小学五年级关于流水问题奥数填空题
- 格式:doc
- 大小:28.50 KB
- 文档页数:4
小学奥数练习卷(知识点:流水行船问题)注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一.选择题(共2小题)1.一条小河流过A,B,C三镇.A,B两镇之间有汽船来往,汽船在静水中的速度为11千米/时.B,C两镇之间有木船摆渡,木船在静水中的速度为3.5千米/时.已知A,C两镇水路相距50千米,水流速度为l.5千米/时.某人从A 镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇,共用8小时,那么A,B两镇的距离是()A.10千米B.20千米C.25千米D.30千米⑤40千米2.一架小飞机,在静止的空气中飞行速度为320千米/小时.现在有风,风速为40千米/小时(风速不变),逆风飞行全程需时135分钟,顺风返回需时()分钟.(飞机起飞和着陆的时间略去不计)A.94.5B.105C.112.5D.120第Ⅱ卷(非选择题)二.填空题(共35小题)3.河流上有A、B两个码头,其中A码头在上游,B码头在下游.现有甲、乙两艘船,静水中甲船速度是乙船的两倍;甲、乙同时分别从A、B两个码头出发,相向而行;甲船在出发的时候将一箱可飘浮于水面上的货物遗留在了河面上,20分钟后两船相遇,此时甲船又将一箱同样的货物遗留在了河面上.一段时间之后,甲船发现自己少了货物调头回去寻找,当甲找到第二箱货物的同时,乙船恰好遇到了甲遗留的第一箱货物.那么,甲从出发开始过了分钟才发现自己的货物丢失.(掉头时间不计)4.轮船从深圳到上海需要航行6昼夜,而由上海到深圳需要航行10昼夜,那么由深圳顺水放一木筏到上海,途中需经昼夜.5.甲、乙两人在一条长120米的直路上来回跑,甲的速度是5米/秒,乙的速度是3米/秒,若他们同时从同一端出发跑了15分钟,则他们在这段时间内共迎面相遇次(端点除外).6.一艘轮船从A港出发顺流而下到同一条河上的B港,再逆流而上返回A港,共用3.2小时;如果第1小时、第2小时、第3小时轮船分别所行路程依次成等差数列,且水流速度为每小时2千米;那么轮船往返A、B两港共行千米.7.静水中,甲乙两船的时速分别是20千米和16千米,两船先后自某港顺水开出,乙比甲早出发2小时.若水速是4千米/小时,甲船开出后小时追上乙船.8.小船运木材,逆流而上,在途中A处掉下一块木材顺水下流.5分钟后发现,小船立即掉头追木材(掉头时间忽略不计),再经过分钟才能追上这块木材.9.如图所示,A、B两港相距90千米,A港在B港上游,如果甲、乙两船分别从A、B两港同时出发,相向而行,会在C处相遇:如果甲、乙两船分别从B、A两港同时出发,相向而行,会在D处相遇.如果AC的长度是40千米,BD 的长度是30千米,水流速度是每小时10千米,那么甲船的速度是每小时千米.10.一艘轮船,从上游A地开往下游B地,需要1小时,原路返程时,将船速提高到原来的2倍,也需要1小时.那么,如果游轮从A地出发时也采用2倍船速,需要分钟可以到达B地.11.一艘客轮往返甲、乙两港,顺水速度是15千米/小时,逆水速度是的12千米/小时.现在甲港放一个木排顺水漂流到乙港,要用3天才能到达.那么,甲、乙两港的水路长千米.12.一条河流旁依次有2个码头甲、乙、丙.小明划船从甲地到丙地然后到乙地需要2小时,而从乙地先去丙地最后返回甲地用了2.5小时.已知他划船时,逆水的速度是3千米/时,顺水的速度是4.5千米/时.那么甲、乙两地相距米.13.甲乙两船从一条河的A、B两个码头同时出发,相向而行,甲船的静水速度比乙船的静水速度快20%,两船在距离中点10千米处相遇,A、B两个码头间的距离为千米.14.自动扶梯停止运行时,一个小孩要用90秒钟才能走完60米长的自动扶梯.自动扶梯运行时则可用60秒钟将乘客从底端送到顶端.若小孩在运行的自动扶梯上行走,问小孩从扶梯底端到达顶端需要秒.15.甲乙两船从一条和的A、B两个码头同时出发,相向而行,甲船的静水速度比乙船的静水速度快20%,水速为乙船静水速度的10%,两船在距离中点10千米处相遇.A、B两个码头间的距离为千米.16.甲、乙两船在静水中的速度相同,两船分别从A、B两港同时出发,相向而行,甲船顺流而下,乙船逆流而上.已知水速是船在静水中速度的12%,那么当两船第一次相遇时,甲船航行的路程占两港间距离的%.17.平时轮船从A地顺流而下到B地要行20小时,从B地逆流上而到A地要行28小时.现正值雨季,水流速度为平时的2倍,那么,从A到B再回A共需小时.18.A、B两港相距200千米,甲乙两船同时从A港顺流而下去B港;静水中甲船每小时行45千米,乙船每小时行35千米;甲船到B港立即返回,又过0.5小时与乙迎面相遇.水流速度为每小时千米.19.小淘气乘正在下降的自动扶梯下楼,如果他一级一级的走下去,从扶梯的上端走到下端需要走36级.如果小淘气沿原自动扶梯从下端走到上端(很危险哦,不要效仿!),需要用下楼时5倍的速度走60级才能走到上端.请问这个自动扶梯在静止不动时有级.20.一条船顺流航行16千米、逆流航行8千米共用4小时;顺流航行12千米、逆流航行10千米共用同样的时间.问:这条船顺流航行24千米、然后返回共用了小时.21.有一艘船从甲港顺水而下行到乙港,马上又从乙港逆水.而上返回甲港,共用6小时.已知水流速度是每小时5千米,这艘船前3小时比后3小时多行25千米,那么甲、乙两港相距千米.22.一天乔巴开船出游,逆流而上,船在静水中的速度为每小时15千米,水流速度为每小时3千米.船开出5小时后发动机突然坏了.船失去了动力,顺流漂回.那么再过小时可怜的乔巴又回到了出发地.23.一艘轮船从A地出发去B地为顺流,需10小时;从B地返回A地为逆流,需15小时.水流速度为每小时10千米.那么A、B两地间的航程有千米.24.一艘船,第一次顺水航行420千米,逆水航行80千米,用11小时;第二次用同样的时间顺水航行240千米,逆水航行140千米.这艘船顺水行198千米需要小时.25.甲、乙两船分别在一条河的A、B两地同时相向而行,甲顺流而下,乙逆流而行,相遇时,甲、乙两船行了相等的航程,相遇后继续前行,甲船到达B 地,乙船到达A地后,都立即按原来路线返航,两船第二次相遇时,甲船比乙船少行1千米.如果从两船第一次相遇到第二次相遇时间相隔1小时20分钟,则河水的流速为每小时千米.26.甲乙两港相距400千米,甲港在乙港的上游,有一艘游轮从甲港出发到达乙港后返回共用10小时,水速是游轮静水速度的,那么水速是千米/小时.27.某船顺水速度28公里/小时,3小时到达港口,返回时用了3.5小时,水流速度是每小时公里.28.一艘客轮在静水中的航行速度是26千米/时,往返于A、B两港之间,河水的流速是6千米/时.如果客轮在河中往返4趟共用13小时,那么A、B两港之间相距千米.(客轮掉头时间不计)29.一只木船每小时行驶12千米,它逆水7小时行了70千米,如果它顺水行驶同样长的路程需要小时.30.沿江有两个城市,相距600千米,甲船往返两城市需要35小时,其中顺水比逆水少用5小时,乙船的速度是每小时15千米,那么乙往返两城市需要小时.31.一个人乘木筏在河面顺流而下,行到一座桥下时此人想锻炼一下身体,便跳入水中逆水游泳,10分钟后转身追赶木筏,终于在离桥1500米远的地方追上木筏,假设水流速度及此人游泳的速度都一直不变,那么水流的速度是每小时千米.32.一船从甲港顺水而下到乙港,马上又从乙港逆水行回甲港,共用了12小时.已知顺水每小时比逆水每小时多行16千米,又知前6小时比后6小时多行了80千米,那么,甲、乙两港相距千米.33.一艘船从甲港到乙港,逆水每小时行24千米,到乙港后又顺水返回甲港,已知顺水航行比逆水航行少用5小时,水流速度为每小时3千米,甲、乙两港相距千米.34.一条大河,河中间(主航道)水的流速为每小时10千米,沿岸边水的流速为每小时8千米.一条船在河中间顺流而下,10小时行驶360千米,这条船沿岸边返回原地需要小时.35.A.B 两景点相距10千米,一艘观光游船从A 景点出发抵达B 景点后立即返回,共用3小时.已知第一小时比第三小时多行8千米,那么水速为每小时千米.36.一艘船在静水中的速度为18千米/小时,已知AB两地之间的水速为2千米/小时,则这艘船在A、B两地之间往返一次平均速度为千米/小时.37.某船第一天顺流航行21千米,逆流航行4千米.第二天在同一河道中顺流航行12千米,逆流航行7千米.两次所用的时间相等.假设船本身速度及水流速度保持不变,顺水船速是逆水船速的倍.三.解答题(共13小题)38.一条大河,河中间的水流速度是每小时8千米,一条船在河中间顺流而下,13小时行520千米,这条船沿岸边返回原地,需要20小时.沿岸边的水流速度是每小时千米.39.A船逆水航行60千米,需要3小时,返回原地需时2小时;B船逆水航行同一段水路,需要4小时.(1)求水流速度是每小时多少千米?(2)B船在静水中每小时航行多少千米?(3)B船返回原地需要多少小时?40.一艘轮船顺流航行210千米,逆流航行120千米共用12小时;顺流航行180千米,逆流航行216千米共用15小时.两个码头相距240千米.求该船往返一次需要多少时间?41.甲、乙两船顺流每小时行8千米,逆流每小时行4千米,若甲船顺流而下,然后返回;乙船逆流而上,然后返回,两船同时出发,经过3小时同时回到各自的出发点,在这3小时中有多长时间甲、乙两船同向航行?42.一条河上有A、B两港.现甲船从A港顺水、乙船从B港逆水同时相向而行.已知,甲、乙两船在静水中的速度相等.3.6小时后在距A港108千米处两船相遇.之后两船继续行驶分别到达B、A两港后,立即返回,在距A港72千米处再次相遇.求A、B两港的距离.43.快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.44.小虎周末到公园划船,九点从租船处出发,计划不超过十一点回到租船处.已知,租船处在河的中游,河道笔直,河水流速1.5千米/小时,每划船半小时,小虎就要休息十分钟让船顺水漂流.船在静水中的速度是3 千米/小时;问:小虎的船最远可以离租船处多少千米?45.一艘轮船顺流航行140千米,逆流航行80千米,共用了15小时;顺流航行60千米,逆流航行120千米,也用了15小时.求水流的速度.46.游客在9时15分由码头划出一条小船,他欲在不迟于12时回到码头,河水的流速为每小时1.4千米,小船在静水中的速度为每小时3千米,他每划30分钟就休息15分钟,中途不改变方向,并在某次休息后立即往回划.他最多能划离码头多少千米?几时回到码头?(假定休息时船在原地抛锚不动)47.有人在河中游泳,逆流而上,不小心在A处丢失了一只水壶,水壶顺水流而下,30分钟后,他才发觉此事,便立刻返回寻找,结果在离A处6千米的下游找到了水壶,此人返回寻找水壶用了多少时间?水速是多少?(假设人相对于水的游泳速度始终保持不变)48.一条船顺水而行,6小时行60千米,逆水航行这段路,10小时才能到达,那么这条船在静水中的速度及水流的速度各是多少?49.A地位于河流的上游,B地位于河流的下游.每天早上,甲船从A地、乙船从B地同时出发相向而行,从12月1号开始,两船都装上了新的发动机,在静水中的速度变为原来的 1.5倍,这时两船的相遇地点与平时相比变化了1千米.由于天气原因,今天(12月6号)的水速变为平时的2倍.试问:今天两船的相遇地点与12月2号相比,将变化多少千米?50.如图,甲、乙两艘快艇不断往返于A、B两港之间.若甲、乙同时从A港出发,它们能否同时到达下列地点?若能,请推算它们何时到达该地点;若不能,请说明理由.(1)A港;(2)B港;(3)在两港之间且距离B港30千米的大桥.参考答案与试题解析一.选择题(共2小题)1.一条小河流过A,B,C三镇.A,B两镇之间有汽船来往,汽船在静水中的速度为11千米/时.B,C两镇之间有木船摆渡,木船在静水中的速度为3.5千米/时.已知A,C两镇水路相距50千米,水流速度为l.5千米/时.某人从A 镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇,共用8小时,那么A,B两镇的距离是()A.10千米B.20千米C.25千米D.30千米⑤40千米【分析】从A镇到C镇前后共用了8小时,吃午饭用去1小时,所以路上(包括A到B,B再到C)一共用了7小时;A到B的行进速度为11+1.5=12.5,B 到C的行进速度为3.5+1.5=5,所以AB两镇相距为(50÷5﹣7)÷(1÷5﹣1÷12.5)=25(千米)【解答】解:A到B的行进速度为每小时11+1.5=12.5(千米)B到C的行进速度为每小时3.5+1.5=5(千米)AB两镇相距为:(50÷5﹣7)÷(1÷5﹣1÷12.5)=(10﹣7)÷(0.2﹣0.08)=3÷0.12=25(千米)答:A,B两镇的距离是25千米.故选:C.【点评】此题可以这样理解:如果A到B的行进速度也为5(和B到C一样)的话,那么A到C的时间就应该为50÷5=10小时,但时间上只用了7小时,快了3小时,为什么呢?因为汽船比木船快,省时间,具体为每1千米省了1÷5﹣1÷12.5=0.12小时的时间.也就是说,假如AB两镇距离是1千米,那么就能省0.12小时的时间,而实际上省了3个小时,所以就是AB两镇距离有3÷0.12=25(千米).2.一架小飞机,在静止的空气中飞行速度为320千米/小时.现在有风,风速为40千米/小时(风速不变),逆风飞行全程需时135分钟,顺风返回需时()分钟.(飞机起飞和着陆的时间略去不计)A.94.5B.105C.112.5D.120【分析】根据题意,飞机逆风的速度是飞机静风中的速度减风速,飞机顺风的速度是飞机静风中的速度加风速,则路程为:(320﹣40)×135=37800(千米),因为路程相同,因此顺风返回需要的时间为37800÷(320+40),解决问题.【解答】解:(320﹣40)×135÷(320+40)=280×135÷360=37800÷360=105(分钟)答:顺风返回需时105分钟.故选:B.【点评】根据流水行船问题,可以求出飞机逆风的速度与顺风的速度,进而求出飞机飞行的路程,解决问题.二.填空题(共35小题)3.河流上有A、B两个码头,其中A码头在上游,B码头在下游.现有甲、乙两艘船,静水中甲船速度是乙船的两倍;甲、乙同时分别从A、B两个码头出发,相向而行;甲船在出发的时候将一箱可飘浮于水面上的货物遗留在了河面上,20分钟后两船相遇,此时甲船又将一箱同样的货物遗留在了河面上.一段时间之后,甲船发现自己少了货物调头回去寻找,当甲找到第二箱货物的同时,乙船恰好遇到了甲遗留的第一箱货物.那么,甲从出发开始过了40分钟才发现自己的货物丢失.(掉头时间不计)【分析】甲船是顺水行驶,所以甲船的行驶速度=甲船在静水中的速度+水速;乙船是逆水行驶,所以乙船行驶的速度=乙船在静水中的速度﹣水速,两箱货物都是顺水而下,所以速度都是水速.【解答】解:设两船相遇后,经过x分钟甲船发现自己的货物丢失.在这段时间内,甲船和第二箱货物之间的距离是:x×(V甲+V水)﹣x×V水=V甲x,此后甲船掉头去找第二次货物,所以这时甲船和第二箱货物的相遇路程也是V甲x,根据相遇时间=总路程÷速度和,甲船和第二箱货物相遇的时间是V甲x÷(V甲﹣V水+V水)=x,即甲船从发现第二箱货物丢失到找到第二箱货物,总共用了x+x=2x分钟.在这2x分钟的时间内,乙船和第一箱货物相遇,乙船和第一箱货物相遇的路程就是在20分钟的相遇时间内甲船比第一箱货物多走的路程,即20×(V甲+V水)﹣20×V水=20V甲,所以2x×(V乙﹣V水+V水)=20,因为V甲=2V乙,所以x=2020+20=40(分钟)答:甲从出发开始过了40分钟才发现自己的货物丢失.【点评】根据顺水速度=船速(即船在静水中的速度)+水速,逆水速度=船速﹣水速,可知船和货物的速度和是船在静水中的速度.4.轮船从深圳到上海需要航行6昼夜,而由上海到深圳需要航行10昼夜,那么由深圳顺水放一木筏到上海,途中需经30昼夜.【分析】由题意,6(v静水+v水)=10(v静水﹣v水),所以v静水:v水=4:1,路程S=30v水,即可得出结论.【解答】解:由题意,6(v静水+v水)=10(v静水﹣v水),所以v静水:v水=4:1,路程S=30v水,所以由深圳顺水放一木筏到上海,途中需经30昼夜.故答案为30.【点评】本题考查流水行程问题,考查路程、速度、时间的关系,求出v静水:v 水=4:1是关键.5.甲、乙两人在一条长120米的直路上来回跑,甲的速度是5米/秒,乙的速度是3米/秒,若他们同时从同一端出发跑了15分钟,则他们在这段时间内共迎面相遇23次(端点除外).【分析】根据题意,要明白他们的迎面相遇时,2人一共的行程是2个单程120×2=240(米),用时为240÷(3+5)=30(秒),即每30秒就相遇一次(包括端点的).那端点的相遇用时为:2人单程用时(120÷3=40,120÷5=24)的公倍数,最小公倍数第一次在端点相遇的用时.用120÷30=4可知,他们4次相遇中就有1次为端点相遇.即15分钟内相遇的总次数为:15×60÷30=30,其中在端点相遇的次数为30÷4的整数部分,即7.所以他们在这段时间内共迎面相遇(端点除外)的次数为:30﹣7=23【解答】解:240÷(3+5)=30(秒)120÷3=40(秒)120÷5=24(秒)40与24的最小公倍数120(2人第一次在端点相遇的用时)120÷30=415×60÷30=30(次)30÷4=7 (2)30﹣7=23(次)答:他们在这段时间内共迎面相遇23次(端点除外).【点评】此题的关键是搞明白他们每次相遇的2人行程均为240米和每次在端点相遇的用时为:2人单程用时(120÷3=40与120÷5=24)的公倍数.6.一艘轮船从A港出发顺流而下到同一条河上的B港,再逆流而上返回A港,共用3.2小时;如果第1小时、第2小时、第3小时轮船分别所行路程依次成等差数列,且水流速度为每小时2千米;那么轮船往返A、B两港共行102千米.【分析】第一小时若已经有逆水段,则第二小时、第三小时路程相同,不可能出现等差数列,故第一小时全顺水,同理第三小时全逆水,第二小时既有顺水又有逆水.且若路程是等差数列,第二小时必为半小时顺水半小时逆水.故顺水1.5小时的路程恰好是逆水1.7小时的路程,路程相等,速度与时间成分比例,所以V顺:V逆=17:15,且V顺﹣V逆=2×2=4千米/时,故V顺=34千米/时,往返共行34×1.5×2=102千米.【解答】解:第一小时全顺水,同理第三小时全逆水,第二小时必为半小时顺水半小时逆水,顺水行驶的时间:1+0.5=1.5(小时)逆水行驶的时间:3.2﹣1.5=1.7(小时)所以V顺:V逆=1.7:1.5=17:15,V顺﹣V逆=2×2=4(千米)4÷(17﹣15)×17=2×17=34(千米/时)34×1.5×2=51×2=102(千米)答:轮船往返A、B两港共行102千米.故答案为:102.【点评】首先根据第1小时、第2小时、第3小时轮船分别所行路程依次成等差数列,判断出第一小时全顺水,同理第三小时全逆水,第二小时必为半小时顺水半小时逆水,从而得出顺水速和逆水速的比,再根据水速是2千米/时,得出顺水速,从而求解.7.静水中,甲乙两船的时速分别是20千米和16千米,两船先后自某港顺水开出,乙比甲早出发2小时.若水速是4千米/小时,甲船开出后10小时追上乙船.【分析】由题意分析可得,甲乙二船的时速分别是(20+4)千米,(16+4)千米,“甲船开出后追上乙船”说明此时甲乙二船所行路程相等,据此可解.【解答】解:设甲船开出x小时追上乙船,由题意得(20+4)x=(16+4)(x+2)24x=20x+4024x﹣20x=40x=10故答案为:10.【点评】本题主要考查在流水中行船问题,首先要搞清速度,其次要理解题意,找出题目中的等量关系,列出方程即可解决.8.小船运木材,逆流而上,在途中A处掉下一块木材顺水下流.5分钟后发现,小船立即掉头追木材(掉头时间忽略不计),再经过5分钟才能追上这块木材.【分析】设船在静水速度为a,水流速度为b,小船逆水速度(a﹣b),2分钟行:5(a﹣b);则木头5分钟行5b,相差5(a﹣b)+5b=5a.由此即可求出小船追上木头要时间:5a÷(a+b﹣b)=5(分钟).【解答】解:设船在静水速度为a,水流速度为b,[5(a﹣b)+5b]÷(a+b﹣b)=5a÷a=5(分钟)答:再经过5分钟小船追上木头.故答案为:5.【点评】本题考查速度公式的应用,难点是明白在顺水中运动时船的速度等于船速与水流速度之和;在逆水中行驶时,速度等于船速与水速之差.9.如图所示,A、B两港相距90千米,A港在B港上游,如果甲、乙两船分别从A、B两港同时出发,相向而行,会在C处相遇:如果甲、乙两船分别从B、A两港同时出发,相向而行,会在D处相遇.如果AC的长度是40千米,BD 的长度是30千米,水流速度是每小时10千米,那么甲船的速度是每小时70千米.【分析】由题意,两次相遇,速度和没有变,故时间也不变,所以甲的顺水速度与逆水速度的比正是两次航行的路程的比,由此可得甲船的速度.【解答】解:由题意,两次相遇,速度和没有变,故时间也不变,所以甲的顺水速度与逆水速度的比正是两次航行的路程的比,即40:30=4:3,所以(v甲+10):(v甲﹣10)=4:3,解得v甲=70.故答案为70.【点评】此题主要考查了流水行船问题的应用,要熟练掌握,解答此题的关键是要明确:顺水速度=船速+水速,逆水速度=船速﹣水速.10.一艘轮船,从上游A地开往下游B地,需要1小时,原路返程时,将船速提高到原来的2倍,也需要1小时.那么,如果游轮从A地出发时也采用2倍船速,需要36分钟可以到达B地.【分析】根据题意可知返回时将船速提高到原来的2倍,需要的时间和原来从上游到下下游用的时间相同都是1小时,可知提速后逆水速度=原顺水速度,即原船速度+水速=原船速×2﹣水速,从而可得出原船速=水速×2,游轮从A地出发时也采用2倍船速,则它的速度航行的速度是原船速×2+水速=水速×5,而原来从A地开往下游B地的航行速度是:原船速+水速=水速×3,游轮从A 地出发时也采用2倍船速,它与原来游轮从A地开往下游B地的速度比是水速×5:水速×3=5:3,根据路程一定,速度和时间成反比,可知用的时间的比是3:5,据此可求出需要的时间.【解答】解:根据题意可知原船速度+水速=原船速×2﹣水速原船速=水速×2游轮从A地出发时也采用2倍船速,则它的速度航行的速度是:原船速×2+水速=水速×5而原来从A地开往下游B地的航行速度是:原船速+水速=水速×3游轮从A地出发时也采用2倍船速与原来游轮从A地开往下游B地的速度比是:水速×5:水速×3=5:31小时=60分60×=36(分钟)答:需要36分钟可以到达B地.故答案为:36.【点评】本题的重点是求出游轮从A地出发时也采用2倍船速后它的航行速度与原来没提速时航行速度的比,再根据路程一定速度和时间成反比进行解答.11.一艘客轮往返甲、乙两港,顺水速度是15千米/小时,逆水速度是的12千米/小时.现在甲港放一个木排顺水漂流到乙港,要用3天才能到达.那么,甲、乙两港的水路长108千米.【分析】根据顺水速度=船的静水速度+水流速度,逆水速度=船的静水速度﹣水流速度,可得水流速度=(顺水速度﹣逆水速度)÷2,木排顺水漂流速度即为水流速度,再根据路程=速度×时间解答即可.【解答】解:顺水速度=船的静水速度+水流速度,逆水速度=船的静水速度﹣水流速度,可得水流速度=(15﹣12)÷2=3÷2=1.5(千米/小时)3天=72小时1.5×72=108(千米)答:甲、乙两港的水路长108千米.故答案为:108.【点评】本题考查了流水行船问题,关键是根据顺水速度=船的静水速度+水流速。
小学奥数流水行程问题试题专项练习(一)一、填空题1.(3分)一只船在河中航行,水速为每小时2千米,它在静水中航行每小时行8千米,顺水航行50千米需用_________ 小时.2.(3分)某船在静水中的速度是每小时13.5千米,水流速度是每小时3.5千米,逆水而行的速度是每小时_________ 千米.3.(3分)某船的航行速度是每小时10千米,水流速度是每小时_________ 千米,逆水上行5小时行40千米.4.(3分)一只每小时航行13千米的客船在一条河中航行,这条河的水速为每小时7千米,那么这只船行140千米需_________ 小时(顺水而行).5.(3分)一艘轮船在静水中的速度是每小时15公里,它逆水航行11小时走了88公里,这艘船返回需_________ 小时.6.(3分)一只小船第一次顺流航行56公里,逆水航行20公里,共用12小时;第二次用同样的时间,顺流航行40公里,逆流航行28公里,船速_________ 公里/小时,水速_________ 公里/小时.7.(3分)甲、乙两个港口相距77千米,船速为每小时9千米,水流速度为每小时2千米,那么由甲港到乙港顺水航行需_________ 小时.8.(3分)甲、乙两个码头相距144千米,汽船从乙码头逆水行驶8小时到达甲码头,又知汽船在静水中每小时行21千米,那么汽船顺流开回乙码头需要_________ 小时.9.(3分)甲、乙两港相距192千米,一艘轮船从甲港到乙港顺水而下行16小时到达乙港,已知船在静水中的速度是水流速度的5倍,那么水速_________ 千米/小时,船速是_________ 千米/小时.10.(3分)一只船在河里航行,顺流而下,每小时行18千米,船下行2小时与上行3小时的路程相等,那么船速_________ 千米/小时,水速_________ 千米/小时.二、解答题11.甲、乙两地相距48千米,一船顺流由甲地去乙地,需航行3小时;返回时间因雨后涨水,所以用了8小时才回到乙地,平时水速为4千米,涨水后水速增加多少?12.静水中甲、乙两船的速度为22千米、18千米,两船先后自港口顺水开出,乙比甲早出发2小时,若水速是每小时4千米,问甲开出后几小时可追上乙?13.一支运货船队第一次顺水航行42千米,逆水航行8千米,共用了11小时;第二次用同样的时间,顺水航行了24千米,逆水航行了14千米,求这支船队在静水中的速度和水流速度?14.已知80千米水路,甲船顺流而下需要4小时,逆流而上需要10小时,如果乙船顺流而下需5小时,问乙船逆流而上需要几小时?小学奥数流水行程问题试题专项练习(一)参考答案与试题解析一、填空题1.(3分)一只船在河中航行,水速为每小时2千米,它在静水中航行每小时行8千米,顺水航行50千米需用 5 小时.考点:流水行船问题.分析:依据顺水速=静水速+水速,即可求得顺水速,从而可求得顺水航行50千米所需要的时间.解答:解:顺水航行速度:8+2=10(千米/小时),顺水航行50千米需要用时间:50÷10=5(小时);答:顺水航行50千米需用5小时.故答案为:5.点评:解决此题的关键是明白顺水速=静水速+水速.求出顺水速,即可求出顺水航行50千米所需要的时间.2.(3分)某船在静水中的速度是每小时13.5千米,水流速度是每小时3.5千米,逆水而行的速度是每小时10 千米.考点:流水行船问题.分析:轮船逆水行驶的速度=静水速﹣水速,据此即可列式计算.解答:解:13.5﹣3.5=10(千米/小时).故答案为:10.点评:此题主要考查逆水速度的求法.3.(3分)某船的航行速度是每小时10千米,水流速度是每小时 2 千米,逆水上行5小时行40千米.考点:流水行船问题.分析:某船的航行速度是每小时10千米,也就是静水速度是10千米;由题意逆水流速:40÷5=8(千米/小时),所以水流速度=静水速度﹣逆水速度:10﹣8=2(千米/小时).解答:解:逆水速度:40÷5=8(千米/小时),水流速度:10﹣8=2(千米/小时).故答案为:2.点评:搞清“船行速度﹣逆水速度=水流速度”是解答此题的关键.4.(3分)一只每小时航行13千米的客船在一条河中航行,这条河的水速为每小时7千米,那么这只船行140千米需7 小时(顺水而行).考点:流水行船问题.分析:先依据题目条件求出客船的顺水速度,再利用路程、速度、时间之间的关系即可求解.解答:解:顺水速度=13+7=20(千米/小时);顺水航行140千米需要时间:140÷20=7(小时).故答案为:7.点评:此题主要考查流水行船问题,关键是先求出客船顺水的速度.5.(3分)一艘轮船在静水中的速度是每小时15公里,它逆水航行11小时走了88公里,这艘船返回需 4 小时.考点:流水行船问题.分析:依据条件先求出水速,再按顺水航行的速度求出返航时间即可.解答:解:15﹣88÷11=7(公里/小时),88÷(15+7)=4(小时);答:这艘船返回需4小时.故答案为:4.点评:此题关键是先求出水速.6.(3分)一只小船第一次顺流航行56公里,逆水航行20公里,共用12小时;第二次用同样的时间,顺流航行40公里,逆流航行28公里,船速 6 公里/小时,水速 2 公里/小时.考点:流水行船问题.分析:第一次顺流比第二次顺流多56﹣40=16(千米),第一次逆流比第二次逆流少28﹣20=8(千米),由于两者时间相等,所以16÷顺流速度=8÷逆流速度,即顺流速度÷逆流速度=2 (倍),所以,顺水速度:(56+20×2)÷12=8(公里/小时);逆水速度:(56÷2+20)÷12=4(公里/小时),船速:(8+4)÷2=6(公里/小时),水速:8﹣6=2(公里/小时).解答:解:(56﹣40)÷(28﹣20)=2(倍);顺水速度:(56+20×2)÷12=8(公里/小时);逆水速度:(56÷2+20)÷12=4(公里/小时);船速:(8+4)÷2=6(公里/小时);水速:8﹣6=2(公里/小时);答:船速6公里/小时,水速2公里/小时.故答案为:6,2.点评:完成本题的关健是先据两次顺流航行,逆水航行的行程及所用时间求出顺水航行与逆水航行的速度比,然后再求出各自的速度是多少.7.(3分)甲、乙两个港口相距77千米,船速为每小时9千米,水流速度为每小时2千米,那么由甲港到乙港顺水航行需7 小时.考点:流水行船问题.分析:先求出轮船的顺水速,即:顺水速=静水速+水速,再利用路程、速度、时间之间的关系即可求解.解答:解:77÷(9+2)=7(小时);答:由甲港到乙港顺水航行需7小时.故答案为:7.点评:解决此题的关键是先求出轮船的顺水速,然后利用路程、速度、时间之间的关系即可求解.8.(3分)甲、乙两个码头相距144千米,汽船从乙码头逆水行驶8小时到达甲码头,又知汽船在静水中每小时行21千米,那么汽船顺流开回乙码头需要 6 小时.考点:流水行船问题.分析:首先求出逆水速度:144÷8=18(千米/小时),水速:21﹣18=3(千米/小时),进一步求出顺水速度:21+3=24(千米/小时),最后求得顺流而行时间:144÷24=6(小时).解答:解:144÷{21+[21﹣144÷8]},=144÷[21+3],=6(小时).故答案为:6.点评:此题重点弄清:顺水速度=静水速度+水速,逆水速度=水速﹣静水速度.9.(3分)甲、乙两港相距192千米,一艘轮船从甲港到乙港顺水而下行16小时到达乙港,已知船在静水中的速度是水流速度的5倍,那么水速 2 千米/小时,船速是10 千米/小时.考点:流水行船问题.分析:由航行距离和航行时间即可求得顺水的速度,即192÷16=12千米/小时,再由船在静水中的速度是水流速度的5倍,可求出水速,从而可求得船速.解答:解:顺水速度:192÷16=12(千米/小时),水速:12÷6=2(千米/小时),船速:2×5=10(千米/小时).故答案为:2、10.点评:解决此题的关键是明白顺水速=静水速+水速,从而可分别求得水速和船速.10.(3分)一只船在河里航行,顺流而下,每小时行18千米,船下行2小时与上行3小时的路程相等,那么船速15 千米/小时,水速 3 千米/小时.考点:流水行船问题.分析:根据题干,可以求得船逆水速度为:18×2÷3=12千米/小时,船速是指的静水速=(顺水速+逆水速)÷2,水速=(顺流速度﹣逆流速度)÷2,由此代入数据即可解决问题.解答:解:逆水速度:18×2÷3=12(千米/小时),则船速:(12+18)÷2=15(千米/小时),水速:(18﹣12)÷2=3(千米/小时),答:船速为15千米/小时;水速为3千米/小时.故答案为:15,3.点评:此题考查了:船速是指的静水速=(顺水速+逆水速)÷2;水速=(顺流速度﹣逆流速度)÷2在实际问题中的计算应用.二、解答题11.甲、乙两地相距48千米,一船顺流由甲地去乙地,需航行3小时;返回时间因雨后涨水,所以用了8小时才回到乙地,平时水速为4千米,涨水后水速增加多少?考点:流水行船问题.分析:根据“甲、乙两地相距48千米,一船顺流由甲地去乙地,需航行3小时;”可以求出顺水时船速和平时水速,即可求出顺水时的船速,再求出返回时涨水的水速,即可求出涨水后水速增加的速度.解答:解:[(48÷3﹣4)﹣48÷8]﹣4,=[12﹣6]﹣4,=6﹣4,=2(千米/小时);答:涨水后水速增加2千米/小时.点评:解答此题的关键是,根据顺水时船速,平时水速和涨水的水速,三者之间的关系,找出对应量,列式即可解答.12.静水中甲、乙两船的速度为22千米、18千米,两船先后自港口顺水开出,乙比甲早出发2小时,若水速是每小时4千米,问甲开出后几小时可追上乙?考点:流水行船问题.分析:根据题意,这是一道顺水航行的追及问题,求出追及的路程,以及顺水航行的速度差,根据追及问题解答即可.解答:解:乙早出发行驶的路程是:(18+4)×2=44(千米);根据题意可得,追及时间是:44÷[(22+4)﹣(18+4)]=44÷4=11(小时);答:甲开出后11小时可追上乙.点评:根据题意可知,这是追及问题,求出相距路程与速度差,就可以求出结果.13.一支运货船队第一次顺水航行42千米,逆水航行8千米,共用了11小时;第二次用同样的时间,顺水航行了24千米,逆水航行了14千米,求这支船队在静水中的速度和水流速度?考点:流水行船问题.分析:两次航行时间相同,可表示如下:顺42+逆8=顺24+逆14等号两边同时减去“顺24和逆8”可得:顺18=逆6,顺水航行18千米所用的时间和逆水航行6千米所用时间相同,这也就说明顺水航行的速度是逆水航行速度的18÷6=3倍.由此可知:逆水行8千米所用时间和顺水行(8×3=)24千米所用时间相等.解答:解:顺水速度:(42+8×3)÷11=6(千米),逆水速度:8÷(11﹣42÷6)=2(千米),船速:(6+2)÷2=4(千米),水速:(6﹣2)÷2=2(千米);答:这只船队在静水中的速度是每小时4千米,水速为每小时2千米.点评:根据题意,求出顺水航行与逆水航行的关系,再根据题意就比较简单了.14.已知80千米水路,甲船顺流而下需要4小时,逆流而上需要10小时,如果乙船顺流而下需5小时,问乙船逆流而上需要几小时?考点:流水行船问题.分析:要求“乙船逆流而上需要几小时”,就要知道逆水速度.根据“逆水速度=静水速度﹣水速”即可求出逆水速度,然后除以时间就可以了.解答:解:水速:[(80÷4)﹣(80÷10)]÷2=6(千米/小时),乙船逆水速度:80÷5﹣6×2=4(千米/小时),逆水所行时间:80÷4=20(小时);答:乙船逆流而上需要20小时.点评:此题重点考查“逆水速度=静水速度﹣水速”这一知识点.。
五年级奥数题《流水行船问题1》及答案五年级奥数题《流水行船问题1》及答案船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的.路程,叫做流水行船问题。
流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。
根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速。
由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速。
这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
例1甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
分析根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出。
解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米。
例2某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。
小学生五年级奥数试题及解析:流水问题
【题目】一艘船在流速为每小时1000米左右的河上逆流而上,行至中午12点整,有一乘客的帽子落到了河里。
乘客请求船老大返回追赶帽子,这时船已经开到离帽子 100米远的上游。
已知在静水中这只船的船速为每分钟20米。
假设不计掉头时间,马上开始追赶帽子,问追回帽子应该是几点几分?
【思路】在静水中这只船的船速为每分钟20米-----可知静水船速为每小时1200米,又有条件水速为每小时1000米,那么该船逆水速度为 1200-1000=200米,同时可知该船的顺水速为1200+1000=2200米;由条件12时帽子落水至船离帽子100米,这个段实为反向而行, 这段时间为:100÷(200+1000)=1/12小时=5分,而后一段实为追及问题,这段时间为:100÷(2200-1000)=1/12小时=5 分;两者相加,即为离开12时的时间10分,所以追回帽子应该是12点10分.
【详解】船静水时速:20×60=1200米
船逆水时速:1200-1000=200米
船顺水时速:1200+1000=2200米
帽子落水至离开帽子100米的时间:100÷(2200-1000)=1/12小时=5分
船追上帽子的时间,即为追即时间:100÷(2200-1000)=1/12小时=5分
离12时帽子落水总时间为:5+5=10分
答:追回帽子应该是12点10分.
【太阳有言】解流水问题关键是:静水速度(船速)、水速、顺水速度、逆水速度这几个概念要理解,顺水速度=船速+水速、逆水速度=
船速-水速这两个公式要牢记,相信只要随时关心这些,其实流水问题并不是什么问题。
【五年级奥数举一反三—全国通用】测评卷17《流水行船问题》试卷满分:100分考试时间:100分钟姓名:_________班级:_________得分:_________一.选择题(共8小题,满分16分,每小题2分)1.(2分)一艘客轮,在静水中的速度是每小时行25千米.已知这艘客轮在大运河中顺水航行308千米,水速是每小时3千米,需要行()个小时?A.12.32 B.11 C.14 D.22【解答】解:308(253)11÷+=(小时)故选:B。
2.(2分)一小船逆流航行,在途中掉下一箱可漂浮物品,20分钟后发现,掉头回追,回追上这只木箱还需的时间()A.超过20分钟B.少于20分钟C.等于20分钟D.可能永远也追不上【解答】解:设船在静水速度为a,水流速度为b,a b b a b b-+÷+-[20()20]()=÷20a a=(分钟)20答:再经过20分钟小船追上木头.故选:C。
3.(2分)一架小飞机,在静止的空气中飞行速度为320千米/小时.现在有风,风速为40千米/小时(风速不变),逆风飞行全程需时135分钟,顺风返回需时()分钟.(飞机起飞和着陆的时间略去不计)A.94.5 B.105 C.112.5 D.120【解答】解:(32040)135(32040)-⨯÷+=⨯÷280135360=÷37800360105=(分钟)答:顺风返回需时105分钟.故选:B。
4.(2分)一艘轮船从甲港开往乙港,由于顺水,每小时可以航行28千米,3小时到达.这艘轮船从乙港返回甲港时,由于逆水,每小时只能航行21千米.这艘轮船往返一次每小时的平均速度是() A.12千米B.24千米/小时C.24.5千米D.25千米【解答】解:28384⨯=(千米)84214÷=(小时)842(34)⨯÷+1687=÷24=(千米/小时)答:这艘轮船往返一次每小时的平均速度是每小时24千米.故选:B。
小学奥数思维训练-流水问题(一)学校:___________姓名:___________班级:___________考号:___________一、解答题1.甲、乙两港间的水路长270千米,一只船从甲港开往乙港,顺水9小时到达,从乙港返回甲港,逆水15小时到达,求船在静水中的速度和水流的速度。
2.一只船往返于一段长140千米的航道,上行时用了10小时,下行时用了7小时,船在静水中航行的速度与水速各是多少?3.一艘船顺水行360千米需要9小时,水流速度为每小时15千米,这艘船逆水每小时行多少千米?这艘船逆水行这段路程需用几小时?4.一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要几个小时?5.一艘轮船从甲码头开往乙码头,顺水而行每小时行28千米,返回甲码头时逆水而行用了8小时,已知水速是每小时4千米,甲乙两码头相距多少千米?6.甲乙两港间的水路长432千米,一只船从上游甲港航行到下游乙港需要18小时,从乙港返回甲港,需要24小时到达,求船速是多少?7.一条大河的水流速度是每小时3千米。
一只船在河水中行驶,如果船在静水中的速度是每小时行13千米,那么这只船在河水中顺水航行160千米需要几小时?如果按原航道返回,需要几小时?8.两个码头相距352千米,一船顺流而下,行完全程需要11小时。
逆流而上,行完全程需要16小时,求这条河水流速度?9.甲乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?10.一只小船在静水中的速度是每小时20千米,水流速度是每小时2千米,这只小船从甲港顺水航行到乙港需要10小时,甲乙两港的距离是多少千米?11.甲乙两港相距240千米,一艘轮船顺水行完全程要10小时,已知,这段航程的水流速度是每小时4千米,这艘轮船逆水行完全程要用多少小时?12.一只船在水中航行,水速为每小时2千米,它在静水中航行每小时行8千米,问这只船顺水航行60千米需要几小时?如果按原航道返回需要几小时?13.两码头相距432千米,轮船顺水行这段路程需要16小时,逆水每小时比顺水少行9千米,问行驶这段路程顺水比逆水少用几小时?水流速度是多少?14.甲乙两港相距112千米,一只船从甲港顺水而下7小时到达乙港,已知船速是水速的15倍,这只船从乙港返回甲港用多少小时?参考答案:1.静水速度24千米/小时,水流速度6千米/小时【解析】【分析】根据题意,要想求出船速和水速,可按行程问题中一般数量关系,用路程分别除以顺水、逆水所行时间求出顺水速度和逆水速度,再根据差倍问题求出船速和水速。
五年级奥数试题及解析:流水问题
五年级奥数试题及解析:流水问题
【题目】一艘船在流速为每小时1000米左右的河上逆流而上,行至中午12点整,有一乘客的帽子落到了河里。
乘客请求船老大返回追赶帽子,这时船已经开到离帽子100米远的上游。
已知在静水中这只船的'船速为每分钟20米。
假设不计掉头时间,马上开始追赶帽子,问追回帽子应该是几点几分?
【思路】在静水中这只船的船速为每分钟20米-----可知静水船速为每小时1200米,又有条件水速为每小时1000米,那么该船逆水速度为1200-1000=200米,同时可知该船的顺水速为1200+1000=2200米;由条件12时帽子落水至船离帽子100米,这一段实为反向而行, 这段时间为:100÷(200+1000)=1/12小时=5分,而后一段实为追及问题,这段时间为:100÷(2200-1000)=1/12小时=5 分;两者相加,即为离开12时的时间10分,所以追回帽子应该是12点10分.
【详解】船静水时速:20×60=1200米
船逆水时速:1200-1000=200米
船顺水时速:1200+1000=2200米
帽子落水至离开帽子100米的时间:100÷(2200-1000)=1/12小时=5分
船追上帽子的时间,即为追及时间:100÷(2200-1000)=1/12小时=5分
离12时帽子落水总时间为:5+5=10分
答:追回帽子应该是12点10分.
【有言】解流水问题关键是:静水速度(船速)、水速、顺水速度、逆水速度这几个概念要理解,顺水速度=船速+水速、逆水速度=船速-水速这两个公式要牢记,相信只要随时关心这些,其实流水问题并不是什么问题。
五年级流水行船奥数题及答案【三篇】【第一篇】一艘轮船在河流的两个码头间航行,顺流需要6时,逆流需要8时,水流速度为2.5千米/时,求轮船在静水中的速度。
解:设静水速度为x。
总路程是相同的。
6×(x+2.5)=8×(x-2.5)6x+15=8x-20x=17.5答:静水速度为17.5千米/小时。
【第二篇】两个码头相距418千米,汽艇顺流而下行完全程需11时,逆流而上行完全程需19时。
求这条河的水流速度。
解:水流速度=(顺流速度-逆流速度)÷2=(418÷11-418÷19)÷2=(38-22)÷2=8(千米/时)答:这条河的水流速度为8千米/时。
【第三篇】已知一艘轮船顺水行48千米需4小时,逆水行48千米需6小时.现在轮船从上游A港到下游B港.已知两港间的水路长为72千米,开船时一旅客从窗口扔到水里一块木板,问船到B港时,木块离B港还有多远?分析:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米).因为顺水速度是比船的速度多了水的速度,而逆水速度是船的速度再减去水的速度,因此顺水速度和逆水速度之间相差的是“两个水的速度”,因此可求出水的速度为:(12-8)÷2=2(千米).现条件为到下游,因此是顺水行驶,从A到B所用时间为:72÷12=6(小时).木板从开始到结束所用时间与船相同,木板随水而飘,所以行驶的速度就是水的速度,可求出6小时木板的路程为:6×2=12(千米);与船所到达的B地距离还差:72-12=60(千米).解:顺水行速度为:48÷4=12(千米),逆水行速度为:48÷6=8(千米),水的速度为:(12-8)÷2=2(千米),从A到B所用时间为:72÷12=6(小时),6小时木板的路程为:6×2=12(千米),与船所到达的B地距离还差:72-12=60(千米).答:船到B港时,木块离B港还有60米.。
小学奥数流水问题题型大集合流水问题(1)顺水速度=船速+水速逆水速度=船速-水速船速=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷2顺水路程=顺水速度×时间逆水路程=逆水速度×时间。
1、一只船在静水中每小时行8千米,逆水行4小时航行24千米,求水流速度?一只每小时航行13千米的客船在一条河中航行,这条河的水速为每小2、时7千米,这只客船顺水航行140千米需要多少小时?3、甲乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达。
求船在静水的速度?4、两个码头相距XXX,一艘汽艇顺水行完全程需9小时,这条河水流速度为每小时5千米,求这艘汽艇逆水行完全程需几小时?5、一条船顺水而行,5小时行60千米,逆水航行这段水路,10小时才能到达,求船速与水流速度?6、一条大河,河中间(主航道)水的流速为每小时8千米,沿岸边水的流速为每小时6千米,一条船在河中间顺流而下,13小时行驶520千米。
求这条船沿岸边返回原地需要多少小时?7、甲河是乙河的支流,甲河水流速度为每小时3千米,乙河水流速度为每小时2千米,一艘船沿乙河顺水航行6小时,行了84千米抵达甲河,在甲河还要顺水航行133千米,这艘船一共航行多少小时?8、一支运货划子队,第一次逆流航行42千米,逆流航行8千米,共用11小时;第二次用一样的时间,逆流航行24千米,逆流航行14千米,求这支划子队在静水中的速度和水流速度?流水问题(2)1、某船的航行速度是每小时10千米,顺水行5小时行40千米,求水流速度?2、一只船每小时行14千米,水流速度为每小时6千米,问这只船逆水行112千米需要几小时?3、一只船顺水每小时航行12千米,逆水每小时行8千米,问这只船在静水中的速度和水流速度各是多少?4、一艘轮船在静水中的速度是每小时15千米,它逆水航行8小时走96千米,这艘轮船返回原地时每小时行多少千米?5、甲乙两个港口相距77千米,船速为每小时9千米,水流速度为每小时2千米,求由甲港到乙港顺水航行需要几小时?由乙港到甲港需几小时?6、甲乙两码头相距744千米,汽船从乙码头逆水行驶8小时到达甲码头,又知汽船在静水中每小时行21千米,求汽船顺流开回乙码头需几小时?7、甲乙两港相距192千米,一艘轮船从甲港顺水面下行16小时到达乙港,船在静水中的速度是水流速度的5倍。
(5升6暑假奥数)流水行船问题-学校数学五班级下册人教版一、单选题1.快艇从A码头动身,沿河顺流而下,途径B码头后连续顺流驶向C码头,到达C后掉头驶回B码头共用10小时。
若A、B距离20千米,快艇在静水中速度为40千米/小时,水流速度为10千米/小时,则AC间距离为:()A.120千米B.180千米C.200千米D.240千米2.一汽船来回于两码头间,逆流需要10小时,顺流需要6小时。
已知船在静水中的速度为12公里/小时。
问水流的速度是多少公里/小时?()A.2B.3C.4D.53.人乘竹排沿江顺水漂流而下,迎面遇到一般逆流而上的快艇。
他问快艇驾驶员:“你后面有轮船开过来吗?”快艇驾驶员回答:“半小时前我超过一般轮船。
”竹排连续顺水漂流了1小时遇到了迎面开来的这般轮船。
那么快艇静水速度是轮船静水速度的()倍。
A.2B.2.5C.3D.3.54.一条小河流过A,B,C三镇.A,B两镇之间有汽船来往,汽船在静水中的速度为11千米/时.B,C两镇之间有木船摆渡,木船在静水中的速度为3.5千米/时.已知A,C两镇水路相距50千米,水流速度为1.5千米/时.某人从A镇上船顺流而下到B镇,吃午饭用去1小时,接着乘木船又顺流而下到C镇,共用8小时,那么A,B两镇的距离是()A.10千米B.20千米C.25千米D.30千米5.一架小飞机,在静止的空气中飞行速度为320千米/小时.现在有风,风速为40千米/小时(风速不变),逆风飞行全程需135分钟,顺风返回需()分钟.(飞机起飞和着陆的时间略去不计)A.94.5 B.105 C.112.5D.1206.一艘轮船从甲港开往乙港,由于顺水,每小时可以航行28千米,3小时到达.这艘轮船从乙港返回甲港时,由于逆水,每小时只能航行21千米.这艘轮船来回一次每小时的平均速度是()A.12千米B.24千米C.24.5千米D.25千米二、填空题7.轮船从深圳到上海要航行6 昼夜,而由上海到深圳要航行10 昼夜;那么由深圳顺水放一木筏到上海,途中需经昼夜。
小学五年级关于流水问题奥数填空题
小学五年级关于流水问题奥数填空题篇一
2、某船的航行速度是每小时10千米,水流速度是每小时_____千米,逆水上行5小时行40千米。
3、一只每小时航行13千米的客船在一条河中航行,这条河的水速为每小时7千米,那么这只船行140千米需______小时(顺水而行)。
4、一艘轮船在静水中的速度是每小时15公里,它逆水航行11小时走了88公里,这艘船返回需______小时。
5、“长江”号轮船第一次顺流航行21公里又逆流航行4公里,第二次在同一河流中顺流航行12公里,逆流航行7公里,结果两次所用的时间相等。
顺水速度是逆水速度的_______倍。
6、一条轮船往返于A、B两地之间,由A到B是顺水航行;由B到A 是逆水航行。
已知船在静水中的速度是每小时20千米,由A到B用了6小时,由B到A所用时间是由A到B所用时间的1。
5倍,那么水流速度为:____________千米/每小时。
7、甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,则船速每小时千米,水速每小时__________千米。
8、某河有相距45千米的上、下两码头,每天定时有甲、乙两艘船速相同的客轮分别从两码头同时出发相向而行。
一天甲船从上游码头出
发时掉下一物,此物浮于水面顺水飘下,4分钟后,与甲船相距1千米。
预计乙船出发后___________小时可以与此物相遇。
9、两个码头相距432千米,轮船顺水行这段路程要16小时,逆水每小时比顺水少行9千米,逆水比顺水多用________小时。
10、甲、乙两个码头相距144千米,汽船从乙码头逆水行驶8小时到达甲码头,又知汽船在静水中每小时行21千米,那么汽船顺流开回乙码头需要_______小时。
小学五年级关于流水问题奥数填空题篇二
2、已知从河中A地到海口60千米,如船顺流而下,4小时可到海口。
已知水速为每小时6千米,船返回已航行4小时后,因河水涨潮,由海向河的水速为每小时3千米,此船回到原地,还需再行___________小时。
3、甲乙两船分别从A港逆水而上,静水中甲船每小时行15千米,乙船每小时行12千米,水速为每小时3千米,乙船出发2小时后,甲船才开始出发,当甲船追上乙船时,已离开A港______千米。
4、A河是B河的支流,A河水的水速为每小时3千米,B河水的水流速度是2千米。
一船沿A河顺水航行7小时,行了133千米到达B河,在B河还要逆水航行84千米,这船还要行_______小时。
5、一只小船第一次顺流航行56公里,逆水航行20公里,共用12小时;第二次用同样的时间,顺流航行40公里,逆流航行28公里,船速______公里/小时,水速_______公里/小时。
6、甲、乙两港相距192千米,一艘轮船从甲港到乙港顺水而下行16小时到达乙港,已知船在静水中的速度是水流速度的5倍,那么水速______千米/小时,船速是______千米/小时。
7、一只船在河里航行,顺流而下,每小时行18千米,船下行2小时与上行3小时的路程相等,那么船速______千米/小时,水速_______千米/小时。
8、一船逆水而上,船上某人有一件东西掉入水中,当船调回头时已过5分钟。
若船的静水中速度为每分钟50米,再经过_____分钟船才能追上所掉的东西。
9、A、B两码头间河流长为90千米,甲、乙两船分别从A、B码头同时启航。
如果相向而行3小时相遇,如果同向而行15小时甲船追上乙船,那么,甲船在静水中的速度是千米/小时,乙船在静水中的速度是__________千米/小时。
10、一只船,顺水每小时行20千米,逆水每小时行12千米。
那么这只船在静水中的速度是___________千米/小时、水流的速度是____________千米/小时。
小学五年级关于流水问题奥数填空题篇三
2、一只船逆流而上,水速2千米,船速32千米,4小时行________千米。
(船速,水速按每小时算)
3、一只船静水中每小时行8千米,逆流行2小时行12千米,水速________千米/小时。
4、某船在静水中的速度是每小时18千米,水速是每小时2千米,这船从甲地到乙地逆水行驶需15小时,则甲、乙两地相距_______千米。
5、两个码头相距192千米,一艘汽艇顺水行完全程要8小时,已知水流速度是每小时4千米,逆水行完全程要用________小时。
6、一只船在河中航行,水速为每小时2千米,它在静水中航行每小时行8千米,顺水航行50千米需用_______小时。
7、船在河中航行时,顺水速度是每小时12千米,逆水速度是每小时6千米。
船速每小时______千米,水速每小时______千米。
8、一只渔船顺水行25千米,用了5小时,水流的速度是每小时1千米。
此船在静水中的速度是__________千米/小时。
9、一只渔船在静水中每小时航行4千米,逆水4小时航行12千米。
水流的速度是每小时__________千米。
10、甲、乙两个港口相距77千米,船速为每小时9千米,水流速度为每小时2千米,那么由甲港到乙港顺水航行需_______小时。
分类精心精选精品文档,欢迎下载,所有文档经过整理后分类挑选加工,下载后可重新编辑,正文所有带XX或是空格类下载后可自行代入字词。