创新型问题题型分析与解题策略
- 格式:doc
- 大小:24.50 KB
- 文档页数:6
“新定义”问题的解题策略作者:魏绮芸来源:《课程教育研究》2019年第32期【摘要】新定义问题是近几年高考命题创新型试题的一个热点,常见的命题形式有新概念、新法则、新运算等,对于高中生来说,是必需掌握,但又不易掌握的一类题型。
【关键词】新定义集合函数向量数列【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2019)32-0136-01一、集合中的新定义问题例1 设U={1,2,3},M,N是U的子集,若M∩N={1,3},则称(M,N)为一个“理想配集”,则符合此条件的“理想配集”的个数(规定(M,N)与(N,M)不同)为____。
解析:符合条件的理想配集有①M={1,3},N={1,3};②M={1,3},N={1,2,3};③M={1,2,3},N={1,3}.共3个。
点评:解决集合中新定义问题的两个关键点(1)紧扣新定义:新定义型试题的难点就是对新定义的理解和运用,在解决问题时要分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中。
(2)用好集合的性质:集合的性质是破解集合类新定义型试题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质。
二、新定义下的函数问题例2(2017·山东卷)若函数exf(x)(e=2.718 28…是自然对数的底数)在f(x)的定义域上单调递增,则称函数f(x)具有M性质。
下列函数中所有具有M性质的函数的序号为____。
①f(x)=2-x ②f(x)=3-x ③f(x)=x3 ④f(x)=x2+2解析:对于①,f(x)的定义域为(-∞,+∞),ex·f(x)=ex·2-x=()x,∵函数y=()x在(-∞,+∞)上单调递增,∴①符合题意。
对于②,f(x)的定义域为(-∞,+∞),ex·f(x)=ex·3-x=()x,∵函数y=()x在(-∞,+∞)上单调递减,∴②不符合题意。
新定义型题目的解题策略探究摘要:“新定义”试题是宁波市中考数学中的特色题目之一,近年来都以固定题型的形式出现在中考试卷上,其是以能力立意为目标,以增大思维容量为特色,以定义新概念为背景的一种创新题型。
本文在简述“新定义”试题的概念,特点,题型分类的基础上探究“新定义”试题的解题技巧与方法,并得出在教学中的启示与反思。
关键词:新定义;解题策略;教学启示一、“新定义”试题概述1.“新定义”试题的概念“新定义”试题成为近年来中考数学的新亮点,也是宁波市近年来中考数学的固定题型。
“新定义”试题主要是指在问题中定义了一些没有学过的新概念、新运算、新符号等,要求学生现学现用,能够理解新知,读懂题意,然后利用题目中所介绍的新定义、新概念等,结合已有知识、能力进行理解、运算、推理、迁移、拓展的一种题型。
“新定义”试题的目的是考查学生的接受能力、应变能力与创新能力,其在于培养学生自主学习与主动探究的数学素养。
2.“新定义”试题的特点“新定义”试题设计新颖,构思独特,集应用性、探索性和开放性于一体,旨在全方面、多角度考查学生发现问题、分析问题与解决问题的能力。
首先,“新定义”试题具有情景新、形式新颖、知识点活的特点。
其次,“新定义”试题体现了阅读性、应用性、综合性的特点。
最后,“新定义”试题体现探究性、启发性、探究性的特点。
二、“新定义”试题的类型与解题策略1.“新定义”试题的类型(1)“新定义”中的新运算与新规律试题“新定义”中的新运算试题一般是通过理解示例的运算规则,然后推理题目所求,这类题目相对比较简单,一般在填空或者选择题里出现。
关于新规律试题一般是通过已知条件推导出合理的新规律,再由特殊到一般对新规律加以应用去解题,这类题目也比较简单,一般也是作为小题出现。
(2)“新定义”中的阅读理解试题“新定义”中的阅读理解试题主要考察学生的语言逻辑、分析能力和推理能力,这类题目首先要理解阅读材料的内容,理清思路是很重要的,接下来在阅读材料中提炼重要信息内化为所学知识点去求解。
六年级数学奥数题及解题思路摘要:一、引言二、六年级数学奥数题类型及解题思路1.代数题2.几何题3.逻辑题4.应用题三、解题技巧与策略1.分析题目2.运用数学知识3.创新思维4.耐心与毅力四、常见错误分析1.概念理解不清2.计算错误3.逻辑不清4.审题不慎五、实战演练与解析1.题目一:代数题2.题目二:几何题3.题目三:逻辑题4.题目四:应用题六、总结与展望正文:一、引言随着教育的不断发展,数学奥数题已经成为了许多六年级学生和家长关注的焦点。
数学奥数不仅能够提高学生的数学素养,还能培养他们的逻辑思维能力。
本文将为大家介绍六年级数学奥数题的类型及解题思路,帮助同学们更好地应对这类题目。
二、六年级数学奥数题类型及解题思路1.代数题代数题是数学奥数中的一个重要类型,主要包括方程、不等式、代数式等。
解题思路如下:(1)认真阅读题目,提取关键信息。
(2)设立未知数,并根据题意建立方程或不等式。
(3)解方程或不等式,求得未知数的值。
2.几何题几何题主要涉及平面几何和立体几何的知识,解题思路如下:(1)熟悉基本几何图形的性质和公式。
(2)根据题目所给条件,判断所求问题属于哪种几何问题。
(3)运用几何知识,解决问题。
3.逻辑题逻辑题旨在考查学生的逻辑思维能力,解题思路如下:(1)分析题目的逻辑关系。
(2)运用逻辑推理方法,解决问题。
(3)注意细节,避免逻辑错误。
4.应用题应用题是将数学知识与生活实际相结合的一种题目,解题思路如下:(1)审清题意,提炼关键信息。
(2)将实际问题转化为数学问题。
(3)运用数学知识解决实际问题。
三、解题技巧与策略1.分析题目:认真阅读题目,了解题目背景和所求问题,明确解题目标。
2.运用数学知识:根据题目类型,运用相应的数学知识解决问题。
3.创新思维:在解题过程中,学会从不同角度思考问题,寻求创新解法。
4.耐心与毅力:面对难题,要有足够的耐心和毅力,不断尝试,逐步解决问题。
四、常见错误分析1.概念理解不清:在解题过程中,要对基本概念有清晰的认识,避免因概念理解不清导致的错误。
创新思维题目
以下是一些具有创新思维元素的题目:
1. 请你设计一款可穿戴的智能设备,该设备能够监测用户的健康状况并给出相应的建议,同时还要考虑到设备的便携性和美观性。
2. 假设你是一家科技公司的CEO,你的公司正在开发一款全新的产品,该产品能够彻底改变人们的生活方式。
请描述这款产品的特点、优势和市场前景。
3. 请你设计一款全新的教育应用程序,该程序能够帮助学生更好地学习知识,提高学习效率。
请详细说明该程序的功能、特点和使用方式。
4. 请你设计一款全新的游戏,该游戏要具有高度的互动性和趣味性,同时还要有深度的故事情节和角色设定。
请详细说明游戏的玩法、特色和目标受众。
5. 假设你是一位城市规划师,你被委托设计一座全新的城市,该城市要具有高效的城市交通系统、环保的能源利用、丰富的文化生活和高质量的居住环境。
请描述你的设计方案和实现方法。
这些题目旨在激发创新思维和想象力,同时提高解决问题和设计能力。
希望能够帮助您获得新的灵感和思路。
中考数学中“新定义”问题的类型及教学策略摘要:近几年嘉兴中考对于“新定义”类型的问题要求较高,而学生往往对于这类问题感到畏惧。
本文以“新定义”问题的概念以及特征为出发点,把这类题型分为四种类型。
教学时从概念中提取信息→加工信息→转化迁移→建立模型→解决问题。
这类问题主要考查学生现学现用的能力,以及类比和转化思想。
关键词:“新定义”;策略;迁移;阅读理解“新定义”问题是近几年嘉兴中考试题中的热点题型,它是基于学生必须掌握的知识及应该具备的能力,通过新定义的方式隐藏问题本源,要求学生在理解新定义的基础上进行拓展,从而灵活运用新知解决问题,主要考查学生现学现用的能力。
“新定义”问题的重要意义在于它不仅改变了学生解题的思维方式,而且对教师的课堂教学也起到了良好的导向作用,由于突出了理解定义的内在含义、问题迁移转化等重要环节,所以学生往往遇到“新定义”问题感到畏惧,故教师在教学“新定义”问题的时候要注意教学策略。
一、“新定义”问题阐释1.“新定义”问题的概念“新定义”问题是指命题者按照一定的规则,呈现给学生没有见过的新运算、新符号、新图形、新变换、新函数等,或将一些能与初中知识相衔接的高中“新知识”,通过阅读材料呈现给初中学生,让他们将这些“新知识”与已学知识联系起来,正确理解其内容、思想和方法,把握其本质,通过类比、猜想、迁移来运用新知识解决实际问题,要求学生现学现用,它全面地考查了学生的阅读理解能力、知识迁移能力和创新能力。
2.“新定义”问题的特征“新定义”题型特点突出、取材广泛,材料源于课本又有创新,不仅可以考查学生的阅读理解能力、分析综合能力、辨别判断能力以及生活经验是否丰富等,而且可以综合考查学生的数学思维能力和创新意识,此类问题能够帮助学生实现从模仿到创造的思维过程,达到从预设到生成的跨越,符合学生的认知规律,既实现了对学生知识与能力考查的结合,又体现了素质教育的本质,还为学生进入高一级学校的学习做了良好的铺垫。
【方法综述】创新型问题主要包括:(Ⅰ)将实际问题抽象为数学问题,此类问题往往含有文字语言、符号语言、图表语言,要明确题中已知量与未知量的数学关系,要理解生疏的情境、名词、概念,将实际问题数学化,将现实问题转化为数学问题,构建数学模型,运用恰当的数学方法解模(如借助不等式、导数等工具加以解决). (Ⅱ)创新性问题①以新概念、新定义给出的信息迁移型创新题,运用“老知识”解决新问题是关键. ②以新运算给出的发散型创新题,检验运算能力、数据处理能力.③以命题的推广给出的类比、归纳型创新题,要注意观察特征、寻找规律,充分运用特殊与一般的辩证关系进行求解.【解题策略】类型一 实际应用问题【例1】(2020·湖南长郡中学高考模拟(理))“军事五项”是衡量军队战斗力的一种标志,从1950年开始,国际军体理事会每年组织一届军事五项世界锦标赛.“军事五项”的五个项目分别为200米标准步枪射击、500米障碍赛跑、50米实用游泳、投弹、8公里越野跑.已知甲、乙、丙共三人参加“军事五项”.规定每一项运动队的前三名得分都分别为a 、b 、c (a >b >c 且a 、b 、c ∈N*),选手最终得分为各项得分之和.已知甲最终得22分,乙和丙最终各得9分,且乙的投弹比赛获得了第一名,则50米实用游泳比赛的第三名是 A .甲 B .乙 C .丙 D .乙和丙都有可能【答案】B 【解析】【分析】首先根据题中所给的条件,求得三个名次对应的分数,,a b c 的值,从而得到甲乙丙三人各自的得分,从而得到相应的名次,从而求得结果. 【详解】根据题中所给的五人的得分,可知5()40a b c ++=,所以有8a b c ++=,又因为a b c >>,且,,a b c N *∈,所以,,a b c 的值为5,2,1或4,3,1,创新型问题又因为乙投弹获得了第一名,且得分为9分,所以4,3,1不合题意, 所以得到乙的成绩为投弹第一,剩下的都是第三名, 因为甲得分22分,所以甲投弹第二,其余四项都是第一,所以丙投弹第三,剩下四项都是第二,从而得到50米实用游泳比赛的第三名是乙,故选B.【例2】某环保监督组织为了监控和保护洞庭湖候鸟繁殖区域,需测量繁殖区域内某湿地A 、B 两地间的距离(如图),环保监督组织测绘员在(同一平面内)同一直线上的三个测量点D 、C 、E ,从D 点测得67.5ADC ∠=,从点C 测得45ACD ∠=,75BCE ∠=,从点E 测得60BEC ∠=,并测得23DC =,2CE =(单位:千米),测得A 、B 两点的距离为___________千米.【来源】数学-2021年高考考前20天终极冲刺攻略(二)(新高考地区专用)【学科网名师堂】(5月22日) 【答案】3【解析】在ACD △中,45ACD ∠=,67.5ADC ∠=,23CD =67.5CAD ∴∠=,则23AC CD ==在BCE 中,60BEC ∠=,75BCE ∠=,2CE 45CBE ∠=,由正弦定理得sin 45sin 60CE BC=,可得32sin 6023sin 4522CE BC ===在ABC 中,23AC =3BC =,18060ACB ACD BCE ∠=-∠-∠=, 由余弦定理得2222cos609AB AC BC AC BC =+-⋅=,因此,3AB =(千米). 故答案为:3.点睛:解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 【举一反三】1.2016年1月14日,国防科工局宣布,嫦娥四号任务已经通过了探月工程重大专项领导小组审议通过,正式开始实施,如图所示,假设“嫦娥四号”卫星将沿地月转移轨道飞向月球后,在月球附近一点P 变轨进入月球球F 为一个焦点的椭圆轨道I 绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道II 绕月飞行,若用12c 和22c 分别表示椭圆轨道I 和II 的焦距,用12a 和22a 分别表示椭圆轨道I 和II 的长轴长,给出下列式子:①1122a c a c -=- ②1122a c a c +=+ ③1212c a a c > ④1212c c a a < 其中正确的式子的序号是( )A . ②③ B. ①④ C. ①③ D. ②④ 【答案】B2.(2020北京市西城区一模)团体购买公园门票,票价如下表: 购票人数 1~50 51~100 100以上 门票价格13元/人11元/人9元/人现某单位要组织其市场部和生产部的员工游览该公园,这两个部门人数分别为a 和b ,若按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1290元;若两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为990元,那么这两个部门的人数____;____.【答案】70 40 【解析】∵990不能被13整除,∴两个部门人数之和:a +b ≥51, (1)若51≤a +b ≤100,则11 (a +b )=990得:a +b =90,① 由共需支付门票费为1290元可知,11a +13b =1290 ② 解①②得:b =150,a =﹣60,不符合题意.(2)若a +b ≥100,则9 (a +b )=990,得 a +b =110 ③ 由共需支付门票费为1290元可知,1≤a ≤50,51≤b ≤100, 得11a +13b =1290 ④, 解③④得:a =70人,b =40人, 故答案为:70,40.【指点迷津】解答应用性问题要先审清题意,然后将文字语言转化为数学符号语言,最后建立恰当的数学模型求解.其中,函数、数列、不等式、概率统计是较为常见的模型. 类型二 创新性问题【例3】(2020·广东高考模拟(理))设是直角坐标平面上的任意点集,定义.若,则称点集“关于运算*对称”.给定点集,,,其中“关于运算 * 对称”的点集个数为 A . B . C . D .【答案】B【解析】试题分析:将(1,1)y x --带入221x y +=,化简得1x y +=,显然不行,故集合A 不满足关于运算*对称,将(1,1)y x --带入1y x =-,即111x y -=--,整理得1x y +=,显然不行,故集合B 不满足关于运算*对称,将(1,1)y x --带入11x y -+=,即1111y x --+-=,化简得11x y -+=,故集合C 满足关于运算*对称,故只有一个集合满足关于运算*对称,故选B.【例4】对于向量(1,2,...,)i PA i n =,把能够使得12...n PA PA PA +++取到最小值的点P 称为(1,2,...,)i A i n =的“平衡点”.如图,矩形ABCD 的两条对角线相交于点O ,延长BC 至E ,使得BC CE =,联结AE ,分别交BD CD 、于,F G 两点.下列的结论中,正确的是( )A .A C 、的“平衡点”为O .B .DC E 、、的“平衡点”为DE 、的中点. C .AFG E 、、、的“平衡点”存在且唯一. D .A B E D 、、、的“平衡点”必为F 【答案】D【解析】对A ,A 、C 的“平衡点”为线段上的任意一点,故A 错误;对B ,D 、C 、E 的“平衡点”为三角形内部对3条边的张角均为120︒的点,故B 错误; 对C ,A 、F 、G 、E 的“平衡点”是线段FG 上的任意一点,故C 错误;对D ,因为矩形ABCD 的两条对角线相交于点O ,延长BC 至E ,使得BC CE =,联结AE ,分别交BD 、CD 于F 、G 两点,所以A 、B 、E 、D 的“平衡点”必为F ,故D 正确.故选:D . 【举一反三】1.对任一实数序列()123,,,A a a a =,定义序列()213243,,,A a a a a a a ∆=---,它的第n 项为1n n a a +-.假定序列()A ∆∆的所有项都为1,且1820170a a ==,则2021a =( ) A .1000B .2000C .2003D .4006【来源】湖南省常德市第一中学2021届高三下学期第五次月考数学试题 【答案】D【解析】依题意知A ∆是公差为1的等差数列,设其首项为a ,通项为n b , 则()111n b a n n a =+-⨯=+-,于是()()()()()()1111111111221122n n n k k k k k n a n a n n a a a a a b a a n a --+==⎡⎤-++---⎣⎦=+-=+=+=+-+∑∑由于1820170a a ==,即111713602016201510080a a a a ++=⎧⎨++⨯=⎩,解得11016,17136a a =-=.故()202120192020171362020101640062a ⨯=+⨯-+=.故选:D2.(2020兰州高三联考)若数列满足:对任意的且,总存在,使得,则称数列是“数列”.现有以下四个数列:①;②;③;④.其中是“数列”的有( ) A .个 B .个C .个D .个【答案】C 【解析】 令,则,所以数列是“数列”;令,则,,,所以,所以数列不是“数列”; 令,则,,,所以,所以数列不是“数列”;令,则 ,所以数列是“数列”.综上,“数列”的个数为. 本题选择C 选项.3.(2020·河南高考模拟)在实数集R 中定义一种运算“”,对于任意给定的为唯一确定的实数,且具有性质: (1)对任意;(2)对任意;(3)对任意.关于函数的性质,有如下说法:①函数的最小值为3; ②函数为奇函数; ③函数的单调递增区间为.其中所有正确说法的个数为( )A .3B .2C .1D .0 【答案】C【解析】试题分析:在(3)中,令,可得,则,易知函数是非奇非偶函数,故②错;又范围不确定,不能直接用基本不等式求最值.故①错.又,由可得函数单调递增区间为,故③对.故本题答案选C.考点:1.函数的奇偶性;2.函数的单调性与导数间的关系.【思路点晴】本题是新定义题型.主要考查函数的奇偶性,函数的单调性.基本不等式. 此种类型题目的关键在于对新定义的理解.如本题中运算.利用新定义将运算转化为常规运算.转化后就看对基本不等式的理解,利用基本不等式求最值时,一定要求各项必须为正数.本题中无此范围,故最值不能直接求,可利用函数的单调性讨论解决.【强化训练】一、选择题1.对于n ,*k ∈N ,若正整数组()12,,,k F a a a 满足12k a a a ≤≤≤,12k a a a n +++=,则称F为n 的一个拆,设F 中全为奇数,偶数时拆的个数分别为()S n ,()T n ,则( ) A .存在2021n ≥,使得()0S n = B .不存在2021n ≥,使得()0T n = C .存在2021n ≥,使得()()S n T n =D .不存在2021n ≥,使得()()S n T n <【来源】浙江省宁波市宁海中学2021届高三下学期3月高考适应性考试数学试题 【答案】D【解析】对于任意的2021n ≥,至少存在一个全为1的拆分,故A 错误; 当n 为奇数时,()0T n =,故B 错误; 当n 为偶数时,()12,,,k a a a 是每个数均为偶数的分拆,则它至少对应了()1,1,,1和()121,1,,1,1,,1k a a a ---的均为奇数的拆,当2n =时,偶数拆为()2,奇数拆为()1,1,()()221S T ==; 当4n =时,偶数拆为()2,2,()4,奇数拆为()1,1,1,1,()1,3;n≥时,对于偶数的拆,除了各项不全为1的奇数拆分外,至少多出一项各项均为1的拆,故故当6()()>,故C错误,D正确.S n T n故选:D2.(2020·武邑宏达学校高考模拟(理))定义:如果函数在上存在满足,,则称函数是上的“中值函数”.已知函数是上的“中值函数”,则实数的取值范围是()A.B.C.D.【答案】B【解析】,由题意在上有两个不等实根,方程即为,令,则,解得.故选B.3.(2020·福建高考模拟)定义为个正数的“均倒数”.若已知数列的前项的“均倒数”为,又,则=( )A.B.C.D.【答案】C【解析】试题分析:设数列{}的前n项和为,则由题意可得,∴,,∴,∴.4.(2020北京市四中高考调研卷)若函数在其图象上存在不同的两点,其坐标满足条件:的最大值为0,则称为“柯西函数”,则下列函数:①;②;③;④.其中为“柯西函数”的个数为()A.1 B.2 C.3 D.4【答案】B【解析】由柯西不等式得对任意的实数都有≤0,当且仅当时取等,此时即A,O,B三点共线,结合“柯西函数”定义可知,f(x)是柯西函数f(x)的图像上存在两点A与B,使得A,O,B三点共线过原点直线与f(x)有两个交点.①,画出f(x)在x>0时,图像若f(x)与直线y=kx有两个交点,则必有k≥2,此时,,所以(x>0),此时仅有一个交点,所以不是柯西函数;②,曲线过原点的切线为,又(e,1)不是f(x)图像上的点,故f(x)图像上不存在两点A,B 与O 共线,所以函数不是;③;④.显然都是柯西函数.故选:B5.(2020·永安市第一中学高考模拟)在正整数数列中,由1开始依次按如下规则,将某些整数染成红色.先染1;再染3个偶数2,4,6;再染6后面最邻近的5个连续奇数7,9,11,13,15;再染15后面最邻近的7个连续偶数16,18,20,22,24,26,28;再染此后最邻近的9个连续奇数29,31,…,45;按此规则一直染下去,得到一红色子数列:1,2,4,6,7,9,11,13,15,16,……,则在这个红色子数列中,由1开始的第2019个数是( ) A .3972 B .3974 C .3991 D .3993【答案】D 【解析】【分析】根据题意知,每次涂成红色的数字成等差数列,并且第n 次染色时所染的最后一个数是n(2n-1),可以求出2019个数是在第45次染色的倒数第7个数,因此可求得结果. 【详解】第1此染色的数为1=11⨯ ,共染色1个, 第2次染色的最后一个数为6=23⨯,共染色3个, 第3次染色的最后一个数为15=35⨯,共染色5个, 第4次染色的最后一个数为28=47⨯,共染色7个, 第5次染色的最后一个数为45=59⨯,共染色9个, …∴第n 次染色的最后一个数为n 2n 1⨯-(),共染色2n-1个, 经过n 次染色后被染色的数共有1+3+5+…+(2n-1)=n 2个, 而201945456=⨯-,∴第2019个数是在第45次染色时被染色的,第45次染色的最后一个数为4589⨯,且相邻两个数相差2, ∴2019=458912⨯-=3993.故选D .6.(2020·福建高考模拟(理))如图,方格蜘蛛网是由一族正方形环绕而成的图形.每个正方形的四个顶点都在其外接正方形的四边上,且分边长为3:4.现用13米长的铁丝材料制作一个方格蜘蛛网,若最外边的正方形边长为1米,由外到内顺序制作,则完整的正方形的个数最多为(参考数据:7lg0.155≈)A .6个B .7个C .8个D .9个【答案】B 【解析】【分析】根据条件可得由外到内的正方形的边长依次构成等比数列,再根据等比数列求和公式得这些正方形的周长,列不等式,解得结果.【详解】记由外到内的第n 个正方形的边长为n a ,则1255414,...4()77nn a a a =⨯=⨯=⨯,,. 1251()57...414(1())5717nn n a a a -+++=⨯=⨯--. 令1251()57...414(1())135717nn n a a a -+++=⨯=⨯-≤-,解得117.6677lg 5n ≤+≈,故可制作完整的正方形的个数最多为7个. 应选B.7.(2020·四川成都七中高考模拟(理))如果{}n a 不是等差数列,但若k N *∃∈,使得212k k k a a a +++=,那么称{}n a 为“局部等差”数列.已知数列{}n x 的项数为4,记事件A :集合{}{}1234,,,1,2,3,4,5x x x x ⊆,事件B :{}n x 为“局部等差”数列,则条件概率()|P B A =( ) A .415B .730C .15D .16【答案】C 【解析】【分析】分别求出事件A 与事件B 的基本事件的个数,用()|P B A =()AB P P A ()计算结果.【详解】由题意知,事件A 共有4454C A =120个基本事件,事件B :“局部等差”数列共有以下24个基本事件, (1)其中含1,2,3的局部等差的分别为1,2,3,5和5,1,2,3和4,1,2,3共3个, 含3,2,1的局部等差数列的同理也有3个,共6个.含3,4,5的和含5,4,3的与上述(1)相同,也有6个. 含2,3,4的有5,2,3,4和2,3,4,1共 2个, 含4,3,2的同理也有2个.含1,3,5的有1,3,5,2和2,1,3,5和4,1,3,5和1,3,5,4共4个, 含5,3,1的也有上述4个,共24个,()24|120P B A ∴==15.故选C. 8.(2020北京市清华大学附属中学一模)正方形的边长为1,点在边上,点在边上,.动点从出发沿直线向运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角,当点第一次碰到时,与正方形的边碰撞的次数为( ) A .4 B .3C .8D .6【答案】D 【解析】根据已知中的点E ,F 的位置,可知入射角的正切值为,第一次碰撞点为F ,在反射的过程中,直线是平行的,利用平行关系及三角形的相似可得第二次碰撞点为G ,G 在DA 上,且DG ,第三次碰撞点为H ,H 在DC 上,且DH ,第四次碰撞点为M ,M 在CB 上,且CM,第五次碰撞点为N ,N 在DA 上,且AN ,第六次回到E 点,AE .故需要碰撞6次即可. 故选:D .9.几何中常用表示L 的测度,当L 为曲线、平面图形和空间几何体时,L 分别对应其长度、面积和体积.在ABC 中,3AB =,4BC =,5AC =,P 为ABC 内部一动点(含边界),在空间中,到点P 的距离为1的点的轨迹为L ,则L 等于( ) A .612π+B .2263π+ C .20123π+ D .22123π+ 【来源】专题4.3 立体几何的动态问题-玩转压轴题,进军满分之2021高考数学选择题填空题 【答案】D【解析】空间中,到点P 的距离为1的点的轨迹所构成的空间几何体在垂直于平面ABC 的角度看,如下图所示:其中:BCDF ,ACEI 和ABGH 区域内的几何体为底面半径为1的半圆柱;CDE ,BFG ,AHI 区域内的几何体为被两平面所截得的部分球体,球心分别为,,C B A ;ABC 区域内的几何体是高为2的直三棱柱. 四边形BCDF 和ACEI 为矩形,2DCB ECA π∴∠=∠=,2DCE ACB ACB πππ∴∠=--∠=-∠,同理可得:FBG ABC π∠=-∠,HAI CAB π∠=-∠,()332DCE FBG HAI ACB ABC CAB ππππ∴∠+∠+∠=-∠+∠+∠=-=,∴CDE ,BFG ,AHI 区域内的几何体合成一个完整的,半径为1的球,则CDE ,BFG ,AHI 区域内的几何体的体积之和3144133V ππ=⨯=; 又BCDF ,ACEI 和ABGH 区域内的几何体的体积之和()221134562V ππ=⨯⨯++=;ABC 区域内的直三棱柱体积31342122V =⨯⨯⨯=,4226121233L πππ∴=++=+.故选:D.10.如图,水平桌面上放置一个棱长为4的正方体水槽,水面高度恰为正方体棱长的一半,在该正方体侧面11CDD C 上有一个小孔E ,E 点到CD 的距离为3,若该正方体水槽绕CD 倾斜(CD 始终在桌面上),则当水恰好流出时,侧面11CDD C 与桌面所成角的正切值为( )A 5B .12C 25D .2【来源】热点08 立体几何-2021年高考数学【热点�重点�难点】专练(山东专用) 【答案】D【解析】由题意知,水的体积为44232⨯⨯=,如图所示,设正方体水槽绕CD 倾斜后,水面分别与棱1111,,,,AA BB CC DD 交于,,,,M N P Q 由题意知3PC =,水的体积为32BCPN S CD ⋅=322BN PC BC CD +∴⋅⋅=,即344322BN +⨯⨯=, 1BN ∴=在平面11BCC B 内,过点1C 作1//C H NP 交1BB 于H , 则四边形1NPC H 是平行四边形,且11NH PC ==又侧面11CDD C 与桌面所成的角即侧面11CDD C 与水面MNPQ 所成的角,即侧面11CDD C 与平面11HC D 所成的角,其平面角为111HC C B HC ∠=∠, 在直角三角形11B HC 中,111114tan 22B C B HC B H ===. 故选:D. 二、填空题11.(2020安徽省宣城市二调)数列的前项和为,定义的“优值”为 ,现已知的“优值”,则_________.【答案】【解析】解:由=2n,得a 1+2a 2+…+2n ﹣1a n =n •2n ,①n ≥2时,a 1+2a 2+…+2n ﹣2a n ﹣1=(n ﹣1)•2n ﹣1,②①﹣②得2n ﹣1a n =n •2n ﹣(n ﹣1)•2n ﹣1=(n +1)•2n ﹣1,即a n =n +1, 对n =1时,a 1=2也成立,所以 .12.(2020·广西高考模拟(理))如图所示,一个圆柱形乒乓球筒,高为20厘米,底面半径为2厘米.球筒的上底和下底分别粘有一个乒乓球,乒乓球与球筒底面及侧面均相切(球筒和乒乓球厚度忽略不计).一个平面与两乒乓球均相切,且此平面截球筒边缘所得的图形为一个椭圆,则该椭圆的离心率为【答案】154【解析】对圆柱沿底面直径进行纵切,如图所示:切点为,A A ',与圆柱面相交于,C C ',此时可知CC '即为椭圆的长轴2a ,在直角三角形ABO ∆ 中,2022212,8,sin 284AB AB BO AOB OB -⨯===∴∠===,又因为sin rAOB OC ∠=,所以28sin a OC AOB ===∠,由平面与圆柱所截可知椭圆短轴即为圆柱底面直径的长,即24b =,则求得22215c a b =-=15c e a ∴==,故选A.点睛:本题主要考查圆锥曲线与三角函数交汇处的综合应用,属于难题.此题的难点是如何求出长半轴a 的值,需要先利用切线性质求出AOB ∠,再利用相似求出OC 长,即为a ,短轴长为底面半径,故b 比较容易求出,根据椭圆中的关系式222a b c =+,得出c 值,进而求出离心率. 13.(2020山东省淄博实验中学一诊)定义:若函数的定义域为,且存在非零常数,对任意,恒成立,则称为线周期函数,为的线周期若为线周期函数,则的值为______. 【答案】1 【解析】 若为线周期函数 则满足对任意,恒成立 即,即则本题正确结果:14.(2020四川省成都市二诊)在平面直角坐标系中,定义两点,间的折线距离为,已知点,,,则的最小值为___.【答案】【解析】d (O ,C )=|x |+|y |=1,首先证明:,两边平方得到变形为,由重要不等式,显然此不等式成立,故根据不等式的性质得到:.故答案为:.15.如图,有一矩形钢板ABCD缺损了一角(如图所示),边缘线OM上每一点到点D的距离都等于它到边AB 的距离.工人师傅要将缺损的一角切割下来使剩余部分成一个五边形,若AB=1m,AD=0.5m,则五边形ABCEF 的面积最大值为____m2.【答案】【解析】以O为坐标原点,AD所在直线为轴建立平面直角坐标系,设边缘线OM上一点,则,设EF与边缘线OM的切点为,因为,所以,故EF所在直线方程为,因此,其中,从而因为当时,,当时,,即当时取最小值,从而五边形ABCEF的面积取最大值.16.(2020北京师范大学附属实验中学)分形几何学是一门以不规则几何形态为研究对象的几何学.分形的外表结构极为复杂,但其内部却是有规律可寻的.一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.下面我们用分形的方法来得到一系列图形,如图1,线段的长度为a,在线段上取两个点,,使得,以为一边在线段的上方做一个正六边形,然后去掉线段,得到图2中的图形;对图2中的最上方的线段作相同的操作,得到图3中的图形;依此类推,我们就得到了以下一系列图形:记第个图形(图1为第1个图形)中的所有线段长的和为,现给出有关数列的四个命题:①数列是等比数列;②数列是递增数列;③存在最小的正数,使得对任意的正整数,都有;④存在最大的正数,使得对任意的正整数,都有.其中真命题的序号是________________(请写出所有真命题的序号).【答案】②④【解析】由题意,得图1中线段为,即;图2中正六边形边长为,则;图3中的最小正六边形边长为,则;图4中的最小正六边形边长为,则;由此类推,,所以为递增数列,但不是等比数列,即①错误,②正确;因为,即存在最大的正数,使得对任意的正整数,都有,即④正确;③错误,综上可知正确的由②④.17.(2020河南省十所名校联考)若函数的图象存在经过原点的对称轴,则称为“旋转对称函数”,下列函数中是“旋转对称函数”的有_________.(填写所有正确结论的序号)①;②;③.【答案】①②【解析】对于①中,的反函数为:,所以函数关于直线对称,故①是“旋转对称函数”.对于②,,所以函数是偶函数,它关于轴对称,故②是“旋转对称函数”. 对于③,,当时,,则函数的图像只可能关于直线对称,又,当时,,这与函数的图像关于直线对称矛盾,故③不是“旋转对称函数”.18.(2020·四川高考模拟)如图,在棱长为1的正方体1111ABCD A B C D -中,动点P 在其表面上运动,且PA x =,把点的轨迹长度()L f x =称为“喇叭花”函数,给出下列结论: ①13216f π⎛⎫= ⎪⎝⎭;②()312f π=;③()322f π=;④21333f π⎛⎫= ⎪ ⎪⎝⎭其中正确的结论是:__________.(填上你认为所有正确的结论序号)【答案】②③④【解析】1()2f 由如图三段相同的四分之一个圆心为A 半径为12的圆弧长组成,因此13π()24f = (1)f 由如图三段相同的四分之一个圆心为A 半径为1 的圆弧长组成,因此3π(1)2f = 2)f 由如图三段相同的四分之一个圆心分别为1,,B D A 半径为1 的圆弧长组成,因此13π(2)32π142f =⨯⨯⨯= 21()3f 由如图三段相同弧长组成,圆心角为π6 ,半径为23 ,因此21π23π()33633f =⨯⨯=,因此选②③④ 19.(2020·辽宁高考模拟(理))大雁塔作为现存最早、规模最大的唐代四方楼阁式砖塔,是凝聚了中国古代劳动人民智慧结晶的标志性建筑.如图所示,已知∠ABE =α,∠ADE =β,垂直放置的标杆BC 的高度h =4米,大雁塔高度H =64米.某数学兴趣小组准备用数学知识探究大雁塔的高度与α,β的关系.该小组测得α,β的若干数据并分析测得的数据后,发现适当调整标杆到大雁塔的距离d ,使α与β的差较大时,可以提高测量精确度,求α﹣β最大时,标杆到大雁塔的距离d 为_____米.【答案】1615【解析】由题意得46415BD d BD BD d =∴=+ , 因此6460tan tan 4tan()646064601tan tan 646081512d d d d d d d dαβαβαβ---===≤=⨯+⨯+⋅+⋅, 当且仅当15d =时取等号,因此当15d =时,tan()αβ-取最大值,即αβ-取最大,即标杆到大雁塔的距离d 为1615【点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.20.(2020·山东省淄博实验中学高考模拟(理))定义在封闭的平面区域D 内任意两点的距离的最大值称为平面区域D 的“直径”.已知锐角三角形的三个顶点,,A B C 在半径为1的圆上,且3BAC π∠=,分别以ABC ∆各边为直径向外作三个半圆,这三个半圆和ABC ∆构成平面区域D ,则平面区域D 的“直径”的最大值是__________.【答案】332 【解析】设三个半圆圆心分别为G,F ,E ,半径分别为123r r r ,,,M,P,N 分别为半圆上的动点,则PM≤12r r ++GF= 12r r ++AC 2=123a b c r r r 2++++=,当且仅当M,G ,F,P 共线时取等;同理:PN ≤123r r r ,++MN≤123r r r ++,又ABC 外接圆半径为1,πBAC 3∠=,所以BC 2πsin 3=,∴BC=a=2sin π3=3,由余弦定理()2222b c b c bc 3,b c 33bc 3,2+⎛⎫+-=+-=≤ ⎪⎝⎭即解b+c≤23,当且仅当b=c=3取等;故123a b c 33r r r 22++++=≤21.(2020·首都师范大学附属中学高考模拟(理))定义:对于数列{}n x ,如果存在常数p ,使对任意正整数n ,总有1()()0n n x p x p +--<成立,那么我们称数列{}n x 为“p ﹣摆动数列”.①若21n a n =-,(10)n n b q q =-<<,*n N ∈,则数列{}n a _____“p ﹣摆动数列”,{}n b _____“p ﹣摆动数列”(回答是或不是);②已知“p ﹣摆动数列”{}n c 满足111n n c c +=+,11c =.则常数p 的值为_____.【答案】不是 是12【解析】①由21n a n =-知道{}n a 是递增数列,故不存在满足定义的p又因为(10)nn b q q =-<<可知n b 正负数值交替出现,故0p =时满足定义②因为数列{}n c 是“p ﹣摆动数列”,故1n =时有()()210x p x p --< 可求得:112p <<又因为使对任意正整数n ,总有()()10n n c p c p +--<成立,即有()()210n n c p c p ++--<成立 则()()20n n c p c p +-->所以1c p >,3c p >,…,21n c p ->同理2c p <,4c p <,…,2n c p <所以221n n c p c -<<,即212111n n c c --<+,解得2112n c->,即12p ≤ 同理2211n n c c +>,解得2n c<p ≥综上,p =本题正确结果:不是;是;12。
例说初中物理创新能力题随着科技的发展和教育的创新,初中物理教学越来越注重培养学生的创新能力。
创新题作为检验学生创新能力的重要手段,已经成为了各类考试的常见题型。
那么,如何应对这类题目呢?本文将从以下几个方面进行探讨。
首先,我们要明确初中物理创新题的定义和重要性。
创新题通常是以新颖的题型、独特的角度或现实生活中的物理现象为背景,要求学生在分析问题、建立模型、解决问题的过程中,充分展示创新思维和能力。
这类题目不仅能检验学生对物理知识的掌握程度,还能培养学生的观察能力、思维能力、实践能力和创新能力。
其次,我们要了解初中物理创新题的特点。
创新题往往具有较强的现实意义和思维含量,要求学生在分析问题时能突破常规思维,善于从不同角度思考问题。
在解答过程中,学生需要灵活运用所学知识,挖掘题目中的隐含条件,找出问题的关键所在。
此外,创新题的答案往往不唯一,鼓励学生发挥自己的想象力,提出独特的见解。
接下来,我们来谈谈解题策略和技巧。
面对创新题,首先要保持冷静,分析题目的背景、条件和问题,确定解题的方向。
其次,要善于从生活实际中寻找灵感,将学到的物理知识与生活场景相结合,寻找解决问题的方法。
此外,要注重思维的发散性,不要局限于固有的解题思路,勇于尝试新的方法。
最后,要注重团队协作,学会与同学、老师交流,共同探讨问题,取长补短。
下面,我们通过一个实例来具体分析一下。
题目:小明发现家里的电风扇在转动过程中,扇叶和地面之间的距离似乎对风速有影响。
请你帮助小明分析这一现象,并提出合理的解释。
解题过程:1.分析题目,确定研究对象:电风扇、扇叶、地面;2.提出假设:扇叶与地面之间的距离可能影响风速;3.设计实验方案:保持电风扇的转速不变,改变扇叶与地面的距离,观察风速的变化;4.进行实验,记录数据;5.分析数据,得出结论:当扇叶与地面距离增大时,风速减小;反之,风速增大。
最后,我们来总结一下。
应对初中物理创新题,首先要明确其定义和重要性,然后了解其特点,掌握解题策略和技巧。
初中-数学-打印版连线中考全等三角形创新题型在新课程理念的催生下,近年中考在题型设计上不断推陈出新。
为能更好地与中考接轨,本文就与中考全等三角形问题中有关的创新题展示如下,以期抛砖引玉。
一、条件探索题例1.如图1,AB 、CD 相交于点O ,AB=CD ,试添加一个条件使得△AOD≌△COB,你添加的条件是 (只需写一个).解析:由对顶角相等,得∠AOD=∠COB,若加条件AO=CO ,则由AB=CD ,可得AB -AO= CD -CO ,即BO=DO .由“SAS”得△AOD≌△COB.同理,也可以加条件BO=DO .如果连接DB ,那么可加条件AD=CB ,先说明△ADB≌△CBD,得∠A=∠C ,再得出△AOD≌△COB.所以应填AO=CO ,或BO=DO ,或AD=CB 等.评注:解答条件开放型试题,需要执果索因,逆向推理,逐步探求结论成立的条件.解决这类题时,要注意挖掘图形中的隐含条件,如对顶角、公共角、公共边等.这类题的答案往往不唯一,只要合理即可.二、结论探索题例2.如图2,在Rt ABC △与Rt ABD △中,90ABC BAD ∠=∠=, AD BC AC BD =,,相交于点G ,过点A 作AE DB ∥交CB 的延长线于点E ,过点B 作BF CA ∥交DA 的延长线于点F AE BF ,,相交于点H .图中有若干对三角形是全等的,请你任选一对说明全等的理由(不添加任何辅助线).解析:由题意可得,ABE △和ABF △都是直角三角形,它们与Rt ABC △和Rt ABD △互相都是全等三角形,下面说明ABC △≌BAD △.因为AD BC =(已知),90ABC BAD ∠=∠=(已知),BA AB =(公共边), 所以ABC △≌BAD △(SAS ).评注:解答结论开放型试题的关键是执因索果,但在解题思路和推导深入度不同的情况下,所得答案往往不同,即答案具有不确定性.三、综合探索题D GC BHF A图2 D B CA O 图1 图3初中-数学-打印版 例3.如图3,AC 交BD 于点O ,请你从下面三项中选出两个作为条件,另一个为结论,写出一句正确的话,并说明正确的理由.①OA=OC,②OB=OD,③AB∥DC.解析:由题意得,给出的三项中,任意选两项作为条件,另一项作为结论写出的句子都是正确的.如“AC 交BD 于点O ,若①OA=OC,②OB=OD,则③AB∥DC.”这是正确的.又如“AC 交BD 于点O ,若①OA=OC,③AB∥DC,则②OB=OD.”这也是正确的,理由如下.因为AB∥DC(已知),所以∠A=∠C(两直线平行,内错角相等).又OA=OC (已知),∠AOB=∠COD(对顶角相等),所以△AOB≌△COD(ASA ).所以OB=OD (全等三角形的对应边相等).评注:条件和结论都开放的综合开放型试题,解题的方法是要充分利用所学的数学知识,通过观察、分析、综合、判断、推理等活动来探索、完善并进行证明.四、条件组合题例4.如图4,在△ABC 和△DEF 中,D 、E 、C 、F 在同一直线上,下面有四个条件,请你在其中选3个作为题设,余下的1个作为结论,写一个真命题,并加以证明.①AB=DE ,②AC=DF ,③∠ABC=∠DEF,④BE=CF .已知:求证:证明: 分析:根据三角形全等的条件和三角形全等的特征,本题有以下两种组合方式:组合一:条件:①②④,组合二:条件:①③④,结论:②,特别要注意若以①②③或②③④为条件组合,此时属于SSA 的对应关系,则不能证明△ABC≌△DEF,也得不到相关结论.评注:这种题型是近几年来的中考题的新亮点,它通过“一题多变”与“一题多解”来考察学生的发散思维能力.五、猜想验证题例5.如图5,已知ABC ∆为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF ∆也是等边三角形. (1)除已知相等的边以外,请你猜想还有哪些相等线段, FED CBA图5 F E DC B A 图4初中-数学-打印版 并证明你的猜想是正确的;(2)你所证明相等的线段,可以通过怎样的变化相互得到?写出变化过程.分析:(1)猜想:AF=BD=CE ,AE=BF=CD .由已知条件,只要证明:△AFE≌△BDF≌△CED 即可.(2)这些线段可以看成是经过平移、旋转而得到的,如AE 与BF 绕着A 点顺时针旋转600,再沿着AB 方向平移使A 点至F 即可得BF ,其余类同.评注:本题是一道具有挑战性的探索、猜想、验证、证明的试题,它与几何中图形的全等、图形的变换融合在一起,只要同学们认真观察、认真判断,问题就不难得到解决.六、拼图证明题例6.一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如下右图形式,使点B 、F 、C 、D 在同一条直线上.(1)求证AB⊥ED;(2)若PB=BC ,请找出图中与此条件有关的一对..全等三角形,并给予证明.分析:(1)由已知的剪、拼图过程(将长方形沿对角线剪开),显然有△ABC≌△DEF,故∠A=∠D;又∠ANP=∠DNC,因而不难得到∠APN=∠DCN=900,即AB⊥ED.(2)若在增加PB=BC 这个条件,再认真观察图形,就不难得到△PNA≌△CND、△PEM≌△FMB.评注:本题的意图是让同学们在剪、拼图形的背景下,积极参与图形的变化过程,并在图形的变化过程中来探究图形之间的关系,用来考察学生的创新精神与能力.七、应用型例7.如图7,将两根钢条'AA 、'BB 的中点O 连在一起,使'AA 、'BB 可以绕着点0图6初中-数学-打印版 自由转动,就做成了一个测量工件,则''A B 的长等于内槽宽AB ,那么判定△AOB △''A OB 的理由是( )A. 边角边B.角边角C.边边边D.角角边评注:新的数学课程标准加强了数学知识的实践与综合应用,从各地的中考应用题可以看出,它已不再局限于传统而古老的列方程(组)解应用题这类题目,而是呈现了建模方式多元化的新特点,几何应用题就是其中之一。
创新型问题的题型分析与解题策略
摘要:什么是创新意识?它在高考中的重要性如何?概念型创新题,规定运算法则创新题,规律探究型创新题,情境创新题,探索型创新试题的解题策略是什么?
关键词:创新意识;高考;解题策略
随着基础教育的不断深入,我们深深地感受到利用固定条件推出固定结论的数学题型,已经对学生思维的发挥有了一定的束缚作用,为了改变这种情况,近几年来,高考数学试题推出一些情景新颖、思维开阔、内涵丰富等特点的试题,这些试题的显著特征是:以知识为载体,问题为中心,它们并不拘泥于具体的知识点,而是将数学知识、方法和原理融会一体,主要考查对新颖的信息、情境和设问能选择合理有效的方法和手段进行分析,发现问题、提出问题,能综合与灵活应用所学的数学知识、思想和方法进行思考、探索和研究,最后提出解决问题的思路,创造性地解决问题的能力。
这种试题就是创新型试题。
2010年数学考试说明指出:创新意识是理性思维的高层次表现。
是对数学问题的“观察、猜测、抽象、概括、证明”,是发现问题和解决问题的重要途径,对数学知识的迁移、组合、融会的程度越高,显示出的创新意识也越强,由此可见创新型试题的难度通常较大,对学生各方面的能力要求较高,是学生较难解决好的但同时是高考中考查学生的一个相当重要的类型。
一、考查创新意识的特点
高考对创新意识的考查:(1)要求考生不仅能理解一些概念、定义,掌握一些定理、公式,更重要的是能够应用这些知识和方法解决数学中和现实生活中比较新颖的问题。
(2)学生能够将能力要素进行有机地组合。
能力要素的有机组合首先是各种能力的综合,但不是所有能力要素的综合,是解题所需的能力要素的组合。
其特点为:
1.新
信息、情境和设问新颖。
2.探究性
(1)条件、结论开放;(2)解决问题的方法和过程具有探究性,需对所学知识进行迁移、重组及灵活运用。
3.综合应用
能力综合。
二、创新试题在高考中的重要性
2010年福建理科卷对创新意识考查为:第10题(选择题)第18题(解答题)第20题(解答题)共28分;2010年山东理科卷对创新意识考查为:第12题(选择题)第21题(3)小题(解答题)第22题(2)小题(解答题)共17分。
从中可以看到:创新题型可以在选择、填空、解答中考查,考查的知识点是各方各面的,设问方法也是五花八门的,具有相当大的灵活性,它在高考中所占的比重也是我们所不能忽视的,这就更需要我们对创新型试题进行认真、深入的研究,寻找解决行之有效的方法,让学生在高考中争取
拿到较高的分值。
三、创新试题归纳及解题策略
通过对各省份高考卷及今年各地市高考模拟卷和考试说明的研究,高考中的创新型试题通常包括:
1.概念型创新题
先给出一个定义,然后根据定义提出一系列问题。
解题策略:先要准确理解题目中新的定义、新符号,把握定义的本质。
在此基础上按定义处理问题,使知识发生有效的迁移。
(2010福建卷理10)对于具有相同定义域d的函数f(x)和g (x),若存在函数h(x)=kx+b(k,b为常数),对任给的正数m,存在相应的x0∈d,使得当x∈d且x>x0时,总有01的四组函数如下:
①f(x)=x2,g(x)= ;②f(x)=10-x+2,g(x)= ;
③f(x)= ,g(x)= ;④f(x)= ,g(x)=2(x-1-e-x)。
其中,曲线y=f(x)与y=g(x)存在“分渐近线”的是:
a.①④b.②③c.②④d.③④
【答案】c
2.规定运算法则创新题
解题策略:理解运算法则,运用法则将创新问题转化为常规问题加以解决。
(2010广东卷文10)在集合{a,b,c,d}上定义两种运算?茌和?茚如下:
那么d?茚(a?茌c)=
a.a b.b c.c d.d
【答案】a。
3.规律探究型创新题
解题策略:通过观察分析图形、图象、图表,抓住主要信息特征,透过现象看到本质,并适当地联系相关知识,寻找规律,可以避繁就简得到解答。
(2010湖南卷理15)若数列an满足:对任意的n∈n*,只有有限个正整数m使得am<n成立,记这样的m的个数为(an)*,则得到一个新数列(an)*.例如,若数列an是1,2,3…,n,…,则数列(an)*是0,1,2,…,n-1,….已知对任意的n∈n*,an=n2,则(a5)*=______,((an)*)*_______.
【答案】2,n2
4.情境创新题
题目所给知识背景、生活背景新颖。
解题策略:需要将遇到的新情境与学过的知识发生联系,将所学的知识迁移到新的情境中去,转化为熟悉的数学知识与数学方法。
(2010上海卷理7文11)2010年上海世博会园区每天9:00开园,20:00停止入园。
在右边的框图中(原图略),s表示上海世博会官方网站在每个整点报道的入园总人数,a表示整点报道前1个小时内入园人数,则空白的值为________.
【答案】(略)。
5.探索型创新题
解题策略:必须结合已有条件,进行观察、分析、比较和概括,常用穷举法、分类讨论解决。
(北京卷文20)已知集合sn=x|x=(x1,x2,…,xn),xi∈0,1,i=1,2,…,n(n≥2)对于a=(a1,a2,…,an,),b=(b1,b2,…,bn)∈sn,定义a与b的差为a-b=(a1-b1,a2-b2,…an-bn);a与b之间的距离为d(a,b)= ai-bi
(1)当n=5时,设a=(0,1,0,0,1),b=(1,1,1,0,0),求a-b,d(a,b);
(2)证明:?坌a,b,c∈sn,有a-b∈sn,且d(a-c,b-c)=d(a,b);
(3)证明:?坌a,b,c∈sn,d(a,b),d(a,c),d(b,c)三个数中至少有一个是偶数。
【答案】(略)。
随着以培养学生的创新精神和实践能力为重点的素质教育的深
入发展和新课程改革的不断深入,高考命题将更加关注“探索性问题”和“创新题型”。
从最近几年来高考中创新性问题逐年攀升的趋势,可预测探索性问题和创新题型仍将是高考命题“孜孜以求的目标”。
我们认为进行探索性问题和创新题型的训练,是数学教育走出困境的一个好办法。
总之,创新型数学问题由于选择范围广,覆盖知识面大,具有较
强的综合性和逻辑性,对使用的解题方法也有较高的要求,因此必须要求学生自己去探索,结合已有条件,进行观察、分析、比较、概括,不但要会演绎法,也必须会归纳法,不但要掌握严密的逻辑推理,也必须掌握合情推理。
(作者单位福建省晋江一中)
“本文中所涉及到的图表、公式、注解等请以pdf格式阅读”。