不等式选讲之不等式证明与数学归纳法早练专题练习(二)带答案人教版高中数学新高考指导
- 格式:doc
- 大小:149.50 KB
- 文档页数:5
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.1 .(汇编年高考湖北卷(理))设,,x y z R ∈,且满足:2221x y z ++=,2314x y z ++=,则x y z ++=_______.2.考察下列一组不等式:33224433252525,252525,+>⋅+⋅+>⋅+⋅ 5511222222252525+>⋅+⋅ 将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为 . 评卷人得分 二、解答题3.选修4-5:不等式选讲解不等式211x x +--≤.综上所述,不等式211x x +--≤的解集为(],0-∞. …………………………10分4.选修4—5:不等式选讲已知1x ≥,1y ≥,求证:22221x x y xy y x y ++++≤.5.(汇编年高考辽宁卷(文))选修4-5:不等式选讲已知函数()f x x a =-,其中1a >.(I)当=2a 时,求不等式()44f x x ≥=-的解集;(II)已知关于x 的不等式()(){}222f x a f x +-≤的解集为{}|12x x ≤≤,求a 的值.6.2 .(汇编年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—5;不等式选讲设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥. 7.已知0a >,0b >,n ∈*N .求证:11n n n n a b ab a b ++++≥. 证明:先证112n n n n a b a b a b +++++≥, 只要证112()()()n n n n a b a b a b +++++≥,即要证11n n n n a b a b ab +++--≥0,即要证()(n n a b a b --)≥0, ………5分 若a b ≥,则a b -≥0,n n a b -≥0,所以()(n n a b a b --)≥0,若a b <,则0a b -<,0n n a b -<,所以()()0n n a b a b -->,综上,得()(n n a b a b --)≥0.从而112n n n n a b a b a b +++++≥, ………8分 因为2a b ab +≥, 所以11n n n na b ab a b ++++≥. ………10分8.已知a ,b ,c 都是正数,且236a b c ++=,求12131a b c +++++的最大值.【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.31472.()0,,,0,>≠>+>+++n m b a b a b a b a b a m n n m n m n m 评卷人 得分二、解答题3.含绝对值不等式的解法、分段函数4. 选修4—5:不等式选讲证明:左边-右边=2222()(1)1(1)[(1)1]y y x y x y y yx y x -+--+=--++………4分 =(1)(1)(1)y xy x ---, ………………………………………………………6分 ∵1x ≥,1y ≥,∴0,0,0111y xy x ---≤≥≥. ………………………………………………8分 从而左边-右边≤0,∴22221x x y xy y x y ++++≤. ………………………………………………10分5.6.7.8.。
高三数学不等式选讲试题答案及解析1.不等式的解集是.【答案】【解析】由绝对值的几何意义,数轴上之间的距离为,结合图形,当落在数轴上外时.满足不等式,故答案为.【考点】不等式选讲.2.不等式的解集是【答案】【解析】原不等式可化为,解得.考点:绝对值不等式解法3.已知函数(Ⅰ)证明:;(Ⅱ)求不等式:的解集.【答案】(Ⅰ)祥见解析;(Ⅱ).【解析】(Ⅰ)通过对x的范围分类讨论将函数f(x)=|x-2|-|x-5|中的绝对值符号去掉,转化为分段函数,即可解决;(Ⅱ)结合(1)对x分x≤2,2<x<5与x≥5三种情况讨论解决即可.试题解析:(Ⅰ)当所以(Ⅱ)由(1)可知,当的解集为空集;当时,的解集为:;当时,的解集为:;综上,不等式的解集为:;【考点】绝对值不等式的解法.4.设函数=(1)证明:2;(2)若,求的取值范围.【答案】(2)【解析】本题第(1)问,可由绝对值不等式的几何意义得出,从而得出结论;对第(2)问,由去掉一个绝对值号,然后去掉另一个绝对值号,解出的取值范围.试题解析:(1)证明:由绝对值不等式的几何意义可知:,当且仅当时,取等号,所以.(2)因为,所以,解得:.【易错点】在应用均值不等式时,注意等号成立的条件:一正二定三相等.【考点】本小题主要考查不等式的证明、绝对值不等式的几何意义、绝对值不等式的解法、求参数范围等不等式知识,熟练基础知识是解答好本类题目的关键.5.(5分)(2011•陕西)(请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)若不等式|x+1|+|x﹣2|≥a对任意x∈R恒成立,则a的取值范围是.B.(几何证明选做题)如图,∠B=∠D,AE⊥BC,∠ACD=90°,且AB=6,AC=4,AD=12,则AE= .C.(坐标系与参数方程选做题)直角坐标系xoy中,以原点为极点,x轴的正半轴为极轴建极坐标系,设点A,B分别在曲线C1:(θ为参数)和曲线C2:p=1上,则|AB|的最小值为.【答案】(﹣∞,3] 2 1【解析】A.首先分析题目已知不等式|x+1|+|x﹣2|≥a恒成立,求a的取值范围,即需要a小于等于|x+1|+|x﹣2|的最小值即可.对于求|x+1|+|x﹣2|的最小值,可以分析它几何意义:在数轴上点x 到点﹣1的距离加上点x到点2的距离.分析得当x在﹣1和2之间的时候,取最小值,即可得到答案;B.先证明Rt△ABE∽Rt△ADC,然后根据相似建立等式关系,求出所求即可;C.先根据ρ2=x2+y2,sin2+cos2θ=1将极坐标方程和参数方程化成直角坐标方程,根据当两点连线经过两圆心时|AB|的最小,从而最小值为两圆心距离减去两半径.解:A.已知不等式|x+1|+|x﹣2|≥a恒成立,即需要a小于等于|x+1|+|x﹣2|的最小值即可.故设函数y=|x+1|+|x﹣2|.设﹣1、2、x在数轴上所对应的点分别是A、B、P.则函数y=|x+1|+|x﹣2|的含义是P到A的距离与P到B的距离的和.可以分析到当P在A和B的中间的时候,距离和为线段AB的长度,此时最小.即:y=|x+1|+|x﹣2|=|PA|+|PB|≥|AB|=3.即|x+1|+|x﹣2|的最小值为3.即:k≤3.故答案为:(﹣∞,3].B.∵∠B=∠D,AE⊥BC,∠ACD=90°∴Rt△ABE∽Rt△ADC而AB=6,AC=4,AD=12,根据AD•AE=AB•AC解得:AE=2,故答案为:2C.消去参数θ得,(x﹣3)2+y2=1而p=1,则直角坐标方程为x2+y2=1,点A在圆(x﹣3)2+y2=1上,点B在圆x2+y2=1上则|AB|的最小值为1.故答案为:1点评:A题主要考查不等式恒成立的问题,其中涉及到绝对值不等式求最值的问题,对于y=|x﹣a|+|x﹣b|类型的函数可以用分析几何意义的方法求最值.本题还考查了三角形相似和圆的参数方程等有关知识,同时考查了转化与划归的思想,属于基础题.6.(2012•广东)不等式|x+2|﹣|x|≤1的解集为_________.【答案】【解析】∵|x+2|﹣|x|=∴x≥0时,不等式|x+2|﹣|x|≤1无解;当﹣2<x<0时,由2x+2≤1解得x≤,即有﹣2<x≤;当x≤﹣2,不等式|x+2|﹣|x|≤1恒成立,综上知不等式|x+2|﹣|x|≤1的解集为故答案为7.设函数,若,则实数的取值范围是()A.B.C.D.【答案】C【解析】由的图象,可知在处取得最小值,∵, ,即,或.∴实数的取值范围为,选C.8.已知不等式的解集与不等式的解集相同,则的值为()A.B.C.D.【答案】C【解析】解不等式得或,所以的两个根为和,由根与系数的关系知.故选.【考点】绝对值不等式的解法,一元二次不等式的解法.9.设函数,其中。
高中数学专题复习
《不等式选讲-不等式证明与数学归纳法》单元过关
检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.1 .(汇编年高考江西卷(理))(不等式选做题)在实数范围内,不等式211x --≤的解集为_________
2.考察下列一组不等式:33224433
252525,252525,+>⋅+⋅+>⋅+⋅ 5511222222252525+>⋅+⋅ 将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为 . 评卷人
得分 二、解答题
3.已知实数x ,y 满足:11|||2|36x y x y +<
-<,,求证:5||18y <. 【答案与解析】。
高中数学专题复习
《不等式选讲-不等式证明与数学归纳法》单元过关
检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.已知正数,,x y z 满足2221x y z ++=,则12z S xyz
+=
的最小值为________
2.考察下列一组不等式:33224433252525,252525,+>⋅+⋅+>⋅+⋅ 5511222222252525+>⋅+⋅ 将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为 . 评卷人
得分 二、解答题
3.选修4—5:不等式选讲
已知0x >,0y >,a ∈R ,b ∈R .求证()222ax by a x b y x y x y
++++≤. 【证明】因为0x >,0y >,所以0x y +>,所以要证()222ax by a x b y x y x y ++++≤,。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.1 .(汇编年高考湖北卷(理))设,,x y z R ∈,且满足:2221x y z ++=,2314x y z ++=,则x y z ++=_______.2.2 .(汇编年高考江西卷(理))(不等式选做题)在实数范围内,不等式211x --≤的解集为_________ 评卷人得分 二、解答题3.选修4—5:不等式选讲已知:2a x ∈≥,R .求证:|1|||x a x a -++-≥3.证明:因为|m|+|n|≥|m -n|,所以|x a -+≥|.………………………………………… 8分又a ≥2,故21|a -|≥3.所以|x a -+≥.…………………………………………………………………… 10分4.3 .(汇编年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))D.[选修4-5:不定式选讲]本小题满分10分.已知b a ≥>0,求证:b a ab b a 223322-≥-[必做题]第22、23题,每题10分,共20分.请在相应的答题区域内作答,若多做,解答时应写出文字说明、证明过程或演算步骤.5.若⎪⎭⎫ ⎝⎛-∈32,21x ,证明2332321<-++++x x x6.设,,a b c 均为正实数,求证:111111222a b c b c c a a b +++++++≥.7.已知x ,y ,z 均为正数.求证:111.x y z yz zx xy x y z ++++≥8.设a ,b ,c 为正实数,求证:33311123abc a b c+++≥.【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.31472.[]0,4 评卷人得分二、解答题3.4.D 证明:∵=---b a ab b a 223322()=---)(223223b b a ab a ())(22222b a b b a a --- ())2)()(()2(22b a b a b a b a b a --+=--=又∵b a ≥>0,∴b a +>0,0≥-b a 02≥-b a ,∴0)2)()((≥--+b a b a b a∴0222233≥---b a ab b a∴b a ab b a 223322-≥-5.证明:由柯西不等式可得 ()()()()()2181232311112131231x x x x x x =++++-++≥+⋅++⋅+-⋅⎡⎤⎣⎦…………………7分 又12,23x ⎛⎫∈-⎪⎝⎭,所以1232332x x x ++++-<.…………………10分 26.选修4-5:不等式选讲解: ∵,,a b c 均为正实数,∴ba ab b a +≥≥⎪⎭⎫ ⎝⎛+121212121,当b a =时等号成立; 则cb bc c b +≥≥⎪⎭⎫ ⎝⎛+121212121,当c b =时等号成立;ac ca a c +≥≥⎪⎭⎫ ⎝⎛+121212121,当a c =时等号成立;三个不等式相加得,ba a c cbc b a +++++≥++111212121,当且仅当c b a ==时等号成立.……………10分.7.选修4-5(不等式选讲)证明:因为x ,y ,z 无为正数.所以12()x y x y yz zx z y x z+=+≥, …………………………4分 同理可得22y z z x zx xy x xy yz y++≥,≥, ……………………………………………………7分 当且仅当x =y =z 时,以上三式等号都成立.将上述三个不等式两边分别相加,并除以2,得111x y z y z z x x y x y z ++++≥. …………10分 8.。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.(选修4—5 不等式选讲)如果关于x 的不等式34x x a -+-<的解集不是空集,则实数a 的取值范围是 ;2.1 .(汇编年高考江西卷(理))(不等式选做题)在实数范围内,不等式211x --≤的解集为_________ 评卷人得分 二、解答题3.(选修4-5:不等式选讲)设R x y ∈,,z ,且满足:222++z 1x y =,2314x y ++=z ,求证:3147x y z ++=. [必做题] 第22、23题,每小题10分,计20分.请把答案写在答题纸的指定区域内.4.选修4-5:不等式选讲 解不等式211x x +--≤.综上所述,不等式211x x +--≤的解集为(],0-∞. …………………………10分5.选修4 - 5:不等式选讲(本小题满分10分)已知x ,y ,z 均为正数.求证:111x y z yz zx xy x y z++++≥.6.2 .(汇编年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—5;不等式选讲设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥. 7.已知0a >,0b >,n ∈*N .求证:11n n n n a b ab a b ++++≥. 证明:先证112n n n n a b a b a b +++++≥, 只要证112()()()n n n n a b a b a b +++++≥,即要证11n n n n a b a b ab +++--≥0,即要证()(n n a b a b --)≥0, ………5分 若a b ≥,则a b -≥0,n n a b -≥0,所以()(n n a b a b --)≥0,若a b <,则0a b -<,0n n a b -<,所以()()0n n a b a b -->,综上,得()(n n a b a b --)≥0.从而112n n n n a b a b a b +++++≥, ………8分因为2a b ab +≥, 所以11n n n na b ab a b ++++≥. ………10分8.设f (x )= x 2-x + l ,实数a 满足| x -a |<l ,求证:|f (x )-f (a )|<2(| a | +1).【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.;2.[]0,4 评卷人得分二、解答题3. 解:设x y z R ∈,,,且满足:222x +y+z 1=,2314x y z ++=,求证: 3147x y z ++=. 证:222222214(23)(123)(x +y +z )14x y z =+≤+=++,∴123x y z ==,∴3,2z x y x ==,又2314x y z ++=, ∴123,,141414x y z ===,∴3147x y z ++=.…………………………………………10分 4.含绝对值不等式的解法、分段函数5.6.7.8.2()1f x x x =-+,22()()-=--+f x f a x x a a1=-⋅+-x a x a ……………………………………………………………2分 1<+-x a , 又1()21+-=-+-x a x a a …………………………………………… 6分 21≤-+-x a a ……………………………………………8分1212(1)<++=+a a . …………………………………10分。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.已知正数,,x y z 满足2221x y z ++=,则12z S xyz+=的最小值为________2.考察下列一组不等式:33224433252525,252525,+>⋅+⋅+>⋅+⋅ 5511222222252525+>⋅+⋅ 将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为 . 评卷人得分 二、解答题3.选修4—5:不等式选讲已知不等式222|2|23a x y z -++≤对满足1x y z ++=的一切实数x ,y ,z 都成立,求实数a 的取值范围.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.4.选修4—5:不等式选讲已知:2a x ∈≥,R .求证:|1|||x a x a -++-≥3.证明:因为|m|+|n|≥|m -n|,所以|x a -+≥|.………………………………………… 8分又a ≥2,故21|a -|≥3.所以|x a -+≥.…………………………………………………………………… 10分5.1 .(汇编年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))不等式选讲:设不等式*2()x a a N -<∈的解集为A ,且32A ∈,12A ∉. (1)求a 的值;(2)求函数()2f x x a x =++-的最小值. 6.设p 是ABC ∆内的一点,,,x y z 是p 到三边,,a b c 的距离,R 是ABC ∆外接圆的半径,证明22212x y z a b c R ++≤++.7.设d c b a ,,,都是正数,且22b a x +=,22d c y +=. 求证:))((bc ad bd ac xy ++≥.8.已知实数a ,b ,c ,d 满足a >b >c >d ,求证:1a -b +1b -c +1c -d ≥9a -d【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.42.()0,,,0,>≠>+>+++n m b a b a b a b a b a m n n m n m n m 评卷人 得分二、解答题3. 略4.5.解:(Ⅰ)因为32A ∈,且12A ∉,所以322a -<,且122a -≥ 解得1322a <≤,又因为*a N ∈,所以1a = (Ⅱ)因为|1||2||(1)(2)|3x x x x ++-≥+--=当且仅当(1)(2)0x x +-≤,即12x -≤≤时取得等号,所以()f x 的最小值为36.(选修4—5:不等式选讲)设p 是ABC ∆内的一点,,,x y z 是p 到三边,,a b c 的距离,R 是ABC ∆外接圆的半径,证明22212x y z a b c R++≤++. 证:由柯西不等式得,111x y z ax by cz a b c ++=++111ax by cz a b c ≤++++,…3分 记S 为ABC ∆的面积,则2242abc abc ax by cz S R R++===, ……6分 122abc ab bc ca x y z ab bc ca R abc R++++≤=++22212a b c R ≤++, 故不等式成立.7.8.。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.已知x y z 、、均为正数,求证:2223111111()3x y z x y z ++≤++.2.考察下列一组不等式:33224433252525,252525,+>⋅+⋅+>⋅+⋅ 5511222222252525+>⋅+⋅ 将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为 . 评卷人得分 二、解答题3.选修4-5:不等式选讲解不等式211x x +--≤.综上所述,不等式211x x +--≤的解集为(],0-∞. …………………………10分4.(汇编年高考课标Ⅱ卷(文))选修4—5;不等式选讲设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥.5.1 .(汇编年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))选修4—5;不等式选讲设,,a b c 均为正数,且1a b c ++=,证明: (Ⅰ)13ab bc ca ++≤; (Ⅱ)2221a b c b c a++≥. 6.已知实数z y x ,,满足,2=++z y x 求22232z y x ++的最小值.【必做题】第22题、第23题,每题10分,共计20分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.7.已知x ,y ,z 均为正数.求证:111.x y z yz zx xy x y z++++≥8.已知实数a ,b ,c ,d 满足a >b >c >d ,求证:1a -b +1b -c +1c -d ≥9a -d【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题 1.证明:由柯西不等式得……………5分则,即…………10分解析:证明:由柯西不等式得2222222111111(111)()()x y z x y z ++++≥++……………5分 则2221111113x y z x y z ⨯++≥++,即2223111111()3x y z x y z ++≤++…………10分2.()0,,,0,>≠>+>+++n m b a b a b a b a b a m n n m n m n m 评卷人 得分二、解答题3.含绝对值不等式的解法、分段函数4. 5.6.由柯西不等式,222222211()(2)(3)()()123x y z x y z ⎡⎤⎡⎤++++⋅++⎢⎥⎣⎦⎣⎦≤,……5分因为2x y z =++,所以222242311x y z ++≥, 当且仅当2311123x y z ==,即6412,,111111x y z ===时,等号成立, 所以22223x y z ++的最小值为2411.…………………………………………………10分 7.选修4-5(不等式选讲)证明:因为x ,y ,z 无为正数.所以12()x y x y yz zx z y x z+=+≥, …………………………4分 同理可得22y z z x zx xy x xy yz y++≥,≥, ……………………………………………………7分 当且仅当x =y =z 时,以上三式等号都成立.将上述三个不等式两边分别相加,并除以2,得111x y z y z z x x y x y z ++++≥. …………10分 8.。
高中数学专题复习《不等式选讲-不等式证明与数学归纳法》单元过关检测经典荟萃,匠心巨制!独家原创,欢迎下载!注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 评卷人得分 一、填空题1.1 .(汇编年高考湖北卷(理))设,,x y z R ∈,且满足:2221x y z ++=,2314x y z ++=,则x y z ++=_______. 2.若,,x y z 为正实数,则222xy yz x y z +++的最大值是22. 提示:2222112222x y y z xy yz +++≥+. 评卷人 得分二、解答题3.选修4—5:不等式选讲已知:2a x ∈≥,R .求证:|1|||x a x a -++-≥3.证明:因为|m|+|n|≥|m -n|,所以|x a-+≥|.…………………………………………8分又a ≥2,故21|a -|≥3.所以|x a -+≥.…………………………………………………………………… 10分4.已知0,0,a b >>且21a b +=,求2224S ab a b =--的最大值.5.已知0m a b >∈R ,,,求证:()22211a mb a mb mm ++≤++.6.已知,,x y z 均为实数.(Ⅰ)若1x y z ++=,求证:31323333x y z +++++≤;(5分) (Ⅱ)若236x y z ++=,求222x y z ++的最小值.(5分)7.已知,,a b c 为正数,且满足22cos sin a b c θθ+<,求证:22cos sin a b c θθ+<8.设a 、b 、c 均为实数,求证:a 21+b 21+c21≥c b +1+a c +1+b a +1.【参考答案】***试卷处理标记,请不要删除评卷人得分 一、填空题1.3147 2. 评卷人得分 二、解答题3.4.0,0,21,a b a b >>+= ∴2224(2)414a b a b ab ab +=+-=-, ………………………………………………………………2分 且1222a b ab =+≥,即24ab ≤,18ab ≤, ……………………………………………………5分 ∴2224S ab a b =--2(14)ab ab =--241ab ab =+-212-≤, 当且仅当11,42a b ==时,等号成立.…………………………………………………………………10分5.因为0m >,所以10m +>,所以要证()22211a mb a mb m m++≤++,即证222()(1)()a mb m a mb +≤++,即证22(2)0m a ab b -+≥,即证2()0a b -≥,而2()0a b -≥显然成立,故()22211a mba mb m m++≤++…10分 6.(1)证明:因为2222(313233)(111)(313233)27x y z x y z +++++≤+++++++= 所以313233x y z +++++≤33 …………5分 (2)解:因为(12+22+32)(x 2 + y 2 + z 2)≥(x + 2y +3z )2=36 …………8分 即14(x 2 + y 2 + z 2)≥36,所以x 2 + y 2 + z 2的最小值为187 …………10分7.解:由柯西不等式,得22cos sin a b θθ+ 11222222[(cos )(sin )](cos sin )a b θθθθ≤++1222(cos sin )a b c θθ=+<. ………………………………10分8.证明: ∵a 、b 、c 均为实数, ∴21(a 21+b 21)≥ab 21≥b a +1,当a =b 时等号成立;……………………4分 21(b 21+c 21)≥bc21≥c b +1,当b =c 时等号成立;……………………6分 21(c 21+a 21)≥ca21≥a c +1.……………………8分 三个不等式相加即得a 21+b 21+c21≥c b +1+a c +1+b a +1, 当且仅当a =b =c 时等号成立. ……………………10分。
高中数学专题复习
《不等式选讲-不等式证明与数学归纳法》单元过
关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.(选修4—5 不等式选讲)如果关于x 的不等式34x x a -+-<的解集不是空集,则实数a 的取值范围是 ;
2.1 .(汇编年高考江西卷(理))(不等式选做题)在实数范围内,不等式
211
x --≤的解集为_________ 评卷人
得分 二、解答题
3.【题文】[选修4 - 5:不等式选讲](本小题满分10分)
设2()13f x x x =-+,实数a 满足1x a -<,求证:()()2(1)f x f a a -<+.
4.(本小题满分10分,不等式选讲)
已知:1a b c ++=,,,0a b c >.
(1)求证:127abc ≤
; (2)求证:2223a b c abc ++≥.。
高中数学专题复习
《不等式选讲-不等式证明与数学归纳法》单元过
关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上 评卷人
得分 一、填空题
1.若,,x y z 为正实数,则222
xy yz x y z +++的最大值是22. 提示:2222112222
x y y z xy yz +++≥+. 2.考察下列一组不等式:33224433252525,252525,+>⋅+⋅+>⋅+⋅
5511222222252525+>⋅+⋅ 将上述不等式在左右两端仍为两项和的情况下加以推广,使以上的不等式成为推广不等式的特例,则推广的不等式为 . 评卷人
得分 二、解答题
3.选修4 - 5:不等式选讲(本小题满分10分)
已知x ,y ,z 均为正数.求证:111x y z yz zx xy x y z
++++≥.
4.选修4—5:不等式选讲
已知1x ≥,1y ≥,求证:22221x x y xy y x y ++++≤.
5.设正数a ,b ,c 满足1a b c ++=,求111323232a b c +++++的最小值.
6.对于实数y x ,,若,12,11≤-≤-y x 求1+-y x 的最大值.
7.已知12,n a a a ⋅⋅⋅都是正数,且12n a a a ⋅⋅⋅⋅=1,求证:
12(2)(2)(2)3n n a a a ++⋅⋅⋅+≥
8.设f (x )= x 2-x + l ,实数a 满足| x -a |<l ,求证:|f (x )-f (a )|<2(| a |
+1).
【参考答案】***试卷处理标记,请不要删除
评卷人
得分 一、填空题
1.
2.()0,,,0,>≠>+>+++n m b a b a b a b a b a m n n m n m n m 评卷人 得分
二、解答题
3.
4. 选修4—5:不等式选讲
证明:左边-右边=2222()(1)1(1)[(1)1]y y x y x y y yx y x -+--+=--++………4分 =(1)(1)(1)y xy x ---, ………………………………………………………6分 ∵1x ≥,1y ≥,
∴0,0,0111y xy x ---≤≥≥. ………………………………………………8分 从而左边-右边≤0,
∴22221x x y xy y x y ++++≤. ………………………………………………10分
5.因为a ,b ,c 均为正数,且1a b c ++=,所以(32)(32)(32)9a b c +++++=.
于是 ()
[]111(32)(32)(32)323232a b c a b c ++++++++++ 33133(32)(32)(32)9(32)(32)(32)a b c a b c ⋅+++=+++≥, 当且仅当13a b c ===时,等号成立. …………………………………8分 即1111323232a b c +++++≥,故111323232a b c +++++的最小值为1.…………10分
6.解法一:1+-y x =|)2()1(|---y x …………………………5′ 221≤-+-≤y x …………………………9′
(当且仅当3,2==y x 或x=0,y=1时取等号)…………………………10′ 解法二:∵11≤-x , ∴20≤≤x …………………………3′
∵,12≤-y ∴31≤≤y …………………………6′
∴13-≤-≤-y
∴212≤+-≤-y x …………………………9′
∴1+-y x 的最大值为2. …………………………10′
7.因为1a 是正数,所以31112113a a a +=++≥,……………………………5分 同理32113(2,3,)j j j
a a a j n +=++=≥, 将上述不等式两边相乘,得31212(2)(2)
(2)3n n n a a a a a a +++⋅⋅⋅⋅≥, 因为121n a a a ⋅⋅
⋅=,所以12(2)(2)(2)3n n a a a +++≥.………………………10分 8.2()1f x x x =-+,
22()()-=--+f x f a x x a a
1=-⋅+-x a x a ……………………………………………………………2分 1<+-x a , 又1()21+-=-+-x a x a a …………………………………………… 6分 21≤-+-x a a ……………………………………………8分
a a.…………………………………10分<++=+
1212(1)。