高考数学所有放缩技巧及不等式证明方法
- 格式:pdf
- 大小:1.19 MB
- 文档页数:36
【数列】放缩证明不等式的4种方法(数
列难点)
数列放缩证明不等式的方法有很多,以下是其中4种方法:
- 直接求和再放缩:通过求和的方式将原式进行化简,再进行放缩证明。
- 先放缩再求和:通过放缩将原式进行化简,再通过求和的方式证明。
- 等差数列:将原式中的数列通过放缩转换为等差数列,再进行证明。
- 等比数列:将原式中的数列通过放缩转换为等比数列,再进行证明。
在使用放缩法证明不等式时,需要根据数列的特点选择合适的放缩方法,并进行严谨的证明。
2013高考数学备考之数列不等式的证明技巧证明数列不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧。
这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 二、函数放缩 三、分式放缩 四、分类放缩 五、迭代放缩六、借助数列递推关系 七、分类讨论八、线性规划型放缩 九、均值不等式放缩 十、二项放缩 十一、积分放缩十二、部分放缩(尾式放缩) 十三、三角不等式的放缩十四、使用加强命题法证明不等式 十五、经典题目方法探究具体的分析与讲解如下: 一、裂项放缩例1.(1)求证:35112<∑=nk k .(1)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 类似技巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rr n r (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8)n n n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-例2. (1)求证:n n412141361161412-<++++ (2)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn解析:(1))111(41)1211(414136116141222nnn-+<+++=++++(2)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案 例3.求证:35191411)12)(1(62<++++≤++n n n n解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++ cause⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>--- 所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例4.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα答案例5.求证取1=i 有,)1ln(ln 1--<n n n,所以有2ln 21<,2ln 3ln 31-<,…,)1ln(ln 1--<n n n,n n n ln )1ln(11-+<+,相加后可以得到:)1ln(113121+<++++n n 另一方面⎰->n i n ABDExS 1,从而有)ln(ln |ln 11i n n x x i i n n i n ni n --==>⋅---⎰ 取1=i 有,)1ln(ln 11-->-n n n , 所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++ 三、分式放缩姐妹不等式:)0,0(>>>++>m a b ma mb ab 和)0,0(>>>++<m b a ma mb ab记忆口诀”小者小,大者大”解释:看b ,若b 小,则不等号是小于号,反之. 例6. 姐妹不等式:12)1211()511)(311)(11(+>-++++n n 和 121)211()611)(411)(211(+<+---n n也可以表示成为12)12(5312642+>-⋅⋅⋅⋅⋅⋅⋅n n n 和1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n n n解析: 利用假分数的一个性质)0,0(>>>++>m a b ma mb ab 可得>-⋅⋅122563412n n =+⋅⋅n n 212674523 )12(212654321+⋅-⋅⋅n nn ⇒12)122563412(2+>-⋅⋅n n n 即.12)1211()511)(311)(11(+>-++++n n例7.证明:.13)2311()711)(411)(11(3+>-++++n n解析: 运用两次次分式放缩:1338956.232313784512-⋅⋅⋅⋅>--⋅⋅⋅⋅n n n n (加1)nn n n 31391067.342313784512+⋅⋅⋅⋅>--⋅⋅⋅⋅ (加2)相乘,可以得到:)13(1323875421131381057.2423137845122+⋅--⋅⋅⋅⋅=-+⋅⋅⋅⋅>⎪⎭⎫ ⎝⎛--⋅⋅⋅⋅n n n n n n n 所以有.13)2311()711)(411)(11(3+>-++++n n四、分类放缩例8.求证:212131211nn>-++++解析: +++++++++>-++++ )21212121()4141(211121312113333n2)211(221)212121(nn n n n n n>-+=-+++ 例9.(2004年全国高中数学联赛加试改编) 在平面直角坐标系xoy 中, y 轴正半轴上的点列{}nA 与曲线x y 2=(x ≥0)上的点列{}n B 满足nOB OA nn 1==,直线n n B A 在x 轴上的截距为n a .点n B 的横坐标为n b ,*∈N n .(1)证明n a >1+n a >4,*∈N n ; (2)证明有*∈N n 0,使得对0n n >∀都有nn n n b b b b b b b b 112312+-++++ <2008-n .解析:(1)依题设有:(()10,,,0nn n n A B b b n ⎛⎫> ⎪⎝⎭,由1n OB n =得:2*212,1,n n n b b b n N n +=∴∈,又直线n n A B 在x 轴上的截距为n a 满足 ()()11000n n a b n n ⎫⎛⎫-=--⎪ ⎪⎭⎝⎭n a 22221210,2n n n nn b n b b n b =->+=212n n n n a b n b ∴=+1n a 显然,对于1101nn >>+,有*14,n n a a n N +>>∈ (2)证明:设*11,n n nb c n N b +=-∈,则()()()22222111211212121n c n n n n n n n ⎛- +⎝⎛⎫ ⎪++ > ++ ⎝()()()2*1212210,,2n n n n n c n N n ++-+=>∴>∈+ 设*12,n n S c c c n N =+++∈,则当()*221k n k N =->∈时,23111111111113421234212212n k k k kS -⎛⎫⎛⎫⎛⎫>++++=+++++++⎪ ⎪⎪-++⎝⎭⎝⎭⎝⎭212311112222222k k k -->⋅+⋅++⋅=。
放缩技巧放缩法:将不等式一侧适当的放大或缩小以达证题目的的方法,叫放缩法。
放缩法的方法有:⑴添加或舍去一些项,如:a a >+12;n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )25lg 3lg (5lg 3log 2=<=+<⋅; 2)1()1(++<+n n n n⑷利用常用结论: Ⅰ、kkk k k 21111<++=-+; Ⅱ、k k k k k 111)1(112--=-< ; 111)1(112+-=+>k k k k k (程度大) Ⅲ、)1111(21)1)(1(111122+--=+-=-<k k k k k k ; (程度小) 1.若a , b , c , d ∈R +,求证:21<+++++++++++<ca d db dc c a c b bd b a a【巧证】:记m =ca d db dc c a c b bd b a a +++++++++++∵a , b , c , d ∈R+∴1=+++++++++++++++>cb a d db a dc c a c b a bd c b a a m2=+++++++<cd dd c c b a b b a a m ∴1 < m < 2 即原式成立2.当 n > 2 时,求证:1)1(log )1(log <+-n n n n 【巧证】:∵n > 2 ∴0)1(log ,0)1(log >+>-n n n n∴2222)1(log 2)1(log )1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡++-<+-n n n n n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n ∴n > 2时, 1)1(log )1(log <+-n n n n3.求证:213121112222<++++n【巧证】:nn n n n 111)1(112--=-< ∴2121113121211113121112222<-=+-++-+-+<++++n n n n巧练一:设x > 0, y > 0,y x y x a +++=1, yyx x b +++=11,求证:a < b 巧练一:【巧证】:yyx x y x y y x x y x y x +++<+++++=+++11111 巧练二:求证:lg9•lg11 < 1巧练二:【巧证】:122299lg 211lg 9lg 11lg 9lg 222=⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+≤⋅巧练三:1)1(log )1(log <+-n n n n巧练三:【巧证】: 222)1(log )1(log )1(log ⎥⎦⎤⎢⎣⎡-≤+-n n n n n n 12log 22=⎥⎦⎤⎢⎣⎡<n n 巧练四:若a > b > c , 则0411≥-+-+-ac c b b a 巧练四: 【巧证】: c a c b b a c b b a c b b a -=⎪⎪⎭⎫ ⎝⎛-+-≥--≥-+-4)()(22))((12112巧练五:)2,(11211112≥∈>+++++++n R n nn n n巧练五:【巧证】:左边11111122222=-+=++++>n nn n n n n n 巧练六:121211121<+++++≤nn n 巧练六:【巧证】: 11121<⋅+≤≤⋅n n n n 中式 巧练七:已知a , b , c > 0, 且a 2+ b 2= c 2,求证:a n + b n < c n (n ≥3, n ∈R *)巧练七:【巧证】: ∵122=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛c b c a ,又a , b , c > 0,∴22,⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛c b c b c a c a n n ∴1=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛nn c b c a证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查知识的潜能与后继能力,因而成为压轴题及各级各类竞赛试题命题的极好素材。
常用放缩不等式必备篇,进阶篇,拓展篇一:.必备篇(解析)①指数“0”线1.e x ≥x +1,(x ∈R )证明:f (x )=e x -x -1,令f (x )=e x -1=0,∴x 0=0∴f (x )≥f (0)=0∴e x ≥x +1,x ∈R 常见变式:Ⅰ.x n e x =e x +nlnx ≥x +nlnx +1,(x 0+nlnx 0=0)Ⅱ.e xxn =e x -nlnx ≥x -nlnx +1,(x 0-nlnx 0=0)Ⅲ.x ≥ln (x +1),证明:①式同取对数PS :千万注意Ⅰ和Ⅱ的取等条件!!!例如:e x x=e x -lnx ≥x -lnx +1,(经典的错误,标准的零分)x -lnx 取不到0正确:e xx =e (e x -lnx -1)≥e (x -lnx ),当x =1时:e x ≥ex2.xe x ≥x ,(x ∈R )证明:f (x )=xe x -x =x (e x -1)≥0,∴xe x ≥x ②指数“1”线1.e x ≥ex ,(x ∈R )证明:f (x )=e x -ex ,f (x )=e x -e =0,∴x 0=1∴f (x )≥f (1)=0,即e x ≥ex ,x ∈R 2.xe x ≥2ex -e ,(x ∈R )mst 涛哥数学证明:f (x )=xe x -2ex +e ,f (x )=(x +1)e x -2e∴f (x )在x ∈(-∞,1)上单调递减,在x ∈(1,+∞)上单调递增∴f (x )≥f (1)=0,即xe x ≥2ex -e ,x ∈R③对数“1”线:x 2-x ≥xlnx ≥x -1≥lnx ≥1-1x ≥lnxx,(x >0,x 0=1)1.x -1≥lnx证明:f (x )=x -1-lnx ,令f (x )=x -1x=0,∴x 0=1∴f (x )≥f (1)=0,∴x -1≥lnx ,x ∈(0,+∞)2.xlnx ≥x -1证明::f (x )=xlnx -x +1,令f (x )=lnx =0,∴x 0=1∴f (x )≥f (1)=0,∴xlnx ≥x -1,x ∈(0,+∞)3.x 2-x ≥xlnx ,证明:1式左右同乘x4.1-1x ≥lnx x,证明:1式左右同除x5.lnx ≥1-1x,证明:2式左右同除x④:飘带函数:12(x -1x )≤lnx ≤2(x -1)x +1,0<x ≤12(x -1)x +1≤lnx ≤12(x -1x),x ≥1 PS :谐音记忆,12(x -1x )为飘带函数,x >1时,就飘了,所以最大考试证明:①:令f (x )=lnx -2(x -1)x +1,∴f(x )=1x -4x (x +1)2=(x -1)2x (x +1)2≥0∴f (x )在x ∈(0,+∞)上单调递增,∵f (1)=0∴当0<x ≤1时,f (x )≤f (1)=0,即lnx ≤2(x -1)x +1∴当x ≥1时,f (x )≥f (1)=0,即lnx ≥2(x -1)x +1∴原式得证!mst 涛哥数学②:令g (x )=lnx -12(x -1x ),∴g(x )=-(x -1)22x 2≤0∴g (x )在x ∈(0,+∞)上单调递减,∵f (1)=0∴当0<x ≤1时,f (x )≥f (1)=0,即lnx ≥12(x -1x )∴当x ≥1时,f (x )≤f (1)=0,即lnx ≤12(x -1x)∴原式得证!⑤:对数均值不等式:x 1x 2<x 2-x 1lnx 2-lnx 1<x 1+x 221.左式证明:不妨设x 2>x 1,x 2x 1>1,由飘带函数得(过程需读者自证)∵lnt <12(t -1t ),t >1,∴ln x 2x 1<12(x 2x 1-x 1x 2)∴lnx 2-lnx 1<x 2x 1-x 1x 2=x 2-x 1x 1x 2∴x 1x 2<x 2-x 1lnx 2-lnx 1,∴原式得证!2.右式证明:不妨设x 2>x 1,x 2x 1>1,由飘带函数得(过程需读者自证)∵lnt>2(t-1)t+1,t>1,∴lnx2x1>2(x2x1-1)x2x1+1=2(x2-x1)x2+x1∴x2-x1lnx2-lnx1<x1+x22∴原式得证!⑥:指数均值不等式:e m+n2<em-e nm-n<e m+e n2证明:由对数均值不等式得x1x2<x2-x1lnx2-lnx1<x1+x22∴令x2=e m,x1=e n,m>n∴e m e n<e m-e nlne m-lne n <e m+e n2∴e m+n2<e m-e nm-n<e m+e n2,∴原式得证!对均:21a+1b<ab<a-blna-lnb<a+b2<a2+b22指均:e m+n2<em-e nm-n<e m+e n2二:进阶篇(120+)由带有佩亚诺余项(o (x n ))的麦克劳林(Maclaurin)公式:f (x )=f (0)+f (0)1!x +f 0 2!x 2+⋯⋯+f n (0)n !x n +o (x n )得到以mst 涛哥数学下常用函数的展开式e x=1+x +x 22+x 36+⋯⋯⋯⋯+x n n !+o (x n)ln (x +1)=x -x 22+x 33+⋯⋯+(-1)n -1x nn +o (x n )sinx =x -x 36+x 5120⋯⋯⋯⋯+(-1)n -1x 2n -1(2n -1)!+o (x 2n -1)cosx =1-x 22+x 424+⋯⋯⋯⋯+(-1)n x 2n (2n )!+o (x 2n)tanx =x +x 33+x 515⋯⋯⋯⋯⋯+o (x 5)(1+x )a=1+ax +a (a -1)2x 2+⋯⋯+a !n !(n -1)!x n +o (x n )PS :记忆和注意1.sinx 是奇函数,只有奇次幂;cosx 是偶函数,只有偶次幂,ln (x +1)分母无阶乘2.建议读者最多只需掌握,指对前三项,三角前两项,无需背通式3.o (x n ):x →0时比x n 高阶的无穷小,简单理解为展开式与原函数的误差量即可①指数“0”线1.e x≥x 22+x +1,(x >0)证明:f (x )=e x-x 22-x -1,f (x )=e x -x -1≥0∴当x ≤0时,f (x )≤f (0)=0,即e x≤x 22+x +1∴当x ≥0时,f (x )≥f (0)=0,即e x≥x 22+x +12.e x -e -x ≥2x ,(x >0)证明:f (x )=e x -e -x -2x ,f (x )=e x +e -x -2≥2e x e -x -2=0,∴x 0=0∴f (x )在x ∈R 上单调递增,f (0)=0∴当x ≤0时,f (x )≤f (0)=0,即e x -e -x ≤2x ∴当x ≥0时,f (x )≥f (0)=0,即e x -e -x ≥2x3.e x +e -x ≥x 2+2,(x ∈R )证明:f (x )=e x +e -x -x 2-2,∵f x =e x -e -x -2x ,f (0)=0由2得∴f (x )在x ∈(-∞,0)上单调递减,在x ∈(0,+∞)上单调递增∴f (x )≥f (0)=0,即e x +e -x ≥x 2+24.e x -e -x ≥13x 3+2x ,(x >0)证明:f (x )=e x -e -x -13x 3-2x ,∵f (x )=e x +e -x -x 2-2由3得∴f (x )在x ∈R 上单调递增,f 0 =0∴当x ≤0时,f (x )≤f (0)=0,即e x -e -x ≤13x 3+2x∴当x ≥0时,f (x )≥f (0)=0,即e x -e -x ≥13x 3+2xPS :利用泰勒快速推导e x ≥1+x ,x ∈R e x ≥1+x +x 22,x ≥0 e x≥1+x +x 22+x 36,x ∈R 1.e x≥1+x +x 22e -x≤1-x +x 22e x -e -x ≥2x ,x ≥02.e x≥1+x +x 22+x 36e -x ≥1-x +x 22-x36e x +e -x ≥x 2+2,x ∈R 3.e x≥1+x +x 22+x 36+x 424e -x ≤1-x +x 22-x 36+x 424e x -e -x≥x 33+2x ,x ≥0②:对数“0”线1.x -x 22≤ln (x +1)≤x ,(x ≥0)证明:f (x )=ln (x +1)-x +x 22,f(x )=1x +1+x +1-2≥0(基本不等式)∴f(x)在x∈(-1,+∞)上单调递增,∵f(1)=0∴当-1<x≤0时,f(x)≤f(0)=0,即ln(x+1)≤x-x2 2∴当x≥0时,f(x)≥f(1)=0,即ln(x+1)≥x-x22③:指数“1”线1.e x≥ex+(x-1)2,(x≥0,x=0/x=1)证明:f(x)=e x-ex-(x-1)2,f (x)=e x-e-2(x-1)令f (x)=e x-2=0,∴x0=ln2∴f (x)在x∈(-∞,ln2)上单调递减,在x∈(ln2,+∞)上单调递增∵f (0)=3-e>0,f(ln2)<f(1)=0∴∃x1∈(0,ln2),x2=1,使得f (x1)=f (x2)=0∴f(x)在x∈(-∞,x1),(1,+∞)上单调递增,在x∈(x1,1)上单调递减∴当x≥0时,f(x)≥0,即e x≥ex+(x-1)2∴当x≤0时,f(x)≤0,即e x≤ex+(x-1)22.e x≥ex+e2(x-1)2,(x≥1) e x≥e2x2+e2,(x≥1)证明:f(x)=e x-ex-e2(x-1)2,f (x)=e x-ex≥0,(必备篇)∴f(x)在x∈R上单调递增,∵f(1)=0∴当x≥1时,f(x)≥f(1)=0,即e x≥ex+e2(x-1)2∴当x≤1时,f(x)≤f(x)=0,即e x≤ex+e2(x-1)23.(x-1)e x≥12x2-1证明:f(x)=(x-1)e x-12x2+1,f (x)=x(e x-1)≥0,(必备篇)∴f(x)在x∈R上单调递增,∵f(0)=0∴当x≥0时,f(x)≥f(0)=0,即(x-1)e x≥12x2-1∴当x≤0时,f(x)≤f(0)=0,即(x-1)e x≥12x2-1飘带函数找点1已知函数:f (x )=lnx -ax -1x +1,讨论函数f (x )的零点个数,并说明理由【解析】PS :飘带函数隐藏性质:f (1x )=-lnx -a 1-x 1+x ,∴f (x )+f (1x)=0,即两零点之积为1∵f(x )=1x -2a (x +1)2=x 2+(2-2a )x +1x (x +1)2设函数f (x )的极值点为x 1,x 2,零点为x 3,x 4,x 5①当a ≤0时∴f (x )在x ∈(0,+∞)上单调递增,∵f (1)=0,∴f (x )有且仅有一个零点②当0<a ≤2时∵g (x )=x 2+(2-2a )x +1,∴∆=4a (a -2)≤0∴f (x )在x ∈(0,+∞)上单调递增,∵f (1)=0,∴f (x )有且仅有一个零点③当a >2时,x 1x 2=1x 1+x 2=2a -2∆=4a (a -2)≥0∴x 1∈(0,1),x 2∈(1,+∞)∴f (x )在x ∈(0,x 1)和(x 2,+∞)上单调递增,在x ∈(x 1,x 2)上单调递减.第一个:∵f (1)=0,∴x 4=1(显零点)第二个:∵f (e a)=a -a e a -1e a +1=2ae a +1>0,∵e a >1,∴存在唯一零点x 5∈(x 2,e a ),使得f (x 5)=0第三个:方法1:∵f (1ea )=-a -a 1-e a 1+e a =-2a 1+e a <0,∵1e a <1∴存在唯一零点x 3∈(1ea ,x 1),使得f (x 3)=0方法2:∵x 3x 5=1∴存在唯一零点x 3∈(1e a,x 1),使得f (x 3)=0∴综上当a ≤2时,f (x )存在唯一零点当a >2时,f (x )存在三个零点x 4(1,0)x 11e ax 3x 2x 5e a飘带函数找点2已知函数f (x )=x -a (x -1x),ln 讨论函数f (x )的零点个数,并说明理由【解析】PS 1:飘带函数隐藏性质:f (1x )=-x ln -a (1x -x ),∴f (x )+f (1x )=0,即两零点之积为1PS 2:飘带变形x ln ≤x -1x ,x ∈(1,+∞)∵f(x )=1x -a (1+1x 2)=-ax 2+x -a x 2设函数f (x )的极值点x 1,x 2,零点为x 3,x 4,x 5①:当a ≤0时f (x )在x ∈(0,+∞)上单调递增,∵f (1)=0,∴f (x )有且仅有一个零点②:当a ≥12时,△=1-4a 2≤0f (x )在x ∈(0,+∞)上单调递减,∵f (1)=0,∴f (x )有且仅有一个零点③:当0<a <12时,x 1x 2=1x 1+x 2=1a ∆=1-4a 2>0 ∴x 1∈(0,1),x 2∈(1,+∞)∴f (x )在x ∈(0,x 1)和(x 2,+∞)上单调递减,在x ∈(x 1,x 2)上单调递增.第一个:∵f (1)=0,∴x 4=1(显零点)第二个:∴f (x )<(x -1)(1x-a (x +1)x )∴f (1a 2-1)<0,∵1a2-1>1∴存在唯一零点x 5∈(x 2,1-a 2a2),使得f (x 5)=0第三个:∵x 3x 5=1∴存在唯一零点x 3∈(a 21-a 2,x 1),使得f (x 3)=0综上当a ≤0或a >0时,f (x )存在唯一零点当0<a <12时,f (x )存在三个零点x 4(1,0)x 2x 1x 51-a 2a 2x 3a 21-a 2④:三角放缩1正弦:x≥sinx≥x-x36,(x>0)左式证明:f(x)=sinx-x,f (x)=cosx-1≤0,f (x0)=0∴f(x)在x∈R上单调递减∴当x≤0时,f(x)≥f(0)=0,即sinx≥x∴当x≥0时,f(x)≤f(0)=0,即sinx≤x右式证明:g(x)=sinx-x+x36,g(x)=cosx-1+x22,且g(x0)=0∵g (x)=x-sinx,由左式得∴g (x)在x∈(-∞,0)上单调递减,在x∈(0,+∞)上单调递增∴g(x)在x∈mst涛哥数学R上单调递增∴当x≤0时,g(x)≤g(0)=0,即sinx≤x-x36∴当x≥0时,g(x)≥g(0)=0,即sinx≥x-x362余弦:1-x22≤cosx≤1,(x∈R)左式证明:f(x)=cosx-1+x22,f(x)=x-sinx∵由1式得f(x)在x∈(-∞,0)上单调递减,在x∈(0,+∞)上单调递增∴f(x)≥f(0)=0,即cosx≥1-x2 23正切:tanx≥x,(0≤x<π2)证明:f(x)=tanx-x,∴f (x)=1cos2x-1≥0∴f(x)在x∈R上单调递增∴当-π2<x≤0时,f(x)≤f(0)=0,即tanx≤x ∴当0≤x<π2时,f(x)≥f(0)=0,即tanx≥x4正切:tanx≥x+13x3,(0≤x<π2)证明:f(x)=tanx-x-x33,f(x)=1cos2x-1-x2=tan2x-x2≥0∴f(x)在x∈(-π2,π2)上单调递增∴当-π2<x≤0时,f(x)≤f(0)=0,即tanx≤x+13x3∴当0≤x<π2时,f(x)≥f(0)=0,即tanx≥x+13x3 PS:tan2x+1=sec2x=1cos2x常见变式:1.sinx≥2πx,(0≤x≤π2)证明:(小题)几何作图法:割线2.sinx-xcosx≥0,(0≤x≤π2)证明:f(x)=sinx-xcosx=cosx tanx-x由3得:tanx~x,∵x∈-π2,π2时,cosx≥0∴当0≤x≤π2时,f(x)≥f(0)=0,即sinx-xcosx≥0∴当-π2≤x≤0时,f(x)≤f(0)=0,即sinx-xcosx≤03.xcosx+2x-3sinx≥0,(x≥0)证明:f(x)=x3-sinx2+cosx,f(x)=(1-cosx)23(2+cosx)2≥0∴f(x)在x∈R上单调递增,∵f(0)=0∴当x≤0时,f(x)≤f(0)=0,即xcosx+2x-3sinx≤0∴当x≥0时,f(x)≥f(0)=0,即xcosx+2x-3sinx≥0PS:x3是sinx2+cosx在0处的切线(π2,1)y=sinxl:y=2πxe x -e -x2e x +e x2e x 2e -x 2-e x2拔高篇(130-140)一.130以下无需掌握:1.双曲正余切双曲正弦函数:shx =e x -e -x 2,奇函数双曲余弦函数:chx =e x +e -x 2,偶函数双曲正切函数:thx =shx chx =e x -e -xe x +e-x PS :有以下常用结论:1.th 2x =1-1ch 2x,ch 2x -sh 2x =12.(shx ) =chx ,(chx ) =shx ,(thx ) =1ch 2x 3.shx ,chx ,在第一象限无限趋近于e x2,无渐进线4.sh (x +y )=shxchy +chxshysh (x -y )=shxchy -chxshysh (2x)=2shxchx ch (x +y )=chxchy +shxshy ch (x -y )=chxchy -shxshy ch (2x )=ch 2x +sh 2x【解析】:由结论易知A 正确,B 错误,D 错误;C :设A (t ,e t +e -t2),B (t ,e t -e -t 2),∴AB =1et 为减函数,∴C 正确;综上AC 正确2.x-1x<lnx≤4(x-1)x+1,0<x≤1 4(x-1)x+1<lnx<x-1x,x>1证明:将x→x代入飘带放缩即可3.(2-x)e x≥2+x,x≤0(2-x)e x<2+x,x>0证明:将x→e x代入飘带放缩即可3.(140以下无需掌握)1.lnx<(x-1)(x+5)4x+2,(x>0)证明:f(x)=lnx-(x-1)(x+5)4x+2,∴f(x)=1x-x2+x+7(2x+1)2=(1-x)3x(2x+1)2∴f(x)在x∈(0,1)上单调递增,在x∈(1,+∞)上单调递减∴f(x)≤f(1)=0,即lnx<(x-1)(x+5)4x+2,(x>0)2.lnx≥3x2-3x2+4x+1,(x≥1)证明:f(x)=lnx-3x2-3x2+4x+1,f(x)=(x-1)4x(x2+4x+1)2≥0∴f(x)在x>0上单调递增,∵f(1)=0∴当x≥1时,f(x)≥f(1)=0,即lnx≥3x2-3x2+4x+1 3.e x≥ax2+1,x≥0,(a≈1.5441)通常取a=32,即ex≥32x2+14..ln1+x1-x≥2x+23x3,x≥0证明:∵ln(1+x)≥x-x22+x33-x44,ln(1-x)≤-x-x22-x33-x44∴ln(1+x)-ln(1-x)=ln1+x1-x≥2x+23x3,x≥0帕德逼近:。
【精品】高考数学不等式放缩大全高考数学中,不等式是一个重要的考点,也是考生容易出错的地方。
在解不等式的过程中,我们经常需要进行放缩,以便更好地求解不等式。
下面是一些高考数学中常用的不等式放缩方法。
1. 加减法放缩:当需要对一个不等式进行放缩时,可以通过加减法来实现。
例如,对于不等式a < b,可以加上一个正数c,得到a + c < b + c;或者减去一个正数d,得到a - d < b - d。
通过加减法放缩,可以改变不等式的形式,使其更容易求解。
2. 乘除法放缩:当需要对一个不等式进行放缩时,可以通过乘除法来实现。
例如,对于不等式a < b,可以乘以一个正数c,得到ac < bc;或者除以一个正数d,得到a/d <b/d。
通过乘除法放缩,可以改变不等式的形式,使其更容易求解。
3. 平方放缩:当需要对一个不等式进行放缩时,可以通过平方来实现。
例如,对于不等式a < b,可以平方两边得到a^2 < b^2。
通过平方放缩,可以将不等式中的平方项转化为一次项,使其更容易求解。
4. 开平方放缩:当需要对一个不等式进行放缩时,可以通过开平方来实现。
例如,对于不等式a < b,可以开平方两边得到√a < √b。
通过开平方放缩,可以将不等式中的开方项转化为一次项,使其更容易求解。
5. 反向不等式放缩:当需要对一个不等式进行放缩时,可以通过反向不等式来实现。
例如,对于不等式a < b,可以将其改写为-b < -a。
通过反向不等式放缩,可以改变不等式的形式,使其更容易求解。
6. 绝对值不等式放缩:当需要对一个绝对值不等式进行放缩时,可以通过绝对值的性质来实现。
例如,对于绝对值不等式|a| < b,可以将其改写为-b < a < b。
通过绝对值不等式放缩,可以将不等式中的绝对值项转化为一次项,使其更容易求解。
放缩法证明数列不等式一、基础知识:在前面的章节中,也介绍了有关数列不等式的内容,在有些数列的题目中,要根据不等式的性质通过放缩,将问题化归为我们熟悉的内容进行求解。
本节通过一些例子来介绍利用放缩法证明不等式的技巧1、放缩法证明数列不等式的理论依据——不等式的性质:(1)传递性:若,a b b c >>,则a c >(此性质为放缩法的基础,即若要证明a c >,但无法直接证明,则可寻找一个中间量b ,使得a b >,从而将问题转化为只需证明b c >即可 )(2)若,a b c d >>,则a c b d +>+,此性质可推广到多项求和:若()()()121,2,,n a f a f a f n >>>L ,则:()()()1212n a a a f f f n +++>+++L L (3)若需要用到乘法,则对应性质为:若0,0a b c d >>>>,则ac bd >,此性质也可推广到多项连乘,但要求涉及的不等式两侧均为正数注:这两条性质均要注意条件与结论的不等号方向均相同2、放缩的技巧与方法:(1)常见的数列求和方法和通项公式特点:① 等差数列求和公式:12nn a a S n +=×,n a kn m =+(关于n 的一次函数或常值函数)② 等比数列求和公式:()()1111n n a q S q q -=¹-,n n a k q =×(关于n 的指数类函数)③ 错位相减:通项公式为“等差´等比”的形式④ 裂项相消:通项公式可拆成两个相邻项的差,且原数列的每一项裂项之后正负能够相消,进而在求和后式子中仅剩有限项(2)与求和相关的不等式的放缩技巧:① 在数列中,“求和看通项”,所以在放缩的过程中通常从数列的通项公式入手② 在放缩时要看好所证不等式中不等号的方向,这将决定对通项公式是放大还是缩小(应与所证的不等号同方向)③ 在放缩时,对通项公式的变形要向可求和数列的通项公式靠拢,常见的是向等比数列与可裂项相消的数列进行靠拢。