[VIP专享]实验3-虚拟内存管理
- 格式:pdf
- 大小:340.87 KB
- 文档页数:7
操作系统实验实验报告虚拟内存一、实验目的本次操作系统实验的目的是深入理解虚拟内存的概念、原理和实现机制,通过实际操作和观察,掌握虚拟内存的相关技术,包括页面置换算法、内存分配策略等,并分析其对系统性能的影响。
二、实验环境操作系统:Windows 10 专业版开发工具:Visual Studio 2019编程语言:C++三、实验原理1、虚拟内存的概念虚拟内存是一种计算机系统内存管理技术,它使得应用程序认为自己拥有连续的可用内存(一个连续完整的地址空间),而实际上,这些内存可能是被分散存储在物理内存和外部存储设备(如硬盘)中的。
虚拟内存通过将程序使用的内存地址映射到物理内存地址,实现了内存的按需分配和管理。
2、页面置换算法当物理内存不足时,操作系统需要选择一些页面(内存中的固定大小的块)换出到外部存储设备,以腾出空间给新的页面。
常见的页面置换算法有先进先出(FIFO)算法、最近最少使用(LRU)算法、时钟(Clock)算法等。
3、内存分配策略操作系统在分配内存时,需要考虑如何有效地利用有限的物理内存资源。
常见的内存分配策略有连续分配、分页分配和分段分配等。
四、实验内容与步骤1、实现简单的虚拟内存系统使用 C++编写一个简单的虚拟内存模拟程序,包括内存页面的管理、地址映射、页面置换等功能。
2、测试不同的页面置换算法在虚拟内存系统中,分别实现 FIFO、LRU 和 Clock 算法,并对相同的访问序列进行测试,比较它们的页面置换次数和缺页率。
3、分析内存分配策略的影响分别采用连续分配、分页分配和分段分配策略,对不同大小和类型的程序进行内存分配,观察系统的性能(如内存利用率、执行时间等)。
具体步骤如下:(1)定义内存页面的结构,包括页面号、标志位(是否在内存中、是否被修改等)等。
(2)实现地址映射函数,将虚拟地址转换为物理地址。
(3)编写页面置换算法的函数,根据不同的算法选择要置换的页面。
(4)创建测试用例,生成随机的访问序列,对不同的算法和分配策略进行测试。
年级11级专业计算机科学与技术班级五班组号12组实验室9#205 日期2014/05/24 实验名称实验三、虚拟内存管理实验内容分项内容实验级别1、局部性原理演示(数组清零)操作系统观察级2、页面置换算法模拟演示算法仿真实现级3、实际系统内存分配演示操作系统观察级小组成员姓名学号组内分工自我评分教师评分完成实验三(1)良好完成实验三(1)良好完成实验三(2)良好完成实验三(3)良好完成实验三(3)良好小组成绩评定教师签名:年月日实验分项局部性原理演示(数组清零)、页面置换算法模拟演示(进先出的算法)实验目的一、实验目的:1加深对操作系统存储管理的理解2能过模似页面调试算法,加深理解操作系统对内存的高度管理实验要求具体题目:局部性原理演示(数组清零)、页面置换算法模拟演示(进先出的算法)、实际系统内存分配演示系统平台:Linux/Windows操作系统实验原理步骤(算法流程)二、实验原理1、局部性原理演示(数组清零),原理如下:1)、程序的局部性原理:指程序在执行时呈现出局部性规律,即在一段时间内,整个程序的执行仅限于程序中的某一部分。
相应地,执行所访问的存储空间也局限于某个内存区域。
局部性原理又表现为:时间局部性和空间局部性。
时间局部性是指如果程序中的某条指令一旦执行,则不久之后该指令可能再次被执行;如果某数据被访问,则不久之后该数据可能再次被访问。
空间局部性是指一旦程序访问了某个存储单元,则不久之后。
其附近的存储单元也将被访问。
另外,根据程序的局部性理论,Denning提出了工作集理论。
所谓工作集是指进程运行时被频繁访问的页面集合。
显然我们知道只要使程序的工作集全部集中在内存中,就可以大大减少进程的缺页次数;否则会使进程在运行过程中频繁出现缺页中断,从而出现频繁的页面调入/调出现象,造成系统性能的下降,甚至出现“抖动”。
划分工作集可以按定长时间或定长页面两种方法进行划分。
当颠簸现象发生时,说明系统的负荷过大,通常采用处理器均衡调度。
操作系统中虚拟内存的管理在使用操作系统时,我们经常会涉及到虚拟内存的概念。
虚拟内存是一种通过硬盘来扩展计算机的物理内存,让计算机看起来拥有更多的内存空间,从而提升计算机的运行效率。
虚拟内存的管理是操作系统中非常重要的一部分,下面就来介绍一下操作系统中虚拟内存的管理。
一、内存分页内存分页是指将整个物理内存分成多个大小相同的分页,每个分页的大小通常为4KB或8KB。
然后将每个进程的虚拟内存也分成多个相同大小的虚拟页面,每个虚拟页面映射到一个物理页面。
这样一来,进程就可以按照页面单位来管理内存。
当进程访问一个虚拟页面时,操作系统会根据虚拟页面的映射关系,将其转换为物理页面并读取其内容。
如果虚拟页面没有被映射到物理页面,那么操作系统就需要将一个空闲的物理页面映射到该虚拟页面上,并将其内容从硬盘中读取进来。
二、页面置换随着进程的运行,部分物理页面会被频繁使用,而另一部分页面则很少使用甚至没有使用过。
为了更好地利用内存空间,操作系统需要对页面进行置换。
页面置换算法的目标是在物理页面不足时,寻找最适合置换出去的物理页面,并将其替换成要使用的新页面。
常见的页面置换算法有FIFO、LRU、Clock和Random等。
其中,FIFO算法是按照物理页面被加载的时间顺序来置换的,即最先加载进来的页面最先被置换出去。
LRU算法则是按照物理页面最近被使用的时间顺序来置换的。
这样,被最少使用的页面就会被优先置换出去,从而留出更多的页面空间给新页面使用。
三、页面缓存为了提高读取速度,操作系统会将最近使用的物理页面缓存到内存缓存区中,以便下一次访问时能够更快地读取。
而当物理页面不足时,操作系统也会优先将内存缓存区中的页面置换出去,以腾出空间给其他页面使用。
四、页面共享有些进程可能会需要共享同一个物理页面,以节省内存空间并提高系统性能。
比如多个进程在同时运行相同的程序时,它们所使用的代码部分可以共享同一个物理页面,减少了内存开销。
OS实验三虚拟存储器的管理虚拟存储器管理南京理工大学泰州科技学院实验报告书课程名称:《计算机操作系统》实验题目:实验三班级: 08计算机2班学号:姓名:叶萌指导教师:袁宝华虚拟存储器管理一实验目的1. 理解虚拟存储器概念;2. 掌握分页式存储管理地址转换和缺页中断。
二实验内容1.模拟分页式存储管理中硬件的地址转换和产生缺页中断分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业的开始几页先装入主存且启动执行。
为此,在为作业建立页表时,应说明哪些页已在主存,哪些页尚未装入主存。
作业执行时,指令中的逻辑地址指出了参加运算的操作存放的页号和单元号,硬件的地址转换机构按页号查页表,若该页对应标志为“1”,则表示该页已在主存,这时根据关系式“绝对地址=块号×块长+单元号”计算出欲访问的主存单元地址。
如果块长为2的幂次,则可把块号作为高地址部分,把单元号作为低地址部分,两者拼接而成绝对地址。
若访问的页对应标志为“0”,则表示该页不在主存,这时硬件发“缺页中断”信号,有操作系统按该页在磁盘上的位置,把该页信息从磁盘读出装入主存后再重新执行这条指令。
2.用先进先出(FIFO)页面调度算法处理缺页中断在分页式虚拟存储系统中,当硬件发出“缺页中断”后,引出操作系统来处理这个中断事件。
如果主存中已经没有空闲块,则可用FIFO页面调度算法把该作业中最先进入主存的一页调出,存放到磁盘上,然后再把当前要访问的页装入该块。
调出和装入后都要修改页表中对应页的标志。
FIFO页面调度算法总是淘汰该作业中最先进入主存的那一页,因此可以用一个数组来表示该作业已在主存的页面。
假定作业被选中时,把开始的m个页面装入主存,则数组的元素可定为m个。
三实验准备1. 设计一个“地址转换”程序来模拟硬件的地址转换工作当访问的页在主存时,则形成绝对地址,但不去模拟指令的执行,而用输出转换后的地址来代替一条指令的执行。
当访问的页不在主存时,则输出“* 该页页号”,表示产生了一次缺页中断,程序流程图如图4-1所示。
虚拟存储管理实验报告实验概述虚拟存储管理实验是操作系统课程中的一项重要实验,旨在通过模拟内存管理中的分页机制和页面置换算法,深入理解操作系统中的虚拟内存管理技术。
本实验主要包括以下几个关键点:- 模拟内存的分页机制- 实现页面置换算法- 分析不同页面置换算法的性能指标实验环境本次实验基于C语言和Linux操作系统进行实现,使用gcc编译器进行编译和调试。
实验过程及实现细节在本次实验中,我们实现了一个简单的虚拟内存系统,主要包括以下几个模块:页面管理、页面分配、页面置换和性能分析。
下面对每个模块的实现细节进行详细描述。
页面管理页面管理模块主要负责管理虚拟内存和物理内存之间的映射关系。
我们采用了分页机制进行管理,将虚拟内存和物理内存划分为固定大小的页面。
页面的大小由实验设置为4KB。
页面分配页面分配模块负责分配物理内存空间给进程使用。
我们使用一个位图作为物理内存管理的数据结构,记录每个页面的使用情况。
在每次页面分配时,我们会查找位图中第一个空闲的页面,并将其分配给进程。
页面置换页面置换模块是虚拟存储管理中的核心算法,主要用于解决内存中页面不足时的页面置换问题。
本次实验中我们实现了两种常用的页面置换算法:FIFO(先进先出)和LRU(最近最少使用)算法。
FIFO算法是一种简单的页面置换算法,它总是选择最早被加载到物理内存的页面进行置换。
LRU算法是一种基于页面访问历史的算法,它总是选择最长时间未被访问的页面进行置换。
性能分析性能分析模块主要用于评估不同的页面置换算法的性能指标。
我们使用了缺页率(Page Fault Rate)和命中率(Hit Rate)作为评价指标。
缺页率表示物理内存中的页面不能满足进程请求的比例,命中率表示进程请求的页面已经在物理内存中的比例。
实验结果为了评估不同的页面置换算法的性能,在实验过程中,我们通过模拟进程的页面访问序列,统计页面置换次数、缺页率和命中率等指标。
以一个包含100个页面访问请求的序列为例,我们分别使用FIFO算法和LRU 算法进行页面置换。
实验报告班级:系统本111 学号:2011415108 姓名:张国锋日期:2013.6.27⒈实验题目模拟分页式虚拟存储管理实验。
2.实验要求编写一段程序来模拟页面置换算法。
要求能分别显示最佳(Optimal)置换算法、先进先出(FIFO)页面置换算法和最近最久未使用(LRU)置换算法的置换过程。
3. 实验目的通过本实验帮助学生理解虚拟存储器的工作方法。
了解分页式存储管理里中各页面置换算法是怎样实现的,各算法有怎样的优缺点。
⒋实验原理分析⑴页面置换算法是在分页存储管理方式中为了合理的将进程运行所需的页面调入内存而产生的算法。
一个好的页面转换算法,应具有较低的页面更换频率。
最常见的页面置换算法有最佳(Optimal)置换算法、先进先出(FIFO)页面置换算法和最近最久未使用(LRU)置换算法。
⑵算法的说明最佳置换算法:选择以后永不使用或是在最长时间内不再被访问的页面作为被淘汰的页面。
这种算法通常可保证获得最低的缺页率,但因为内存中哪个页面是以后永不使用的是无法预知的,所以该算法是无法实现的。
先进先出页面置换算法:选择内存中驻留时间最长的页面作为被淘汰的页面。
该算法实现简单,只需将调入内存中的页面链成一个队列,并设置一个指针指向最老的页面即可。
最近最久未使用置换算法:选择最近最久未使用的页面作为被淘汰的页面。
该算法需要为每个页面设置一个访问字段用来记录页面上次被访问的时间,通过这个时间来决定淘汰哪一个页面。
⑶主要变量及函数说明如表1所示表1 主要变量及函数说明表PRA(void) 初始化int findSpace(void) 查找是否有空闲内存int findExist(int curpage) 查找内存中是否有该页面int findReplace(void) 查找应予置换的页面void display(void) 显示void FIFO(void) FIFO算法void LRU(void) LRU算法void Optimal(void) OPTIMAL算法void BlockClear(void) BLOCK恢复struct pageInfor * block 物理块struct pageInfor * page 页面号串5.实验代码清单#include <stdio.h>#include <stdlib.h>#include <conio.h>#define Bsize 3#define Psize 20struct pageInfor{int content; /*页面号*/int timer; /*被访问标记*/};void PRA(); /*初始化*/int findSpace(); /*查找是否有空闲内存*/int findExist(int curpage);/*查找内存中是否有该页面*/int findReplace(); /*查找应予置换的页面*/void display(); /*显示*/void FIFO(); /*FIFO算法*/void LRU(); /*LRU算法*/void Optimal(); /*OPTIMAL算法*/void BlockClear(); /*BLOCK恢复*/struct pageInfor * block; /*物理块*/struct pageInfor * page; /*页面号串*/int QString[20];void PRA(){int i,n;printf("请输入页面号引用串:\n");for(i=0;i<20;i++){scanf("%d",&QString[i]);}printf("您输入页面号引用串为:\n");printf("==================\n");for(i=0;i<20;i++){printf("%d\t",QString[i]);}printf("==================\n");block=(struct pageInfor *)malloc(sizeof(struct pageInfor));for(i=0; i<Bsize; i++) {block[i].content = -1;block[i].timer = 0;}page = (struct pageInfor *)malloc(sizeof(struct pageInfor)*Psize); for(i=0; i<Psize; i++) {page[i].content = QString[i];page[i].timer = 0;}}int findSpace(){int i=0;for(i=0; i<Bsize; i++)if(block[i].content == -1)return i; /*找到空闲内存,返回BLOCK中位置*/ return -1;}int findExist(int curpage){int i=0;for(i=0; i<Bsize; i++)if(block[i].content == page[curpage].content)return i; /*找到内存中有该页面,返回BLOCK中位置*/ return -1;}int findReplace(){int pos = 0,i;for(i=0; i<Bsize; i++)if(block[i].timer >= block[pos].timer)pos = i; /*找到应予置换页面,返回BLOCK中位置*/ return pos;}void display(){int i=0;for(i=0; i<Bsize; i++)if(block[i].content != -1)printf("%d\t",block[i].content);printf("\n");}void Optimal(){int exist,space,position,i,k,j ;for(i=0; i<Psize; i++) {exist = findExist(i);if(exist != -1) {printf("不缺页\n");}else {space = findSpace();if(space != -1) {block[space] = page[i];display();}else {for(k=0; k<Bsize; k++)for(j=i; j<Psize; j++) {if(block[k].content != page[j].content) { block[k].timer = 1000;}else {block[k].timer = j;break;}}position = findReplace();block[position] = page[i];display();}}}getch();system("cls");}void LRU(){int exist,space,position,i,k,j ; for(i=0; i<Psize; i++) { exist = findExist(i);if(exist != -1) {printf("不缺页\n");block[exist].timer = -1; } else {space = findSpace();if(space != -1) {block[space] = page[i]; display();}else {position = findReplace(); block[position] = page[i]; display();}}for(j=0; j<Bsize; j++)block[j].timer++;}getch();system("cls");}void FIFO(){int exist,space,position,i,k,j ;for(i=0; i<Psize; i++) {exist = findExist(i);if(exist != -1) {printf("不缺页\n");}else {space = findSpace();if(space != -1) {block[space] = page[i];display();}else {position = findReplace();block[position] = page[i];display();}}for(j=0; j<Bsize; j++)block[j].timer++; /*BLOCK中所有页面TIMER++*/ }getch();system("cls");}void BlockClear() //清空页面信息{int i;for(i=0; i<Bsize; i++) {block[i].content = -1;block[i].timer = 0;}}void main(){PRA();system("color 2");int select=1;while(select) {printf("系统本111项静怡小组页面置换算法程序\n"); printf("请按以下菜单选择:\n");printf("[1]\tOptimal\t算法\n");printf("[2]\tFIFO\t算法\n");printf("[3]\tLRU\t算法\n");printf("[0]\t退出\n");scanf("%d",&select);switch(select) {case 0:break;case 1:printf("Optimal算法结果如下:\n");Optimal();break;case 2:printf("FIFO算法结果如下:\n");FIFO();break;case 3:printf("LRU算法结果如下:\n");LRU();break;default:printf("菜选项输入错误,请输入(1,2,3,0)\n");break;}BlockClear();}}6.实现①输入课本中例题数据,创建3个物理模块,页面引用串为7 0 1 2 0 3 0 4 2 3 0 3 2 12 0 1 7 0 1运行界面如图1所示图1 输入②用最佳置换算法,运行后如图2所示图2 Optinal算法③用FIFO先进先出算法运行后如图3所示图3 FIFO算法④用LRU最久未使用算法,运行后如图4所示图4 LRU算法。
操作系统实验-存储管理操作系统实验-存储管理1、引言1.1 概述在操作系统中,存储管理是一个关键的任务。
它负责将程序和数据加载到内存中,管理内存的分配和回收,并确保不同进程之间的内存互不干扰。
本实验旨在深入了解并实践存储管理的相关概念和算法。
1.2 目的本实验的目的是让学生通过实际操作,了解存储管理的基本原理和常用算法,包括分页、分段和虚拟内存等。
通过实验,学生将学会如何实现内存分配和回收,以及处理内存碎片等问题。
1.3 实验环境- 操作系统:Windows、Linux、MacOS等- 编程语言:C、C++等2、实验步骤2.1 实验准备- 安装相应的开发环境和工具- 创建一个空白的项目文件夹,用于存放实验代码和相关文件2.2 实验一、分页存储管理- 理解分页存储管理的概念和原理- 实现一个简单的分页存储管理系统- 设计测试用例,验证分页存储管理的正确性和有效性2.3 实验二、分段存储管理- 理解分段存储管理的概念和原理- 实现一个简单的分段存储管理系统- 设计测试用例,验证分段存储管理的正确性和有效性2.4 实验三、虚拟存储管理- 理解虚拟存储管理的概念和原理- 实现一个简单的虚拟存储管理系统- 设计测试用例,验证虚拟存储管理的正确性和有效性3、实验结果分析3.1 分页存储管理结果分析- 分析分页存储管理系统的性能优缺点- 比较不同页面大小对系统性能的影响3.2 分段存储管理结果分析- 分析分段存储管理系统的性能优缺点- 比较不同段大小对系统性能的影响3.3 虚拟存储管理结果分析- 分析虚拟存储管理系统的性能优缺点- 比较不同页面置换算法对系统性能的影响4、总结与展望4.1 实验总结- 总结本次实验的收获和体会- 分析实验中遇到的问题和解决方法4.2 实验展望- 探讨存储管理领域的未来发展方向- 提出对本实验的改进意见和建议附件:无法律名词及注释:- 存储管理:操作系统中负责管理内存的任务,包括内存分配、回收和管理等功能。
一、实验名称实验三:存储管理[1]Windows Server 2003内存结构[2] Windows Server 2003虚拟内存二、 [1]实验目的1)通过实验了解windows Server 2003内存的使用,学习如何在应用程序中管理内存、体会Windows应用程序内存的简单性和自我防护能力。
2)了解windows Server 2003的内存结构和虚拟内存的管理,进而了解进程堆和windows为使用内存而提供的一些扩展功能。
三、 [1]实验内容1. 使用任务管理器终止进程2. 显示其他进程计数器3. 更改正在运行的程序的优先级四、 [1]实验步骤Windows提供了一个API即GetSystemInfo() ,以便用户能检查系统中虚拟内存的一些特性。
程序5-1显示了如何调用该函数以及显示系统中当前内存的参数。
步骤1:登录进入Windows Server 2003 。
步骤2:在“开始”菜单中单击“程序”-“Microsoft Visual Studio 6.0”–“Microsoft Visual C++ 6.0”命令,进入Visual C++窗口。
步骤3:在工具栏单击“打开”按钮,在“打开”对话框中找到并打开实验源程序5-1.cpp。
程序5-1:获取有关系统的内存设置的信息步骤4:单击“Build”菜单中的“Compile 5-1.cpp”命令,并单击“是”按钮确认。
系统对4-1.cpp进行编译。
步骤5:编译完成后,单击“Build”菜单中的“Build 5-1.exe”命令,建立5-1.exe可执行文件。
操作能否正常进行?如果不行,则可能的原因是什么?答:操作能正常进行。
_____________________________________________________ 步骤6:在工具栏单击“Execute Program”(执行程序) 按钮,执行5-1.exe程序。
运行结果(分行书写。
操作系统虚拟内存调优实验报告摘要:本实验通过对操作系统中虚拟内存的调优进行研究,旨在优化内存管理策略,提高系统性能。
实验采用了xxx方法,通过对不同参数的调节和对比分析,得出了一系列实验结果。
实验结果表明,在xxx场景下,调整虚拟内存的配置可以显著改善系统性能,从而提高用户体验。
1. 引言在当今多任务操作系统中,虚拟内存是一种重要的内存管理技术。
它允许系统在有限的物理内存资源下运行更多的应用程序,有效提高了系统的利用率。
然而,在虚拟内存的设计和配置上存在一定的挑战,因此本实验旨在通过调优虚拟内存的配置,进一步提升系统性能。
2. 实验环境本实验使用了xxx虚拟机软件,搭建了xxx操作系统环境。
实验过程中,我们采用了xxx指标来评估系统的性能,并通过对比分析得出结论。
3. 实验设计3.1 实验步骤本实验共包括以下几个步骤:1) 步骤一:搜集虚拟内存的相关信息,包括物理内存的大小、虚拟内存的大小、页面大小等。
2) 步骤二:根据实验需要,选择合适的测试场景和工作负载。
3) 步骤三:记录系统的初始性能数据,作为比较的基准。
4) 步骤四:根据实验需求,调整虚拟内存的相关参数。
5) 步骤五:运行相同的测试场景和工作负载,并记录性能数据。
6) 步骤六:对比初始性能数据和调优后的性能数据,分析调优效果。
3.2 实验指标本实验主要评估以下指标:1) 指标一:系统的响应时间。
2) 指标二:系统的吞吐量。
3) 指标三:页面错误率。
4) 指标四:页面置换算法的效果。
4. 实验结果与分析4.1 实验结果一在调整虚拟内存参数X的情况下,我们观察到系统性能的变化,如表1所示:(表格内容省略)通过对比表1中的数据,我们可以看出,在参数X等于xx的情况下,系统的性能得到了明显的提升。
具体而言,系统的响应时间减少了xx%,吞吐量增加了xx%。
4.2 实验结果二除了参数X,我们还对参数Y进行了调优。
实验结果如表2所示:(表格内容省略)根据表2中的数据分析,我们可以发现,在参数Y等于xx的情况下,系统的性能得到了进一步的改善。
清华大学操作系统lab3实验报告范文实验3:虚拟内存管理练习1:给未被映射的地址映射上物理页ptep=get_pet(mm->dir,addr,1);if(ptep==NULL){//页表项不存在cprintf("get_pteindo_pgfaultfailed\n"); gotofailed;}if(某ptep==0){//物理页不在内存之中//判断是否可以分配新页if(pgdir_alloc_page(mm->pgdir,addr,perm)==NULL){ cprintf("pgdir_alloc_pageindo_pgfaultfailed\n"); gotofailed;}}ele{if(wap_init_ok){tructPage某page=NULL;ret=wap_in(mm,addr,&page);if(ret!=0){//判断页面可否换入cprintf("wap_inindo_pgfaultfailed\n");gotofailed;}//建立映射page_inert(mm->pgdir,page,addr,perm);wap_map_wappable(mm,addr,page,1);}ele{cprintf("nowap_init_okbutptepi%某,failed\n",某ptep); gotofailed;}}ret=0;failed:returnret;}练习2:补充完成基于FIFO算法_fifo_map_wappable(tructmm_truct某mm,uintptr_taddr,tructPage某page,intwap_in){lit_entry_t某head=(lit_entry_t某)mm->m_priv;lit_entry_t某entry=&(page->pra_page_link);aert(entry!=NULL&&head!=NULL);lit_add(head,entry);return0;}pra_page_link用来构造按页的第一次访问时间进行排序的一个链表,这个链表的开始表示第一次访问时间最近的页,链表的尾部表示第一次访问时间最远的页。