2012-2013(1)线性代数(理工)A试卷 重理工资料库
- 格式:pdf
- 大小:332.30 KB
- 文档页数:6
河南理工大学 2012-2013 学年第 1 学期《线性代数》试卷(A 卷)1.设()()(),,,,,,,,t 3,1321111321===βββ若321βββ,,线性相关,则t =.2.矩阵()nn ija ⨯=A 的全体特征值的和等于 , 全体特征值的积等于.3.设A 为4阶方阵,2-=A ,则A 3-= .4.()234321,,B ,A =⎪⎪⎪⎭⎫ ⎝⎛=,则=AB.5.设三阶方阵⎪⎪⎪⎭⎫ ⎝⎛--=120350002A ,则A 的逆矩阵1-A =.6.设3阶方阵A 按列分块为()321ααα,,A =,且Ad e t =5,又设()231215432ααααα,,B ++=,则B =.7.设⎪⎪⎪⎭⎫ ⎝⎛--=11334221xA ,x 为某常数,B 为3阶非零矩阵,且0AB =,则x = . 8.设三元非齐次线性方程组的系数矩阵的秩为2,已知21ηη,是它的两个解向量.且⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=42232121ηη,该方程组的通解为.1.设A 与B 均为n 阶方阵,则下列结论中成立的为().(A) det(AB ) = 0,则0A =或0B =; (B) det(AB ) = 0,则det A = 0或det B = 0; (C) AB = 0,则0A =或0B =; (D) AB ≠ 0,则det A ≠ 0或det B ≠ 0.2. 设n 阶矩阵A 的行列式0≠A ,*A 是A 的伴随矩阵,则( ).(A) 2-=n *A A ; (B) 1+=n *A A ; (C) 1-=n *AA ;(D) 2+=n *AA .3. 已知A 、B 均为3阶方阵,且A 与B 相似,若A 的特征值为1,2,3,则()12-B 的特征值为( )(A) 2312,,; (B) 614121,,; (C) 321,,;(D) 3212,,.4. 向量组321,,βββ线性无关,324,,βββ线性相关,则有 .(A)1β可由324,,βββ线性表示; (B)3β可由42ββ,线性表示 ;(C)2β可由43ββ,线性表示;(D)4β可由32ββ,线性表示 .三、计算题1.(7分)计算行列式211112111121=n D .一、填空题,每小题4分二、选择题,每小题5分2.(7分)设⎪⎪⎪⎭⎫⎝⎛---=121011332A ,求1-A .3.(7分)求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛---=1401131********12211A 的列向量组的一个最大线性无关组.4.(12分)λ取何值时,非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x ,,(1)有唯一解;(2)无解;(3)有无穷多个解?5.(15分)已知二次型()322221321434x x x x x ,x ,x f ++=,求一个正交变换Py x =,把二次型()321x ,x ,x f 化为标准型.。
安徽师范大学2012-2013学年第一学期化材学院专业基础课2012级《线性代数》课程期末考试试卷(A 卷 闭卷 120分钟)1. 设α, β, γ1, γ2均为3维列向量,3阶方阵A =(α, γ1, γ2), B =(β, γ1, γ2),且已知行列式3=A , 2=B ,则行列式=+B A ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ( )(A) 5 (B) 10 (C) 20 (D) 402. 设A , B 均为n 阶方阵,则(A +B )(A -B )=A 2-B 2成立的充分必要条件是⋅⋅⋅⋅⋅⋅⋅⋅ ( )(A) A =O (B)B =E (C) A =B (D) AB =BA3. 下列矩阵中为初等矩阵的是⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ( )(A) ⎪⎪⎪⎪⎪⎭⎫⎝⎛0001001001001000(B) ⎪⎪⎪⎭⎫ ⎝⎛001010100 (C) ⎪⎪⎪⎭⎫⎝⎛-001010100 (D) ⎪⎪⎪⎭⎫⎝⎛-100010021 3. 已知⎪⎪⎪⎭⎫ ⎝⎛=0021α,⎪⎪⎪⎭⎫⎝⎛-=3002α,则下列向量中可以用α1, α2线性表示的是⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ( )(A) ⎪⎪⎪⎭⎫⎝⎛-403 (B)⎪⎪⎪⎭⎫ ⎝⎛010 (C) ⎪⎪⎪⎭⎫ ⎝⎛011 (D) ⎪⎪⎪⎭⎫ ⎝⎛-110 5. 若矩阵A 与B 相似,则⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ ( )(A) 存在正交矩阵P ,使得P -1AP =B (B) 存在正交矩阵P ,使得P T AP =B (C) 存在可逆矩阵P 和Q ,使得A =PBQ (D) 存在可逆矩阵P ,使得A =P -1BP1. 已知3阶方阵A 中的元素全部为1,则A 2013 = .2. 已知矩阵()4 ,0 ,30201⎪⎪⎪⎪⎪⎭⎫⎝⎛=A ,则矩阵A 的秩等于 .3. 已知n 阶方阵A 的秩为n -1,且A 的各行元素之和均为零,则齐次线性方程组Ax =0 的通解是 .4. 已知2阶方阵A 的特征值是1和2,则伴随矩阵A * 的特征值是 和 .5. 二次型f (x 1,x 2,x 3)= x 12-2x 1x 2+x 22的矩阵是 .一、单项选择题(每小题4分,共20分)二、填空题(每小题4分,共20分)1. 已知⎪⎪⎪⎭⎫ ⎝⎛=200120112A ,求矩阵B ,使得A +B =AB2. 已知向量组⎪⎪⎪⎭⎫ ⎝⎛=λ211α,⎪⎪⎪⎭⎫ ⎝⎛=202λα,⎪⎪⎪⎭⎫⎝⎛-=1113α线性相关,求参数λ 的值.3. 设三维向量⎪⎪⎪⎭⎫ ⎝⎛=111λα,⎪⎪⎪⎭⎫ ⎝⎛=112λα,⎪⎪⎪⎭⎫ ⎝⎛=λ113α,⎪⎪⎪⎭⎫⎝⎛-=112β,已知β 不能由α1, α2, α3线性表示, 求参数λ 的值.4. 已知⎪⎪⎪⎭⎫ ⎝⎛-=111ξ是矩阵⎪⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量. 求:① 参数a , b 的值;② 特征向量ξ 所对应的特征值.三、计算题(每小题7分,共35分)5. 用施密特正交化方法,将向量组⎪⎪⎪⎭⎫ ⎝⎛=1101α,⎪⎪⎪⎭⎫ ⎝⎛=1112α,⎪⎪⎪⎭⎫ ⎝⎛=0213α规范正交化1. 已知A 是n 阶方阵,B 是n ⨯s 矩阵(n ≤s ),并且B 是行满秩矩阵. ① 证明:R (AB )=R (A ); ②证明:如果AB =B ,则A =E .2. 已知向量组(I): α1, α2, α3与向量组(II): β1, β2, β3满足关系式⎪⎩⎪⎨⎧++=+=++=32112113211 2 3 αααβααβαααβ.证明:向量组(I)和(II)等价.四、证明题(每小题8分,共16分)设3阶矩阵⎪⎪⎪⎭⎫ ⎝⎛=00000111a A .① 求矩阵A 的特征值;② 参数a取何值时,矩阵A 可对角化,说明理由;③ 当A 可对角化时,求可逆矩阵P 和对角阵Λ,使得P -1AP =Λ.五、解答题(9分)。
2012~2013 学年度第 二 学期《线性代数》试卷( A 卷)适用年级专业:2012级理工、经管类本科教学班 考 试 形 式:( )开卷、( √ )闭卷二级学院: 行政班级: 学 号: 教 学 班: 任课教师: 姓 名: 注:学生在答题前,请将以上内容完整、准确填写,填写不清者,成绩不计。
一、填空题(每小题 2 分,共 10 分):1、排列5173642的逆序数为_________________.2、已知四阶行列式D 的第二行元素分别为 1,0,2,1-,他们的代数余子式分别为2,2,1,1-,则 行列式D =____________.3、设A 为4阶方阵,且2A =,则*A -= .4、设A 是43⨯矩阵,且线性方程组Ax b =有唯一解,则A 的列向量组线性 .5、如果一个二次型的标准型为2221235x x x -+,则此二次型的秩为 . 二、选择题(每题 2分,共 10 分,每题只有一个正确答案):1、若n 阶矩阵A 互换第一, 二行后得矩阵B , 则必有( ).()0=+B A A ; ()0=AB B ; ()0=+B A C ; ()0=AB D .2、设,,A B C 为同阶方阵,E 为单位矩阵,若E ABC =,则下列各式中总成立的是( ).()A BCA E =; ()B A C B E =; ()C BAC E =; ()D CBA E =.3、 设0Ax =是非齐次线性方程组b Ax =对应的齐次线性方程组, 那么下列叙述正确的是( ).()A 如果0Ax =只有零解,那么b Ax =有唯一解; ()B 如果0Ax =有非零解,那么b Ax =有无穷多个解;()C 如果b Ax =有无穷多个解, 那么0Ax =只有零解; ()D 如果b Ax =有无穷多个解, 那么0Ax =有非零解.4、设4阶矩阵A 的特征值为2、2、3、-1,则A =( ).()A 6; ()B -6; ()C 12; ()D -12.5、设矩阵A 为正交阵,下列说法错误的是( ).()A T A A =; ()B E AA T =; ()C A 的列向量为单位向量;()D 11A =-或.三、计算题(每题8分,共 32分):1、计算行列式 1123112312131231D --=--.2、已知11112121,3321111A B ⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭, 求TB A .3、已知2110112132X ⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭,求矩阵X .4、已知齐次线性方程组0Ax =有非零解, 其中142t A -⎛⎫= ⎪⎝⎭, 求t 的值.四、证明题(共8分)已知向量组321,,βββ线性无关,若向量组321,,ααα满足:3211βββα+-= ,3212βββα-+= ,3213βββα++-= ;判断向量组321,,ααα的线性相关性.五、(共 10分)求矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-------=6063324208421221A 对应的列向量组的秩,并 求一个最大无关组 .六、(共 10分)设三元非齐次线性方程组b Ax =,若()2R A =,且12(1,1,2,0),(0,1,1,0)T T ηη=-=是两个已知解向量,求b Ax =的通解.七、(共 10分)已知方阵0111110a A b ⎛⎫⎪=- ⎪ ⎪⎝⎭的特征值为1231, 2.λλλ===-1)求b a ,的值;2)判断A 是否可以对角化.八、(共 10分)已知二次型:323121232221321662355),,(x x x x x x x x x x x x f -+-++= ,用正交变换化此二次型为标准型,并求正交变换矩阵Q .一、填空题[三基类] [教师答题时间: 2分钟](每小题 2分,共 10 分)1、12;2、1;3、8;4、无关;5、3.二、选择题[三基类] [教师答题时间: 2分钟](每题2分,共 10分)1、C ;2、A;3、D ;4、D ;5、A ;三、计算题[三基类][教师答题时间: 15 分钟](每题8分,共32分),1、解:由1123112312131231D --=--=11231123512131231--- …………(2分)……………(6分)2、解: TB A =111131*********⎛⎫-⎛⎫ ⎪- ⎪ ⎪⎝⎭ ⎪-⎝⎭…………(3分)283770-⎛⎫=⎪⎝⎭. …………(5分)3、解: 12110112132X -⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭…………(3分) 211011121323-⎛⎫⎛⎫= ⎪⎪---⎝⎭⎝⎭…………(3分) 41135123⎛⎫- ⎪= ⎪ ⎪-- ⎪⎝⎭. ……………(2分)4、解: 由 1042t A -==, …………(5分)即 240t +=, …………(2分)得 2t =-. ……………(1分)四、证明题[三基类] [教师答题时间: 5分钟](8分)证明:由123123111(,,)(,,)111111αααβββ-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭, ……(2分) 由04≠=A ,A 可逆,故两个向量组可相互线性表出,因此两个向量组等价. ………(3分) 由向量组321,,βββ线性无关,得123(,,)3R βββ=,有123123(,,)(,,)3R R αααβββ==, ………(2分) 故向量组321,,ααα线性无关 . ………(1分)五、 [一般综合型] [教师答题时间: 5分钟](10分)解:由⎪⎪⎪⎪⎪⎭⎫⎝⎛--−→−0000000012001221rA ,……(4分)故向量组的秩为2, ……(3分)最大无关组为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-3221和⎪⎪⎪⎪⎪⎭⎫⎝⎛-0282. ……(3分)六、 [一般综合型] [教师答题时间: 5分钟](10分)解: 由()2R A =得0Ax =的基础解系含一个非零向量, ......(4分)故T T T(4分) (2分)七、 [一般综合型] [教师答题时间: 5分钟](10分)解:1)由已知, 0;1 2.b A a b =⎧⎪⎨=--=-⎪⎩……………(3分)得 1,0.a b =-= ………(2分)2)当1λ=时,由111111111000111000A E λ---⎛⎫⎛⎫⎪⎪-=-- ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭, ……(2分) 得 ()1R A E -=,故1λ=对应两个线性无关的特征向量,……(2分) 故 A 可以对角化. …………(1分)八、 [综合型] [教师答题时间:10分钟](10分)解: 由⎪⎪⎪⎭⎫⎝⎛----=333351315A ………………………………(2分)令0)9)(4(=--=-λλλλE A 得9,4,0321===λλλ。
海南大学2012-2013学年度第二学期试卷科目:(工科类)《线性代数》试题(A 卷)姓名: 学 号: 学院: 专业班级:时限: 120 分钟 考试形式:闭卷笔试所有试卷均配有答题纸,考生应将答案写在答题纸上,写在试卷上一律无效大题号 一 二 三 四 五 六 七 八 总分 得分一、选择题:(每题3分,共15分)1.行列式0100002000034000=_____-24_____2. 设4阶方阵A 的秩为2,则其伴随矩阵A *的行列式为0___3. 设A 为m n ⨯矩阵,B 为n m ⨯矩阵,若m n >,则AB =____0___4.若n 元齐次线性方程组AX O =有n 个线性无关的解向量,则A =O5. 设三阶方阵A 有三个特征值1232,3,λλλ==,若 A =24,则3λ=4二、填空题(每题3分,共15分)1. 设A 为n 阶方阵,且AX O =有非零解,则矩阵A 必有一个特征值为( C )(A) 1 (B) -1 (C) 0 (D) 无法确定得分 阅卷教师得分 阅卷教师2. 设矩阵A 、B 都为n 阶方阵A =2,B =-3,则13A B *-=( D )(A) 6 (B) 6n (C) -6 (D) 16n --3.若可逆方阵A 满足2A A = ,则 A =( A )(A)1 (B) 0 (C) -1 (D)无法确定4. 设三阶行列式D 的第三行元素依次是1、-1、1,它们的代数余子式依次是2、8、-5,则D =( B ) (A ) 11 (B) -11 (C) 5 (D)-55. n 元非齐次线性方程组AX β=有解,其中A 为(1)n n +⨯的矩阵,则A β=( A )(A) 0 (B) 1 (C) -1 (D) 无法确定三 、计算题(14分)求非齐次线性方程组1234123412343133445980x x x x x x x x x x x x +--=⎧⎪--+=⎨⎪+--=⎩的通解。
课程编号:A073122 北京理工大学2012-2013学年第一学期线性代数A 试题 A 卷班级 ________ 学号 _________ 姓名 __________ 成绩 ___________一、(10分)已知3阶方阵123035002A ⎛⎫⎪= ⎪ ⎪⎝⎭,计算行列式*123A I+。
二、(10分) 设423110, 2123A AX A X ⎛⎫ ⎪⎪==+ ⎪ ⎪-⎝⎭, 求X 。
三、(10分)已知线性空间4][x F 的自然基为231,,,x x x 。
(1) 证明:2231,12,123,1234x x x x x x ++++++为4][x F 的一个基;(2) 求自然基231,,,x x x 到基2231,12,123,1234x x x x x x ++++++的过渡矩阵,以及23()1h x x x x =--+在后一个基下的坐标。
四、(10分)已知123(1,0,1), (2,2,0), (0,1,1)TTTααα=-==。
(1) 求向量组123,,ααα的一个极大无关组;(2) 求生成子空间123(,,)L ααα的一个标准正交基。
五、(10分)设A 是5阶方阵,且已知存在5阶可逆矩阵P ,使得111112P AP --⎛⎫ ⎪- ⎪= ⎪ ⎪-⎝⎭试写出A 的初等因子,同时判断P 的哪几列是A 的特征向量。
六、(10分)在多项式空间4[]R x 中定义变换σ:233012330201()()a a x a x a x a a a x a a x σ+++=-+++(1)证明:σ是4[]R x 上的线性变换;(2)求σ在4[]R x 的自然基231,,,x x x 下的矩阵,并判断σ是否可逆。
七、(10分)假设A 是m n ⨯的实矩阵,证明:()()TA A A =秩秩八 (10分)已知(1,1,1)T ξ=-是矩阵2125312A a b -⎡⎤⎢⎥=⎢⎥⎢⎥--⎣⎦的一个特征向量, (1)确定参数a , b 及特征向量ξ所对应的特征值; (2)判断A 是否可以相似对角化,说明理由。
,,s、向量组的秩为r,则向量组中三、计算题(每题12分,共60分)1、计算行列式:32142143143243212、已知=⎪⎪⎪⎭⎫ ⎝⎛--101111121X ⎪⎪⎪⎭⎫ ⎝⎛523231141,求矩阵X3、求线性方程组⎪⎪⎩⎪⎪⎨⎧-=----=+-+-=+-+=+-+261782314620324321432143214321x x x x x x x x x x x x x x x x 的通解。
4、求向量组1234(1,1,1),(1,1,0),(1,0,0),(1,2,3)αααα====-的一个极大线性无关组,并把其余向量用极大无关组线性表示.5、求⎪⎪⎪⎭⎫ ⎝⎛--=100010221A 的特征值与特征向量.分)若123,,ξξξ是方程组0AX =的基础解系,证明1323122,2,2ξ+ξξ+ξξ+ξ也是该方程组的基础解系.2012-2013-1线性代数A 参考答案与评分标准一、 判断题(每题2分,共20分)二、填空题(每空2分,共10分)1、-2;2、43、41; 4、1; 5、111,,632三、计算题(每题12分,共60分)1、解:原式=32110214101431043210……………………………………………(2分) =111022203110432110321121411431432110------= …………………………(6分) =11314021113112011111131120----=----=---- …………(10分)=160113140=- ……………………………………………………(12分)2、解:1141121132111325101X -⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦----------------------4分 121100121100111010012110101001022101⎡⎤⎡⎤⎢⎥⎢⎥-→---⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦1310011031202201211001001100212111001122⎡⎤--⎢⎥--⎡⎤⎢⎥⎢⎥---→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦--⎢⎥⎣⎦--------------10分131221141223113201102232511465122⎡⎤⎡⎤--⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥----⎢⎥⎣⎦⎣⎦--------------------------12分 3、解:先对增广矩阵进行初等行变换⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎭⎫⎝⎛-------------→⎪⎪⎪⎪⎪⎭⎫⎝⎛---------000000000012210032112442012210122100321121611178231461203211--------------------6分同解方程组⎪⎩⎪⎨⎧=++=+-+1220324324321x x x x x x x ,一个特解⎪⎪⎪⎪⎪⎭⎫⎝⎛-0011-----------------------8分选4x 为自由未知量,得到齐次线性方程组的一个基础解系:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-210121,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-1105----------------------10分原方程组的通解为+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-2101211k ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-11052k +⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-0011-------------------------12分 4、解:秩为 3,--------------------------6分一个极大线性无关组为123,,ααα. --------------------------10分412335αααα=-+-;--------------------------12分5、解:特征方程为|λE -A|=1010221---+λλλ=(λ+1) (λ-1)2 =0,------4分 ∴A 的全部特征值为λ1=-1,λ2=λ3=1。