插值法与曲线拟合
- 格式:pdf
- 大小:11.50 MB
- 文档页数:35
常用函数的逼近和曲线拟合在数学中,函数逼近和曲线拟合都是常见的问题。
函数逼近是指找到一个已知函数,尽可能地接近另一个函数。
而曲线拟合则是给定一组数据点,找到一条曲线来描述这些数据点的分布。
本文将讨论常用的函数逼近和曲线拟合方法。
一、函数逼近1. 插值法插值法是最简单的函数逼近方法之一。
它的基本思想是:给定一组已知点,通过构造一个多项式,使得该多项式在这些点处的函数值与已知函数值相等。
插值法的优点是精度高,缺点是易产生龙格现象。
常用的插值多项式有拉格朗日插值多项式和牛顿插值多项式。
拉格朗日插值多项式的形式为:$f(x)=\sum_{i=0}^{n}y_{i}\prod_{j=i,j\neq i}^{n}\frac{x-x_{j}}{x_{i}-x_{j}}$其中,$x_{i}$是已知点的横坐标,$y_{i}$是已知点的纵坐标,$n$是已知点的数量。
牛顿插值多项式的形式为:$f(x)=\sum_{i=0}^{n}f[x_{0},x_{1},...,x_{i}]\prod_{j=0}^{i-1}(x-x_{j})$其中,$f[x_{0},x_{1},...,x_{i}]$是已知点$(x_{0},y_{0}),(x_{1},y_{1}),...,(x_{i},y_{i})$的差商。
2. 最小二乘法最小二乘法是一种常用的函数逼近方法。
它的基本思想是:给定一组数据点,找到一个函数,在这些数据点上的误差平方和最小。
通常采用线性模型,例如多项式模型、指数模型等。
最小二乘法的优点是适用性广泛,缺点是对于非线性模型要求比较高。
最小二乘法的一般形式为:$F(x)=\sum_{i=0}^{n}a_{i}\varphi_{i}(x)$其中,$a_{i}$是待求的系数,$\varphi_{i}(x)$是一组已知的基函数,$n$是基函数的数量。
最小二乘法的目标是使得$\sum_{i=1}^{m}[f(x_{i})-F(x_{i})]^{2}$最小,其中$m$是数据点的数量。
MATLAB 中的曲线拟合和插值在大量的使用领域中,人们经常面临用一个分析函数描述数据(通常是测量值)的任务。
对这个问题有两种方法。
在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。
这种方法在下一节讨论。
这里讨论的方法是曲线拟合或回归。
人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。
图11.1说明了这两种方法。
标有'o'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。
11.1 曲线拟合曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。
所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。
数学上,称为多项式的最小二乘曲线拟合。
如果这种描述使你混淆,再研究图11.1。
虚线和标志的数据点之间的垂直距离是在该点的误差。
对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。
这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。
最小二乘这个术语仅仅是使误差平方和最小00.20.40.60.81-2024681012xy =f (x )Second O rder C urv e Fitting图11.1 2阶曲线拟合在MATLAB 中,函数polyfit 求解最小二乘曲线拟合问题。
为了阐述这个函数的用法,让我们以上面图11.1中的数据开始。
» x=[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]; » y=[-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];为了用polyfit ,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。
如果我们选择n=1作为阶次,得到最简单的线性近似。
插值法和曲线拟合的主要差异
插值法和曲线拟合是数据处理和分析中常用的方法,它们的主要差异如下:
1. 目标不同:
- 插值法的主要目标是通过已知数据点的函数值推断未知数据点的函数值,以填充数据的空缺部分或者进行数据的重构。
- 曲线拟合的主要目标是通过已知数据点拟合出一条函数曲线,以描述数据点之间的趋势或模式。
2. 数据使用方式不同:
- 插值法使用已知数据点的函数值作为输入,通过构造插值函数来推断未知数据点的函数值。
- 曲线拟合使用已知数据点的函数值作为输入,并通过选择合适的拟合函数参数,使得拟合函数与数据点尽可能接近。
3. 数据点要求不同:
- 插值法要求已知数据点间的函数值比较准确,以保证插值函数的质量,并要求数据点间的间距不会过大,避免出现过度插值或者不稳定的现象。
- 曲线拟合对于数据点的要求相对较松,可以容忍噪声、异常值等因素,因为它不需要将函数曲线完全通过所有数据点。
4. 应用场景不同:
- 插值法常见应用于信号处理、图像处理等领域,可以用于填充缺失数据、图像重构等任务。
- 曲线拟合常见应用于数据分析、模型建立等领域,可以用
于描述数据间的趋势、拟合科学模型等。
综上所述,插值法和曲线拟合在目标、数据使用方式、数据点要求和应用场景等方面存在明显的差异。
插值法和曲线拟合的主要差异引言在数学和统计学中,插值法和曲线拟合是两种常用的数据处理方法。
它们在数据分析、模型构建和预测等领域发挥着重要作用。
本文将详细介绍插值法和曲线拟合的定义、原理、应用以及它们之间的主要差异。
插值法定义插值法是一种通过已知数据点之间的函数关系来推断未知数据点的方法。
它基于一个假设,即已知数据点之间存在一个连续且光滑的函数,并且通过这个函数可以准确地估计其他位置上的数值。
原理插值法通过对已知数据点进行插值操作,得到一个近似函数,然后使用这个函数来估计未知数据点的数值。
常见的插值方法有拉格朗日插值、牛顿插值和样条插值等。
应用插值法在各个领域都有广泛应用,如地图制作中根据少量已知地理坐标点推算其他位置上的坐标;传感器测量中根据离散采样点推断连续时间序列上未采样到的数据;图像处理中通过已知像素点推测其他位置上的像素值等。
主要特点•插值法可以精确地通过已知数据点估计未知数据点的数值,适用于需要高精度估计的场景。
•插值法对输入数据的要求较高,需要保证已知数据点之间存在连续且光滑的函数关系。
•插值法只能在已知数据点之间进行插值,无法对整个数据集进行全局拟合。
曲线拟合定义曲线拟合是一种通过选择合适的函数形式,并调整函数参数来使得函数与给定数据集最为接近的方法。
它不仅可以对已知数据进行拟合,还可以根据拟合结果进行预测和模型构建。
原理曲线拟合首先选择一个适当的函数形式,如多项式、指数函数、对数函数等。
然后使用最小二乘法或最大似然估计等方法来确定函数参数,使得函数与给定数据集之间的误差最小化。
应用曲线拟合广泛应用于各个领域,如经济学中根据历史数据构建经济模型进行预测;物理学中通过实验数据来验证理论模型;生物学中根据实验测量数据拟合生长曲线等。
主要特点•曲线拟合可以对整个数据集进行全局拟合,能够更好地描述数据的整体趋势。
•曲线拟合可以选择不同的函数形式和参数,灵活性较高。
•曲线拟合可能存在过拟合或欠拟合的问题,需要通过模型评估和调整来提高拟合效果。