等差数列通项的性质 人教课标版
- 格式:ppt
- 大小:1.55 MB
- 文档页数:23
2.2等差数列的概念与通项公式一、教学目标:1.知识目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握等差数列的通项公式。
2.能力目标:培养学生观察、归纳能力,在学习过程中,体会归纳思想和化归思想并加深认识;通过概念的引入与通项公式的推导,培养学生分析探索能力,增强运用公式解决实际问题的能力3.情感目标:①通过个性化的学习增强学生的自信心和意志力。
②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。
③体验从特殊到一般,又到特殊的认知规律,培养学生勇于创新的科学精神。
二、教学重点:研究等差数列的概念以及通项公式的推导。
教学难点;(1)理解等差数列“等差”的特点及通项公式的含义。
(2)等差数列的通项公式的推导过程及应用。
三、学情及导入分析:高一学生对数列已经有了初步的接触和认识,对方程、数学公式的运用具有一定技能,一开始就注意培养学生自主合作探究的学习习惯,学生思维比较活跃,课堂参与意识较浓。
本节课先由教师提供日常生活实例,引导学生通过对实例的分析体会数列的有关概念,再通过对数列的项数与项之间的对应关系的探究,认识数列是一种特殊的函数,最后师生共同通过对一列数的观察、归纳,写出符合条件的一个通项公式.弄清楚等差数列与通项公式的含义以及通项公式的推导过程。
四、教学过程:教学环节教学内容师生活动设计意图复习旧知识,引入新1、知识链接;数列的通项公式与递推关系.学生回答,引导温故知新。
由复习引入,通过数学知识的内部提出问题。
知归纳抽象形成概念比较分析,深化认识创设问题情景:1.下述数列有什么共同特点?根据下述数列的共同特点,可以给出等差数列的定义吗?能将以上的文字语言转换成数学符号语言吗?[来源:学#科#网Z#X#X#K]引例1:从0开始,将5的倍数从小到大排列,得到的数列?引例2:从1开始,将自然数从小到大排列,得到的数列?引例3:为了保证考试笔试的秩序,每次放入2个人考试,依次排列下去,已经考试的人员组成一个什么数列?得出等差数列的定义:从第二项起,每一项与它前一项的差(公差d)为同一常数,这样的一组数列,叫做等差数列”。
等差数列的前n 项和(二)等差数列的内容内涵丰富,通项公式与前n 项和公式是其核心内容,我们对其进行合理整合、变形,可以得到诸多的性质,它们的应用使解题变得轻松愉悦,与常规方法相比较,过程要简捷得多.【性质1】 已知等差数列{a n },m 、p 、q ∈N *,若存在实数λ使λλ++=1qp m (λ≠-1), 则λλ++=1q p m a a a .证明:由等差数列{a n }的通项公式a n =dn +a 1-d 的几何意义:点(p,a p )、(m,a m )、(q,a q )共线,由斜率公式得mq a a pm a a m q p m --=--,因为λλ++=1qp m ,所以λ=--q m m p . 所以λ(a m -a q )=a p -a m .所以(1+λ)a m =a p +λa q ,即λλ++=1q p m a a a .评析:特别地,当λ=1时,2a m =a p +a q ,我们不妨将性质1称为等差数列的定比分点公式.【性质2】 等差数列{a n },n i ,m i ∈N *,i=1,2,3,…,k,若∑∑===ki ik i i mn 11.则∑∑===ki m ki ma a11.证明:设等差数列{a n }的公差为d .根据a n i =a mi +(n i -m i )d ,i=1,2,3,…,k,则∑∑∑∑∑======-+=k i mi k i k i k i i i mi ki nia d m n a a11111)(.所以∑∑===ki mi k i ni a a 11推论:等差数列{a n },n i ,m ∈N *,i=1,2,3,…,k,若∑==k i i n km 1.则∑==ki n m i a ka 1.评析:本性质实质上是等差中项性质的推广.【性质3】 等差数列{a n }的前n 项和为S n ,公差为d .n ,m ∈N *, 则d n m n S m S n m )(21-=-.证明:因为mn mS nS n S m S nm n m -=- =mnd n n na m d m m ma n ]2)1([]2)1([11-+--+=mndn mn mna d m mn mna 2)1(2)1(11----+=d mn mnmn mn n m 222+--=d mnmn n m 222- =d mn n m mn 2)(-=d n m )(21- 所以d n m n S m S n m )(21-=-.评析:实质上数列⎭⎬⎫⎩⎨⎧n S n 是公差为2d 的等差数列.【性质4】 等差数列{a n }的前n 项和为S n ,公差为d .n ,m ∈N *,则S m+n =S m +S n +mnd . 证明:因为S m+n =S n +(a n +1+a n +2+…+a n +m ) =S n +(a 1+nd )+(a 2+nd )+…+(a m +nd ) =S n +(a 1+a 2+…+a m )+m nd=S m +S n +m nd , 所以S m+n =S m +S n +mnd .【性质5】 等差数列{a n }前n 项和为S n ,若m=p+q(m 、p 、q ∈N *且p≠q),则有qp S S m S qp m --=. 证明:设等差数列{a n }的公差为d . 因为S p -S q =p a 1+21p(p-1)d -q a 1-21 q(q-1)d =(p-q)[a 1+21(p+q-1)d ],所以d q p a q p S S qp )1(211-++=--.又因为d m a m S m )1(211-+=且m=p+q ,所以有qp S S m S qp m --=. 推论:等差数列{a n }前n 项和为S n ,若m+t=p+q(m 、t 、p 、q ∈N *且m≠t,p≠q),则qp S S t m S S q p t m --=--.【性质6】 等差数列{a n }前n 项和为S n . (1)当n =2k(k ∈N *)时,S 2k =k(a k +a k+1); (2)当n =2k-1(k ∈N *)时,S 2k-1=k a k .。
高中数学等差数列说课稿〔通用8篇〕高中数学等差数列说课稿〔通用8篇〕高中数学等差数列说课稿篇1一、教材分析^p1、教材的地位和作用:《等差数列》是人教版新课标教材《数学》必修5第二章第二节的内容。
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。
一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。
而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的根底上,对数列的知识进一步深化和拓广。
同时等差数列也为今后学习等比数列提供了学习比照的根据。
2、教学目的根据教学大纲的要求和学生的实际程度,确定了本次课的教学目的a知识与技能:理解并掌握等差数列的概念;理解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
培养学生观察、分析^p 、归纳、推理的才能;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移才能;通过阶梯性练习,进步学生分析^p 问题和解决问题的才能。
b.过程与方法:在教学过程中我采用讨论式、启发式的方法使学生深化的理解不完全归纳法。
c.情感态度与价值观:通过对等差数列的研究,培养学生主动探究、勇于发现的求知精神;养成细心观察、认真分析^p 、擅长总结的良好思维习惯。
3、教学重点和难点重点:①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
难点:①等差数列的通项公式的推导②用数学思想解决实际问题二、学情教法分析^p :对于高一学生,知识经历已较为丰富,具备了一定的抽象思维才能和演绎推理才能,所以我本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学理论活动,以独立考虑和互相交流的形式,在教师的指导下发现、分析^p 和解决问题。
学生在初中时只是简单的接触过等差数列,详细的公式还不会用,因些在公式应用上加强学生的理解三、学法分析^p :在引导分析^p 时,留出学生的考虑空间,让学生去联想、探究,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
课题:必修⑤2.2等差数列三维目标:1.知识与技能(1)通过实例,理解等差数列、公差的概念,明确一个数列是等差数列的限定条件;(2)了解等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项;(3)体会等差数列与一次函数的关系。
2.过程与方法(1)让学生对日常生活中实际问题分析,经历等差数列的简单产生过程和应用等差数列的基本知识解决问题的过程。
并引导学生通过观察,推导,归纳抽象出等差数列的概念;(2)引导学生建立等差数列模型用相关知识解决一些简单的实际问题,在合作探究的过程中,通过类比函数概念、性质、表达式得到对等差数列相应问题的研究;(3)培养学生的观察能力,进一步提高学生的推理归纳能力;(4)培养学生分析问题、解决问题的能力与钻研精神,培养学生的运算能力、严谨的思维习惯以与解题的规范性。
3.情态与价值观(1)通过等差数列概念的归纳概括,培养学生的观察、分析资料的能力,积极思维,追求新知的创新意识;(2)借助函数的背景和研究方法来研究有关数列的问题,可以进一步让学生体会数学知识间的联系,培养用已知去研究未知的能力。
形成学数学、用数学的思维和意识,培养学好数学的信心,为远大的志向而不懈奋斗;(3)通过对数列知识的学习与探索,不断培养自主学习、主动探索、善于反思、勤于总结的科学态度和锲而不舍的钻研精神,并提高参与意识和合作精神,并进一步培养学生研究和发现能力,让学生在探究中体验愉悦的成功体验。
教学重点:1.理解等差数列的概念与其性质,探索并掌握等差数列的通项公式;2.会用公式解决一些简单的问题,体会等差数列与一次函数之间的联系。
教学难点:1.概括通项公式推导过程中体现出的数学思想方法。
2.等差数列通项公式与性质的灵活运用教具:多媒体、实物投影仪教学方法:合作探究、分层推进教学法教学过程:一、双基回眸科学导入:★同学们,上两节课我们学习了数列的定义与相关的性质,下面,请同学们简单地回顾一下:什么是数列?什么是数列的项?数列有几种分类方法?什么是数列的通项公式?什么是数列的递推公式?★在日常生活中,我们经常会遇到一类特殊的数列。
等差数列的概念、性质考查重点:等差数列的通项公式、等差中项以及等差数列的判定 所占分数:10--25分教学重点: 掌握等差数列的概念、通项公式及性质;求等差中项,判断等差数列及与函数的关系;教学难点: 通项公式的求解及等差数列的判定。
1. 等差数列的概念一般地,如果一个数列从第二项起,每一项与它的前一项的差都等于同一常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 来表示。
用递推关系系表示为()1n n a a d n N ++-=∈或()12,n n a a d n n N -+-=≥∈ 2. 等差数列的通项公式若{}n a 为等差数列,首项为1a ,公差为d ,则()11n a a n d =+- 3. 等差中项如果三个数,,x A y 组成等差数列,那么A 叫做x 和y 的等差中项 4. 通项公式的变形对任意的,p q N +∈,在等差数列中,有:()11p a a p d =+-()11q a a q d =+- 两式相减,得()p q a a p q d =+- 其中,p q 的关系可以为,,p q p q p q <>=5. 等差数列与函数的关系由等差数列的通项公式()11n a a n d =+-可得()1n a dn a d =+-,这里1,a d 是常数,n 是自变量,n a 是n 的函数,如果设1,,d a a d b =-=则n a an b =+与函数y ax b =+对比,点(),n n a 在函数y ax b =+的图像上。
6. 等差数列的性质及应用(1)12132...n n n a a a a a a --+=+=+=(2)若2,m n p q w +=+=则2m n p q w a a a a a +=+=(,,,,m n p q w 都是正整数) (3)若,,m p n 成等差数列,则,,m p n a a a 也成等差数列(,,m n p 都是正整数) (4)()n m a a n m d =+-(,m n 都是正整数)(5)若数列{}n a 成等差数列,则(),n a pn q p q R =+∈(6)若数列{}n a 成等差数列,则数列{}n a b λ+(,b λ为常数)仍为等差数列 (7)若{}n a 和{}n b 均为等差数列,则{}n n a b ±也是等差数列类型一: 等差数列的判定、项及公差的求解、通项公式的求解例1.(2015河北唐山月考)数列{}n a 是首项11a =-,公差3d =的等差数列,若2015,n a = 则n =A.672B.673C.662D.663 解析:由题意得()()1111334,n a a n d n n =+-=-+-⨯=-令2015n a =,解得673n = 答案:B练习1. 数列{}n a 是首项11a =-,公差3d =的等差数列,若2003,n a = 则n = A.669 B.673 C.662 D.663 答案:A练习2. 数列{}n a 是首项11a =-,公差3d =的等差数列,若2000,n a = 则n = A.669 B.668 C.662 D.663 答案:B例2.(2015山西太原段考)一个首项为23、公差为整数的等差数列从第7项开始为负数,则其公差d 为()A.-2B.-3C.-4D.-6 解析:由题意知670,0a a ≥< 所以有115235062360a d d a d d +=+≥+=+<解得2323,456d d Z d -≤<-∈∴=- 答案:C练习3. 一个首项为23、公差为整数的等差数列从第6项开始为负数,则其公差d 为() A.-2 B.-3 C.-4 D.-5 答案:D练习4.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4 答案:B例3.(2014浙江绍兴一中期中)已知数列{}n a 满足1111,1,4n na a a +==-其中n N +∈设221n n b a =-(1) 求证:数列{}n b 是等差数列 (2) 求数列{}n a 的通项公式解析:(1)1144222222121212121n n n n n n n n n a a b b a a a a a ++--=-=-==----- 所以数列{}n b 是等差数列(2)()111121,21221212,212n n n a b b b n d n a n n a a n=∴==∴=+-=-+∴==-答案:(1)略 (2)12n n a n +=练习5.已知数列{}n a 满足()1114,21n n n a a a n a --==≥+令1n nb a =(1) 求证:数列{}n b 是等差数列(2) 求数列{}n b 与{}n a 的通项公式 答案:(1)数列{}n b 是公差为1的等差数列 (2)443n a n =- ,34n b n =- 练习6.在等差数列{}n a 中,已知581,2,a a =-= 求1,a d 答案:15,1a d =-=例4.已知数列8,,2,,a b c 是等差数列,则,,a b c 的值分别为____________ 解析:a 为8与2的等差中项,得8252a +== ;2为,ab 的等差中项得1b =-;由b 为2与c 的等差数列,得4c =- 答案:5,-1,-4练习7. 已知数列8,,2,,a b 是等差数列,则,a b 的值分别为____________ 答案:5,-1练习8. 已知数列2,,8,,a b c 是等差数列,则,,a b c 的值分别为____________ 答案:5,11,14类型二:等差数列的性质及与函数的关系例5.等差数列{}n a 中,已知100110142015a a +=,则12014a a +=()A.2014B.2015C.2013D.2016解析:1001101412014+=+,且{}n a 为等差数列,12014100110142015a a a a ∴+=+=故选B 答案:B练习9.在等差数列{}n a 中,若4681012120,a a a a a ++++=则10122a a -的值为 () A.24 B.22 C.20 D.18 答案:A练习10.(2015山东青岛检测)已知等差数列{}n a 中,1007100812015,1,a a a +==-则2014a = _____ 答案:2016例6.已知数列{}n a 中,220132013,2a a ==且n a 是n 的一次函数,则 2015a =________ 解析:n a 是 n 的一次函数,所以设()0n a kn b k =+≠代入22013,a a 解得20151,20152015201520150n k b a n a =-=∴=-+∴=-+=答案:0练习11.若,,a b c 成等差数列,则二次函数()22f x ax bx c =-+的零点个数为()A.0B.1C.2D.1或2 答案:D练习12.已知无穷等差数列{}n a 中,首项13,a = 公差5d =-,依次取出序号被4除余3的项组成数列{}n b (1) 求1b 和2b (2) 求{}n b 的通项公式 (3){}n b 中的第503项是{}n a 的第几项答案:数列{}n b 是数列{}n a 的一个子集列,其序号构成以3为首项,4为公差的等差数列,由于{}n a 是等差数列,所以{}n b 也是等差数列 (1)()()13,5,31585n a d a n n ==∴=+--=- 数列{}n a 中序号被4除余3的项是{}n a 中的第3项,第7项,第11项,…13277,27b a b a ∴==-==-(2)设{}n a 中的第m 项是{}n b 的第n 项即n mb a =()()413414185411320n m n m n n b a a n n -=+-=-∴===--=- 则1320n b n =-(3)503132*********b =-⨯=- ,设它是{}n a 中的第m 项,则1004785m -=-,则2011m =,即{}n b 中的第503项是{}n a 中的第2011项1.在等差数列{a n}中,a1+a9=10,则a5的值为()A.5 B.6 C.8 D.10答案:A2.在数列{a n}中,a1=2,2a n+1=2a n+1,则a101的值为()A.49 B.50 C.51 D.52答案:D3. 如果等差数列{a n}中,a3+a4+a5=12,那么a1+a2+…+a7=()A.14 B.21 C.28 D.35答案:C4. 已知等差数列{a n}满足a1+a2+a3+…+a101=0,则有()A.a1+a101>0 B.a2+a100<0 C.a3+a100≤0D.a51=0答案:D5. 等差数列{a n}中,a1+a4+a7=39,a2+a5+a8=33,则a3+a6+a9的值为()A.30 B.27 C.24 D.21答案:B6. 等差数列{a n}中,a5=33,a45=153,则201是该数列的第()项()A.60 B.61 C.62 D.63答案:B_______________________________________________________________________________ _________________________________________________________________________________ __基础巩固1.在等差数列{a n}中,a3=7,a5=a2+6,则a6=()A .11B .12C .13D .14 答案:C2. 若数列{a n }是等差数列,且a 1+a 4=45,a 2+a 5=39,则a 3+a 6=( )A .24B .27C .30D .33 答案:D3. 已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12等于( )A .15B .30C .31D .64 答案:A4. 等差数列中,若a 3+a 4+a 5+a 6+a 7+a 8+a 9=420,则a 2+a 10等于( )A .100B .120C .140D .160 答案:B 5. 已知a =13+2,b =13-2,则a ,b 的等差中项为( ) A.3 B.2 C.13 D.12答案:A6. 在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 答案: 747. 等差数列{a n }中,公差为12,且a 1+a 3+a 5+…+a 99=60,则a 2+a 4+a 6+…+a 100=_______. 答案: 858. 在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为( )A .14B .15C .16D .17 答案:C9. 在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6=________. 答案:4210. 等差数列{a n }的前三项依次为x,2x +1,4x +2,则它的第5项为__________. 答案:411. 已知等差数列6,3,0,…,试求此数列的第100项. 答案:设此数列为{a n },则首项a 1=6,公差d =3-6=-3,∴a n =a 1+(n -1)d =6-3(n -1)=-3n +9. ∴a 100=-3×100+9=-291.能力提升12. 等差数列的首项为125,且从第10项开始为比1大的项,则公差d 的取值范围是( )A .d >875B .d <325 C.875<d <325 D.875<d ≤325答案:D13. 设等差数列{a n }中,已知a 1=13,a 2+a 5=4,a n =33,则n 是( )A .48B .49C .50D .51 答案:C14. 已知数列{a n }中,a 3=2,a 7=1,又数列{1a n +1}是等差数列,则a 11等于( )A .0 B.12 C.23 D .-1答案:B15. 若a ≠b ,两个等差数列a ,x 1,x 2,b 与a ,y 1,y 2,y 3,b 的公差分别为d 1、d 2,则d 1d 2等于( )A.32B.23C.43D.34 答案:C16. 《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为________升. 答案:676617. 等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根 B .有两个相等实根 C .有两个不等实根 D .不能确定有无实根答案:A18. 在a 和b 之间插入n 个数构成一个等差数列,则其公差为( ) A.b -a n B.a -b n +1 C.b -a n +1 D.b -a n -1答案:C19. 在等差数列{a n }中,已知a m +n =A ,a m -n =B ,,则a m =__________. 答案:12(A +B )20.三个数成等差数列,它们的和等于18,它们的平方和等于116,则这三个数为__________. 答案:4,6,821. 在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7=________. 答案:2022. 已知数列{a n }是等差数列,且a 1=11,a 2=8.(1)求a 13的值;(2)判断-101是不是数列中的项; (3)从第几项开始出现负数? (4)在区间(-31,0)中有几项?答案:(1)由题意知a 1=11,d =a 2-a 1=8-11=-3,∴a n =a 1+(n -1)d =11+(n -1)×(-3)=-3n +14. ∴a 13=-3×13+14=-25.(2)设-101=a n ,则-101=-3n +14, ∴3n =115,n =1153=3813∉N +.∴-101不是数列{a n }中的项. (3)设从第n 项开始出现负数,即a n <0, ∴-3n +14<0,∴n >143=423.∵n ∈N +,∴n ≥5, 即从第5 项开始出现负数. (4)设a n ∈(-31,0),即-31<a n <0, ∴-31<-3n +14<0, ∴423<n <15,∴n ∈N +, ∴n =5,6,7,…,14,共10项.23. 已知等差数列{a n }中,a 15=33,a 61=217,试判断153是不是这个数列的项,如果是,是第几项?答案:设首项为a 1,公差为d ,由已知得⎩⎪⎨⎪⎧ a 1+(15-1)d =33a 1+(61-1)d =217,解得⎩⎪⎨⎪⎧a 1=-23d =4,∴a n =-23+(n -1)×4=4n -27,令a n =153,即4n -27=153,得n =45∈N *, ∴153是所给数列的第45项.24. 已知函数f (x )=3xx +3,数列{x n }的通项由x n =f (x n -1)(n ≥2,且n ∈N *)确定. (1)求证:{1x n }是等差数列;(2)当x 1=12时,求x 100的值.答案:(1)∵x n =f (x n -1)=3x n -1x n -1+3(n ≥2,n ∈N *),∴1x n =x n -1+33x n -1=13+1x n -1, ∴1x n -1x n -1=13(n ≥2,n ∈N *). ∴数列{1x n }是等差数列.(2)由(1)知{1x n }的公差为13,又x 1=12,∴1x n =1x 1+(n -1)·13=13n +53.∴1x 100=1003+53=35,即x 100=135.25. 四个数成等差数列,其平方和为94,第一个数与第四个数的积比第二个数与第三个数的积少18,求此四个数.答案:设四个数为a -3d ,a -d ,a +d ,a +3d ,据题意得,(a -3d )2+(a -d )2+(a +d )2+(a +3d )2=94 ⇒2a 2+10d 2=47.①又(a -3d )(a +3d )=(a -d )(a +d )-18⇒8d 2=18⇒d =±32代入①得a =±72,故所求四个数为8,5,2,-1或1,-2,-5,-8或-1,2,5,8或-8,-5,-2,1. 26. 已知等差数列{a n }中,a 2+a 6+a 10=1,求a 3+a 9.答案:解法一:a 2+a 6+a 10=a 1+d +a 1+5d +a 1+9d =3a 1+15d =1,∴a 1+5d =13.∴a 3+a 9=a 1+2d +a 1+8d =2a 1+10d =2(a 1+5d )=23.解法二:∵{a n }为等差数列,∴2a 6=a 2+a 10=a 3+a 9,∴a 2+a 6+a 10=3a 6=1,∴a 6=13,∴a 3+a 9=2a 6=23. 27. 在△ABC 中,若lgsin A ,lgsin B ,lgsin C 成等差数列,且三个内角A ,B ,C 也成等差数列,试判断三角形的形状.答案:∵A ,B ,C 成等差数列,∴2B =A +C ,又∵A +B +C =π,∴3B =π,B =π3. ∵lgsin A ,lgsin B ,lgsin C 成等差数列,∴2lgsin B =lgsin A +lgsin C ,即sin 2B =sin A ·sin C ,∴sin A sin C =34. 又∵cos(A +C )=cos A cos C -sin A sin C ,cos(A -C )=cos A cos C +sin A sin C ,∴sin A sin C =cos (A -C )-cos (A +C )2, ∴34=12[cos(A -C )-cos 2π3], ∴34=12cos(A -C )+14, ∴cos(A -C )=1,∵A -C ∈(-π,π),∴A -C =0,即A =C =π3,A =B =C . 故△ABC 为等边三角形.。
等差数列的定义.通项与性质一.等差数列的通项公式与等差中项1、等差数列{}n a 的1a 为首项,d 为公差,推导其通项公式1n a a =+ =m a +公差为d =2. {}n a 为等差数列,3121-=-=a a ,则公差为 ,n a = 。
3.已知递增的等差数列{}n a 满足11a =,2324a a =-,则n a =_____________. 4. 若)32lg(),12lg(,2lg +-xx 成等差数列,则x 的值等于( ) A 1 B 0或32 C 32 D 5log 2 5.下列命题中正确的个数是( )(1)若a ,b ,c 成等差数列,则a 2,b 2,c 2一定成等差数列;(2)若a ,b ,c 成等差数列,则2a,2b,2c 可能成等差数列;(3)若a ,b ,c 成等差数列,则ka +2,kb +2,kc +2一定成等差数列;(4)若a ,b ,c 成等差数列,则1a ,1b ,1c可能成等差数列. A .4个B .3个C .2个D .1个6. 已知数列{}n a 中,11a =-,11n n n n a a a a ++⋅=-,则数列通项n a =___________二.等差数列的性质1. 若,m n p q +=+则m n p q a a a a +=+。
2.若数列{}n a ,{}n b 均为等差数列,则{}n n a b +,{}n n a b -为等差数列。
应用:1.等差数列{}n a 中, ,33,562==a a 则35a a +=_________2.已知数列{}n a 是等差数列,若471015a a a ++=,45612131477a a a a a a ++++++=L且13k a =,则k =_________3.已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有( )A .a 1+a 101>0B .a 2+a 100<0C .a 3+a 100≤0D .a 51=04.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( )A .-1B .1C .3D .75.在a 和b 之间插入n 个数构成一个等差数列,则其公差为( )A .b -a n B .a -b n +1 C .b -a n +1D .b -a n -1 6.已知等差数列{a n }中,a 3、a 15是方程x 2-6x -1=0的两根,则a 7+a 8+a 9+a 10+a 11=__________.7.设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,那么数列{a n +b n }的第37项为( )A .0B .37C .100D .-37 8.数列{a n }中,a 2=2,a 6=0且数列{1a n +1}是等差数列,则a 4等于( ) A .12B .13C .14D .169.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( )A .无实根B .有两个相等实根C .有两个不等实根D .不能确定有无实根10.已知等差数列{}n a 前三项的和为3 ,前三项的积为8.求等差数列{}n a 的通项公式。