=60°,∴∠AOB=90°,在Rt△AOB和Rt△POB中,由勾股定理得,AO=x,PO=x,∴EF•EP=2x•x=4x24AO•PO=4×x x=4x2.∴EF•EP=4AO•PO.故④正确.故选:B.【点评】本题考查了矩形的性质的运用,相似三角形的判定及性质的运用,特殊角的正切值的运用,勾股定理的运用及直角三角形的性质的运用,解答时根据比例关系设出未知数表示出线段的长度是关键.二、填空题:(本大题共8小题,其中11-14题每小题3分,15-18题每小题3分,共28分.只要求填写最后结果.)11.(3分)据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为5.4×106万元.【分析】在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n的形式时,其中1≤|a|<10,n为比整数位数少1的数.【解答】解:5 400 000=5.4×106万元.故答案为5.4×106.【点评】用科学记数法表示一个数的方法是(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).12.(3分)分解因式:9﹣12t+4t2=(3﹣2t)2.【分析】原式利用完全平方公式分解即可得到结果.【解答】解:原式=(3﹣2t)2.故答案为:(3﹣2t)2【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.13.(3分)已知一组数据是3,4,7,a,中位数为4,则a=4.【分析】根据中位数的定义,当数据有偶数个时,中位数即是正中间两个数的平均数,继而得出a的值.【解答】解:∵有数据个数是偶数,且中位数是4,∴a=4,故答案为:4.【点评】本题考查了中位数,熟练掌握中位数的定义是解题的关键;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.14.(3分)“圆材埋壁”是我国古代数一学著作《九章算术》中的一个问题.“今有圆材,埋壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表达是:如图所示,CD为⊙O 的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=1尺,则直径CD长为26寸.【分析】连接OA,设OA=r,则OE=r﹣CE=r﹣1,再根据垂径定理求出AE的长,在Rt△OAE中根据勾股定理求出r的值,进而得出结论.【解答】解:连接OA,设OA=r,则OE=r﹣CE=r﹣1,∵AB⊥CD,AB=1尺,∴AE=AB=5寸,在Rt△OAE中,OA2=AE2+OE2,即r2=52+(r﹣1)2,解得r=13(寸).∴CD=2r=26寸.故答案为:26.【点评】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15.(4分)如图,热气球的探测器显示,从热气球A看一栋大楼顶部B的俯角为30°,看这栋大楼底部C 的俯角为60°,热气球A的高度为270米,则这栋大楼的高度为180米.【分析】过A作BC的垂线,设垂足为D.在Rt△ACD中,利用∠CAD的正切函数求出邻边AD的长,进而可在Rt△ABD中,利用已知角的三角函数求出BD的长;由BC=CD﹣BD即可求出楼的高度.【解答】解:作AD⊥CB,交CB的延长线于D点.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=270米.在Rt△ACD中,tan∠CAD=,∴AD==90.在Rt△ABD中,tan∠BAD=,∴BD=AD•tan30°=90×=90.∴BC=CD﹣BD=270﹣90=180.答:这栋大楼的高为180米.故答案为180.【点评】本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.16.(4分)若关于x的方程﹣=﹣1无解,则m的值是1或.【分析】分式方程去分母转化为整式方程,由分式方程无解确定出x的值,代入整式方程计算即可求出m的值.【解答】解:去分母得:3﹣2x+mx﹣2=﹣x+3,整理得:(m﹣1)x=2,当m﹣1=0,即m=1时,方程无解;当m﹣1≠0时,x﹣3=0,即x=3时,方程无解,此时=3,即m=,故答案为:1或.【点评】此题考查了分式方程的解,分式方程无解分为最简公分母为0的情况与分式方程转化为的整式方程无解的情况.17.(4分)如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要10cm.【分析】要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将长方体展开,连接A、B′,∵AA′=1+3+1+3=8(cm),A′B′=6cm,根据两点之间线段最短,AB′==10cm.故答案为:10.【点评】考查了平面展开﹣最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.18.(4分)如图,在平面直角坐标系xOy中,已知抛物线y=﹣x(x﹣3)(0≤x≤3)在x轴上方的部分,记作C1,它与x轴交于点O,A1,将C1绕点A1旋转180°得C2,C2与x轴交于另一点A2.请继续操作并探究:将C2绕点A2旋转180°得C3,与x轴交于另一点A3;将C3绕点A3旋转180°得C4,与x轴交于另一点A4,这样依次得到x轴上的点A1,A2,A3,…,A n,…,及抛物线C1,C2,…,∁n,…则∁n的顶点坐标为(3n﹣,(﹣1)n+1•)(n为正整数,用含n的代数式表示).【分析】根据图形连续旋转,旋转奇数次时,图象在x轴下方,每两个图象全等且相隔三个单位;旋转偶数次时,图象在x轴上方,每两个图象全等且相隔三个单位.【解答】解:这样依次得到x轴上的点A1,A2,A3,…,A n,…,及抛物线C1,C2,…,∁n,….则Cn的顶点坐标为(3n﹣,(﹣1)n+1•),故答案为:(3n﹣,(﹣1)n+1•).【点评】本题考查了二次函数图象与几何变换,交点间的距离是3,顶点间的横向距离距离是3,纵向距离是.三、解答题(共7小题,62分)19.(7分)(1)计算4cos30°﹣||+()0+(﹣)﹣2(2)化简求值:÷(x+2﹣),其中x=﹣3.【分析】(1)根据特殊角的三角函数值、绝对值、零指数幂和负整数指数幂可以解答本题;(2)根据分式的加减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(1)4cos30°﹣||+()0+(﹣)﹣2=4×﹣(2﹣)+1﹣3+9=2﹣2++1﹣3+9=8;(2)÷(x+2﹣)====,当x=﹣3时,原式=.【点评】本题考查分式化简求值、特殊角的三角函数值、绝对值、零指数幂和负整数指数幂,解答本题的关键是明确它们各自的计算方法.20.(8分)主题班会课上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟,根据同学们的选择情况,小明绘制了如图两幅不完整的图表,请根据图表中提供的信息,解答下列问题:(1)参加本次讨论的学生共有50人;(2)表中a=10,b=0.16;(3)将条形统计图补充完整;(4)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.【分析】(1)由B观点的人数和所占的频率即可求出总人数;(2)由总人数即可求出a、b的值,(3)由(2)中的数据即可将条形统计图补充完整;(4)画出树状图,然后根据概率公式列式计算即可得解.【解答】解:(1)总人数=12÷0.24=50(人),故答案为:50;(2)a=50×0.2=10,b==0.16,故答案为:(3)条形统计图补充完整如图所示:(4)根据题意画出树状图如下:由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,所以选中观点D(合理竞争,合作双赢)的概率==.【点评】此题考查了列表法或树状图法求概率以及条形统计图.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)如图,一次函数y=kx+3的图象分别交x轴、y轴于点B、点C,与反比例函数y=的图象在第四象限的相交于点P,并且P A⊥y轴于点A,已知A(0,﹣6),且S△CAP=18.(1)求上述一次函数与反比例函数的表达式;(2)设Q是一次函数y=kx+3图象上的一点,且满足△OCQ的面积是△BCO面积的2倍,求出点Q的坐标.【分析】(1)由一次函数表达式可得出点C的坐标,结合A点坐标以及三角形的面积公式可得出AP的长度,从而得出点P的坐标,由点P的坐标结合待定系数法即可求出一次函数及反比例函数的表达式;(2)设点Q的坐标为(m,﹣m+3).由一次函数的表达式可找出点B的坐标,结合等底三角形面积的性质可得出关于m的一元一次方程,解方程即可得出m的值,将其代入点Q的坐标中即可.【解答】解:(1)令一次函数y=kx+3中的x=0,则y=3,即点C的坐标为(0,3),∴AC=3﹣(﹣6)=9.∵S△CAP=AC•AP=18,∴AP=4,∵点A的坐标为(0,﹣6),∴点P的坐标为(4,﹣6).∵点P在一次函数y=kx+3的图象上,∴﹣6=4k+3,解得:k=﹣;∵点P在反比例函数y=的图象上,∴﹣6=,解得:n=﹣24.∴一次函数的表达式为y=﹣x+3,反比例函数的表达式为y=﹣.(2)令一次函数y=﹣x+3中的y=0,则0=﹣x+3,解得:x=,即点B的坐标为(,0).设点Q的坐标为(m,﹣m+3).∵△OCQ的面积是△BCO面积的2倍,∴|m|=2×,解得:m=±,∴点Q的坐标为(﹣,9)或(,﹣3).【点评】本题考查了反比例函数与一次函数的交点问题、待定系数法求函数解析式以及三角形的面积公式,解题的关键是:(1)求出点P的坐标;(2)由三角形的面积关系找出关于m的方程.本题属于基础题,难度不大,解决该题型题目时,根据给定的数量关系找出点的坐标,再结合待定系数法求出函数解析式即可.22.(8分)如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是上的一个动点,过点P作BC 的平行线交AB的延长线于点D.(1)当点P在什么位置时,DP是⊙O的切线?请说明理由;(2)当DP为⊙O的切线时,求线段DP的长.【分析】(1)根据当点P是的中点时,得出=,得出P A是○O的直径,再利用DP∥BC,得出DP⊥P A,问题得证;(2)利用切线的性质,由勾股定理得出半径长,进而得出△ABE∽△ADP,即可得出DP的长.【解答】解:(1)当点P是的中点时,DP是⊙O的切线.理由如下:∵AB=AC,∴=,又∵=,∴=,∴P A是⊙O的直径,∵=,∴∠1=∠2,又AB=AC,∴P A⊥BC,又∵DP∥BC,∴DP⊥P A,∴DP是⊙O的切线.(2)连接OB,设P A交BC于点E.由垂径定理,得BE=BC=6,在Rt△ABE中,由勾股定理,得:AE===8,设⊙O的半径为r,则OE=8﹣r,在Rt△OBE中,由勾股定理,得:r2=62+(8﹣r)2,解得r=,∵DP∥BC,∴∠ABE=∠D,又∵∠1=∠1,∴△ABE∽△ADP,∴=,即=,解得:DP=.【点评】此题主要考查了切线的判定与性质以及勾股定理和相似三角形的判定与性质,根据已知得出△ABE∽△ADP是解题关键.23.(9分)春平中学要为学校科技活动小组提供实验器材,计划购买A型、B型两种型号的放大镜.若购买8个A型放大镜和5个B型放大镜需用220元;若购买4个A型放大镜和6个B型放大镜需用152元.(1)求每个A型放大镜和每个B型放大镜各多少元;(2)春平中学决定购买A型放大镜和B型放大镜共75个,总费用不超过1180元,那么最多可以购买多少个A型放大镜?【分析】(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,列出方程组即可解决问题;(2)由题意列出不等式求出即可解决问题.【解答】解:(1)设每个A型放大镜和每个B型放大镜分别为x元,y元,可得:,解得:,答:每个A型放大镜和每个B型放大镜分别为20元,12元;(2)设购买A型放大镜a个,根据题意可得:20a+12×(75﹣a)≤1180,解得:a≤35,答:最多可以购买35个A型放大镜.【点评】本题考查二元一次方程组的应用、一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式解答.24.(10分)问题情境:在综合与实践课上,老师让同学们以“矩形纸片的剪拼”为主题开展数学活动.如图1,将:矩形纸片ABCD沿对角线AC剪开,得到△ABC和△ACD.并且量得AB=2cm,AC=4cm.(1)将图1中的△ACD以点A为旋转中心,按逆时针方向旋转∠α,使∠α=∠BAC,得到如图2所示的△AC′D,过点C作AC′的平行线,与DC'的延长线交于点E,则四边形ACEC′的形状是菱形.(2)创新小组将图1中的△ACD以点A为旋转中心,按逆时针方向旋转,使B、A、D三点在同一条直线上,得到如图3所示的△AC′D,连接CC',取CC′的中点F,连接AF并延长至点G,使FG=AF,连接CG、C′G,得到四边形ACGC′,发现它是正方形,请你证明这个结论.实践探究:(3)缜密小组在创新小组发现结论的基础上,进行如下操作:将△ABC沿着BD方向平移,使点B与点A重合,此时A点平移至A'点,A'C与BC′相交于点H,如图4所示,连接CC′,试求tan∠C′CH的值.【分析】(1)先判断出∠ACD=∠BAC,进而判断出∠BAC=∠AC'D,进而判断出∠CAC'=∠AC'D,即可的结论;(2)先判断出∠CAC'=90°,再判断出AG⊥CC',CF=C'F,进而判断出四边形ACGC'是平行四边形,即可得出结论;(3)先判断出∠ACB=30°,进而求出BH,AH,即可求出CH,C'H,即可得出结论.【解答】解:(1)在如图1中,∵AC是矩形ABCD的对角线,∴∠B=∠D=90°,AB∥CD,∴∠ACD=∠BAC,在如图2中,由旋转知,AC'=AC,∠AC'D=∠ACD,∴∠BAC=∠AC'D,∵∠CAC'=∠BAC,∴∠CAC'=∠AC'D,∴AC∥C'E,∵AC'∥CE,∴四边形ACEC'是平行四边形,∴▱ACEC'是菱形,故答案为:菱形;(2)在图1中,∵四边形ABCD是矩形,∴AB∥CD,∴∠CAD=∠ACB,∠B=90°,∴∠BAC+∠ACB=90°在图3中,由旋转知,∠DAC'=∠DAC,∴∠ACB=∠DAC',∴∠BAC+∠DAC'=90°,∵点D,A,B在同一条直线上,∴∠CAC'=90°,由旋转知,AC=AC',∵点F是CC'的中点,∴AG⊥CC',CF=C'F,∵AF=FG,∴四边形ACGC'是平行四边形,∵AG⊥CC',∴▱ACGC'是菱形,∵∠CAC'=90°,∴菱形ACGC'是正方形;(3)在Rt△ABC中,AB=2,AC=4,∴BC'=AC=4,BD=BC=2,sin∠ACB==,∴∠ACB=30°,由(2)结合平移知,∠CHC'=90°,在Rt△BCH中,∠ACB=30°,∴BH=BC•sin30°=,∴C'H=BC'﹣BH=4﹣,在Rt△ABH中,AH=AB=1,∴CH=AC﹣AH=4﹣1=3,在Rt△CHC'中,tan∠C′CH==.【点评】此题是四边形综合题,主要考查了矩形是性质,平行四边形,菱形,矩形,正方形的判定和性质,勾股定理,锐角三角函数,旋转的性质,判断出∠CAC'=90°是解本题的关键.25.(12分)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△P AC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;(2)过点P作x轴的垂线,交AC于点N,先运用待定系数法求出直线AC的解析式,设P点坐标为(x,x2+2x﹣3),根据AC的解析式表示出点N的坐标,再根据S△P AC=S△P AN+S△PCN就可以表示出△P AC的面积,运用顶点式就可以求出结论;(3)分三种情况进行讨论:①以A为直角顶点;②以D为直角顶点;③以M为直角顶点;设点M的坐标为(0,t),根据勾股定理列出方程,求出t的值即可.【解答】解:(1)由于抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),可设抛物线的解析式为:y=a (x+3)(x﹣1),将C点坐标(0,﹣3)代入,得:a(0+3)(0﹣1)=﹣3,解得a=1,则y=(x+3)(x﹣1)=x2+2x﹣3,。
山东省淄博市淄川区2019年中考数学二模考试试卷一、选择题(共12题;共24分)1.下列实数中,与4最接近的是()A. 3.5B.C.D.2.分式方程的解是()A. B. C. D. 无解3.下列事件:①在足球赛中,弱队战胜强队.②抛掷1枚硬币,硬币落地时正面朝上.③任取两个正整数,其和大于1④长为3cm,5cm,9cm的三条线段能围成一个三角形.其中确定事件有()A. 1个B. 2个C. 3个D. 4个4.下列运算中,不正确的是()A. B. C. D.5.观察如图所示的三种视图,与之对应的物体是()A. B. C. D.6.若反比例函数的图象经过点,在这个函数的图象上任取点和点.若,则下列式子中正确的是()A. B. C. D.7.若数使关于的不等式的最小正整数解是,则的取值范围是()A. B. C. D.8.把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A. 45°B. 60°C. 75°D. 82.5°9.为了解中学生获取信息的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式和图中a的值分别是()A. 抽样调查,24B. 普查,24C. 抽样调查,26D. 普查,2610.已知直线y1=kx+1(k<0)与直线y2=mx(m>0)的交点坐标为(,m),则不等式组mx﹣2<kx+1<mx的解集为()A. x>B. <x<C. x<D. 0<x<11.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于()A. B. C. D.12.若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A. B. C. D.二、填空题(共5题;共7分)13.顺次连接正方形各边中点,得到一个新正方形,则新正方形与原正方形的相似比是________.14.请你写出一个既能提取公因式,用后又能用十字相乘法分解因式的多项式:________.15.如图,已知点是的直径上的一点,过点作弦,使.若的度数为40°,则的度数是________.16.如图,直线y x+4与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.17.如图,在直角△ABC中,∠C=90°,AC=6,BC=8,P、Q分别为边BC、AB上的两个动点,若要使△APQ 是等腰三角形且△BPQ是直角三角形,则AQ=________.三、综合题(共7题;共72分)18.已知,如图,∠1+∠2=180°,求证:∠3=∠4.19.一艘船由港沿北偏东60°方向航线10 至港,然后再沿北偏西30°方向航行10 至港.(1)求,两港之间的距离;(2)确定港在港的什么方向?(画出示意图,并解答)20.某校260名学生参加植树活动,要求每人植树4~7棵,活动结束后随机抽查了20名学生每人的植树量,并分为四种类型,A:4棵;B:5棵;C:6棵;D:7棵.将各类的人数绘制成扇形图(如图1)和条形图(如图2),经确认扇形图是正确的,而条形图尚有一处不符合题意.回答下列问题:(1)写出条形图中存在的不符合题意,并说明理由;(2)写出这20名学生每人植树量的众数和中位数;(3)求这20名学生每人植树量的平均数,并估计这260名学生共植树多少棵?21.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤MN,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)求矩形菜园ABCD面积的最大值.22.已知关于的一元二次方程有两个不相等的实数根.(1)求实数的取值范围;(2)若原方程的两个实数根分别为,,且满足,求的值.23.如图(1)问题:如图1,在四边形ABCD中,点P为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)探究:如图2,在四边形ABCD中,点P为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立.说明理由.(3)应用:请利用(1)(2)获得的经验解决问题:如图3,在△ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A 出发,沿边AB向点B 运动,且满足∠DPC=∠A.设点P的运动时间为t(秒),当DC的长与△ABD底边上的高相等时,求t的值.24.如图,抛物线y=ax2+bx+2经过点A(−1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC= S△ABD?若存在,请求出点D坐标;若不存在,请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.答案解析部分一、选择题1.【答案】C【解析】【解答】解:∵<0∴与4最接近的是故答案为:C【分析】直接利用估算无理数的大小方法得出最接近4的实数.2.【答案】C【解析】【解答】解:去分母得:3x-3=2x,解得:x=3,经检验x=3是分式方程的解.故答案为:C.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.3.【答案】B【解析】【解答】解:确定表示在一定条件下,必然出现或不可能出现的事情.因此,A.在足球赛中,弱队战胜强队是随机事件,故本选项不符合题意;B.抛掷1枚硬币,硬币落地时正面朝上是随机事件,故本选项不符合题意;C.任取两个正整数,其和大于1是必然事件,故本选项符合题意;D.长为3cm,5cm,9cm的三条线段能围成一个三角形是不可能事件,故本选项符合题意.∴确定事件有2个.故答案为:B.【分析】利用随机事件的定义对各个选项逐一分析判断即可得出正确结论。
{来源}2019年淄博中考数学 {适用范围:3. 九年级}{标题}2019年山东省淄博市初中学业水平考试数 学本试卷分第Ⅰ卷和第Ⅱ卷两部分,共8页,满分120分, 考试时间120分钟,考试结束后将本试卷和答题卡一并交回, 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔,将区县,学校,姓名,考试号,座号,填写在答题卡和试卷规定位置,并核对条形码.2.第Ⅰ卷每小题选出答案后,用2B 铅笔涂黑答题卡对应题目的答案标号,如需改动,用橡皮擦干净后再选涂其他答案标号.3.第二卷必须用0.5毫米黑色签字笔作答,字体工整以及清晰写在答题卡各题目指定区域内如需改动,先划掉原来答案,然后再写上新答案,严禁使用涂改液,胶带纸,修正带修改,不允许使用计算器.4.保证答题卡清洁,完整,严禁折叠,严禁在答题卡上做任何标记. 5.评分以答题卡上的答案为依据,不按以上要求作答的答案无效.第Ⅰ卷(选择题,共48分){题型:1-选择题}一、选择题:本大题共12个小题,每小题4分共48分。
在每小题所给出的四个选项中,只有一项是符合题目要求的。
{题目}1.(2019年淄博T1)比-2小1的实数是(A )﹣3 (B )3 (C )﹣1 (D )1 {答案}A{解析}本题考查了有理数的运算﹣2﹣1=﹣3,因此本题选A . {分值}4{章节:[1-1-3-2]有理数的减法} {考点:两个有理数的减法} {类别:常考题} {难度:1-最简单} {题目}2.(2019年淄博T2)国产科幻电影《流浪地球》上映17日,票房收入突破40亿元人民币,将40亿用科学记数法表示为(A )81040⨯(B )9104⨯(C )10104⨯(D )101040⨯.{答案}B{解析}本题考查了科学记数法的表示,1亿=810,40亿=981041040⨯=⨯,因此本题选B .{分值}4{章节:[1-1-5-2]科学计数法}{考点:将一个绝对值较大的数科学计数法} {类别:常考题} {难度:2-简单}{题目}3.(2019年淄博T3)下列几何体中,其主视图、左视图和俯视图完全相同的是(A)(B)(C)(D){答案}D{解析}本题考查了三视图,A选项主视图是矩形,左视图是矩形,俯视图是圆;B选项主视图是矩形,左视图是矩形,俯视图是三角形;C选项主视图是矩形,左视图是矩形,俯视图是矩形,但大小不同;D选项主视图是圆,左视图是圆,俯视图是圆,大小相同,因此本题选D.{分值}4{章节:[1-29-2]三视图}{考点:几何体的三视图}{类别:常考题}{难度:2-简单}{题目}4.(2019年淄博T4)如图,小明,从A处沿北偏东40°方向行走至点B处,又从点B处沿东偏南20°方向行走至点C处,则∠ABC等于(A)130°(B)120°(C)110°(D)100°{答案}C{解析}本题考查了方位角,如图,由题意知∠DAB=40°,∴∠ABF=40°,∠EBC=20°,∴∠CBF=70°,∠ABC=∠ABF+∠CBF=40°+70°=110°,因此本题选C.{分值}4{章节:[1-5-1-3] 同位角、内错角、同旁内角}{考点:解直角三角形-方位角}{类别:常考题} {难度:2-简单}{题目}5.(2019年淄博T5)解分式方程22121--=--xx x 时,去分母变形正确的是 (A )()2211---=+-x x (B )()2211--=-x x (C )()x x -+=+-2211(D )()2211---=-x x{答案}D{解析}本题考查了分式方程的解法,方程的最简公分母是x ﹣2,在分式方程两边同乘以x ﹣2得()2211---=-x x ,因此本题选D .{分值}4{章节:[1-15-3]分式方程}{考点:解含两个分式的分式方程} {类别:常考题} {难度:3-中等难度} {题目}6.(2019年淄博T6)与下面科学计算器的按键顺序:对应的计算任务是(A )4125660+⨯. (B )4126560+⨯. (C )1246560+÷⨯.(D )1246560+⨯.{答案}B{解析},因此本题选B .{分值}4{章节:[1-1-5-1]乘方}{考点:计算器进行有理数的计算} {类别:常考题} {难度:3-中等难度} {题目}7.(2019年淄博T7)如图,矩形内有两个相邻的正方形,其面积分别为2和8.则图中阴影部分的面积为(A )2(B )2(C )22(D )6{答案}B{解析}本题以图形的阴影面积为背景考查了根式的运算及面积的转换, 由题意知正方形EFGH 的面积是2,正方形ABCD 的面积是8,可知EF =2,AB =228=,BM =AB +AM =AB +EF =23222=+, 矩形BCNM 的面积=BM ×BC =122223=⨯,阴影部分面积=矩形BCNM 的面积﹣正方形ABCD 的面积﹣正方形EFGH 的面积=12﹣8﹣2 =2因此本题选B .{分值}4{章节:[1-16-3]二次根式的加减} {考点:二次根式的应用} {类别:常考题} {难度:3-中等难度}{题目}8.(2019年淄博T8)如图,在△ABC 中AC =2,BC =4,D 为BC 边上的一点,且∠CAD =∠B ,若△ADC 的面积为a ,则△ABD 的面积为(A )2a(B )a 25 (C )3a (D )a 27 {答案}C{解析}本题考查了相似三角形的性质与判定,∵∠CAD =∠B ,∠C=∠C ,∴△ACD ∽△BCA ,S △ACD ∶S △BCA =412=⎪⎭⎫⎝⎛BC AC ,S △ACD = a ,S △BCA =4a ,S △BCD = S △BCA ﹣S △ACD =4a ﹣a =3a ,因此本题选C . {分值}4{章节:[1-27-1-2]相似三角形的性质} {考点:相似三角形面积的性质} {类别:常考题}{难度:3-中等难度}{题目}9.(2019年淄博T9)若321=+x x ,52221=+x x ,则以1x ,2x 为根的一元二次方程是(A )0232=+-x x (B )0232=-+x x (C )0232=++x x(D )0232=--x x{答案}A{解析}本题考查了一元二次方程根与系数的关系,()()225322222122121=-=+-+=x x x x x x ,321=+x x ,以1x ,2x 为根的一元二次方程()021212=++-x x x x x ,∴0232=+-x x .因此本题选A . {分值}4{章节:[1-21-3] 一元二次方程根与系数的关系} {考点:根与系数关系} {类别:常考题} {难度:3-中等难度} {题目}10.(2019年淄博T10)从某容器口以均匀的速度注入酒精,若液面高度h 随时间t ,的变化情况,如图所示,则对应容器的形状为(A )(B ) (C ) (D ){答案}C{解析}本题考查了函数图象的实际应用,从高度与时间的函数图象看有三个过程,第一个过程随着时间的增加,高度增加的越来越快,第二个过程,随着时间的增加,高度增加的越来越慢,第三个过程,随着时间的增加,高度均匀增加,,因此本题选C . {分值}4{章节:[1-19-1-2] 函数的图象}{考点:函数的图象} {类别:常考题} {难度:3-中等难度}{题目}11.(2019年淄博T11)将二次函数a x x y +-=42的图象向左平移一个单位,再向上平移一个单位,若得到的函数图象与直线2=y 有两个交点,则a 的取值范围是 (A )3>a (B )3<a(C )5>a(D )5<a{答案}D{解析}本题考查了二次函数图象的平移,()42422-+-=+-=a x a x x y ,向左平移一个单位,再向上平移一个单位,()()31141222-+-=+-++-=a x a x y ,顶点坐标为(1,a ﹣3),函数图象与直线2=y 有两个交点,函数图象开口向上,因此23<-a ,即5<a . 因此本题选D . {分值}4{章节:[1-22-1-4]二次函数y=ax2+bx+c 的图象和性质} {考点:二次函数图象的平移} {类别:常考题} {难度:3-中等难度}{题目}12.(2019年淄博T12)如图,△11B OA ,△221B A A ,△332B A A ,…是分别以1A ,2A ,3A ,…为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点1C (1x ,1y ),2C (2x ,2y ),3C (3x ,3y ),…均在反比例函数xy 4=(0>x )的图象上,则1021y y y +++ 的值为(A )102(B )6(C )24(D )72{答案}A{解析}本题考查了反比函数的综合应用,解答过程如下分别过1C ,2C ,3C 作x 轴的垂线,交x 轴于点1D ,2D ,3D ,由题意可知△11D OC 是等腰直角三角形,1C (1x ,1y ),411=⋅y x ∴1x =1y =2;同理△221D C A 是等腰直角三角形,2C (2x ,2y ),22221y D C D A ==,4211==OD OA ,∴221124y D A OA OD +=+=,点2C 在xy 4=上,∴()4422=+y y ,解得2222--=y (舍去),2222-=y ;同理△332D C A 是等腰直角三角形,3C (3x ,3y ),33332y D C D A ==,42422121-==D A A A ,∴33322113244244y y D A A A OA OD +=+-+=++=,点3C 在xy 4=上, ∴()42433=+y y ,解得22323--=y (舍去),22323-=y ; 以此类推,32424-=y ,…,9210210-=y .故,102921023242223222221021=-++-+-+-+=+++ y y y 所以本题选A .{分值}4{章节:[1-26-1]反比例函数的图像和性质} {考点:其他反比例函数综合题} {类别:发现探究} {难度:5-高难度}第Ⅱ卷(非选择题共72分){题型:1-填空题}二填空题:本大题共5个小题,每小题4分,共20分。
山东省淄博市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若二次函数()20y ax bx c a =++≠的图象与x 轴有两个交点,坐标分别是(x 1,0),(x 2,0),且12x x <.图象上有一点()00M x y ,在x 轴下方,则下列判断正确的是( )A .0a >B .240b ac -≥C .102x x x <<D .()()01020a x x x x --< 2.如图,AB 是⊙O 的切线,半径OA=2,OB 交⊙O 于C ,∠B=30°,则劣弧»AC 的长是( )A .12πB .13π C .23π D .43π 3.若分式11x x -+的值为零,则x 的值是( ) A .1 B .1- C .1± D .24.下列计算正确的是( )A .a 6÷a 2=a 3B .(﹣2)﹣1=2C .(﹣3x 2)•2x 3=﹣6x 6D .(π﹣3)0=15.估计8-1的值在( )A .0到1之间B .1到2之间C .2到3之间D .3至4之间 6.如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能是( )A .B .C .D .7.如图,将一正方形纸片沿图(1)、(2)的虚线对折,得到图(3),然后沿图(3)中虚线的剪去一个角,展开得平面图形(4),则图(3)的虚线是( )A .B .C .D .8.不等式组73357x x x -+<+⎧⎨-≤⎩的解集在数轴上表示正确的是( ) A .B .C .D .9.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是( )A .﹣2.5B .﹣0.6C .+0.7D .+510.一、单选题如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90° 11.2-的相反数是A .2-B .2C .12D .12- 12.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,则下列结论:①ac>0;②a-b+c<0; ③当x 0<时,y 0<;2a b 0+=④,其中错误的结论有( )A .②③B .②④C .①③D .①④二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果2()a x b x +=+v v v v ,那么=_____(用向量a r ,b r 表示向量x r ).14.如图,利用图形面积的不同表示方法,能够得到的代数恒等式是____________________(写出一个即可).15.函数中,自变量x的取值范围是_____.16.据媒体报道,我国研制的“察打一体”无人机的速度极快,经测试最高速度可达204000米/分,将204000这个数用科学记数法表示为_____.17.一个不透明的袋子中装有5个球,其中3个红球、2个黑球,这些球除颜色外无其它差别,现从袋子中随机摸出一个球,则它是黑球的概率是_____.18.化简:9=______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.(1)求证:无论实数m取何值,方程总有两个实数根;(2)若方程两个根均为正整数,求负整数m的值.20.(6分)为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.21.(6分)对x,y定义一种新运算T,规定T(x,y)=22ax byx y++(其中a,b是非零常数,且x+y≠0),这里等式右边是通常的四则运算.如:T(3,1)=22319314a b a b⨯+⨯+=+,T(m,﹣2)=242am bm+-.填空:T(4,﹣1)=(用含a,b的代数式表示);若T(﹣2,0)=﹣2且T(5,﹣1)=1.①求a与b的值;②若T (3m ﹣10,m )=T (m ,3m ﹣10),求m 的值.22.(8分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A .减少杨树新增面积,控制杨树每年的栽种量B .调整树种结构,逐渐更换现有杨树C .选育无絮杨品种,并推广种植D .对雌性杨树注射生物干扰素,避免产生飞絮E .其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有 人;(2)扇形统计图中,扇形E 的圆心角度数是 ;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.23.(8分)如图,将矩形ABCD 绕点A 顺时针旋转,得到矩形AB′C′D′,点 C 的对应点 C′恰好落在CB 的延长线上,边AB 交边 C′D′于点E .(1)求证:BC =BC′;(2)若 AB =2,BC =1,求AE 的长.24.(10分)先化简,再求值:22111211a a a a a a ---÷----,其中21a =.25.(10分)已知点E 是矩形ABCD 的边CD 上一点,BF ⊥AE 于点F ,求证△ABF ∽△EAD.26.(12分)如图,已知△ABC,请用尺规作图,使得圆心到△ABC各边距离相等(保留作图痕迹,不写作法).27.(12分)新春佳节,电子鞭炮因其安全、无污染开始走俏.某商店经销一种电子鞭炮,已知这种电子鞭炮的成本价为每盒80元,市场调查发现,该种电子鞭炮每天的销售量y(盒)与销售单价x(元)有如下关系:y=﹣2x+320(80≤x≤160).设这种电子鞭炮每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该种电子鞭炮销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)该商店销售这种电子鞭炮要想每天获得2400元的销售利润,又想卖得快.那么销售单价应定为多少元?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据抛物线与x轴有两个不同的交点,根的判别式△>0,再分a>0和a<0两种情况对C、D选项讨论即可得解.【详解】A、二次函数y=ax2+bx+c(a≠0)的图象与x轴有两个交点无法确定a的正负情况,故本选项错误;B、∵x1<x2,∴△=b2-4ac>0,故本选项错误;C、若a>0,则x1<x0<x2,若a<0,则x0<x1<x2或x1<x2<x0,故本选项错误;D、若a>0,则x0-x1>0,x0-x2<0,所以,(x0-x1)(x0-x2)<0,∴a(x0-x1)(x0-x2)<0,若a<0,则(x0-x1)与(x0-x2)同号,∴a(x0-x1)(x0-x2)<0,综上所述,a(x0-x1)(x0-x2)<0正确,故本选项正确.2.C【解析】【分析】由切线的性质定理得出∠OAB=90°,进而求出∠AOB=60°,再利用弧长公式求出即可.【详解】∵AB是⊙O的切线,∴∠OAB=90°,∵半径OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧ACˆ的长是:602180π⨯=23π,故选:C.【点睛】本题考查了切线的性质,圆周角定理,弧长的计算,解题的关键是先求出角度再用弧长公式进行计算. 3.A【解析】试题解析:∵分式11xx-+的值为零,∴|x|﹣1=0,x+1≠0,解得:x=1.故选A.4.D【解析】解:A.a6÷a2=a4,故A错误;B.(﹣2)﹣1=﹣12,故B错误;C.(﹣3x2)•2x3=﹣6x5,故C错;D.(π﹣3)0=1,故D正确.故选D .5.B【解析】试题分析:∵23,∴1<2,在1到2之间,故选B .考点:估算无理数的大小.6.A【解析】【分析】由一次函数y 1=x 与二次函数y 2=ax 2+bx+c 图象相交于P 、Q 两点,得出方程ax 2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax 2+(b-1)x+c 与x 轴有两个交点,根据方程根与系数的关系得出函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0,即可进行判断. 【详解】点P 在抛物线上,设点P (x ,ax 2+bx+c ),又因点P 在直线y=x 上,∴x=ax 2+bx+c ,∴ax 2+(b-1)x+c=0;由图象可知一次函数y=x 与二次函数y=ax 2+bx+c 交于第一象限的P 、Q 两点,∴方程ax 2+(b-1)x+c=0有两个正实数根.∴函数y=ax 2+(b-1)x+c 与x 轴有两个交点, 又∵-2b a>0,a >0 ∴-12b a -=-2b a +12a >0 ∴函数y=ax 2+(b-1)x+c 的对称轴x=-12b a->0, ∴A 符合条件,故选A .7.D【解析】【分析】本题关键是正确分析出所剪时的虚线与正方形纸片的边平行.【详解】要想得到平面图形(4),需要注意(4)中内部的矩形与原来的正方形纸片的边平行,故剪时,虚线也与正方形纸片的边平行,所以D是正确答案,故本题正确答案为D选项.【点睛】本题考查了平面图形在实际生活中的应用,有良好的空间想象能力过动手能力是解题关键.8.C【解析】【分析】分别求出每一个不等式的解集,根据口诀:大小小大中间找确定不等式组的解集,在数轴上表示时由包括该数用实心点、不包括该数用空心点判断即可.【详解】解:解不等式﹣x+7<x+3得:x>2,解不等式3x﹣5≤7得:x≤4,∴不等式组的解集为:2<x≤4,故选:C.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9.B【解析】【分析】求它们的绝对值,比较大小,绝对值小的最接近标准的篮球的质量.【详解】解:|+5|=5,|-3.5|=3.5,|+0.7|=0.7,|-2.5|=2.5,|-0.6|=0.6,∵5>3.5>2.5>0.7>0.6,∴最接近标准的篮球的质量是-0.6,故选B.【点睛】本题考查了正数和负数,掌握正数和负数的定义以及意义是解题的关键.10.A【解析】分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.详解:∵AD是BC边上的高,∠ABC=60°,∴∠BAD=30°,∵∠BAC=50°,AE 平分∠BAC ,∴∠BAE=25°,∴∠DAE=30°﹣25°=5°,∵△ABC 中,∠C=180°﹣∠ABC ﹣∠BAC=70°,∴∠EAD+∠ACD=5°+70°=75°,故选A .点睛:本题考查了三角形内角和定理:三角形内角和为180°.解决问题的关键是三角形外角性质以及角平分线的定义的运用.11.B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .12.C【解析】【分析】①根据图象的开口方向,可得a 的范围,根据图象与y 轴的交点,可得c 的范围,根据有理数的乘法,可得答案;②根据自变量为-1时函数值,可得答案;③根据观察函数图象的纵坐标,可得答案;④根据对称轴,整理可得答案.【详解】图象开口向下,得a <0,图象与y 轴的交点在x 轴的上方,得c >0,ac <,故①错误;②由图象,得x=-1时,y <0,即a-b+c <0,故②正确;③由图象,得图象与y 轴的交点在x 轴的上方,即当x <0时,y 有大于零的部分,故③错误;④由对称轴,得x=-2b a=1,解得b=-2a ,2a+b=0故④正确;故选D .【点睛】考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2b a -v v【解析】 ∵2(a r +x r )=b r +x r ,∴2a r +2x r =b r +x r ,∴x r =b r -2a r ,故答案为2b a -v v.点睛:本题看成平面向量、一元一次方程等知识,解题的关键是灵活运用所学知识解决问题,属于中考基础题.14.(a+b )2=a 2+2ab+b 2【解析】【分析】完全平方公式的几何背景,即乘法公式的几何验证.此类题型可从整体和部分两个方面分析问题.本题从整体来看,整个图形为一个正方形,找到边长,表示出面积,从部分来看,该图形的面积可用两个小正方形的面积加上2个矩形的面积表示,从不同角度思考,但是同一图形,所以它们面积相等,列出等式.【详解】解:,a b Q 从整体来看,大正方形的边长是+ ()2,a b ∴+大正方形的面积为2Q 从部分来看,该图形面积为两个小正方形的面积加上个矩形的面积和,222a ab b 该图形面积为,∴++ ,Q 同一图形()2222.a b a ab b ∴+=++()2222.a b a ab b +=++故答案是。
山东省淄博市2019-2020学年中考数学考前模拟卷(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .42.如图,ABCD Y 中,E 是BC 的中点,设AB a,AD b ==u u u r r u u u r r ,那么向量AE u u u r 用向量a b r r 、表示为( )A .12a b +r rB .12a b -r rC .12a b -+r rD .12a b --r r3.把抛物线y =﹣2x 2向上平移1个单位,得到的抛物线是( )A .y =﹣2x 2+1B .y =﹣2x 2﹣1C .y =﹣2(x+1)2D .y =﹣2(x ﹣1)24.如图,有一张三角形纸片ABC ,已知∠B =∠C =x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A .B .C .D .5.下列计算正确的是( ) A .x 2x 3=x 6 B .(m+3)2=m 2+9 C .a 10÷a 5=a 5D .(xy 2)3=xy 66.义安区某中学九年级人数相等的甲、乙两班学生参加同一次数学测试,两班平均分和方差分别为x 甲=89分,x 乙=89分,S 甲2=195,S 乙2=1.那么成绩较为整齐的是( ) A .甲班B .乙班C .两班一样D .无法确定7.下列计算结果正确的是( )A .329()a a -=B .236a a a ⋅=C .3332a a a +=D .0(cos 600.5)1︒-=8.如图所示的几何体,上下部分均为圆柱体,其左视图是( )A .B .C .D .9.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( ) A .众数是5B .中位数是5C .平均数是6D .方差是3.610.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列说法:①2a+b=0,②当﹣1≤x≤3时,y <0;③3a+c=0;④若(x 1,y 1)(x 2、y 2)在函数图象上,当0<x 1<x 2时,y 1<y 2,其中正确的是( )A .①②④B .①③C .①②③D .①③④11.一个几何体由大小相同的小正方体搭成,从上面看到的几何体的形状图如图所示,其中小正方形中的数字表示在这个位置小正方体的个数.从左面看到的这个几何体的形状图的是( )A .B .C .D .12.如图,若二次函数y=ax 2+bx+c (a≠0)图象的对称轴为x=1,与y 轴交于点C ,与x 轴交于点A 、点B (﹣1,0),则①二次函数的最大值为a+b+c ;②a ﹣b+c <0; ③b 2﹣4ac <0;④当y >0时,﹣1<x <3,其中正确的个数是( )A .1B .2C .3D .4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,将△AOB 绕点O 按逆时针方向旋转45︒后得到COD ∆,若15AOB ∠=︒,则AOD ∠的度数是 _______.14.已知a 、b 为两个连续的整数,且28a b <<,则+a b =________.15.方程组35231x y x y +=⎧⎨-=⎩的解是________.16.某校园学子餐厅把WIFI 密码做成了数学题,小亮在餐厅就餐时,思索了一会,输入密码,顺利地连接到了学子餐厅的网络,那么他输入的密码是______.17.如图,抛物线2y x 2x 3=-++交x 轴于A ,B 两点,交y 轴于点C ,点C 关于抛物线的对称轴的对称点为E ,点G ,F 分别在x 轴和y 轴上,则四边形EDFG 周长的最小值为__________.18.若a﹣3有平方根,则实数a的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某学校为增加体育馆观众坐席数量,决定对体育馆进行施工改造.如图,为体育馆改造的截面示意图.已知原座位区最高点A到地面的铅直高度AC长度为15米,原坡面AB的倾斜角∠ABC为45°,原坡脚B与场馆中央的运动区边界的安全距离BD为5米.如果按照施工方提供的设计方案施工,新座位区最高点E到地面的铅直高度EG长度保持15米不变,使A、E两点间距离为2米,使改造后坡面EF的倾斜角∠EFG为37°.若学校要求新坡脚F需与场馆中央的运动区边界的安全距离FD至少保持2.5米(即FD≥2.5),请问施工方提供的设计方案是否满足安全要求呢?请说明理由.(参考数据:sin37°≈35,tan37°≈34)20.(6分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?21.(6分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间.22.(8分)(操作发现)(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;(类比探究)(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.23.(8分)在□ABCD,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形;若CF=3,BF=4,DF=5,求证:AF平分∠DAB.24.(10分)丁老师为了解所任教的两个班的学生数学学习情况,对数学进行了一次测试,获得了两个班的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.①A、B两班学生(两个班的人数相同)数学成绩不完整的频数分布直方图如下(数据分成5组:x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100):②A、B两班学生测试成绩在80≤x<90这一组的数据如下:A班:80 80 82 83 85 85 86 87 87 87 88 89 89B班:80 80 81 81 82 82 83 84 84 85 85 86 86 86 87 87 87 87 87 88 88 89 ③A、B两班学生测试成绩的平均数、中位数、方差如下:平均数中位数方差A班80.6 m 96.9B班80.8 n 153.3根据以上信息,回答下列问题:补全数学成绩频数分布直方图;写出表中m、n的值;请你对比分析A、B两班学生的数学学习情况(至少从两个不同的角度分析).25.(10分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了_____名学生,最喜欢用电话沟通的所对应扇形的圆心角是____°;(2)将条形统计图补充完整;(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率.26.(12分)某小学学生较多,为了便于学生尽快就餐,师生约定:早餐一人一份,一份两样,一样一个,食堂师傅在窗口随机发放(发放的食品价格一样),食堂在某天早餐提供了猪肉包、面包、鸡蛋、油饼四样食品.按约定,“小李同学在该天早餐得到两个油饼”是事件;(可能,必然,不可能)请用列表或树状图的方法,求出小张同学该天早餐刚好得到猪肉包和油饼的概率.27.(12分)在△ABC中,已知AB=AC,∠BAC=90°,E为边AC上一点,连接BE.如图1,若∠ABE=15°,O为BE中点,连接AO,且AO=1,求BC的长;如图2,D为AB上一点,且满足AE=AD,过点A作AF⊥BE交BC于点F,过点F作FG⊥CD交BE的延长线于点G,交AC于点M,求证:BG=AF+FG.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】首先确定原点位置,进而可得C点对应的数.【详解】∵点A、B表示的数互为相反数,AB=6∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,又∵BC=2,点C在点B的左边,∴点C对应的数是1,故选C.【点睛】本题主要考查了数轴,关键是正确确定原点位置.2.A【解析】【分析】根据AE AB BE =+u u u r u u u r u u u r ,只要求出BE u u u r即可解决问题. 【详解】解:Q 四边形ABCD 是平行四边形,AD BC AD BC ∴∥,=, BC AD b ∴==u u u r u u u r r , BE CE Q =, 1BE b 2∴=u u u r r ,AE AB BE,AB a =+=u u u r u u u r u u u r u u u r r Q ,1AE a b 2∴=+u u u r r r ,故选:A. 【点睛】本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型. 3.A 【解析】 【分析】根据“上加下减”的原则进行解答即可. 【详解】解:由“上加下减”的原则可知,把抛物线y =﹣2x 2向上平移1个单位,得到的抛物线是:y =﹣2x 2+1. 故选A . 【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键. 4.C 【解析】 【分析】根据全等三角形的判定定理进行判断. 【详解】解:A 、由全等三角形的判定定理SAS 证得图中两个小三角形全等, 故本选项不符合题意;B 、由全等三角形的判定定理SAS 证得图中两个小三角形全等, 故本选项不符合题意;C 、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选C.【点睛】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.5.C【解析】【分析】根据乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方进行计算即可得到答案. 【详解】x2•x3=x5,故选项A不合题意;(m+3)2=m2+6m+9,故选项B不合题意;a 10÷a 5=a 5,故选项C 符合题意; (xy 2)3=x 3y 6,故选项D 不合题意. 故选:C . 【点睛】本题考查乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方解题的关键是掌握乘方的运算法则、完全平方公式、同底数幂的除法和积的乘方的运算. 6.B 【解析】 【分析】根据方差的意义,方差反映了一组数据的波动大小,故可由两人的方差得到结论. 【详解】 ∵S 甲2>S 乙2,∴成绩较为稳定的是乙班。
2019年山东省淄博市周村区中心中学中考数学二模试卷一.选择题(每题4分,满分48分)1.如图,数轴上有A,B,C,D四点,其中表示互为相反数的点是()A. 点A和BB. 点B和CC. 点C和DD. 点A和D2.使函数1xy+=有意义的自变量x的取值范围为()A. x≠0B. x≥﹣1C. x≥﹣1且x≠0D. x>﹣1且x≠03.已知ab=23,则aa b+的值为()A. 53B.52C.25D.354.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°5.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( )A. 8B. 4C. 6D. 无法计算6. 将如图绕AB边旋转一周,所得几何体的俯视图为()A. B. C. D.7.下列命题中的假命题是()A. 过直线外一点有且只有一条直线与这条直线平行B. 平行于同一直线的两条直线平行C. 直线y=2x﹣1与直线y=2x+3一定互相平行D. 如果两个角的两边分别平行,那么这两个角相等8.如图,A,B两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C也在格点上,且△ABC 为等腰三角形,满足条件的点C有( )A. 6个B. 7个C. 8个D. 9个9.如图所示,在△ABC中,AB=AC,M,N分别是AB,AC的中点,D,E为BC上的点,连接DN、EM,若AB=5cm,BC=8cm,DE=4cm,则图中阴影部分的面积为( )A. 1cm2B. 1.5cm2C. 2cm2D. 3cm210.如图,矩形ABCD中,AB=1,BC=2,点P从点B出发,沿B-C-D向终点D匀速运动,设点P走过的路程为x,△ABP的面积为S,能正确反映S与x之间函数关系的图象是( )A. B. C. D.11.如图,在直角坐标系中,⊙A的圆心A的坐标为(﹣1,0),半径为1,点P为直线y=﹣34x+3上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是()A. 2B. 3C. 2D. 2312.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分.某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( ) A. 甲B. 甲与丁C. 丙D. 丙与丁二.填空题(满分20分,每小题4分)13.分解因式:3x 3﹣27x =_____.14.如图,平行四边形ABCD 中,E 为AD 的中点,已知△DEF 的面积为1,则平行四边形ABCD 的面积为_______.15.设α,β是方程x 2﹣x ﹣2019=0的两个实数根,则α3﹣2021α﹣β的值为_____;16.如图,在 Rt △ABC 中,C 为直角顶点,∠ABC=20°,O 为斜边的中点,将 OA 绕着点 O 逆时针旋转θ°(0<θ<180)至 OP ,当△BCP 恰为轴对称图形时,θ的值为________________.17.如图,正方形ABCD 中,M 为BC 上一点,ME ⊥AM ,ME 交AD 的延长线于点E. 若AB=12,BM=5,则DE 的长为_________.三.解答题18.计算:|﹣21825﹣π)0+4cos45°.19.解不等式组21114(2)xx x+-⎧⎨+>-⎩20.一个不透明的袋中装有黄球、黑球和红球共40个,它们除颜色外都相同,其中红球有22个,且经过大量试验发现摸出一个球为黄球的频率接近0.125.(1)求袋中有多少个黑球;(2)现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个球是黄球的概率达到15,问取出了多少个黑球?21.使得函数值为0的自变量的值称为函数的零点.例如,对于函数y=x﹣1,令y=0可得x=1,我们说1是函数y=x﹣1的零点.已知函数y=x2﹣2mx﹣2(m+3)(m为常数)(1)当m=0时,求该函数的零点.(2)证明:无论m取何值,该函数总有两个零点.22.如图:在△ABC中,AB=AC,AD是底边BC上的中线,且AE=EC.请说明AB=2DE的理由?23.如图,已知AB 是⊙O 的直径,C 是⊙O 上的点,连接AC 、CB ,过O 作EO ∥CB 并延长EO 到F ,使EO =FO ,连接AF 并延长,AF 与CB 的延长线交于D .求证:AE 2=FG •FD .24.如图,一次函数y =kx +b (k ≠0)与反比例函数y =ax(a ≠0)的图象在第一象限交于A 、B 两点,A 点的坐标为(m ,4),B 点的坐标为(3,2),连接OA 、OB ,过B 作BD ⊥y 轴,垂足为D ,交OA 于C .若OC =CA ,(1)求一次函数和反比例函数的表达式; (2)求△AOB 的面积;(3)在直线BD 上是否存在一点E ,使得△AOE 是直角三角形,求出所有可能的E 点坐标.2019年山东省淄博市周村区中心中学中考数学二模试卷解析一.选择题(每题4分,满分48分)1.如图,数轴上有A,B,C,D四点,其中表示互为相反数的点是()A. 点A和BB. 点B和CC. 点C和DD. 点A和D 【答案】B【解析】【分析】观察数轴,利用相反数的定义判断即可.【详解】如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是点B和点C,故选B.【点睛】此题考查了相反数,以及数轴,熟练掌握相反数的定义是解本题的关键.2.使函数1xy+=x的取值范围为()A. x≠0B. x≥﹣1C. x≥﹣1且x≠0D. x>﹣1且x≠0【答案】C【解析】试题分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使1xx+在实数范围内有意义,必须x10x1{{x1x0x0+≥≥-⇒⇒≥-≠≠且x0≠. 故选C.考点:1.函数自变量的取值范围;2.二次根式和分式有意义的条件.3.已知ab=23,则aa b+的值为()A. 53B.52C.25D.35【答案】C 【解析】【分析】根据比例的性质,由ab=23,求出aa b+的值为多少即可.【详解】∵ab=23,∴22=2=35aa b++.故选C.【点睛】此题主要考查了比例的性质和应用,要熟练掌握.4.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于()A. 132°B. 134°C. 136°D. 138°【答案】B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.【点睛】本题考查了平行线性质的应用,能正确作出辅助线是解此题的关键.5.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( )A. 8B. 4C. 6D. 无法计算【答案】A【解析】利用勾股定理,由Rt△ABC中,BC为斜边,可得AB2+AC2=BC2,代入数据可得AB2+AC2+BC2=2BC2=2×22=8.故选:A.6. 将如图绕AB边旋转一周,所得几何体的俯视图为()A. B. C. D.【答案】B【解析】试题分析:将该图形绕AB旋转一周后是由上面一个圆锥体、下面一个圆柱体的组合而成的几何体,从上往下看其俯视图是外面一个实线的大圆(包括圆心),里面一个虚线的小圆,故选B.考点:简单组合体的三视图;点、线、面、体.7.下列命题中的假命题是()A. 过直线外一点有且只有一条直线与这条直线平行B. 平行于同一直线的两条直线平行C. 直线y=2x﹣1与直线y=2x+3一定互相平行D. 如果两个角的两边分别平行,那么这两个角相等【答案】D【解析】【分析】根据平行公理即可判断A、根据两直线平行的判定可以判定B、C;根据平行线的性质即可判定D.【详解】A. 过直线外一点有且只有一条直线与这条直线平行,正确。
机密★启用前 试卷类型:A2019年初中学业模拟考试数 学 试 题本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页.满分120分.考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生务必用0.5毫米黑色签字笔将区(县)、毕业学校、姓名、考试号、座号填写在答题卡和试卷的相应位置.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号.答案不能答在试卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔作答(作图时可用2B 铅笔),答案必须写在答题卡各题目指定区域内相应的位置,要求字体工整、笔迹清晰;如需改动,先划掉原来的答案,然后再写上新的答案.答案不能写在试卷上.4.答案不能使用涂改液、胶带纸、修正带修改.不按以上要求作答的答案无效.第Ⅰ卷(选择题 共48分)一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项涂在答题卡的相应位置上.每题4分,错选、不选或选出的答案超过一个,均记零分.1.与无理数3最接近的整数是A .1B .2C .3D .42.下列运算中正确的是A.abc c b a =+)(B.)2)(1(22-+=--a a a aC.))((11c b b a c a c b b a ++-=+-+ D.n m n m a a +=)( 3.正n 边形的内角和不大于︒1000,则n 不可能是A.5B.6C.7D.84.将一元二次方程x 2-6x -5=0化成(x +a )2=b 的形式,则b 等于 A .-4 B .4C .-14D .145.如图△ABC 中,D 为BC 边上一点,且△ABD 与△ADC 面积相等,则线段AD 一定是 A .△ABC 的高B .△ABC 的中线C .△ABC 的角平分线D .以上选项都不对6.下列四个图形中,既是轴对称图形,又是中心对称图形的是A ①② B.①③ C.②③ D.①②③7.一列数:,2,3, ,20.则这列数中是3的倍数的概率是A.203B.103C.52D.207 8. 若n 满足(n -2011)2+(2018-n )2=1,则(2018-n )(n -2011)等于 A.-1 B.0C.12D.19. 如图,P 为平行四边形ABCD 的对称中心,以P 为圆心作圆,过P 的任意直线与圆相交A .B M >DN B . B M <10如图,ΔABC 中,AB =AC ,∠A =40O ,延长AC 到D ,使CD =BC ,点P 是ΔABD 的内心,则∠BPC =A.105°B.110°C.130°D.145°B B P C11.如图,直角三角形AOB 中,O 为坐标原点,∠AOB =90°,∠B =30°,若点A 在反比例函数y =1x(x >0)图像上运动,那么点B 必在函数( )的图像上运动。
2019年山东省淄博市周村区大姜中学中考数学二模试卷一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的.每小题4分,错选、不选或选出的答案超过一个,均记零分.1.下列叙述中,不正确的是()A.任何一个有理数都可以用数轴上的一个点表示B.在数轴上,表示互为相反数的两个点与原点距离相等C.在数轴上,到原点距离越远的点所表示的数一定越大D.在数轴上,右边的点所表示的数比左边的点所表示的数大2.若x=﹣2是关于x的方程3x﹣k+1=0的解,则k的值为()A.﹣5B.﹣1C.D.53.下列计算正确的是()A.3﹣2=B.•(÷)=C.(﹣)÷=2D.﹣3=4.下列运算正确的是()A.x3+x5=x8B.(y+1)(y﹣1)=y2﹣1C.a10÷a2=a5D.(﹣a2b)3=a6b35.七年级1班甲、乙两个小组的14名同学身高(单位:厘米)如下:以下叙述错误的是()A.甲组同学身高的众数是160B.乙组同学身高的中位数是161C.甲组同学身高的平均数是161D.两组相比,乙组同学身高的方差大6.若关于x,y的方程组的解满足x﹣y>﹣,则m的最小整数解为()A.﹣3B.﹣2C.﹣1D.07.已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是()A.2B.﹣1C.2或﹣1D.不存在8.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B.C.D.9.如图,边长为4的等边△ABC中,D、E分别为AB,AC的中点,则△ADE的面积是()A.B.C.D.210.用半径为5的半圆围成一个圆锥的侧面,则该圆锥的底面半径等于()A.3B.5C.D.11.如图,等边三角形OAB的边长为2,将它沿AB所在的直线对折,得到△O′AB,则点O的对应点O′的坐标是()A.(2,)B.(4,2)C.(4,)D.(3,)12.如图,在菱形ABCD中,按以下步骤作图:①分别以点C 和点D 为圆心,大于CD 为半径作弧,两弧交于点M ,N ; ②作直线MN ,且MN 恰好经过点A ,与CD 交于点E ,连接BE , 则下列说法错误的是( )A .∠ABC =60°B .S △ABE =2S △ADEC .若AB =4,则BE =D .sin ∠CBE =二、填空题:本题共5小题,满分20分,只要求填写最后结果,每小题填对得4分.13.不等式组有3个整数解,则a 的取值范围是 .14.如图,AB 为⊙O 的直径,C ,D ,E 为⊙O 上的点,=,∠ABD =60°,则∠CEB = °.15.已知抛物线y =ax 2+bx +c 上部分点的横坐标x 与纵坐标y 的对应值如下表有以下几个结论:①抛物线y =ax 2+bx +c 的开口向上;②抛物线y =ax 2+bx +c 的对称轴为直线x =﹣1; ③方程ax 2+bx +c =0的根为0和2;④当y >8时,x 的取值范围是x <﹣2或x >4.其中正确的结论是 (把你认为正确结论的序号都填上). 16.命题“等角的余角相等”的题设是 ,结论是 .17.三棱柱的三视图如图所示,已知△EFG 中,EF =8cm ,EG =12cm ,∠EFG =45°.则AB 的长为 cm .三、解答题:本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.18.(5分)﹣=.19.(5分)计算题:(1)先化简,再求值:(﹣m﹣n)÷m2,其中m﹣n=.(2)计算:2sin30°﹣(π﹣)0+|﹣1|+()﹣120.(8分)为弘扬中华优秀传统文化,某校开展了“经典雅韵”诵读比赛活动,现随机抽取部分同学的成绩进行统计,并绘制如下两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?.21.(8分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.(1)求边AC的长;(2)设边BC的垂直平分线与边AB的交点为D,求的值.22.(8分)已知,△ABC的两边AB、AC的长是一元二次方程x2﹣2(m+1)x+m2+5=0的两个实数根,第三边BC的长为7,当△ABC是等腰三角形时,求m的值.23.(9分)已知:正方形ABCD,∠EAF=45°.(1)如图1,当点E、F分别在边BC、CD上,连接EF,求证:EF=BE+DF;童威同学是这样思考的,请你和他一起完成如下解答:证明:将△ADF绕点A顺时针旋转90°,得△ABG,所以△ADF≌△ABG.(2)如图2,点M、N分别在边AB、CD上,且BN=DM.当点E、F分别在BM、DN上,连接EF,探究三条线段EF、BE、DF之间满足的数量关系,并证明你的结论.(3)如图3,当点E、F分别在对角线BD、边CD上.若FC=2,则BE的长为.24.(9分)如图,过原点O的直线与双曲线y=交于上A(m,n)、B,过点A的直线交x轴正半轴于点D,交y轴负半轴于点E,交双曲线y=于点P.(1)当m=2时,求n的值;(2)当OD:OE=1:2,且m=3时,求点P的坐标;(3)若AD=DE,连接BE,BP,求△PBE的面积.2019年山东省淄博市周村区大姜中学中考数学二模试卷参考答案与试题解析一、选择题:本题共12小题,在每小题所给出的四个选项中,只有一个是正确的.每小题4分,错选、不选或选出的答案超过一个,均记零分.1.【分析】根据数轴的特点进行判断,结合实数与数轴上点的一一对应关系进行分析判断即可.【解答】解:∵实数与数轴上的点一一对应,故答案A正确;∵两个互为相反数的数绝对值相等,∴表示互为相反数的两个点与原点距离相等,故答案B正确;∵在数轴的负半轴上,到原点距离越远的点所表示的数一定越小,故答案C错误;∵通常以向右的方向表示数轴的正方向,∴右边的点所表示的数比左边的点所表示的数大,故答案D正确.故选:C.【点评】本题考查的是数轴的概念及数轴与实数的对应关系,把握数轴上点的分布规律是判断选项的关键.2.【分析】把x=﹣2代入方程计算即可求出k的值.【解答】解:把x=﹣2代入方程得:﹣6﹣k+1=0,解得:k=﹣5,故选:A.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.【分析】根据二次根式的加减乘除运算法则逐一计算可得.【解答】解:A、3与﹣2不是同类二次根式,不能合并,此选项错误;B、•(÷)=•==,此选项正确;C、(﹣)÷=(5﹣)÷=5﹣,此选项错误;D、﹣3=﹣2=﹣,此选项错误;故选:B.【点评】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式混合运算顺序和运算法则.4.【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【解答】解:A、x3+x5,无法计算,故此选项错误;B、(y+1)(y﹣1)=y2﹣1,正确;C、a10÷a2=a8,故此选项错误;D、(﹣a2b)3=﹣a6b3,故此选项错误.故选:B.【点评】此题主要考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.5.【分析】根据众数、中位数和平均数及方差的定义逐一判断可得.【解答】解:A、甲组同学身高的众数是160,此选项正确;B、乙组同学身高的中位数是161,此选项正确;C、甲组同学身高的平均数是=161,此选项正确;D、甲组的方差为,乙组的方差为,甲组的方差大,此选项错误;故选:D.【点评】本题主要考查众数、中位数和平均数及方差,掌握众数、中位数和平均数及方差的定义和计算公式是解题的关键.6.【分析】方程组中的两个方程相减得出x﹣y=3m+2,根据已知得出不等式,求出不等式的解集即可.【解答】解:,①﹣②得:x﹣y=3m+2,∵关于x,y的方程组的解满足x﹣y>﹣,∴3m+2>﹣,解得:m>﹣,∴m的最小整数解为﹣1,故选:C.【点评】本题考查了解一元一次不等式和解二元一次方程组、二元一次方程组的解、一元一次不等式的整数解等知识点,能得出关于m的不等式是解此题的关键.7.【分析】先由二次项系数非零及根的判别式△>0,得出关于m的不等式组,解之得出m的取值范围,再根据根与系数的关系可得出x1+x2=,x1x2=,结合+=4m,即可求出m的值.【解答】解:∵关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1、x2,∴,解得:m>﹣1且m≠0.∵x1、x2是方程mx2﹣(m+2)x+=0的两个实数根,∴x1+x2=,x1x2=,∵+=4m,∴=4m,∴m=2或﹣1,∵m>﹣1,∴m=2.故选:A.【点评】本题考查了根与系数的关系、一元二次方程的定义以及根的判别式,解题的关键是:(1)根据二次项系数非零及根的判别式△>0,找出关于m的不等式组;(2)牢记两根之和等于﹣、两根之积等于.8.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,从图中可以看出,OA上升较快,AB上升较慢,BC上升最快,由此可知这个容器下面容积较大,中间容积最大,上面容积最小,故选:C.【点评】本题考查利用函数的图象解决实际问题,正确理解函数的图象所表示的意义是解题的关键,注意容器粗细和水面高度变化的关系.9.【分析】由于D、E是AB、AC的中点,因此DE是△ABC的中位线,由此可得△ADE和△ABC 相似,且相似比为1:2;根据相似三角形的面积比等于相似比的平方,可求出△ABC的面积.【解答】解:∵等边△ABC的边长为4,∴S △ABC =×42=4,∵点D ,E 分别是△ABC 的边AB ,AC 的中点,∴DE 是△ABC 的中位线,∴DE ∥BC ,DE =BC ,AD =AB ,AE =AC ,即===,∴△ADE ∽△ABC ,相似比为,故S △ADE :S △ABC =1:4,即S △ADE =S △ABC =×=, 故选:A .【点评】本题主要考查等边三角形的性质、相似三角形性质及三角形的中位线定理,解题的关键是掌握等边三角形的面积公式、相似三角形的判定与性质及中位线定理.10.【分析】用到的等量关系为:圆锥的弧长=底面周长.【解答】解:设底面半径为R ,则底面周长=2R π,半圆的弧长=×2π×5=2πR ,∴R =.故选:D .【点评】本题考查了圆锥的计算,利用了圆的周长公式,弧长公式求解.11.【分析】由折叠的性质和等边三角形的性质知OB =AO ′,可先求出A 点坐标,然后将A 点坐标向右平移2个单位即可得到O ′点的坐标.【解答】解:过A 作AD ⊥x 轴于D ;在Rt △OAD 中,OA =2,∠AOD =60°,则:OD =1,AD =; ∴A (1,);由折叠的性质和等边三角形的性质知:AO ′=OB =2,∴O ′的坐标是(3,).故选:D .【点评】此题主要考查了等边三角形的性质、解直角三角形以及图象的翻折变换,能够根据折叠的性质得到AO′的长是解答此题的关键.12.【分析】由作法得AE垂直平分CD,则∠AED=90°,CE=DE,于是可判断∠DAE=30°,∠D=60°,从而得到∠ABC=60°;利用AB=2DE得到S△ABE =2S△ADE;作EH⊥BC于H,如图,若AB=4,则可计算出CH=CE=1,EH=CH=,利用勾股定理可计算出BE=2;利用正弦的定义得sin∠CBE==.【解答】解:由作法得AE垂直平分CD,∴∠AED=90°,CE=DE,∵四边形ABCD为菱形,∴AD=2DE,∴∠DAE=30°,∠D=60°,∴∠ABC=60°,所以A选项的说法正确;∵AB=2DE,∴S△ABE =2S△ADE,所以B选项的说法正确;作EH⊥BC于H,如图,若AB=4,在Rt△ECH中,∵∠ECH=60°,∴CH=CE=1,EH=CH=,在Rt△BEH中,BE==2,所以C选项的说法错误;sin∠CBE===,所以D选项的说法正确.故选:C.【点评】本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了菱形的性质和解直角三角形.二、填空题:本题共5小题,满分20分,只要求填写最后结果,每小题填对得4分.13.【分析】先解x的不等式组,然后根据整数解的个数确定a的取值范围.【解答】解:解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点评】本题考查了一元一次不等式组的整数解,难度适中,关键是根据整数解确定关于a的不等式组.14.【分析】连接OC,OD,根据圆周角定理即可得到结论.【解答】解:连接OC,OD,∵AB为⊙O的直径,∠ABD=60°,∴∠AOD=120°,∴∠BOD=60°,∵=,∴∠DOC=∠BOD=60°,∴∠BOC=120°,∴∠CEB=∠BOC=60°,故答案为:60.【点评】本题考查了圆周角定理,圆心角,弧,弦的关系,正确的作出辅助线是解题的关键.15.【分析】根据二次函数的性质和表格中的数据,可以判断各个小题中的结论是否成立,本题得以解决.【解答】解:由表格可知,抛物线的对称轴是直线x==1,故②错误,抛物线的顶点坐标是(1,﹣1),有最小值,故抛物线y=ax2+bx+c的开口向上,故①正确,当y=0时,x=0或x=2,故方程ax2+bx+c的根为0和2,故③正确,当y>8时,x的取值范围是x<﹣2或x>4,故④正确,故答案为:①③④.【点评】本题考查抛物线与x轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.16.【分析】一个命题由题设和结论两部分组成,如果是条件,那么是结论.【解答】解:命题“等角的余角相等”的题设是两个角是等角,结论是它们的余角相等.【点评】本题比较简单,考查的是命题的组成,需同学们熟练掌握.17.【分析】根据三视图的对应情况可得出,△EFG中FG上的高即为AB的长,进而求出即可.【解答】解:过点E作EQ⊥FG于点Q,由题意可得出:EQ=AB,∵EF=8cm,∠EFG=45°,∴EQ=AB=×8=4(cm).故答案为:4.【点评】此题主要考查了由三视图解决实际问题,根据已知得出EQ=AB是解题关键.三、解答题:本大题共7小题,共52分.解答要写出必要的文字说明、证明过程或演算步骤.18.【分析】先去分母,把分式方程转化成整式方程,求出方程的解,再进行检验即可.【解答】解:两边都乘以(x+3)(x﹣3),得:2﹣x﹣(x+3)=2(x﹣3),解得:x=,检验:当x=时,(x+3)(x﹣3)≠0,所以分式方程的解为x=.【点评】本题考查了解分式方程,能把分式方程转化成整式方程是解此题的关键.19.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将m﹣n整体代入计算可得;(2)根据实数的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=(﹣)÷m2=•=,当m﹣n=时,原式=﹣=﹣=﹣;(2)原式=2×﹣1+﹣1+2=1﹣1+﹣1+2=1+.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.20.【分析】(1)先根据E等级人数及其占总人数的比例可得总人数,再用D等级人数除以总人数可得a的值,用总人数减去其他各等级人数求得C等级人数可补全图形;(2)用360°乘以A等级人数所占比例可得;(3)用总人数乘以样本中E等级人数所占比例.【解答】解:(1)∵被调查的总人数为10÷=50(人),∴D等级人数所占百分比a%=×100%=30%,即a=30,C等级人数为50﹣(5+7+15+10)=13人,补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.【分析】(1)过A作AE⊥BC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;(2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求.【解答】解:(1)作A作AE⊥BC,在Rt△ABE中,tan∠ABC==,AB=5,∴AE=3,BE=4,∴CE=BC﹣BE=5﹣4=1,在Rt△AEC中,根据勾股定理得:AC==;(2)∵DF垂直平分BC,∴BD=CD,BF=CF=,∵tan∠DBF==,∴DF=,在Rt△BFD中,根据勾股定理得:BD==,∴AD=5﹣=,则=.【点评】此题考查了解直角三角形,线段垂直平分线的性质,以及等腰三角形的性质,熟练掌握勾股定理是解本题的关键.22.【分析】分BC=7为底长及BC=7为腰长两种情况考虑:当BC=7为底长时,利用根的判别式△=0可求出m的值,将m的值代入原方程求出x的值,利用三角形的三边关系可得知此种情况不合适;当BC=7为腰长时,将x=7代入原方程可求出m值,再利用根与系数的关系求出底边长度,利用三角形三边关系验证后可确定m的值.综上即可得出结论.【解答】解:当BC=7为底长时,△=[﹣2(m+1)]2﹣4(m2+5)=8m﹣16=0,∴m=2,此时原方程为x2﹣6x+9=0,解得:x1=x2=3,∵3+3=6<7,∴3、3、7不能组成三角形,∴m=2舍去;当BC=7为腰长时,将x=7代入原方程,得:49﹣14(m+1)+m2+5=0,解得:m1=4,m2=10.当m=4时,等腰三角形的底边长为2×(4+1)﹣7=3,∵3、7、7能围成三角形,∴m=4合适;当m=10时,等腰三角形的底边长为2×(10+1)﹣7=15,∵7+7=14<15,∴7、7、15不能围成三角形,∴m=10舍去.综上所述:当△ABC是等腰三角形时,m的值为4.【点评】本题考查了根的判别式、一元二次方程的解、三角形三边关系、等腰三角形的性质以及根与系数的关系,分BC=7为底长及BC=7为腰长两种情况考虑是解题的关键.23.【分析】(1)按照题目给的思路,由△ADF≌△ABG推出AF=AG,DF=BG,∠DAF=∠BAG,得到∠EAG=∠EAF.注意要证明G、B、E三点共线,才能证得△EAG≌△EAF.把EF转化到EG=BG+BE=DF+BE,得证.(2)把△ADF绕点A顺时针旋转90°得△ABH,证明过程跟(1)类似,证得△EAH≌△EAF,把EF转化到EH,然后利用BN=DM证明四边形BMDN为平行四边形得∠ABE=∠FDM,得∠EBH=∠ABH+∠ABE=∠ADF+∠MDN=90°,由EH2=BE2+BH2得EF2=BE2+DF2.(3)作为填空题,可把点E、F移动到特殊位置思考,如F与D重合时,则E为BD中点,易得BE=BD,又BD=CD(即CF),得答案为.由∠EAF=∠EDF=45°联想到点A、D、F、E四点共圆,且AF为直径,所以∠AEF=90°,△AEF为等腰直角三角形,故有AE=EF=EC,过点E作EM⊥CF于M即有M为CF中点.考虑到BE为正方形对角线上的一段,过点E作EN⊥BC构造等腰直角△BEN,且EN=CM,则BE==.【解答】解:(1)证明:将△ADF绕点A顺时针旋转90°,得△ABG,∴△ADF≌△ABG∴AF=AG,DF=BG,∠DAF=∠BAG∵正方形ABCD∴∠D=∠BAD=∠ABE=90°,AB=AD∴∠ABG=∠D=90°,即G、B、C在同一直线上∵∠EAF=45°∴∠DAF+∠BAE=90°﹣45°=45°∴∠EAG=∠BAG+∠BAE=∠DAF+∠BAE=45°即∠EAG=∠EAF在△EAG与△EAF中,∴△EAG≌△EAF(SAS)∴EG=EF∵BE+DF=BE+BG=EG∴EF=BE+DF(2)EF2=BE2+DF2,证明如下:将△ADF绕点A顺时针旋转90°,得△ABH,(如图2)∴△ADF≌△ABH∴AF=AH,DF=BH,∠DAF=∠BAH,∠ADF=∠ABH∵∠EAF=45°∴∠DAF+∠BAE=90°﹣45°=45°∴∠EAH=∠BAH+∠BAE=∠DAF+∠BAE=45°即∠EAH=∠EAF在△EAH与△EAF中,∴△EAH≌△EAF(SAS)∴EH=EF∵BN=DM,BN∥DM∴四边形BMDN是平行四边形∴∠ABE=∠MDN∴∠EBH=∠ABH+∠ABE=∠ADF+∠MDN=∠ADM=90°∴EH2=BE2+BH2∴EF2=BE2+DF2(3)作△ADF的外接圆⊙O,连接EF、EC,过点E分别作EM⊥CD于M,EN⊥BC于N(如图3)∵∠ADF=90°∴AF为⊙O直径∵BD为正方形ABCD对角线∴∠EDF=∠EAF=45°∴点E在⊙O上∴∠AEF=90°∴△AEF为等腰直角三角形∴AE=EF在△ABE与△CBE中∴△ABE≌△CBE(SAS)∴AE=CE∴CE=EF∵EM⊥CF,CF=2∴CM=CF=1∵EN⊥BC,∠NCM=90°∴四边形CMEN是矩形∴EN=CM=1∵∠EBN=45°∴BE=EN=故答案为:【点评】本题考查了正方形的性质,旋转,全等三角形的判定和性质,平行四边形的判定和性质,勾股定理,圆周角定理,等腰三角形性质,其中(1)(2)里运用转化思想是解题关键,为半角模型的常规题型.第(3)问作为填空题可用特殊位置得到答案,证明过程关键条件是正方形对角线,利用两个45°角联想到四点共圆,再利用圆周角定理得到△AEF为等腰直角三角形.24.【分析】(1)先得出mn=6,再将m=2代入即可得出结论;(2)先求出n=2,进而得出点A的坐标,再设出OD=a,OE=2a,进而求出直线DE的解析式,最后将点A坐标代入求出k,最后联立方程组求解即可得出结论;(3)先求出直线DE的解析式,进而求出点E,坐标,再求出点B的坐标,即可得出结论.【解答】解:∵点A(m,n)在双曲线y=上,∴mn=6,∵m=2,∴n=3;(2)由(1)知,mn=6,∵m=3,∴n=2,∴A(3,2),∵OD:OE=1:2,设OD=a,则OE=2a,∵点D在x轴坐标轴上,点E在y轴负半轴上,∴D(a,0),E(0,﹣2a),∴直线DE的解析式为y=2x﹣2a,∵点A(3,2)在直线y=2x﹣2a上,∴6﹣2a=2,∴a=2,∴直线DE的解析式为y=2x﹣4①,∵双曲线的解析式为y=②,联立①②解得,(点A的横纵坐标,所以舍去)或,∴P(﹣1,﹣6);(3)∵AD=DE,点D在x轴坐标轴上,点E在y轴负半轴上,A(m,n),∴E(0,﹣n),D(m,0),∴直线DE的解析式为y=x﹣n,∵mn=6,∴m=,∴y=x﹣n③,∵双曲线的解析式为y=④,联立③④解得,∴(点A的横纵坐标,所以舍去)或,∴P(﹣2m,﹣2n),∵A(m,n),∴直线AB的解析式为y=x⑤.联立④⑤解得,(点A的横纵坐标,所以舍去)或∴B(﹣m,﹣n),∵E(0,﹣n),∴BE∥x轴,=BE×|y E﹣y P|=×m×|﹣n﹣(﹣2n)|=mn=3.∴S△PBE【点评】此题是反比例函数综合题,主要考查了待定系数法,交点坐标的求法,三角形的面积公式,掌握待定系数法是解本题的关键.。