常用物性型传感器
- 格式:ppt
- 大小:1.69 MB
- 文档页数:57
电阻式传感器:基本原理:是将被测的非电量转化成电阻值的变化,在通过转换电路变成电压或电流输出的一类传感器,通过测量电阻值变化达到测量非电量的目的。
应用:测量力、压力、位移、应变、加速度、温度等非电量参数,还适合动态测量。
应变式传感器:是一种具有较长应用历史的传感器,包括应变式加速度传感器,其工作原理:在应变梁的一段固定惯性质量块,梁的上下粘贴应变片,传感器内腔充满硅油,以产生必要的阻尼。
测量时,将传感器壳体与被测对象刚性连接。
当有加速度作用在壳体上时,由于梁的刚度很大,惯性质量块也以同样的加速度运动,产生的惯性力与加速度成正比。
惯性力的大小由梁上的应变片测出。
限位块使传感器过载时不被破坏。
应用:常用于低频振动测量中,被广泛应用于工程测量和科学实验中。
应变式传感器优点:其具有尺寸小、重度轻、结构简单、使用方便、响应速度快等。
这种传感器一般由弹性元件和电阻应变片构成,工作时利用金属弹性元件的电阻应变效应,将被测物变形转换成电阻变化。
压阻式传感器:包括压阻式加速度传感器,其工作原理:采用单晶硅作悬臂梁,在其近根部扩散四个电阻。
当梁的自由端的质量块收到加速度作用时,在梁上收到弯矩和应力,受电阻值发生变化。
电阻相对变化与加速度成正比。
有四个电阻组成的电桥将产生与加速度成正比例电压输出。
在设计时,恰当地选择传感器尺寸及阻尼系数,则可用来测量低频加速度与直线加速度。
压阻式传感器优点:灵敏系数大,分辨率高,频率响应高,体积小。
缺点:压阻式传感器多由半导体材料构成,由于半导体材料对温度很敏感,因此压阻式传感器的温度误差较大,必须要有温度补偿。
应用:主要用于测量压力、加速度和载荷等参数。
电感式传感器:利用线圈自感或互感的变化,实现测量的一种装置。
其核心部分是可变自感或可变互感,再将被测量转化成线圈自感或线圈互感的变化时,一般要利用磁场作为媒介或利用铁磁体的某些现象。
工作原理:把被测位移转换成线圈的自感或互感的变化,从而实现测量的一类传感器。
传感器的分类传感器的种类繁多,往往同一机理的传感器可以测量多种物理量,如电阻型传感器可以用来测温度、位移、压力、加速度等物理量。
而同一被测物理量又可采用多种不同类型的传感器测量,如位移量,可用电容式、电感式、电涡流式等传感器测量。
因此传感器有多种分类方法。
1.按被测量的性质分类按被测量性质分类就是按传感器用途进行分类。
下面列出这种分类方法的若干类型。
·机械量:位移、力、速度、加速度、重量等。
·热工量:温度、压力、流量、液位、物位、流速等。
·化学量:浓度、黏度、湿度等。
·光学量:光强、光通量、辐射能量等。
·生物量:血糖、血压、酶等。
随着传感器应用领域不断扩大与深入,这种分类已变得十分繁杂,但便于使用者获得最基本的使用信息。
2.按输出量的性质分类这种分类方法的类别少,易于从原理上认识输入量和输出量之间的变换关系,本书采用此种分类方法。
·电参数型传感器:传感器的输出量为电参量,如电阻式、电感式和电容式等。
电量型传感器:传感器输出量为电量(电压、电流、电荷),如热电式、光电式、压电式、磁电式等。
3.按能量关系分类能量转换型:传感器将从被测对象获取的信息能量直接转换成输出信号能量,如热电偶、光电池等。
这种类型又称为有源型和发生器型。
能量控制型:传感器将从被测对象获取的信息能量用于调制或控制外部激励源,使外部激励源的部分能量载运信息而形成输出信号。
这类传感器必须由外部提供激励源,如电源、光源、声源等,才能输出电信号。
如R,L,C电参数型传感器。
4.按照传感器结构参量是否变化分类1)结构型这种传感器由两部分组成,如图2-1所示。
敏感元件:又叫弹性元件。
有各种不同的弹性元件,如梁、膜片、柱、筒、环等,这些弹性元件可将力、质量、压力、位移、扭矩、加速度等多种被测信号转换为中间变量(即非直接输出量),如膜片的变形和应力。
变换器:将弹性敏感元件输出的中间变量转换成电量的变化作为输出量,如电阻式变换器输出△R、电感式变换器输出AL、电容式变换器△C、变压器式变换器输出△M,磁电式变换器输出电势e,压电式变换器输出电荷Aq等。
结构型传感器和物性型传感器的区分
物理型传感器,是从测量目的进行区分的传感器。
而物理型传感器,又可以分为结构型传感器和物性型传感器。
那么接下来我们就结构型传感器和物性型传感器的区分,来作简单的分析吧
结构型传感器,是以结构(如形状、尺寸等)为基础,利用某些物理规律来感受(敏感)被测量,井将其转换为电信号实现测量的。
例如电容式压力传感器,必须有按规定参数设计制成的电容式敏感元件,当被测压力作用在电容式敏感元件的动极板上时,引起电容间隙的变化导致电容值的变化,从而实现对压力的测量。
物性型传感器,就是利用某些功能材料本身所具有的内在特性及效应感受(敏感)被测量,并转换成可用电信号的传感器。
例如利用具有压电特性的石英晶体材料制成的压电式传感器,就是利用石英晶体材料本身具有的正压电效应而实现对压力测量的。
一般而言,物理型传感器对物理效应和敏感结构都有一定要求,但侧重点不同。
结构型传感器强调要依靠精密设计制作的结构才能保证其正常工作;而物性型传感器则主要依据材料本身的物理特性、物理效应来实现对被测量的感应。
通过以上的简单介绍,我们明白了结构型传感器与物性型传感器的区分。
并且随着近年科学技术的飞速发展与进步,物理型传感器应用越来越广泛。
这与该类传感器便于批量生产、成本较低及易于小型化等持点密切相关。
传感器的分类_传感器的原理与分类_传感器的定义和分类传感器的分类方法很多.主要有如下几种:(1)按被测量分类,可分为力学量、光学量、磁学量、几何学量、运动学量、流速与流量、液面、热学量、化学量、生物量传感器等。
这种分类有利于选择传感器、应用传感器(2)按照工作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。
这种分类有利于研究、设计传感器,有利于对传感器的工作原理进行阐述。
(3)按敏感材料不同分为半导体传感器、陶瓷传感器、石英传感器、光导纤推传感器、金属传感器、有机材料传感器、高分子材料传感器等。
这种分类法可分出很多种类。
(4)按照传感器输出量的性质分为摸拟传感器、数字传感器。
其中数字传感器便干与计算机联用,且坑干扰性较强,例如脉冲盘式角度数字传感器、光栅传感器等。
传感器数字化是今后的发展趋势。
(5)按应用场合不同分为工业用,农用、军用、医用、科研用、环保用和家电用传感器等。
若按具体便用场合,还可分为汽车用、船舰用、飞机用、宇宙飞船用、防灾用传感器等。
(6)根据使用目的的不同,又可分为计测用、监视用,位查用、诊断用,控制用和分析用传感器等。
主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化,它不仅促进了传统产业的改造和更新换代,而且还可能建立新型工业,从而成为21世纪新的经济增长点。
微型化是建立在微电子机械系统(MEMS)技术基础上的,已成功应用在硅器件上做成硅压力传感器。
主要功能常将传感器的功能与人类5大感觉器官相比拟:光敏传感器——视觉声敏传感器——听觉气敏传感器——嗅觉化学传感器——味觉压敏、温敏、传感器(图1)流体传感器——触觉敏感元件的分类:物理类,基于力、热、光、电、磁和声等物理效应。
化学类,基于化学反应的原理。
生物类,基于酶、抗体、和激素等分子识别功能。
通常据其基本感知功能可分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类(还有人曾将敏感元件分46类)。
传感器分类方法有几种类型传感器分类方法有几种类型
传感器是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
它是实现自动检测和自动控制的首要环节。
传感器的分类方式有很多种,根据不同的原理来区分:
1、按被测物理量分:如:力,压力,位移,温度,角度传感器等;
2、按照传感器的工作原理分:如:应变式传感器、压电式传感器、压阻式传感器、电感式传感器、电容式传感器、光电式传感器等;
3、按照传感器转换能量的方式分:
(1)能量转换型:如:压电式、热电偶、光电式传感器等;
(2)能量控制型:如:电阻式、电感式、霍尔式等传感器以及热敏电阻、光敏电阻、湿敏电阻等;
4、按照传感器工作机理分:
(1)结构型:如:电感式、电容式传感器等;
(2)物性型:如:压电式、光电式、各种半导体式传感器等;
5、按照传感器输出信号的形式分:
(1)模拟式:传感器输出为模拟电压量;
(2)数字式:传感器输出为数字量,如:编码器式传感器。
6、根据能量转换原理可分为:
(1)有源传感器:有源传感器将非电量转换为电能量,如电动势、电荷式传感器等;
(2)无源传感器:无源程序传感器不起能量转换作用,只是将被测非电量转换为电参数的量,如电阻式、电感式及电容光焕发式传感器等。
传感器知识要点要点回顾第二章常用传感器基本概念:1--有关传感器的定义、基本组成涵盖框图;2--传感器的基本特性(灵敏度、线性度、重复性、精确度、稳定性、动态特性、环境参数)3--传感器的分类方法和种类,何谓能量控制型传感器(电阻、电容、电感)也称无源型传感器、何谓能量转换型传感器(压电、磁电、热电、光电)也称有源传感器。
4—电阻型传感器要求掌握公式,见书第6页,三个相关参数,对于电阻应变式:电阻应变片的电阻相对变化率是与应变成正比的。
掌握应变选择原则:当测量较小应变时,应选用压阻效应工作的应变片,而测量大应变时,应选用应变效应工作的应变片。
5---对于金属丝应变片在测量被测物体的应变时,电阻的相对变化主要由哪个参数决定的(丝的几何尺寸)来决定的。
6—对于电容式传感器,请掌握其测量原理,相关公式,对应的三个参数的含义,要求掌握变极距有关灵敏度的计算公式:见书第14页2.27,其灵敏度显然是非线性的,其使用时有条件的。
7—对于电感式传感器要掌握测量原理,计算公式,掌握自感式、互感式、差动式结构的特点,请注意实际工程应用的接法。
见书第21页。
图2.23b.反向串联。
掌握电涡流基本原理。
利用涡电流传感器测量物体位移时,如果被测物体是塑料材料,此时可否进行位移测量,如果不能,应采取什么措施才能测量。
8--- 有关压电传感器,要掌握压电效应,何谓正压电效应,何谓逆压电效应,压电效应的等效电路,压电传感器对测量电路的要求,见书第26-27。
压电式传感器可以采用多片压电晶片串联或并联,一般并联接法适宜于测量缓变信号,串联接法适宜于测量高频信号。
为了使输出电压几乎不受电缆长度变化的影响,其前置放大器应采用电荷放大器。
为什么说压电式传感器一般适合动态测量而不适合静态测量?9---对于磁电式传感器,要求掌握测量原理,基本公式,请看书第28页,恒磁通动圈式传感器,输出感应电势与线圈运动的速度成正比,如在测量电路中接入积分电路和微分电路,则可用来测量位移和加速度。
传感器分类及20种常见传感器目录1.常用传感器的分类 (1)1.1.按被测物理量分类 (1)1.2.按工作的物理基础分类 (2)2. 20种常见的传感器 (2)2. 1. 温度传感器(TemPeratUreSenSor): (2)2. 2. 湿度传感器(HUmidity Sensor) : (2)2. 3. 光敏传感器(Light Sensor): (2)2. 4. 声音传感器(SoUnd Sensor) : (3)2. 5. 压力传感器(PreSSUre Sensor): (3)2. 6. 位移传感器(PoSition Sensor): (3)2. 7.加速度传感器(ACCelerometer): (3)2. 8. 磁感应传感器(MagnetiC Sensor) : (4)2. 9. 接近传感器(ProXirnity Sensor) : (4)2. 10. 电容传感器(CaPaCitiVe Sensor): (4)2. 11. 气体传感器(GaSSenSor): (5)2. 12. 颜色传感器(ColOrSenSor): (6)2. 13. 生物传感器(BiOIogiCaISenSor): (7)2. 14. 速度传感器(SPeedSenSor): (8)2. 15. 重量传感器(WeightSenSor): (9)2. 16. 红外传感器(InfraredSenSor): (9)2. 17. 压敏传感器(PreSSUre-SenSitiVeSenSOr): (10)2. 18.射频识别传感器(RFlD): (11)2. 19. 光电传感器(PhotOdeteCtOr): (13)2. 20.位角传感器(AngUIar Position Sensor): (14)1.常用传感器的分类Ll.按被测物理量分类机械量:长度、厚度、位移、速度、加速度、转数、质量,重量、力、压力、力矩;声:声压、噪声;温度:温度、热量、比热;磁:磁通、磁场;光:亮度、色彩。
传感器的分类_传感器的原理与分类_传感器的定义和分类传感器的分类_传感器的原理与分类_传感器的定义与分类传感器的分类⽅法很多.主要有如下⼏种:(1)按被测量分类,可分为⼒学量、光学量、磁学量、⼏何学量、运动学量、流速与流量、液⾯、热学量、化学量、⽣物量传感器等。
这种分类有利于选择传感器、应⽤传感器(2)按照⼯作原理分类,可分为电阻式、电容式、电感式,光电式,光栅式、热电式、压电式、红外、光纤、超声波、激光传感器等。
这种分类有利于研究、设计传感器,有利于对传感器的⼯作原理进⾏阐述。
(3)按敏感材料不同分为半导体传感器、陶瓷传感器、⽯英传感器、光导纤推传感器、⾦属传感器、有机材料传感器、⾼分⼦材料传感器等。
这种分类法可分出很多种类。
(4)按照传感器输出量的性质分为摸拟传感器、数字传感器。
其中数字传感器便⼲与计算机联⽤,且坑⼲扰性较强,例如脉冲盘式⾓度数字传感器、光栅传感器等。
传感器数字化就是今后的发展趋势。
(5)按应⽤场合不同分为⼯业⽤,农⽤、军⽤、医⽤、科研⽤、环保⽤与家电⽤传感器等。
若按具体便⽤场合,还可分为汽车⽤、船舰⽤、飞机⽤、宇宙飞船⽤、防灾⽤传感器等。
(6)根据使⽤⽬的的不同,⼜可分为计测⽤、监视⽤,位查⽤、诊断⽤,控制⽤与分析⽤传感器等。
主要特点传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、⽹络化,它不仅促进了传统产业的改造与更新换代,⽽且还可能建⽴新型⼯业,从⽽成为21世纪新的经济增长点。
微型化就是建⽴在微电⼦机械系统(MEMS)技术基础上的,已成功应⽤在硅器件上做成硅压⼒传感器。
主要功能常将传感器的功能与⼈类5⼤感觉器官相⽐拟:光敏传感器——视觉声敏传感器——听觉⽓敏传感器——嗅觉化学传感器——味觉压敏、温敏、传感器(图1)流体传感器——触觉敏感元件的分类:物理类,基于⼒、热、光、电、磁与声等物理效应。
化学类,基于化学反应的原理。
⽣物类,基于酶、抗体、与激素等分⼦识别功能。
常见的25种传感器类型介绍“蓝⾊字”传感器的作⽤实际上是⼀种功能块,其作⽤是将来⾃外界的各种信号转换成电信号。
例如,⽇常⽣活中使⽤的话筒,⼿机中的麦克风,它将声⾳转换成电信号,然后放⼤到最佳范围。
然后,在扬声器的o / p处将电信号变成⾳频信号。
如今传感器所检测的信号近来显著地增加,因⽽其品种也极其繁多。
今天我们来看看传感器的种类吧:1.电阻式传感器电阻式传感器是将被测量,如位移、形变、⼒、加速度、湿度、温度等这些物理量转换式成电阻值这样的⼀种器件。
主要有电阻应变式、压阻式、热电阻、热敏、⽓敏、湿敏等电阻式传感器件。
2.变频功率传感器变频功率传感器通过对输⼊的电压、电流信号进⾏交流采样,再将采样值通过电缆、光纤等传输系统与数字量输⼊⼆次仪表相连,数字量输⼊⼆次仪表对电压、电流的采样值进⾏运算,可以获取电压有效值、电流有效值、基波电压、基波电流、谐波电压、谐波电流、有功功率、基波功率、谐波功率等参数。
3.称重传感器称重传感器是⼀种能够将重⼒转变为电信号的⼒→电转换装置,是电⼦衡器的⼀个关键部件。
能够实现⼒→电转换的传感器有多种,常见的有电阻应变式、电磁⼒式和电容式等。
电磁⼒式主要⽤于电⼦天平,电容式⽤于部分电⼦吊秤,⽽绝⼤多数衡器产品所⽤的还是电阻应变式称重传感器。
电阻应变式称重传感器结构较简单,准确度⾼,适⽤⾯⼴,且能够在相对⽐较差的环境下使⽤。
因此电阻应变式称重传感器在衡器中得到了⼴泛地运⽤。
4.电阻应变式传感器传感器中的电阻应变⽚具有⾦属的应变效应,即在外⼒作⽤下产⽣机械形变,从⽽使电阻值随之发⽣相应的变化。
电阻应变⽚主要有⾦属和半导体两类,⾦属应变⽚有⾦属丝式、箔式、薄膜式之分。
半导体应变⽚具有灵敏度⾼(通常是丝式、箔式的⼏⼗倍)、横向效应⼩等优点。
5.压阻式压阻式传感器是根据半导体材料的压阻效应在半导体材料的基⽚上经扩散电阻⽽制成的器件。
其基⽚可直接作为测量传感元件,扩散电阻在基⽚内接成电桥形式。