工程光学(1)实验讲义
- 格式:doc
- 大小:1.15 MB
- 文档页数:16
实验一 放大率法测量焦距和截距 Measurement Of Focus And Intercept一、实验目的:1.通过对透镜的焦距和截距测量熟悉焦距仪的测量原理及测量方法,掌握基本的实验技能。
2.了解焦距仪的结构及平行光臂的使用,学会螺旋丝杠式测微目镜读数方法。
3.掌握校正显微镜放大率的方法。
二、实验要求:基本理论:理想光学系统的共线成像理论。
基本知识:了解焦距仪的结构,平行光管的使用,理想光学系统焦点、焦平面、主平面、焦 距和截距的概念。
基本技能:学会在焦距仪上进行同轴等高调节。
学会使用螺旋丝杠式测微目镜及读数方法。
三、实验内容及测量原理:焦距和截距是光学系统重要的特性参数,就几何光学来说,焦距是光学系统的特征值。
只要知道焦距和焦点的位置,就能完全确定任何位置上的物体经过该光学系统所成像的位置、大小、正倒和虚实。
1.焦距的测量原理:光学系统的主点到焦点的距离称为焦距。
物方焦距、像方焦距分别用f 、'f 表示。
放大率法测量焦距是利用平行光管物镜焦面上分化板的一对刻线在被测透镜焦面上成像的比例关系,求出被测透镜焦距的大小。
如平行光管分化板上一对刻线间距为y ,经被测透镜成的像为'y ,平行光管物镜和被测透镜焦距分别为'0f 和'f ,由图一可看出它们的关系如下: 0f y tg -=ω '''f y tg -=ω∵'ωω= ∴''0f y f y -=- 即yy f f ''0'∙-= 式中f0'、y 为已知,f'与y'成正比。
这样只要测出y',即可求出被测透镜焦距。
图一2.焦距的测量:光学系统的最后一个表面顶点到像方焦点的距离为后焦距,用lp'表示。
很显然,对于一个光学系统知道了焦距和截距的大小,就可确定焦点和主点的位置。
图二在测量截距的同时,可以进行透镜截距'F l的测量。
工程光学实验报告最小偏向角法测棱镜折射率1.测量原理从几何光学可知,棱镜的玻璃折射率n与棱镜顶角A及最小偏向角之间有如下的关系:在不同波长的单色光照明下,在分光仪上测得A和,即可利用上式求得不同波长的玻璃折射率。
2.实验仪器设备①分光仪:利用光的反射、折射、衍射和干涉原理进行角度测量的仪器。
它主要由下列几个部分组成:自准直望远镜,平行光管,载物台,度盘和游标盘。
望远镜通过支臂与度盘固定在一起,组成仪器的照准部。
它与游标盘和棱镜台可分别绕度盘的垂直轴旋转,转过的角度由游标盘和度盘读出(游标精度为1’,度盘每格值为30’),每次读数要在对径方向上二个游标上读数,然后取其平均值,这样可消除度盘的偏心误差,且要在度盘的三个不同位置上读数,以消除度盘的刻度误差,轴的晃动误差等,仪器上各运动部分备有锁紧、微动和调整装置的螺钉。
②光源:a.用钠光灯作照明光源测量D光折射率,钠光谱线λ=0.6328μ。
b.自准直望远镜照明光源为6.3伏白炽灯及变压器。
3.实验步骤第一步:调整:①接上光源b;②目镜调焦;③望远镜调焦,用自准直法将目镜分划板正确地调焦在物镜焦面上,即使望远镜物镜对无穷远调焦;a.粗调望远镜光轴,使其位置适中(通过上、下、左、右调节螺钉);b.棱镜台上放一平行平板玻璃,工作面正对望远镜,观察目镜分划板上十字丝与反射回来的像是否同时清晰,若不同时清晰,则移动目镜镜管,直至同时清晰为目。
④使望远镜瞄准轴与度盘轴相互垂直;当用平行平板使望远镜调焦无穷远时,则锁紧螺钉6,使棱镜台与游标盘连在一起,通过目镜观察分划板上十字丝和其反射像水平线是否精确对称,若不对称则用半修法校正(即不对称量由望远镜和棱镜台各负责校正一半),它可通过调整螺钉达到,然后将棱镜台连同游标盘带平行平板转过去180度,再重复上述步骤校正偏差,通过反复进行,逐次趋近,直到平行平板无论哪一个面正对望远镜,十字线和反射回来的像都对称为止,这说明望远镜瞄准轴与度盘旋转轴已垂直,以后的工作过程中,不允许再调节望远镜的调节螺旋。
实验一 放大率法测量焦距和截距 Measurement Of Focus And Intercept一、实验目的:1.通过对透镜的焦距和截距测量熟悉焦距仪的测量原理及测量方法,掌握基本的实验技能。
2.了解焦距仪的结构及平行光臂的使用,学会螺旋丝杠式测微目镜读数方法。
3.掌握校正显微镜放大率的方法。
二、实验要求:基本理论:理想光学系统的共线成像理论。
基本知识:了解焦距仪的结构,平行光管的使用,理想光学系统焦点、焦平面、主平面、焦 距和截距的概念。
基本技能:学会在焦距仪上进行同轴等高调节。
学会使用螺旋丝杠式测微目镜及读数方法。
三、实验内容及测量原理:焦距和截距是光学系统重要的特性参数,就几何光学来说,焦距是光学系统的特征值。
只要知道焦距和焦点的位置,就能完全确定任何位置上的物体经过该光学系统所成像的位置、大小、正倒和虚实。
1.焦距的测量原理:光学系统的主点到焦点的距离称为焦距。
物方焦距、像方焦距分别用f 、'f 表示。
放大率法测量焦距是利用平行光管物镜焦面上分化板的一对刻线在被测透镜焦面上成像的比例关系,求出被测透镜焦距的大小。
如平行光管分化板上一对刻线间距为y ,经被测透镜成的像为'y ,平行光管物镜和被测透镜焦距分别为'0f 和'f ,由图一可看出它们的关系如下: 0f y tg -=ω '''f y tg -=ω∵'ωω= ∴''0f y f y -=- 即yy f f ''0'∙-= 式中f0'、y 为已知,f'与y'成正比。
这样只要测出y',即可求出被测透镜焦距。
图一2.焦距的测量:光学系统的最后一个表面顶点到像方焦点的距离为后焦距,用lp'表示。
很显然,对于一个光学系统知道了焦距和截距的大小,就可确定焦点和主点的位置。
图二在测量截距的同时,可以进行透镜截距'F l的测量。
实验一物镜焦距、截距的测定一、实验目的掌握用定焦距平行光管法测量光学系统焦距、截距的方法二、实验内容掌握测量方法,做好测量前的准备工作,测量给定的照相物镜、望远物镜和显微物镜的象方焦距和截距、物方焦距和截距。
三、实验原理测量焦距的方法很多,其中的定焦距平行光管法、(即放大率法)测量范围大,测量精度高,相对误差一般在1%以下,是目前常用的方法,其测量原理如图1-1。
图1-1焦距截距的测定原理图其中O 是平行光管物镜,L 是被测透镜,y0 是位于平行光管物镜焦平面上的一对刻线的间隔距离。
y0 经过平行光管物镜后成像在无限远处,再经过被测透镜L 后,在它的焦平面上得到y0 的像y`。
这种方法的原理就是通过测量像y`的大小,然后计算出被测透镜的焦距。
从图1-1 看出下面两个关系式,用作图成像的方法很容易得出:w=w`(1-1)这就是用定焦距平行光管法测定焦距所用的公式,其中f0`是平行光管物镜的焦距,是已知的。
Y0 是位于平行光管物镜焦平面处的分划板上的一对刻线的间隔距离,它的大小也是事先已知的。
Y`是这对刻线y0 经过被测透镜后所成的像,如果能测量出此像y`的大小,那么就很容易用公式(1-1)计算出被测透镜的焦距f`。
利用本公式及方法,可以测量正负透镜、望远物镜、照相物镜、放映物镜,各种目镜的焦距。
应当注意要正确选择测量显微镜的物镜,使之与被测光学系统相匹配。
如测负焦距系统使要选择长工作距的显微物镜。
这是因显微物镜的倍率不同,故(1-1)式变化如下(1-2)式中:β――――――测量显微镜放大倍数四、实验设备焦距仪、待测物镜(照相物镜、照相物镜、显微物镜)焦距仪结构示意如图1-2,它包括一个平行光管、一个透镜夹持器、一个带有目镜的读数显微镜和把它们连在一起的一根带有长度刻尺的导轨组成。
图1-2焦距仪结构示意图1.平行光管、2.透镜夹持器、3.测微目镜组成1.平行光管本实验采用的平行光管物镜的焦距为550mm。
实验仪器简介1、仪器结构及测量原理光具座结构如图1 — 1所示,它由平行光管(1)、透镜夹持器(2)、测量 显微镜(3)及带有刻度尺的导轨(4)组成(1)平行光管常用的平行光管物镜焦距有 550mm 、1000mm 和2000mm 等。
在平行光管 物镜物方焦平面上有一可更换的分划板,分划板经平行光管成像为一无限远物 体,作为测量标记。
常用的分划板有图 1—2所示的用于测量焦距用的玻罗板, 图1—3所示的检测光学系统分辨率的鉴别率板和检验成像质量的星点板等。
2\ 22- M 25图1 — 3分辨率板(2)测量显微镜测量显微镜是用来测量经被测物镜所成的像 (或物体)大小的。
它由物镜和 测微目镜组成,物镜是可以更换的(根据被测物的大小可以更换不同放大倍率的 物镜)。
测微目镜是用来读取测量数值的,其结构如图 1—4所示。
光具座1 2图1 — 1光具座结构示意图图1— 2玻罗板图1—4测微目镜结构图测微目镜由目镜(1)、固定分划板(2)、活动分划板(3)和测微读数鼓轮(4)四部分组成。
测量原理是:读数鼓轮每旋转一圈(即测微螺杆移动一个螺距)活动分划板上刻线移动量为固定分划板刻线的一个格。
测量时,首先旋转读数鼓轮使活动分划板上十字叉丝瞄准被测物体起始位置,由活动分划板双刻线在固定分划板刻线位置读取毫米数(整数),再从读数鼓轮读取小数,然后再次旋转读数鼓轮使活动分划板上十字叉丝瞄准被测物体终止位置,继续读取数据,两次读数之差即为被测物体大小。
2、仪器技术指标(1)550mn光具座①平行光管物镜名义焦距?’= 550 mm通光口径 D = 55 mm相对孔径1:10②平行光管物镜物方焦平面上分划板玻罗板刻线间距:1、2、4、10、20mm星点板十字线分划板鉴别率板U号、川号③测量显微镜物镜:1倍测微目镜:分划板格值1mm测微鼓轮格值0.01 mm(2)GJZ —1型光具座①平行光管物镜名义焦距?’= 1000 mm 实测焦距?’= 997.47 mm 通光口径 D = 100 mm相对孔径1:10②平行光管物镜物方焦平面上分划板玻罗板刻线间距:1、2、4、10、20mm星点板星点直径:0.005 mm、0.008 mm、0.01 mm十字线分划板 刻度范围±20, 格值 鉴别率板1 、2、3、 4、 5号③测量显微镜物 镜:1 倍 NA = 0.0752.5倍NA = 0.0810 倍NA = 0.25 测微目镜: 分划板格值 1mm测微鼓轮格值被测物镜最大口径 被测物镜焦距范围 (3)CXW —1 型光具座 ①平行光管物镜 名义焦距 通光口径 相对孔径复消色差)? = 2000 mm D = 150 mm 1:13.3实测焦距=1973.9 mm1mm 0.01 mm±40° 25 mm测微鼓轮格值 0.01 mm②平行光管物镜物方焦平面上分划板玻罗板 刻线间距: 1、2、4、10、20、40mm星点板 星点直径: 0.005 mm 、0.008 mm 、0.01 mm十字线分划板 刻度范围 ±20, 格值鉴别率板1 、2、3、 4、 5号③测量显微镜物 镜:0.25倍 NA = 0.015 0.5倍 NA = 0.031 倍 NA = 0.0752.5倍 NA = 0.0810 倍NA = 0.25测微目镜: 分划板格值 测微鼓轮格值 测量显微镜偏摆角度 测量显微镜横向移动量测量显微镜高度升降范围±5 mm 被测物镜最大口径 ① 130 mm 被测物镜焦距范围±1200 mm3、仪器调整与操作( 1 )根据测量项目选择平行光管物镜物方焦平面上分划板。
光学系统像差测量实验RLE-ME01实验讲义版本:2012 发布日期:2012年8月前言实际光学系统与理想光学系统成像的差异称为像差。
光学系统成像的差异是《工程光学》课程重要章节,也是教学的难点章节,针对此知识点的教学实验产品匮乏。
RealLight®开发的像差测量实验采用专门设计的像差镜头,像差现象清晰;涉及知识点紧贴像差理论的重点内容,是学生掌握像差理论的非常理想的教学实验系统。
目录1.光学系统像差的计算机模拟1.1.引言---------------------------------------------11.2.实验目的-----------------------------------------11.3.实验原理-----------------------------------------11.4.实验仪器-----------------------------------------41.5.实验步骤-----------------------------------------41.6.思考题-------------------------------------------52. 平行光管的调节使用及位置色差的测量2.1.引言---------------------------------------------62.2.实验目的-----------------------------------------62.3.实验原理-----------------------------------------62.4.实验仪器-----------------------------------------72.5.实验步骤-----------------------------------------82.6.实验数据处理-------------------------------------92.7.思考题-------------------------------------------93. 星点法观测光学系统单色像差3.1.引言---------------------------------------------103.2.实验目的-----------------------------------------103.3.实验原理-----------------------------------------103.4.实验仪器-----------------------------------------113.5.实验步骤----------------------------------------123.6.思考题------------------------------------------144. 阴影法测量光学系统像差与刀口仪原理4.1.引言--------------------------------------------154.2.实验目的----------------------------------------154.3.实验原理----------------------------------------154.4.实验仪器----------------------------------------164.5.实验步骤----------------------------------------164.6.思考题------------------------------------------175. 剪切干涉测量光学系统像差5.1.引言--------------------------------------------185.2.实验目的----------------------------------------185.3.实验原理----------------------------------------185.4.实验仪器----------------------------------------215.5.实验步骤----------------------------------------215.6.思考题------------------------------------------266. 参考文献实验1 光学系统像差的计算机模拟1.1引言如果成像系统是理想光学系统,则同一物点发出的所有光线通过系统以后, 应该聚焦在理想像面上的同一点,且高度同理想像高一致。
实验一光学实验主要仪器、光路调整与技巧1.引言不论光学系统如何复杂,精密,它们都是由一些通用性很强的光学元器件组成的,因此,掌握一些常用的光学元器件的结构,光学性能、特点和使用方法,对于安排实验光路系统时,正确的选择和使用光学元器件具有重要的作用。
2.实验目的1)掌握光学专业基本元件的功能;2)掌握基本光路调试技术,主要包括共轴调节和调平行光。
3.实验原理光学实验仪器概述:光学实验仪器主要包括:光源,光学元件,接收器等。
常用光源光源是光学实验中不可缺少的组成部分,对于不同的观测目的,常需选用合适的光源,如在干涉测量技术中一般应使用单色光源,而在白光干涉时又需用能谱连续的光源(白炽灯);在一些实验中,对光源尺寸大小还有点、线、面等方面的要求。
光学实验中常用的光源可分为以下几类:1)热辐射光源热辐射光源是利用电能将钨丝加热,使它在真空或惰性气体中达到发光的光源。
白炽灯属于热辐射光源,它的发光光谱是连续的,分布在红外光、可见光到紫外光范围内,其中红外成分居多,紫外成分很少,光谱成分和光强与钨丝温度有关。
热辐射光源包括以下几种:普通灯泡,汽车灯泡,卤钨灯。
2)热电极弧光放电型光源这类光源的电路基本上与普通荧光灯相同,必须通过镇流器接入220V点源,它是使电流通过气体而发光的光源。
实验中最常用的单色光源主要包括以下两种:纳光灯(主要谱线:、),汞灯(主要谱线:、、、、、、、)3)激光光源v1.0 可编辑可修改激光(Light Amplification by Stimulated Emission of Radiation,缩写: LASER),是指通过辐射的受激辐射而实现光放大,即受激辐射的光放大。
激光器作为一种新型光源,与普通光源有显著的差别。
它是利用受激辐射的原理和激光腔的滤波效应,使所发光束具有一系列新的特点。
①激光器发出的光束有极强的方向性,即光束的发散角很小;②激光的单色性好,或者说相干性好,其相干长度可以达十米甚至数百米;③激光器的输出功率密度大,即能量高度集中。
实验一光学实验主要仪器、光路调整与技巧1.引言不论光学系统如何复杂, 精密, 它们都是由一些通用性很强的光学元器件组成的, 因此, 掌握一些常见的光学元器件的结构, 光学性能、特点和使用方法, 对于安排实验光路系统时, 正确的选择和使用光学元器件具有重要的作用。
2.实验目的1)掌握光学专业基本元件的功能;2)掌握基本光路调试技术, 主要包括共轴调节和调平行光。
3.实验原理3.1光学实验仪器概述:光学实验仪器主要包括: 光源, 光学元件, 接收器等。
3.1.1常见光源光源是光学实验中不可缺少的组成部分, 对于不同的观测目的, 常需选用合适的光源, 如在干涉测量技术中一般应使用单色光源, 而在白光干涉时又需用能谱连续的光源( 白炽灯) ; 在一些实验中, 对光源尺寸大小还有点、线、面等方面的要求。
光学实验中常见的光源可分为以下几类:1)热辐射光源热辐射光源是利用电能将钨丝加热, 使它在真空或惰性气体中达到发光的光源。
白炽灯属于热辐射光源, 它的发光光谱是连续的,分布在红外光、可见光到紫外光范围内, 其中红外成分居多, 紫外成分很少, 光谱成分和光强与钨丝温度有关。
热辐射光源包括以下几种: 普通灯泡, 汽车灯泡, 卤钨灯。
2) 热电极弧光放电型光源这类光源的电路基本上与普通荧光灯相同, 必须经过镇流器接入220V点源, 它是使电流经过气体而发光的光源。
实验中最常见的单色光源主要包括以下两种: 纳光灯( 主要谱线: 589.3nm、589.6nm) , 汞灯( 主要谱线: 623.4nm、579.0nm、577.0nm、546.1nm、491.6nm、435.8nm、407.9nm、404.7nm)3) 激光光源激光( Light Amplification by Stimulated Emission of Radiation, 缩写: LASER), 是指经过辐射的受激辐射而实现光放大, 即受激辐射的光放大。
适用标准文案光学系统像差丈量实验RLE-ME01实验讲义版本: 2012公布日期:2012年8月序言实质光学系统与理想光学系统成像的差异称为像差。
光学系统成像的差异是《工程光学》课程重要章节,也是教课的难点章节,针对此知识点的教课实验产品贫乏。
RealLight?开发的像差丈量实验采用特意设计的像差镜头,像差现象清楚;波及知识点紧贴像差理论的要点内容,是学生掌握像差理论的特别理想的教课实验系统。
目录1.光学系统像差的计算机模拟1.1.前言 ---------------------------------------------11.2.实验目的 -----------------------------------------11.3. 实验原理 -----------------------------------------11.4. 实验仪器 -----------------------------------------41.5. 实验步骤 -----------------------------------------41.6. 思虑题 -------------------------------------------52.平行光管的调理使用及地点色差的丈量2.1.前言 ---------------------------------------------62.2. 实验目的 -----------------------------------------62.3. 实验原理 -----------------------------------------62.4. 实验仪器 -----------------------------------------72.5. 实验步骤 -----------------------------------------82.6. 实验数据办理 -------------------------------------92.7. 思虑题 -------------------------------------------93.星点法观察光学系统单色像差3.1.前言 ---------------------------------------------103.2. 实验目的 -----------------------------------------103.3. 实验原理 -----------------------------------------103.4. 实验仪器 -----------------------------------------113.5. 实验步骤 ----------------------------------------123.6. 思虑题 ------------------------------------------144.暗影法丈量光学系统像差与刀口仪原理4.1. 前言 --------------------------------------------154.2. 实验目的 ----------------------------------------154.3. 实验原理 ----------------------------------------154.4. 实验仪器 ----------------------------------------164.5. 实验步骤 ----------------------------------------164.6. 思虑题 ------------------------------------------175.剪切干预丈量光学系统像差5.1. 前言 --------------------------------------------185.2. 实验目的 ----------------------------------------185.3. 实验原理 ----------------------------------------185.4. 实验仪器 ----------------------------------------215.5. 实验步骤 ----------------------------------------215.6. 思虑题 ------------------------------------------266.参照文件实验 1光学系统像差的计算机模拟前言假如成像系统是理想光学系统,则同一物点发出的所有光芒经过系统此后,应当聚焦在理想像面上的同一点,且高度同理想像高一致。
实验一光学实验主要仪器、光路调整与技巧1.引言不论光学系统如何复杂,精密,它们都是由一些通用性很强的光学元器件组成的,因此,掌握一些常用的光学元器件的结构,光学性能、特点和使用方法,对于安排实验光路系统时,正确的选择和使用光学元器件具有重要的作用。
2.实验目的1)掌握光学专业基本元件的功能;2)掌握基本光路调试技术,主要包括共轴调节和调平行光。
3.实验原理3.1光学实验仪器概述:光学实验仪器主要包括:光源,光学元件,接收器等。
3.1.1常用光源光源是光学实验中不可缺少的组成部分,对于不同的观测目的,常需选用合适的光源,如在干涉测量技术中一般应使用单色光源,而在白光干涉时又需用能谱连续的光源(白炽灯);在一些实验中,对光源尺寸大小还有点、线、面等方面的要求。
光学实验中常用的光源可分为以下几类:1)热辐射光源热辐射光源是利用电能将钨丝加热,使它在真空或惰性气体中达到发光的光源。
白炽灯属于热辐射光源,它的发光光谱是连续的,分布在红外光、可见光到紫外光范围内,其中红外成分居多,紫外成分很少,光谱成分和光强与钨丝温度有关。
热辐射光源包括以下几种:普通灯泡,汽车灯泡,卤钨灯。
2)热电极弧光放电型光源这类光源的电路基本上与普通荧光灯相同,必须通过镇流器接入220V点源,它是使电流通过气体而发光的光源。
实验中最常用的单色光源主要包括以下两种:纳光灯(主要谱线:589.3nm、589.6nm),汞灯(主要谱线:623.4nm、579.0nm、577.0nm、546.1nm、491.6nm、435.8nm、407.9nm、404.7nm)3)激光光源激光(Light Amplification by Stimulated Emission of Radiation,缩写:LASER),是指通过辐射的受激辐射而实现光放大,即受激辐射的光放大。
激光器作为一种新型光源,与普通光源有显著的差别。
它是利用受激辐射的原理和激光腔的滤波效应,使所发光束具有一系列新的特点。
工程光学实验(一)实验指导用书南通大学理学院2015.04目录绪论 (1)实验1 透镜系统基点测量 (5)实验2 平行光管的调节和使用 (8)实验3 望远系统的搭建和放大率测量 (12)实验4 显微镜搭建与放大率测量 (16)实验5光学系统像差模拟及测量实验 (20)实验6 刀口阴影法原理及阴影法测量光学系统像差实验 (29)实验7 剪切干涉测量光学系统像差 (32)实验8 利用变频朗奇光栅测量光学系统MTF值实验 (38)实验9 基于线扩散函数测量光学系统MTF值实验 (44)绪论随着科技的进步,人类逐渐揭开光的神秘面纱。
光既是信息载体,又是能量载体。
在人类社会生活中,光具有广泛的应用范围。
光既是人类认识世界的工具,又是人类改造世界的工具。
工程光学学科以光的理论为基础,采用工程技术和方法,并将光学理论应用到人类生产、生活实践的各个方面。
信息载体正由电磁波段逐步集中到光波段,从而使现代光学产业的主要内容集中在光信息获取、传输、处理、记录、存储、显示和传感等的光电信息产业上。
加之光作为信息载体,不仅在通信领域得到了巨大的发展;作为能量载体,自从激光技术问世以来,在国防、军备等领域,光学工程得到各国高度重视,并取得了不同程度的发展。
在工程光学实验中,学生通过研究一些最基本的光学现象,同时接触一些新的概念和实验技术,学习和掌握工程光学实验的基本知识和基本方法,培养基本的工程光学实验技能。
在工程光学实验中使用的仪器比较精密,光学仪器的调节也比较复杂,只有在了解了仪器结构性能基础上建立清晰的物理图像,才能选择有效而准确的调节方法,判断仪器是否处于正常的工作状态。
在工程光学实验中,理论联系实际的科学作风显得特别重要,如果没有很好地掌握光学理论,要做好工程光学实验几乎是不可能的。
在工程光学实验过程中,仪器的调节和检验,实验现象的观察、分析等都离不开理论的指导。
为了做好工程光学实验,要在实验前充分做好预习,实验时多动手、多思考,实验后认真总结,只有这样才能提高科学实验的素养、培养实验技能、养成理论联系实际的科学作风。