6.4玻尔兹曼方程 固体物理讲义
- 格式:pdf
- 大小:215.19 KB
- 文档页数:11
物理学中的玻尔兹曼方程玻尔兹曼方程是经典统计物理学中的重要方程之一,它描述了气体分子在空间和速度上的分布。
玻尔兹曼方程被广泛应用于热力学、流体力学、材料科学等领域。
1. 玻尔兹曼方程的起源玻尔兹曼方程最初是由奥地利物理学家路德维希·玻尔兹曼于1872年提出的。
当时,玻尔兹曼正致力于研究气体分子的运动规律和热力学性质。
他的主要发现之一就是热力学中经典理论所预测的热力学定律与实验结果之间存在较大差距,这被称为“热力学危机”。
为了解决这个难题,玻尔兹曼开始研究分子运动的微观机制。
他提出了一个基于分子碰撞的分子运动模型,并在此基础上推导出了玻尔兹曼方程。
2. 玻尔兹曼方程的含义玻尔兹曼方程描述了气体分子在空间和速度上的分布。
它的形式可以表示为:∂f/∂t + v·∇f + F/m·∇v f = J[f]其中,f(v, r, t)是分子速度、位置和时间的单粒子分布函数;∇f 可以看做是分子速度和位置的梯度;J[f]是粒子间碰撞造成的时间演化。
这个方程包括了分子在空间中受到的力的影响,也考虑到了分子间的碰撞对分布函数的影响。
它是分子动力学模拟和气体动力学中的一个关键方程。
3. 玻尔兹曼方程的应用玻尔兹曼方程被广泛应用于热力学、流体力学、材料科学等领域。
它可以用来描述分子在经典力学框架下的运动和相互作用,从而进一步研究气体的宏观性质。
例如,在热力学中,玻尔兹曼方程用于计算气体的温度、密度和压强等物理量。
在流体力学中,它可以用来描述流动液体和气体的速度场和相关的力学运动。
在材料科学中,玻尔兹曼方程可以帮助研究材料中分子的行为和相互作用。
4. 玻尔兹曼方程的挑战尽管玻尔兹曼方程在热力学、流体力学、材料科学等领域得到了广泛应用,但它也面临着一些挑战和限制。
例如,玻尔兹曼方程无法描述非线性和强耗散的现象,且它对初值和边界条件较为敏感。
此外,由于玻尔兹曼方程中包含了分子之间的碰撞,因此它的计算机模拟也需要耗费大量的计算资源和时间。
固体物理总结绪论1研究对象及内容研究固体的结构及其组成粒子间相互作用与运动规律以阐明固态物质性能和用途的学科。
2 固体物理学发展的里程碑十八世纪:阿羽依(R. J. Ha üy 法)--坚实、相同、平行六面体的“基石”有规则重复堆积.十九世纪:布喇菲(A.Bravais 法)--空间点阵学 晶体周期性.二十世纪初:X-射线衍射 揭示晶体内部结构量子理论 描述晶体内部微观粒子运动过程近几十年:固体物理学→凝聚态物理:无序、尺度、维度、关联;晶体→凝聚态物质第一部分 晶体结构1 布喇菲点阵和初基矢量晶体结构的特点在于原子排列的周期性质。
布喇菲点阵是平移操作112233R n a n a n a =++所联系的诸点的列阵。
布喇菲点阵是晶体结构周期性的数学抽象。
点阵矢量112233R n a n a n a =++,其中,1n ,2n 和3n 均为整数,1a ,2a 和3a 是不在同一平面内的三个矢量,叫做布喇菲点阵的初基矢量,简称基矢。
初基矢量所构成的平行六面体是布喇菲点阵的最小重复单元。
布喇菲点阵是一个无限的分立点的列阵,无论从这个列阵中的哪个点去观察,周围点的分布和排列方位都是完全相同的。
对一个给定的布喇菲点阵,初级矢量可以有多种取法。
2 初基晶胞(原胞)初基晶胞是布喇菲点阵的最小重复单元。
初基晶胞必定正好包含布喇菲点阵的一个阵点。
对于一个给定的布喇菲点阵,初基晶胞的选取方式可以不只一种,但不论初基晶胞的形状如何,初基晶胞的体积是唯一的,()123c V a a a =⋅⨯。
3 惯用晶胞(单胞)惯用晶胞是为了反映点阵的对称性而选用的晶胞。
惯用晶胞可以是初基的或非初基的。
惯用晶胞的体积是初基晶胞体积的整数倍,c V nV =。
其中,n 是惯用晶胞所包含的阵点数。
确定惯用晶胞几何尺寸的数字叫做点阵常数。
4 维格纳-赛兹晶胞(W-S 晶胞)维格纳-赛兹晶胞是另一种能够反映晶体宏观对称性的晶胞,它是某一阵点与相邻阵点连线的中垂面(或中垂线)所围成的最小体积。
玻尔兹曼方程详细推导玻尔兹曼方程(SchrdingerEquation)是现代物理学中最重要的方程之一,也是量子力学的基础。
它由奥地利物理学家爱因斯坦的学生爱迪生玻尔兹曼於1925年提出,在它的框架上建立起了现代量子物理学的基础。
它的形式是:iψ/t = 〖Hˉψ〗其中,i为虚数单位,为普朗克常量,t为时间,Hˉ为玻尔兹曼算符,ψ为量子状态。
这一方程可以用来解释电子在某个原子核附近运动所形成的电子结构。
它可以用来描述量子系统在时间和空间上的运动,以及它们之间的相互作用。
由于玻尔兹曼方程是一个非常有用的方程,研究者们发展出了其他方法来解决它,如均匀库塔解法,数值积分法,波函数折射法等。
在本文中,我们将重点关注如何使用均匀库塔法来求解玻尔兹曼方程。
均匀库塔法的基本概念是:将一个区域内的电子颗粒看成一个“有限个离散状态加上无限多连续态”。
它将一个量子状态ψ分解成若干有限状态和无限连续态:ψ=Σαφ +βψ其中,α和β是离散状态和连续状态的波函数系数,φ和ψ是离散状态和连续状态的波函数。
应用库塔法来求解玻尔兹曼方程,首先要将空间离散化,即将空间分成一定的网格点,数值上使用网格的离散状态为有限状态α,而其他状态为连续状态β。
换言之,量子力学物理量的变化可以用离散化方法近似表示,这样可以使用有限状态解决更复杂的问题。
之后,我们可以将方程转化为以下简化形式:ψ/t = Hy其中,H是一个矩阵,y是一个向量,表示离散状态和连续态波函数的系数。
将这个方程的两边同时乘以矩阵H的逆矩阵M,可以得到:MH(ψ/t) = MH y由此得到了新的方程:M(ψ/t) =My这个方程可以用来求解离散状态的系数α,因为ψ/t以由y来计算。
最后,我们将用库塔数值算法求解玻尔兹曼方程,将空间分割成一定的网格点,计算出离散状态和连续态波函数的系数,由此得到最终的波函数ψ。
经过上述推导,我们已经知道了如何使用均匀库塔法来求解玻尔兹曼方程,掌握了它的原理和步骤,同时也巩固了量子力学的基本概念。
boltzmann方程
弗朗茨·玻尔兹曼(Friedrich Boltzmann)方程是物理学中古典力学系统和热力学系统中的重要方程,可以预测动力学系统中粒子态运动的熵演化状态。
该方程是用来描述系统中平均颗粒数量和平均势能的关系的,可以简单解释为熵和热力学系统状态总是朝着更高熵状态变化,这称为“熵均增推理”。
不考虑量子效应的力学系统,如果把该系统每个状态的概率看作一个热力学参量(也称为热力学函数),则该系统的发展可以用数学语言表述出来:弗朗茨·玻尔兹曼的熵方程
S=klogW
其中S是系统的熵,k为Boltzmann常数,W是可以由每个状态概率引入的“总颗粒数”。
这个数学表达式被吐槽了很多,但它为热力学提供了理论支撑,揭示了宏观和微观世界之间内在的联系。
当把它和温度关联起来时,它甚至可以用于在热力学分析时提供极重要的相关结果。
弗朗茨·玻
尔兹曼的方程有助于揭开热力学的本质,它可以用来解释和研究各种理论的热力学系统的状态。
此外,它也简化了很多复杂的问题,用简单的方法解释了可靠的实验结果,因此由它导出的热力学定律也被称为“熵定律”。
弗朗茨·玻尔兹曼的方程给热力学提供了严谨的理论支撑,也使科学家更充分地理解了热动力学的本质。
总之,弗朗茨·玻尔兹曼的熵方程是力学和热力学系统中极为重要的方程,它解释了宏观和微观之间的联系,并促进了热力学的本质的研究和发展。
因此,在20世纪以来,物理学家一直在努力探索和理解玻尔兹曼方程的物理含义,以及它在物理学中的重要应用。
固体物理讲义第一章前言:固体物理学是用自然科学的基本原理从微观上解释固体的宏观性质并阐明其规律的科学课程的主要内容晶体的物理性质与内部微观结构以及其组成粒子(原子、离子、电子)运动规律之间的关系●晶体结构(基于X射线衍射)●晶体结合与晶体缺陷●晶格振动(基于统计物理和量子力学研究固体热学性质)●固体能带论(基于量子力学和统计物理研究固体的导电性)第一章晶体结构内容:晶体中原子排列的形式及其数学描述主要包括:●晶体的周期结构●十四种布拉菲格子和七大晶系●典型的晶体结构●晶面和米勒指数●晶体的对称性固体的性质取决于组成固体的原子以及它们的空间排列。
例如同为碳元素组成的石墨(导体)、碳60和金刚石就有明显不同的特性。
1.1晶体的周期结构晶体结构的特征:周期性组成晶体的粒子(原子、分子、离子或它们的集团)在空间的排列具有周期性(长程有序、平移对称性*)对称性晶体的宏观形貌以及晶体内部微观结构都具有自身特有的对称性。
晶体可以看成是一个原子或一组原子以某种方式在空间周期性重复平移的结果。
晶体内部原子排列具有周期性是晶体的主要特征,另一个特征是由周期性所决定的对称性(表现在晶体具有规则的外形)。
周期排列所带来的物理后果的讨论是本课程的中心。
(对称性最初是用来描述某些图形或花样的几何性质,后来经过推广、加深,用它表示各种物理性质/物理相互作用/物理定律在一定变换下的不变性。
在这里,我们主要关注的是对称性最初的、狭义的意义,即几何图形和结构(不管有限还是无限)的对称性。
虽然眼睛看不到晶体中的原子,但是原子的规则排列往往在晶体的一些几何特征上明显的反映出来。
实际上,人们最初正是从大量采用矿物晶体的实践中,观察到天然晶体外型的几何规则性,从理论上推断晶体是由原子作规则的晶格排列所构成。
后来这种理论被X衍射所证实。
)布拉菲空间点阵和基元●为了描述粒子排列的周期性,把基元抽象为几何点,这些点的集合称为布拉菲点阵。
布拉菲点阵的特点:所有格点是等价的,即整个布拉菲点阵可以看成一个格点沿三个不同的方向,各按一定的周期平移的结果●格点:空间点阵中周期排列的几何点●基元:一个格点所代表的物理实体●空间点阵:格点在空间中的周期排列在理想的情况下,晶体是由全同的原子团在空间无穷重复排列而构成。
《固体物理学》第二章晶格振动和固体比热第二章晶格振动和固体比热晶体中的格点表示原子的平衡位置,晶格振动便是指原子在格点附近的振动。
晶格振动对晶体的电学、光学、磁学、介电性质、结构相变和超导电性都有重要的作用。
本章的主题:用最近邻原子间简谐力模型来讨论晶格振动的本征频率;并用格波来描述晶体原子的集体运动;再用量子理论来表述格波相应的能量量子。
2-1、绝热近似和简谐近似绝热近似:考虑离子运动时,可以近似认为电子很快适应离子的位置变化。
为简单化,可以把离子的运动看成是近似成中性原子的运动。
简谐近似:r 设一维单原子晶体的布喇菲格子的格矢为R ,那么第n 个格点原子的位置r r r r矢量为:Rn na a 为基矢。
令第n 个原子相对其平衡位置Rn 的瞬时位置由与时r r r r间相关的矢量Sn 给出。
那么原子的瞬时位置为:rn Rn Sn 。
晶体的总势能应该为所有原子相互作用势能之和忽略均匀电子云产生的常1 r r势能项。
静态格点时的总势能:U 0 ∑ u0 Rn Rn ,u x 表示一维原子链中2 n n距离为x 的两原子的相互作用能。
1 r r 1 r r r r 考虑晶格振动时的总势能:U ∑ urn rn 2 ∑ u Rn Sn Rn Sn 2 n n nn 这时势能与动力学变量Sn有关,如果Sn是个小量,将势能U在平衡值U0附近1作泰勒展开:f r a f r a f r a 2 f r ...... 。
2 r r r r r r 取r Rn Rn a Sn Sn 1 r r 1 r r r r 1 r r r rU ∑ u0 Rn Rn 2 ∑ Sn Sn u0 Rn Rn 4 ∑ Sn Sn 2 u0 Rn Rn .... 2 n n nn nn 我们忽略高阶项,只保留二阶项第一项非零校正项,那么势能近似为:1 r r r r U U 0 ∑ S n S n 2 u0 Rn Rn 4 n n 上述近似称为简谐近似。