最新人教版九年级数学上册精品作业课件(江西专用)22.3 第2课时 商品利润最大问题
- 格式:ppt
- 大小:2.75 MB
- 文档页数:10
第2课时 商品利润最大问题知识点1、二次函数常用解决最优化的问题,这个问题实质是求函数的最大(小)值。
2、抛物线2(0)y ax bx c a =++≠的顶点是它的最高(低)点,当x=2b a-时,二次函数有最大(小)值y=244ac b a -。
一、选择题1、进入夏季后,某电器商场为减少库存,对电热取暖器连续进行两次降价。
若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数关系式为( )A 、2(1)y a x =-B 、2(1)y a x =-C 、2(1)y a x =-D 、2(1)y a x =-2、某商店从厂家以每件21元的价格购进一批商品,该商品可以自行定价。
若每件商品的售价为x 元,则可卖处(350-10x)件商品。
商品所获得的利润y 元与售价x 的函数关系为( )A 、2105607350y x x =--+B 、2105607350y x x =-+-C 、210350y x x =-+D 、2103507350y x x =-+-3、某产品的进货价格为90元,按100元一个售出时,能售500个,如果这种商品每涨价1元,其销售量就减少10个,为了获得最大利润,其定价应定为( )[]A 、130元B 、120元C 、110元D 、100元4、小明在跳远比赛中跳出了满意的一跳,函数23.5 4.9h t t =-(t 单位s ,h 单位m )可用描述她的重心的高度变化,则她从起跳后到重心处于最高位置时所用的时间是()A、0.71sB、0.70sC、0.63sD、0.36s5、如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿A→B→C的方向运动,到达点C时停止,设运动时间为x(秒),2y PC=,则y关于x的函数图像大致为()[]A B 第5题 C D6、已知二次函数2(0)=++≠的图像如图所示,现有下列结论:①abcy ax bx c a>0;②24-<0;③c<4b;④a+b>0.则其中正确的结论的个数是()b acA、1B、2C、3D、47、如图,已知:正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为x,则s关于x的函数图象大致是()A B C 第7题 D8、某厂有许多形状为直角梯形的铁皮边角料,为节约资,现要按图中所示的方法从这些边角料上截取矩形(阴影部分)片备用,当截取的矩形面积最大时,矩形两边长x、y应分别为()A、x=10,y=14B、x=14,y=10C、x=12,y=15D、x=15,y=12第6题第8题二、填空题1、已知卖出盒饭的盒数x(盒)与所获利润y(元)满足关系式:21200357600y x x=-+-,则卖出盒饭数量为盒时,获得最大利润为元。
人教版九年级数学上册22.3实际问题与二次函数第2课时《销售利润问题》教案一. 教材分析本节课是人教版九年级数学上册第22.3节实际问题与二次函数的第2课时,主要内容是销售利润问题。
教材通过引入实际问题,让学生理解和掌握二次函数在实际生活中的应用,培养学生运用数学知识解决实际问题的能力。
本节课的内容与学生的生活实际紧密相连,有利于激发学生的学习兴趣和积极性。
二. 学情分析九年级的学生已经学习了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。
但是,将二次函数应用于实际问题的解决上,可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生运用二次函数解决实际问题的能力。
三. 教学目标1.理解销售利润问题的背景和意义,掌握销售利润问题的解决方法。
2.能够将二次函数知识应用于解决实际问题,提高学生的数学应用能力。
3.培养学生的团队协作能力和问题解决能力,提高学生的数学素养。
四. 教学重难点1.重点:掌握销售利润问题的解决方法,能够将二次函数应用于实际问题的解决。
2.难点:如何引导学生将二次函数与实际问题相结合,提高学生的问题解决能力。
五. 教学方法本节课采用问题驱动的教学方法,通过引入实际问题,引导学生运用二次函数知识进行解决。
同时,采用小组合作学习的方式,鼓励学生积极参与讨论,提高学生的团队协作能力和问题解决能力。
六. 教学准备1.准备相关的实际问题,用于引导学生进行思考和讨论。
2.准备教学课件,用于辅助教学。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的销售利润问题,如商品打折、促销活动等,引导学生关注销售利润问题,激发学生的学习兴趣。
2.呈现(10分钟)呈现一个具体的销售利润问题,如某商品原价为100元,售价为80元,求商品的利润。
引导学生运用二次函数知识进行解决。
3.操练(10分钟)学生分组讨论,每组选取一个销售利润问题进行解决。
教师巡回指导,解答学生的问题,引导学生运用二次函数知识进行解决。
第2课时商品利润最大问题学习目标:1、体会二次函数是一类最优化问题的数学模型,了解数学的应用价值。
2、掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值。
学习重点:应用二次函数最值解决实际问题中的最大利润。
学习难点:能够正确地应用二次函数最值解决实际问题中的最大利润.特别是把握好自变量的取值范围对最值的影响。
学习过程:一、情景导学:1、问题:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?问题1、总利润= ×,单件利润= —。
2、在这个问题中有那些变量?其中哪些是自变量?哪些是因变量?3、根据前面的分析我们若设每个涨价x元,总利润为y元,此时y与x之间的函数关系式是,化为一般式。
这里y是x的函数。
现在求最大利润,实质就是求此二次函数的最值,你会求吗?试试看。
二、做一做:例题1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.(1)若商场平均每天要盈利1200元,每件衬衫应降价多少元?(2)每件衬衫降低多少元时,商场平均每天盈利最多?例题2、某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.⑴利用函数表达式描述橙子的总产量与增种橙子树的棵数之间的关系.⑵在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?⑶增种多少棵橙子,可以使橙子的总产量在60400个以上?三、训练:1.将进货为40元的某种商品按50元一个售出时,能卖出500个.已知这时商品每涨价一元,其销售数就要减少20个.为了获得最大利益,售价应定为多少?2.某类产品按质量共分为10个档次,生产最低档次产品每件利润为8元,如果每提高一个档次每件利润增加2元.用同样的工时,最低档次产品每天可生产60件,每提高一个档次将少生产3件,求生产何种档次的产品利润最大?四.活动与探究某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40~70元之间.市场调查发现:若每箱以50元销售,平均每天可销售90箱,价格每降低1元,平均每天多销售3箱,价格每升高1元,平均每天少销售3箱.(1)写出平均每天销售(y)箱与每箱售价x(元)之间的函数关系式.(注明范围)(2)求出商场平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数关系式(每箱的利润=售价-进价).(3)求出(2)中二次函数图象的顶点坐标,并求当x=40,70时W的值.在坐标系中画出函数图象的草图.(4)由函数图象可以看出,当牛奶售价为多少时,平均每天的利润最大?最大利润为多少?课后巩固:1.已知二次函数的图象(0≤x≤3)如图所示,关于该函数在所给自变量取值范围内,下列说法正确的是( )A.有最小值0,有最大值3 B.有最小值-1,有最大值0C.有最小值-1,有最大值3 D.有最小值-1,无最大值2.已知二次函数y=ax2+bx+c(a≠0)的图象如图则下列结论中正确的是( )A.a>0 B.当x>1时,y随x的增大而增大C.c<0D.3是方程ax2+b x+c=0的一个根3、x=3时,y有最大值为-1,且抛物线过点(4,-3) 、求符合条件的二次函数解析式。