专题01 导数与函数的最(极)值(训练篇A)-用思维导图突破导数压轴题
- 格式:doc
- 大小:499.76 KB
- 文档页数:10
§3.3导数与函数的极值、最值学习目标1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.会求闭区间上函数的最大值、最小值.知识梳理1.函数的极值(1)函数的极小值函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极小值点、极大值点统称为极值点,极小值和极大值统称为极值.2.函数的最大(小)值(1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)上的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数f(x)在区间(a,b)上不存在最值.(×)(2)函数的极小值一定是函数的最小值.(×)(3)函数的极小值一定不是函数的最大值.(√)(4)函数y=f′(x)的零点是函数y=f(x)的极值点.(×)教材改编题1.如图是f (x )的导函数f ′(x )的图象,则f (x )的极小值点的个数为( )A .1B .2C .3D .4答案 A解析 由题意知只有在x =-1处f ′(-1)=0,且其两侧导数符号为左负右正.2.函数f (x )=x 3-ax 2+2x -1有极值,则实数a 的取值范围是( )A .(-∞,-6]∪[6,+∞)B .(-∞,-6)∪(6,+∞)C .(-6,6)D .[-6,6]答案 B解析 f ′(x )=3x 2-2ax +2,由题意知f ′(x )有变号零点,∴Δ=(-2a )2-4×3×2>0, 解得a >6或a <- 6.3.若函数f (x )=13x 3-4x +m 在[0,3]上的最大值为4,则m =________. 答案 4解析 f ′(x )=x 2-4,x ∈[0,3],当x ∈[0,2)时,f ′(x )<0,当x ∈(2,3]时,f ′(x )>0,所以f (x )在[0,2)上单调递减,在(2,3]上单调递增.又f (0)=m ,f (3)=-3+m .所以在[0,3]上,f (x )max =f (0)=4,所以m =4.题型一 利用导数求函数的极值问题命题点1 根据函数图象判断极值例1 (2022·广州模拟)设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(x -1)f ′(x )的图象如图所示,则下列结论中正确的是( )A .函数f (x )有极大值f (-3)和f (3)B .函数f (x )有极小值f (-3)和f (3)C.函数f(x)有极小值f(3)和极大值f(-3)D.函数f(x)有极小值f(-3)和极大值f(3)答案 D解析由题图知,当x∈(-∞,-3)时,y>0,x-1<0⇒f′(x)<0,f(x)单调递减;当x∈(-3,1)时,y<0,x-1<0⇒f′(x)>0,f(x)单调递增;当x∈(1,3)时,y>0,x-1>0⇒f′(x)>0,f(x)单调递增;当x∈(3,+∞)时,y<0,x-1>0⇒f′(x)<0,f(x)单调递减.所以函数有极小值f(-3)和极大值f(3).命题点2求已知函数的极值例2已知函数f(x)=x-1+ae x(a∈R,e为自然对数的底数).(1)若曲线y=f(x)在点(1,f(1))处的切线平行于x轴,求a的值;(2)求函数f(x)的极值.解(1)因为f(x)=x-1+ae x,所以f′(x)=1-ae x,又因为曲线y=f(x)在点(1,f(1))处的切线平行于x轴,所以f′(1)=0,即1-ae1=0,所以a=e.(2)由(1)知f′(x)=1-ae x,当a≤0时,f′(x)>0,所以f(x)在(-∞,+∞)上单调递增,因此f(x)无极大值与极小值;当a>0时,令f′(x)>0,则x>ln a,所以f(x)在(ln a,+∞)上单调递增,令f′(x)<0,则x<ln a,所以f(x)在(-∞,ln a)上单调递减,故f(x)在x=ln a处取得极小值,且f(ln a)=ln a,但是无极大值,综上,当a≤0时,f(x)无极大值与极小值;当a>0时,f(x)在x=ln a处取得极小值ln a,但是无极大值.命题点3已知极值(点)求参数例3(1)(2022·大庆模拟)函数f(x)=x3+ax2+bx+a2在x=1处取得极值10,则a+b等于()A .-7B .0C .-7或0D .-15或6答案 A 解析 由题意知,函数f (x )=x 3+ax 2+bx +a 2,可得f ′(x )=3x 2+2ax +b ,因为f (x )在x =1处取得极值10,可得⎩⎪⎨⎪⎧ f ′(1)=3+2a +b =0,f (1)=1+a +b +a 2=10, 解得⎩⎪⎨⎪⎧ a =4,b =-11,或⎩⎪⎨⎪⎧a =-3,b =3, 检验知,当a =-3,b =3时,可得f ′(x )=3x 2-6x +3=3(x -1)2≥0,此时函数f (x )单调递增,函数无极值点,不符合题意;当a =4,b =-11时,可得f ′(x )=3x 2+8x -11=(3x +11)(x -1),当x <-113或x >1时, f ′(x )>0,f (x )单调递增;当-113<x <1时,f ′(x )<0,f (x )单调递减, 当x =1时,函数f (x )取得极小值,符合题意.所以a +b =-7.(2)(2022·南京模拟)已知函数f (x )=x (ln x -ax )在区间(0,+∞)上有两个极值,则实数a 的取值范围为( )A .(0,e)B.⎝⎛⎭⎫0,1eC.⎝⎛⎭⎫0,12 D.⎝⎛⎭⎫0,13 答案 C解析 f ′(x )=ln x -ax +x ⎝⎛⎭⎫1x -a=ln x +1-2ax ,由题意知ln x +1-2ax =0在(0,+∞)上有两个不相等的实根,2a =ln x +1x, 设g (x )=ln x +1x, 则g ′(x )=1-(ln x +1)x 2=-ln x x 2.当0<x <1时,g ′(x )>0,g (x )单调递增;当x >1时,g ′(x )<0,g (x )单调递减,所以g (x )的极大值为g (1)=1,又当x >1时,g (x )>0,当x →+∞时,g (x )→0,当x →0时,g (x )→-∞,所以0<2a <1,即0<a <12. 教师备选 1.(2022·榆林模拟)设函数f (x )=x cos x 的一个极值点为m ,则tan ⎝⎛⎭⎫m +π4等于( ) A.m -1m +1B.m +1m -1C.1-m m +1D.m +11-m 答案 B解析 由f ′(x )=cos x -x sin x =0,得tan x =1x ,所以tan m =1m, 故tan ⎝⎛⎭⎫m +π4=1+tan m 1-tan m =m +1m -1. 2.已知a ,b ∈R ,若x =a 不是函数f (x )=(x -a )2(x -b )·(e x -1-1)的极小值点,则下列选项符合的是( )A .1≤b <aB .b <a ≤1C .a <1≤bD .a <b ≤1 答案 B解析 令f (x )=(x -a )2(x -b )(e x -1-1)=0,得x 1=a ,x 2=b ,x 3=1.下面利用数轴标根法画出f (x )的草图,借助图象对选项A ,B ,C ,D 逐一分析.对选项A ,若1≤b <a ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项B ,若b <a ≤1,由图可知x =a 不是f (x )的极小值点,符合题意; 对选项C ,若a <1≤b ,由图可知x =a 是f (x )的极小值点,不符合题意; 对选项D ,若a <b ≤1,由图可知x =a 是f (x )的极小值点,不符合题意. 思维升华 根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.跟踪训练1 (1)(2022·长沙模拟)若x =1是函数f (x )=(x 2+ax -1)e x-1的极值点,则f (x )的极大值为( )A .-1B .-2e -3C .5e -3D .1 答案 C解析 因为f (x )=(x 2+ax -1)e x -1,故可得f ′(x )=(2x +a )e x -1+(x 2+ax -1)e x -1=e x -1[x 2+(a +2)x +a -1],因为x =1是函数f (x )=(x 2+ax -1)e x-1的极值点,故可得f ′(1)=0,即2a +2=0,解得a =-1.此时f ′(x )=e x -1(x 2+x -2)=e x -1(x +2)(x -1).令f ′(x )=0,解得x 1=-2,x 2=1,由f ′(x )>0可得x <-2或x >1;由f ′(x )<0可得-2<x <1,所以f (x )在区间(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,故f (x )的极大值点为x =-2.则f (x )的极大值为f (-2)=(4+2-1)e -3=5e -3.(2)(2022·芜湖模拟)函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点,则实数a 的取值范围是( )A.⎝⎛⎭⎫52,103B.⎣⎡⎭⎫52,103C.⎝⎛⎦⎤52,103D.⎣⎡⎦⎤2,103 答案 B解析 ∵f (x )=ln x +12x 2-ax (x >0), ∴f ′(x )=1x+x -a , ∵函数f (x )=ln x +12x 2-ax (x >0)在⎣⎡⎦⎤12,3上有且仅有一个极值点, ∴y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点.令f ′(x )=1x +x -a =0,得a =1x+x . 设g (x )=1x +x ,则g (x )在⎣⎡⎦⎤12,1上单调递减,在[1,3]上单调递增,∴g (x )min =g (1)=2,又g ⎝⎛⎭⎫12=52,g (3)=103, ∴当52≤a <103时,y =f ′(x )在⎣⎡⎦⎤12,3上只有一个变号零点. ∴实数a 的取值范围为⎣⎡⎭⎫52,103.题型二 利用导数求函数最值例4 已知函数g (x )=a ln x +x 2-(a +2)x (a ∈R ).(1)若a =1,求g (x )在区间[1,e]上的最大值;(2)求g (x )在区间[1,e]上的最小值h (a ).解 (1)∵a =1,∴g (x )=ln x +x 2-3x ,∴g ′(x )=1x +2x -3=(2x -1)(x -1)x, ∵x ∈[1,e],∴g ′(x )≥0,∴g (x )在[1,e]上单调递增,∴g (x )max =g (e)=e 2-3e +1.(2)g (x )的定义域为(0,+∞),g ′(x )=a x +2x -(a +2)=2x 2-(a +2)x +a x=(2x -a )(x -1)x. ①当a 2≤1,即a ≤2时,g (x )在[1,e]上单调递增,h (a )=g (1)=-a -1; ②当1<a 2<e ,即2<a <2e 时,g (x )在⎣⎡⎭⎫1,a 2上单调递减,在⎝⎛⎦⎤a 2,e 上单调递增,h (a )=g ⎝⎛⎭⎫a 2=a ln a 2-14a 2-a ; ③当a 2≥e ,即a ≥2e 时,g (x )在[1,e]上单调递减,h (a )=g (e)=(1-e)a +e 2-2e. 综上,h (a )=⎩⎪⎨⎪⎧ -a -1,a ≤2,a ln a 2-14a 2-a ,2<a <2e ,(1-e )a +e 2-2e ,a ≥2e.教师备选已知函数f (x )=ln x -ax -2(a ≠0).(1)讨论函数f (x )的单调性;(2)若函数f (x )有最大值M ,且M >a -4,求实数a 的取值范围.解 (1)f (x )的定义域为(0,+∞),由f (x )=ln x -ax -2(a ≠0)可得f ′(x )=1x-a , 当a <0时,f ′(x )>0,所以f (x )在(0,+∞)上单调递增;当a >0时,令f ′(x )=0,得x =1a, 所以当x ∈⎝⎛⎭⎫0,1a 时, f ′(x )>0,f (x )单调递增;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0,f (x )单调递减, 综上所述,当a <0时,f (x )在(0,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减. (2)由(1)知,当a <0时,f (x )在(0,+∞)上单调递增,无最大值,当a >0时,f (x )在⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,+∞上单调递减, 所以当x =1a时,f (x )取得最大值, 即f (x )max =f ⎝⎛⎭⎫1a =ln 1a -a ×1a-2 =ln 1a-3=-ln a -3, 因此有-ln a -3>a -4,得ln a +a -1<0,设g (a )=ln a +a -1,则g ′(a )=1a+1>0, 所以g (a )在(0,+∞)上单调递增,又g (1)=0,所以g (a )<g (1),得0<a <1,故实数a 的取值范围是(0,1).思维升华 (1)求函数f (x )在闭区间[a ,b ]上的最值时,在得到极值的基础上,结合区间端点的函数值f (a ),f (b )与f (x )的各极值进行比较得到函数的最值.(2)若所给的闭区间[a ,b ]含参数,则需对函数f (x )求导,通过对参数分类讨论,判断函数的单调性,从而得到函数f (x )的最值.跟踪训练2 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.解 (1)∵蓄水池的侧面的总成本为100×2πrh =200πrh (元),底面的总成本为160πr 2元,∴蓄水池的总成本为(200πrh +160πr 2)元.由题意得200πrh +160πr 2=12 000π,∴h =15r (300-4r 2).从而V (r )=πr 2h =π5(300r -4r 3).由h >0,且r >0,可得0<r <5 3.故函数V (r )的定义域为(0,53).(2)由(1)知V (r )=π5(300r -4r 3), 故V ′(r )=π5(300-12r 2),令V ′(r )=0,解得r 1=5,r 2=-5(舍).当r ∈(0,5)时,V ′(r )>0,故V (r )在(0,5)上单调递增;当r ∈(5,53)时,V ′(r )<0,故V (r )在(5,53)上单调递减.由此可知,V (r )在r =5处取得最大值,此时h =8,即当r =5,h =8时,该蓄水池的体积最大.课时精练1.若函数f (x )=x 2+2xe x 的极大值点与极小值点分别为a ,b ,则a +b 等于() A .-4 B. 2C .0D .2答案 C解析 f ′(x )=2-x 2e x ,当-2<x <2时,f ′(x )>0;当x <-2或x >2时,f ′(x )<0.故f (x )=x 2+2x ex 的极大值点与极小值点分别为2,-2, 则a =2,b =-2,所以a +b =0.2.如图是函数y =f (x )的导函数的图象,下列结论中正确的是( )A .f (x )在[-2,-1]上单调递增B .当x =3时,f (x )取得最小值C .当x =-1时,f (x )取得极大值D .f (x )在[-1,2]上单调递增,在[2,4]上单调递减答案 D解析 根据题图知,当x ∈(-2,-1),x ∈(2,4)时,f ′(x )<0,函数y =f (x )单调递减;当x ∈(-1,2),x ∈(4,+∞)时,f ′(x )>0,函数y =f (x )单调递增.所以y =f (x )在[-2,-1]上单调递减,在(-1,2)上单调递增,在(2,4)上单调递减,在(4,+∞)上单调递增,故选项A 不正确,选项D 正确;故当x =-1时,f (x )取得极小值,选项C 不正确;当x =3时,f (x )不是取得最小值,选项B 不正确.3.已知函数f (x )=2ln x +ax 2-3x 在x =2处取得极小值,则f (x )的极大值为( )A .2B .-52C .3+ln 2D .-2+2ln 2 答案 B解析 由题意得,f ′(x )=2x+2ax -3, ∵f (x )在x =2处取得极小值,∴f ′(2)=4a -2=0,解得a =12, ∴f (x )=2ln x +12x 2-3x , f ′(x )=2x +x -3=(x -1)(x -2)x ,∴f (x )在(0,1),(2,+∞)上单调递增,在(1,2)上单调递减,∴f (x )的极大值为f (1)=12-3=-52. 4.(2022·重庆联考)函数f (x )=x +2cos x 在[0,π]上的最大值为( )A .π-2B.π6 C .2D.π6+ 3 答案 D解析 由题意得,f ′(x )=1-2sin x ,∴当0≤sin x ≤12,即x 在⎣⎡⎦⎤0,π6和⎣⎡⎦⎤5π6,π上时,f ′(x )≥0,f (x )单调递增; 当12<sin x ≤1,即x 在⎝⎛⎭⎫π6,5π6上时, f ′(x )<0,f (x )单调递减,∴f (x )有极大值f ⎝⎛⎭⎫π6=π6+3,有极小值f ⎝⎛⎭⎫5π6=5π6-3,而端点值f (0)=2,f (π)=π-2,则f ⎝⎛⎭⎫π6>f (0)>f (π)>f ⎝⎛⎭⎫5π6, ∴f (x )在[0,π]上的最大值为π6+ 3. 5.(多选)已知x =1和x =3是函数f (x )=ax 3+bx 2-3x +k (a ,b ∈R )的两个极值点,且函数f (x )有且仅有两个不同零点,则k 值为( )A .-43B.43 C .-1D .0 答案 BD解析 f ′(x )=3ax 2+2bx -3,依题意1,3是f ′(x )=0的两个根, 所以⎩⎨⎧ 1+3=-2b 3a ,1×3=-33a,解得a =-13,b =2. 故f (x )=-13x 3+2x 2-3x +k . 易求得函数f (x )的极大值为f (3)=k 和极小值为f (1)=-43+k .要使函数f (x )有两个零点,则f (x )极大值k =0或f (x )极小值-43+k =0, 所以k =0或k =43. 6.(多选)已知函数f (x )=x +sin x -x cos x 的定义域为[-2π,2π),则( )A .f (x )为奇函数B .f (x )在[0,π)上单调递增C .f (x )恰有4个极大值点D .f (x )有且仅有4个极值点答案 BD解析 因为f (x )的定义域为[-2π,2π),所以f (x )是非奇非偶函数,故A 错误;因为f (x )=x +sin x -x cos x ,所以f ′(x )=1+cos x -(cos x -x sin x )=1+x sin x ,当x ∈[0,π)时,f ′(x )>0,则f (x )在[0,π)上单调递增,故B 正确;显然f ′(0)≠0,令f ′(x )=0,得sin x =-1x, 分别作出y =sin x ,y =-1x在区间[-2π,2π)上的图象,由图可知,这两个函数的图象在区间[-2π,2π)上共有4个公共点,且两图象在这些公共点上都不相切,故f (x )在区间[-2π,2π)上的极值点的个数为4,且f (x )只有2个极大值点,故C 错误,D 正确.7.(2022· 潍坊模拟)写出一个存在极值的奇函数f (x )=________.答案 sin x (答案不唯一)解析 正弦函数f (x )=sin x 为奇函数,且存在极值.8.(2021·新高考全国Ⅰ)函数f (x )=|2x -1|-2ln x 的最小值为________.答案 1解析 函数f (x )=|2x -1|-2ln x 的定义域为(0,+∞).①当x >12时,f (x )=2x -1-2ln x , 所以f ′(x )=2-2x =2(x -1)x,当12<x <1时,f ′(x )<0, 当x >1时,f ′(x )>0,所以f (x )min =f (1)=2-1-2ln 1=1;②当0<x ≤12时,f (x )=1-2x -2ln x 在⎝⎛⎦⎤0,12上单调递减, 所以f (x )min =f ⎝⎛⎭⎫12=-2ln 12=2ln 2=ln 4>ln e =1.综上,f (x )min =1. 9.已知函数f (x )=ln x -2x -2x +1. (1)求函数f (x )的单调区间;(2)设g (x )=f (x )-4+a x +1+2(a ∈R ),若x 1,x 2是函数g (x )的两个极值点,求实数a 的取值范围. 解 (1)由题知函数f (x )的定义域为(0,+∞),f ′(x )=1x -2(x +1)-2(x -1)(x +1)2=(x -1)2x (x +1)2≥0对任意x ∈(0,+∞)恒成立, 当且仅当x =1时,f ′(x )=0,所以f (x )的单调递增区间为(0,+∞),无单调递减区间.(2)因为g (x )=f (x )-4+a x +1+2=ln x -a x +1, 所以g ′(x )=1x +a (x +1)2=x 2+(2+a )x +1x (x +1)2(x >0). 由题意知x 1,x 2是方程g ′(x )=0在(0,+∞)内的两个不同的实数解.令h (x )=x 2+(2+a )x +1,又h (0)=1>0,所以只需⎩⎪⎨⎪⎧-2-a >0,Δ=(2+a )2-4>0,解得a <-4,即实数a 的取值范围为(-∞,-4). 10.(2022·珠海模拟)已知函数f (x )=ln x -ax ,x ∈(0,e],其中e 为自然对数的底数.(1)若x =1为f (x )的极值点,求f (x )的单调区间和最大值;(2)是否存在实数a ,使得f (x )的最大值是-3?若存在,求出a 的值;若不存在,说明理由. 解 (1)∵f (x )=ln x -ax ,x ∈(0,e],∴f ′(x )=1-ax x, 由f ′(1)=0,得a =1.∴f ′(x )=1-x x, ∴x ∈(0,1),f ′(x )>0,x ∈(1,+∞),f ′(x )<0,∴f (x )的单调递增区间是(0,1),单调递减区间是(1,e];f (x )的极大值为f (1)=-1,也即f (x )的最大值为f (1)=-1.(2)∵f (x )=ln x -ax ,∴f ′(x )=1x -a =1-ax x , ①当a ≤0时,f (x )在(0,e]上单调递增,∴f (x )的最大值是f (e)=1-a e =-3,解得a =4e >0,舍去;②当a >0时,由f ′(x )=1x -a =1-axx =0,得x =1a ,当0<1a <e ,即a >1e 时,∴x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;x ∈⎝⎛⎭⎫1a ,e 时,f ′(x )<0,∴f (x )的单调递增区间是⎝⎛⎭⎫0,1a ,单调递减区间是⎝⎛⎭⎫1a ,e ,又f (x )在(0,e]上的最大值为-3,∴f (x )max =f ⎝⎛⎭⎫1a =-1-ln a =-3,∴a =e 2;当e ≤1a ,即0<a ≤1e 时,f (x )在(0,e]上单调递增,∴f (x )max =f (e)=1-a e =-3,解得a =4e >1e ,舍去.综上,存在a 符合题意,此时a =e 2.11.若函数f (x )=(x 2-a )e x 的两个极值点之积为-3,则f (x )的极大值为() A.6e 3 B .-2eC .-2e D.4e 2答案 A解析 因为f (x )=(x 2-a )e x ,所以f ′(x )=(x 2+2x -a )e x ,由f′(x)=(x2+2x-a)e x=0,得x2+2x-a=0,由函数f(x)=(x2-a)e x的两个极值点之积为-3,则由根与系数的关系可知,-a=-3,即a=3,所以f(x)=(x2-3)e x,f′(x)=(x2+2x-3)e x,当x<-3或x>1时,f′(x)>0;当-3<x<1时,f′(x)<0,故f(x)在(-∞,-3)上单调递增,在(-3,1)上单调递减,在(1,+∞)上单调递增,所以f(x)的极大值为f(-3)=6 e3.12.函数f(x)=ax3-6ax2+b在区间[-1,2]上的最大值为3,最小值为-29(a>0),则a,b的值为()A.a=2,b=-29 B.a=3,b=2C.a=2,b=3 D.以上都不对答案 C解析函数f(x)的导数f′(x)=3ax2-12ax=3ax(x-4),因为a>0,所以由f′(x)<0,计算得出0<x<4,此时函数单调递减,由f′(x)>0,计算得出x>4或x<0,此时函数单调递增,即函数在[-1,0]上单调递增,在[0,2]上单调递减,即函数在x=0处取得极大值同时也是最大值,则f(0)=b=3,则f(x)=ax3-6ax2+3,f(-1)=-7a+3,f(2)=-16a+3,则f(-1)>f(2),即函数的最小值为f(2)=-16a+3=-29,计算得出a=2,b=3.13.(2021·全国乙卷)设a≠0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则() A.a<b B.a>bC.ab<a2D.ab>a2答案 D解析当a>0时,根据题意画出函数f(x)的大致图象,如图1所示,观察可知b>a.图1当a <0时,根据题意画出函数f (x )的大致图象,如图2所示,观察可知a >b .图2综上,可知必有ab >a 2成立.14.(2022·河南多校联考)已知函数f (x )=2ln x ,g (x )=x +2,若f (x 1)=g (x 2),则x 1-x 2的最小值为______.答案 4-2ln 2解析 设f (x 1)=g (x 2)=t ,即2ln x 1=t ,x 2+2=t ,解得x 1=2e t ,x 2=t -2,所以x 1-x 2=2e t -t +2,令h (t )=2e t -t +2,则h ′(t )=21e 2t -1, 令h ′(t )=0,解得t =2ln 2,当t <2ln 2时,h ′(t )<0,当t >2ln 2时,h ′(t )>0,所以h (t )在(-∞,2ln 2)上单调递减,在(2ln 2,+∞)上单调递增,所以h (t )的最小值为h (2ln 2)=e ln 2-2ln 2+2=4-2ln 2,所以x 1-x 2的最小值为4-2ln 2.15.(多选)已知函数f (x )=x ln x +x 2,x 0是函数f (x )的极值点,以下几个结论中正确的是( )A .0<x 0<1eB .x 0>1eC .f (x 0)+2x 0<0D .f (x 0)+2x 0>0答案 AD解析 函数f (x )=x ln x +x 2(x >0),∴f ′(x )=ln x +1+2x ,∵x 0是函数f (x )的极值点,∴f ′(x 0)=0,即ln x 0+1+2x 0=0,∴f ′⎝⎛⎭⎫1e =2e >0,当x >1e时,f ′(x )>0, ∵当x →0时,f ′(x )→-∞,∴0<x 0<1e,即A 正确,B 不正确; f (x 0)+2x 0=x 0ln x 0+x 20+2x 0=x 0(ln x 0+x 0+2)=x 0(1-x 0)>0,即D 正确,C 不正确.16.已知函数f (x )=x 2-2x +a ln x (a >0).(1)求函数f (x )的单调递增区间;(2)若函数f (x )有两个极值点x 1,x 2,x 1<x 2,不等式f (x 1)≥mx 2恒成立,求实数m 的取值范围.解 (1)f ′(x )=2x -2+a x =2x 2-2x +a x,x >0, 一元二次方程2x 2-2x +a =0的Δ=4(1-2a ),①当a ≥12时,f ′(x )≥0,f (x )在(0,+∞)上单调递增; ②当0<a <12时,令f ′(x )=0, 得x 1=1-1-2a 2>0,x 2=1+1-2a 2>0, 所以当0<x <1-1-2a 2时, f ′(x )>0,f (x )单调递增, 当1-1-2a 2<x <1+1-2a 2时, f ′(x )<0,f (x )单调递减,当x >1+1-2a 2时,f ′(x )>0,f (x )单调递增. 综上所述,当a ≥12时,f (x )的单调递增区间为(0,+∞),当0<a <12时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,1-1-2a 2,⎝ ⎛⎭⎪⎫1+1-2a 2,+∞. (2)由(1)知,0<a <12,x 1+x 2=1,x 1x 2=a 2,则0<x 1<12<x 2, 由f (x 1)≥mx 2恒成立,得x 21-2x 1+a ln x 1≥mx 2,即(1-x 2)2-2(1-x 2)+2(1-x 2)x 2ln(1-x 2)≥mx 2,即m ≤x 2-1x 2+2(1-x 2)ln(1-x 2), 记h (x )=x -1x+2(1-x )ln(1-x ), 1>x >12, 则h ′(x )=1x 2-2ln(1-x )-1>0⎝⎛⎭⎫1>x >12, 故h (x )在⎝⎛⎭⎫12,1上单调递增,h ⎝⎛⎭⎫12=-32-ln 2, 故m ≤-32-ln 2.。
一、思维导图二、疑难透析1、曲线“在点P处的切线”是以点P x0,y0为切点,这样的切线只有一条,切线方程为y−y0=f′x0x−x0。
2、“过点P的切线”,点P可能是切点,也可能不是切点。
点P x0,y0不是切点时的切线方程求解步骤:(1)设出切点坐标P′x1,f(x1);(2)写出过P′x1,f(x1)的切线方程y−f(x1)=f′x1x−x1;(3)将点P x0,y0代入切线方程求出x1;(4)将x1的值代入方程y−f(x1)=f′x1x−x1可得出过点P x0,y0的切线方程。
3、图像连续不断的函数在开区间a,b上不一定有最大值(或最小值)。
若图像连续不断的函数在开区间a,b内只有一个极值,则该极值就是最值。
4、用导数法求函数单调区间的一般步骤:求定义域求导数f'(x)求f'(x)=0在定义域内的根用求得的根划分定义域确定f'(x)在各个开区间内的符号确定单调区间5、用导数法证明函数在 a ,b 的单调性的一般步骤:6、解决函数极值问题的一般步骤:7、导数与极值关系f ′ x 0 =0只是可导函数f x 在x 0处取得极值的必要条件,即必须有这个条件,但只有这个条件还不够,还要考虑是否满足f ′ x 0 在x 0两侧异号.另外,已知极值点求参数时要进行检验。
三、题型示例=(x −3)e x 的单调递增区间是(A.(−∞,2) B.(0,3) C.(1,4) D.(2,+∞) 【解析】(性质法)f ′ x =e x + x −3 e x =(x −2)e x ∵当f ′ x >0时,f x 单调递增求f'(x)确定f'(x)在(a ,b)内的符号得出结论:f'(x)>0,增函数;f'(x)<0,减函数求定义域求导数f'(x)解方程f'(x)=0判断根左右f'(x)的符号极值得方程f'(x)=0根的情况得关于参数的方程(不等式)参数值(范围)求极值用极值∴(x −2)e x >0 ∵e x >0 ∴x −2>0 即x >2 【答案】D2、若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+-- 的值( )A .'0()f xB .'02()f xC .'02()f x - D .0【解析】000000()()()()lim lim2[]2h h f x h f x h f x h f x h h h→→+--+--='0000()()2lim2()2h f x h f x h f x h→+--== 【答案】B3、曲线在处的切线方程为( ) A. B. C. D. 【解析】∵ ∴,∴切点坐标为 ∴切线方程为 【答案】B4、曲线y = x +1 x +2 (x +3)在点A (0,6)处的切线的斜率是( )A.9B.10C.11D.12【解析】求函数的导数先化简解析式再求导,连乘形式先展开化为多项式再求导;根式形式 先化为分数指数幂再求导;复杂形式先化为简单分式的和、差再求导。
高中数学导数与函数的极值最值常见题型及解题方法!高中数学导数与函数的极值最值常见题型及解题方法!超级实用!
此类问题往往从求导入手,思路清晰;但综合性较强,需学生有较高的逻辑思维和运算能力.
此类题型常见的有两种,具体的可以看下面的资料图解!
好了,下面是今天关于这个高中数学导数与函数的极值最值常见题型及解题方法介绍
类型一、利用导数研究函数的极值
典型例题和其它题型的解法
类型二求函数在闭区间上的最值
典型例题详解学习!。
导数与极值最大值与最小值问题练习题在微积分中,导数与极值问题是一类经典且重要的题型。
通过求取导数,我们可以确定函数的极值点,即最大值和最小值。
本文将给出一些导数与极值问题的练习题,帮助读者加深对该类型问题的理解与应用。
练习题一:求函数f(x) = x^3 - 6x^2 + 9x + 2的极值点。
解析:首先,我们需要求出函数的导数f'(x)。
对于f(x) = x^3 - 6x^2 + 9x + 2,导数为f'(x) = 3x^2 - 12x + 9。
接下来,我们将导数f'(x)置为零,求得极值点。
即,3x^2 - 12x + 9= 0。
通过求解这个方程,我们得到x = 1和x = 3两个解。
然后,我们需要分别计算这两个x值对应的函数值f(x)。
当x = 1时,f(x) = 1^3 - 6(1)^2 + 9(1) + 2 = 6;当x = 3时,f(x) = 3^3 - 6(3)^2 + 9(3)+ 2 = -2。
综上所述,在函数f(x) = x^3 - 6x^2 + 9x + 2中,极小值为-2,极大值为6,对应的x值分别为1和3。
练习题二:求函数g(x) = e^x - 4x的极值点。
解析:与前一题类似,我们首先求取函数g(x) = e^x - 4x的导数g'(x)。
根据指数函数的导数性质以及常数倍规则,我们有g'(x) = e^x - 4。
将导数g'(x)置为零,求得极值点。
即,e^x - 4 = 0。
通过求解这个方程,我们得到x = ln(4)。
接下来,计算x = ln(4)对应的函数值g(x)。
g(x) = e^x - 4x = e^(ln(4)) - 4(ln(4)) = 4 - 4ln(4)。
因此,在函数g(x) = e^x - 4x中,存在唯一的极值点x = ln(4),对应的极值为4 - 4ln(4)。
练习题三:求函数h(x) = x^4 - 8x^2 + 16的极值点。
k=1 k=1压轴题思维导图总结(干货)压轴题,山人自有妙计先给大家推荐几本书目:《数学那玩意》4.7 星,适合学完导数与解析几何的时候看,一位数学牛人(学生)主编的,以学生的口吻解题,幽默风趣,其中包含了二次曲线系、过原点的两条直线、积分放缩(一部分); 《神奇的圆锥曲线与解题秘诀》4.4 星,适合学完解析几何的时候看,总结了许多有用的二级结论; 《更高更妙的高中数学思想方法与指导》 3.8 星,个人认为虽然题目比较难,但是方法归纳比较散,不系统,看了收获不是很大;《五·三》和《天利 38 套》适合刷题,不做评价。
先来说说三大“杀手锏”:解析几何的二次曲线系、导数的分析通项(与 n 有关的不等式, 求和、求积型)和洛必达法则(分离变量后不可求值型)。
此外,对于高考水平的求和类不等式形如∑n a k < S n , 和∑n a k < c ,c 为常数,基本都可以用一招积分放缩搞定,积分放缩又分为矩形放缩(放缩程度较松)和梯形放缩(放缩程度较紧凑)。
不过积分放缩有两个1缺点,一是如果被积函数比较复杂,中学生驾驭起来较难,如 ;二是如果积分放缩得2x +1出的结果是一个超越数,很难比较大小,如 ln2 和 0.7 的大小难比较,不等号方向自然无法确定。
另附:分析通项方法:1、 证明a 1 a 2 … … a n < S n ,变式:证明a 1 a 2 … … a n < c 。
分析通项,即令S n =(S n /S n−1)·(S n−1/S n−2)···(S 2/S 1)·S 1, 从而证明每一项a n < S n /S n−1。
(一般可用归纳法)2、证明a 1 + a 2 + … … + a n < S n ,变式:证明a 1+a 2+⋯ … + a n < c 。
分析通项,即令S n =(S n —S n−1)+(S n−1—S n−2)+···+(S 2—S 1)+S 1,从而证明每一项a n < S n —S n−1。
利用导数求函数的极值、最值一、知识梳理1.函数的极值与导数形如山峰形如山谷2.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习考点一利用导数解决函数的极值问题角度1根据函数图象判断函数极值【例1-1】已知函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2)解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 答案 D规律方法 由图象判断函数y =f (x )的极值,要抓住两点:(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点;(2)由导函数y =f ′(x )的图象可以看出y =f ′(x )的值的正负,从而可得函数y =f (x )的单调性.两者结合可得极值点.角度2 已知函数求极值【例1-2】 (2019·天津和平区模拟)已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解 (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x , 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞), f ′(x )=1x -a =1-ax x (x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,故函数在x =1a 处有极大值.综上可知,当a ≤0时,函数f (x )无极值点, 当a >0时,函数y =f (x )有一个极大值点,且为x =1a .规律方法 运用导数求可导函数y =f (x )的极值的一般步骤:(1)先求函数y =f (x )的定义域,再求其导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查导数f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.角度3 已知函数的极(最)值求参数的取值 【例1-3】 (2019·泰安检测)已知函数f (x )=ln x . (1)求f (x )图象的过点P (0,-1)的切线方程;(2)若函数g (x )=f (x )-mx +mx 存在两个极值点x 1,x 2,求m 的取值范围.解 (1)f (x )的定义域为(0,+∞),且f ′(x )=1x .设切点坐标为(x 0,ln x 0),则切线方程为y =1x 0x +ln x 0-1.把点P (0,-1)代入切线方程,得ln x 0=0,∴x 0=1. ∴过点P (0,-1)的切线方程为y =x -1. (2)因为g (x )=f (x )-mx +m x =ln x -mx +mx (x >0), 所以g ′(x )=1x -m -m x 2=x -mx 2-mx 2=-mx 2-x +m x 2,令h (x )=mx 2-x +m ,要使g (x )存在两个极值点x 1,x 2,则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.故只需满足⎩⎪⎨⎪⎧h (0)>0,12m >0,h ⎝ ⎛⎭⎪⎫12m <0即可,解得0<m <12.规律方法 已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.【训练1】 (1)(2017·全国Ⅱ卷)若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为( ) A.-1B.-2e -3C.5e -3D.1解析 f ′(x )=[x 2+(a +2)x +a -1]·e x -1,则f ′(-2)=[4-2(a +2)+a -1]·e -3=0⇒a =-1, 则f (x )=(x 2-x -1)·e x -1,f ′(x )=(x 2+x -2)·e x -1, 令f ′(x )=0,得x =-2或x =1, 当x <-2或x >1时,f ′(x )>0, 当-2<x <1时,f ′(x )<0,所以x =1是函数f (x )的极小值点, 则f (x )极小值为f (1)=-1. 答案 A(2)(2018·北京卷)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . ①若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; ②若f (x )在x =2处取得极小值,求a 的取值范围. 解 ①因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x .f ′(1)=(1-a )e. 由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.②f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0, 所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.考点二 利用导数求函数的最值【例2】 (2019·广东五校联考)已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 解 (1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx , 令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1. (2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎢⎡⎭⎪⎫1e ,+∞.①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数, ∴f (x )max =f (e)=a e +1≥0,不合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a <x ≤e.从而f (x )在⎝ ⎛⎭⎪⎫0,-1a 上为增函数,在⎝ ⎛⎦⎥⎤-1a ,e 上为减函数,∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a .令-1+ln ⎝ ⎛⎭⎪⎫-1a =-3,得ln ⎝ ⎛⎭⎪⎫-1a =-2,即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.规律方法 1.利用导数求函数f (x )在[a ,b ]上的最值的一般步骤:(1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.【训练2】 (2019·合肥质检)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)∵f (x )=e x ·cos x -x ,∴f (0)=1, f ′(x )=e x (cos x -sin x )-1,∴f ′(0)=0,∴y =f (x )在(0,f (0))处的切线方程为y -1=0·(x -0), 即y =1.(2)f ′(x )=e x (cos x -sin x )-1,令g (x )=f ′(x ), 则g ′(x )=-2e xsin x ≤0在⎣⎢⎡⎦⎥⎤0,π2上恒成立, 且仅在x =0处等号成立, ∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴g (x )≤g (0)=0,∴f ′(x )≤0且仅在x =0处等号成立, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减, ∴f (x )max =f (0)=1,f (x )min =f ⎝ ⎛⎭⎪⎫π2=-π2.考点三 利用导数求解最优化问题【例3】 (2018·衡水中学质检)在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v (米/单位时间),每单位时间的用氧量为⎝ ⎛⎭⎪⎫v 103+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为v2(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y (升). (1)求y 关于v 的函数关系式;(2)若c ≤v ≤15(c >0),求当下潜速度v 取什么值时,总用氧量最少.解 (1)由题意,下潜用时60v (单位时间),用氧量为⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫v 103+1×60v =3v 250+60v (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时60v 2=120v (单位时间),用氧量为120v ×1.5=180v (升),因此总用氧量y =3v 250+240v +9(v >0).(2)y ′=6v 50-240v 2=3(v 3-2 000)25v 2,令y ′=0得v =1032,当0<v <1032时,y ′<0,函数单调递减; 当v >1032时,y ′>0,函数单调递增.若c <1032 ,函数在(c ,1032)上单调递减,在(1032,15)上单调递增,∴当v =1032时,总用氧量最少. 若c ≥1032,则y 在[c ,15]上单调递增, ∴当v =c 时,这时总用氧量最少.规律方法 1.利用导数解决生活中优化问题的一般步骤:(1)设自变量、因变量,建立函数关系式y =f (x ),并确定其定义域; (2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.2.如果目标函数在定义域内只有一个极值点,那么根据实际意义该极值点就是最值点.三、课后练习1.(2019·郑州质检)若函数y =f (x )存在n -1(n ∈N *)个极值点,则称y =f (x )为n 折函数,例如f (x )=x 2为2折函数.已知函数f (x )=(x +1)e x -x (x +2)2,则f (x )为( ) A.2折函数 B.3折函数 C.4折函数D.5折函数解析 f ′(x )=(x +2)e x -(x +2)(3x +2)=(x +2)(e x -3x -2),令f ′(x )=0,得x =-2或e x =3x +2. 易知x =-2是f (x )的一个极值点,又e x =3x +2,结合函数图象,y =e x 与y =3x +2有两个交点.又e -2≠3(-2)+2=-4.∴函数y =f (x )有3个极值点,则f (x )为4折函数. 答案 C2.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是________.解析 因为f (x )的定义域为(0,+∞),又因为f ′(x )=4x -1x ,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.答案 ⎣⎢⎡⎭⎪⎫1,323.(2019·杭州质检)传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在变形时永远保持为圆柱体,其底面半径原为12 cm 且以每秒1 cm 等速率缩短,而长度以每秒20 cm 等速率增长.已知神针的底面半径只能从12 cm 缩到4 cm ,且知在这段变形过程中,当底面半径为10 cm 时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为________ cm. 解析 设神针原来的长度为a cm ,t 秒时神针的体积为V (t ) cm 3, 则V (t )=π(12-t )2·(a +20t ),其中0≤t ≤8, 所以V ′(t )=[-2(12-t )(a +20t )+(12-t )2·20]π.因为当底面半径为10 cm 时其体积最大,所以10=12-t ,解得t =2,此时V ′(2)=0,解得a =60,所以V (t )=π(12-t )2·(60+20t ),其中0≤t ≤8.V ′(t )=60π(12-t )(2-t ),当t ∈(0,2)时,V ′(t )>0,当t ∈(2,8)时,V ′(t )<0,从而V (t )在(0,2)上单调递增,在(2,8)上单调递减,V (0)=8 640π,V (8)=3 520π,所以当t =8时,V (t )有最小值3 520π,此时金箍棒的底面半径为4 cm.答案 44.设f (x )=x ln x -ax 2+(2a -1)x (常数a >0). (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解 (1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x . 又a >0,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减.∴函数y =g (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12a ,单调递减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.③当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意. 综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.。
2021高考数学导数与函数零点用思维导图破解导数压轴大题用思维导图突破导数压轴题专题3 导数与函数零点函数()f x 零点x 0就是方程()f x =0的根x 0,也是函数()f x 图象与x 轴交点的横坐标x 0.这里函数与方程随时转化,互换角色,充分体现数形结合的思想.函数零点个数转化为方程根的个数,有时把方程()f x =0转化为函数y h x =()与y g x =(),再作函数的图象,从图象确定交点个数,即把求方程根的个数转化为两个函数图象交点的个数.如果连续函数在某个单调区间内两个端点函数值之积为负,则函数在该区间有且仅有一个零点.要求函数的单调区间有回到求其导数的路子上,即转化为前面熟悉的问题.函数零点方程根 求导定调需认真 端点异号那最好 如若不然做转化例1(2019年Ⅰ理第20题)已知函数()sin (1)f x x ln x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.求函数f (x )的零点数:求导判断f (x )的单调性,适当选取区间,确定端点函数值异号形:a =g (x )或h (x )=q (x ) 判断相应函数单调性、值域,确定零点个数或范围结合具体问题运用分析法和相关性质确定端点(一般不唯一,见例2等)结合图象确定零点范围(见例3、例6),有时还需证明(见例1)思路点拨第(1)题:若1()cos 1f x x x '=-+在区间(1,)2π-的极大值点x 0,则在x 0左边,()f x '递增,在x 0右边()f x '递减.这需要考虑()f x ''在x 0左边为正,右边为负,也就是说x 0是()f x '的零点,从而()f x '在0(1,)x -上单调递增;在0(x ,)2π上()f x ''<0,可得()f x '单调递减. 第(2)结论等价于方程sinx=ln(1+x)有且仅有两个不等的实数根.在同一坐标系中分别作出图象可知一根为0,另一根介于(2]2π,之间.从图象可以看出当(1,0)x ∈-和(0,)2π时,sin ln(1)0x x -+>,即()0f x >;当[2,)x ∈+∞,()0f x <.这就需要考虑f ′(x )在(−1,0)、(0,π2]、(π2,2]、(2,+∞)单调性以及端点值的正负.由于x 0位于(0,x 0)和(x 0,π2),还有对这两个区间作相应讨论. 第(2)的思维导图:f '(x)-1yx0π2x 02y =ln(1+x )y =sin x-1yx0π2已知f (x )=sin x -ln(1+x )结论:f (x )有且仅有2个零点sinx=ln(1+x)有两个不等实数根当和时,f (x )>0;当 x ∈ሾ2,+∞)时,f (x )<0当 x ∈ሾ2,+∞)时, f (x )<0等价转化函数方程不等式三者联系很密切相互转化无痕迹根据需要作选择极值两边单调反一撇两撇找零点区分左右大和小增减正负是关键综上,f(x)有且仅有2个零点.思路点拨(1)直接进行求导,分类讨论.(2)由(1)知()f x 在上单调递减,在上单调递增, ()f x 有极小值,若()f x 有两个零点,则,且在该点左右两个区间再各找一个点,其函数值大于0即可,当然也可以把函数有两个零点问题转化为另外两个函数图象有两个交点. 满分解答(1)对函数进行求导可得. ①当时,恒成立,故而函数恒递减.②当时,,解得x >ln 1a ,所以函数在上单调递减,在上单调递增.(2)解1 由(1)知,当时,在上单调递减,故在上至多一个零点,不满足条件;当时,. 令,则,从而在上单调递增,而,故当时,;当时,;当时,.当时,,此时恒成立,从而无零点,不满足条件. 当时,,,此时仅有一个实根,不满足条件.当时,,,注意到,故在上有一个实根. 1,ln a ⎛⎫-∞ ⎪⎝⎭1ln ,a ⎛⎫+∞ ⎪⎝⎭11ln ln 1f a a a ⎛⎫=-+ ⎪⎝⎭()1ln 100a a a-+<>()()()()2'22111x x x xf x ae a e ae e =+--=-+0a ≤()()()'110x xf x ae e =-+≤0a >()()()1'110ln x xf x ae e x a =-+>⇒>1,ln a ⎛⎫-∞ ⎪⎝⎭1ln ,a ⎛⎫+∞ ⎪⎝⎭0a ≤()f x R ()f x R 0a >()min 1()ln 1ln f x f a a a=-=-+()11ln (0)g a a a a=-+>()2110g a a a'=+>()g a ()0,+∞()10g =01a <<()0g a <1a =()0g a =1a >()0g a >1a >()0g a >()0f x >()f x 1a =()0g a =min 1()1ln 0f x a a =-+=()0f x =01a <<()0g a <()min 1()ln 1ln 0f x f a a a=-=-+<22ln 0,(1)10a a a f e e e->-=++->()f x (1,ln )a --而 ,. 故在上有一个实根.又在上单调减,在单调增,故在上至多两个实根.注 怎么知道要算f (-1)>0、3ln(1)0⎛⎫->⎪⎝⎭f a ?事实上,()()[2]=+--x x f x e ae a x ,当x =-1时f (-1)>0;为了再找一点x ,使f (x )>0,因为()()22=+--x xf x ae a e x()=[2]+--x x e ae a x ,注意到0->x e x ,所以只要()21+-=x ae a ,解得3ln(1)=-x a.其实,还可以证f (-2)>0,03ln(1)>-x a 时,3ln(1)0⎛⎫-> ⎪⎝⎭f a . (2)解2 令()0f x =,即()220xxae a e x +--=,所以有22x x x e xa e e+=+.于是函数()f x 有两个零点,即y a =与()22x x x e xg x e e+=+的图象有两个交点.()g x 的导函数为()()()()2211'1xx xxe e x g x e e ++-=-+,当0x <时,()'0g x >;当0x >时,()'0g x <时,所以()g x 在(),0-∞上单调递增,在()0,+∞上单调递减,且()g x 在0x =处取得最大()01g =.当1a ≥时,y a =与()g x 至多有一个零点,不符合题意;当0a ≤时,由于当0x ≥时,()0g x >,而当0x <时,()g x 是单调递增,所以y a=与()g x 至多有一个交点,不符合题意;当01a <<时,一方面,由于()()20,01g a g a -<<=>,且()g x 在()2,0-上单调递增,所以y a =与()g x 在()2,0-上有且仅有一个交点.31ln 1ln ln a a a ⎛⎫->=- ⎪⎝⎭33ln 1ln 133ln(1)e e2ln 1a a f a a a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫-=⋅+--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()33132ln 1a a a a ⎛⎫⎛⎫=-⋅-+--- ⎪ ⎪⎝⎭⎝⎭331ln 10a a ⎛⎫⎛⎫=---> ⎪ ⎪⎝⎭⎝⎭()f x 3ln ln 1a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,()f x ()ln a -∞-,(ln ,)a -+∞()f x R思路点拨 第(1)题要证明不等式()1f x ≥,由于(0)=1f ,结论等价于当0x ≥时,()(0)f x f ≥,只要证明'()0f x >,接下来就是从已知入手证明'()0f x >,也可以把()1f x ≥转化为只要证明210x e x --≥,两边同时除以xe (注:这样构造下面的函数g(x)求导比较方便),不等式转化为2(1)10x x e -+-≤,构造新的函数2()(1)1x g x x e -=+-,只要证明()(0)g x g ≤.第(2)题要求()f x 的零点,如果直接对()f x 求导得'()2x f x e ax =-,要判断其符号就要对a 进行讨论,如果把()f x 转化为22()()x f x x e x a -=-,令2()x h x e x a -=-,则()f x 与()h x 在(0,)+∞零点个数相同,而'3(2)()xx eh x x-=中没有a ,讨论符号方便,运算量会减小.当然,也可把()f x 转化为2()1xx f x e ax e -=-()来解答.还可以用最常见的方法来思考:函数()f x 只有一个零点问题等价转化为方程2xe a x=只有一根问题,从而寻找两函数(y a =与 2()x e G x x =)的图像只有一个交点问题,于是,本小题有下面的3种解法. 满分解答解(1)解 1 因为2()x f x e ax =-,所以'()2x f x e x =-, 令'()2,()2x x g x e x g x e =-=-,由2=0x e -得ln 2x =.当''[0,ln 2),()0;(ln 2,),()0x g x x g x ∈<∈+∞>,所以()g x 在[0,ln 2)上单调递减,在(ln 2,)+∞上单调递增,所以()(ln 2)220,g x g ln ≥=->因此()f x 在[0,)+∞上递增,所以2()1(0)x f x e x f =-≥=.解2 设函数2()(+1)1x g x x e -=-,则'22()(21)(1)x x g x x x e x e --=--+=--, 当1x ≠时,'()0g x <,所以()g x 在[0,)+∞单调递减,从而有()(0)0g x g ≤=,即2(+1)10x x e --≤,整理得,21x e x -≥,故有()1f x ≥.(2)解1因为()f x 在(0,)+∞只有一个零点,由于22()x f x x e x a -=-(),则2()xh x e x a -=-在(0,)+∞只有一个零点,'3(2)()x x e h x x-=,当(0,2)x ∈时,'()0h x <,当(2,)x ∈+∞时,'()0h x >,所以()h x 在(0,2)上递减,在(2,)+∞上递增,所以()h x ≥2(2)4e h a =-.当24e a <时,()h x 在(0,)+∞无零点;当24e a =时,()h x 在(0,)+∞只有一个零点,满足题意;当24e a >时,由(1)可得:()20xg x e x =->,即22()x e h x a a x x=->-,当 20a x ->,此时22x a <<时,()0,h x >取1,x a =故()h x 在1(,2)a有一个零点.由(1)可得当0x >时,2x e x >,有32,3xx e >此时即3222()83()27xx e h x a a x a x x =->-=-,当2728x a >>时,()0,h x >取4,x a =则(4)0h a >,由零点存在定理知()h x 在(2,4)a 有一个零点,此时()f x 在(0,)+∞有两个零点,不合题意.综上所述:24e a =.解2因为()f x 在(0,)+∞只有一个零点,由于2()1xx f x e ax e -=-(),令2()1xh x ax e -=-在(0,)+∞只有一个零点,(i )当0a ≤时,()0h x >,()h x 没有零点; (ii )当0a >时,'(2)()xax x h x e -=; 当(0,2)x ∈时,'()0h x <;当(2,)+∞时,'()0h x >.所以()h x 在(0,2)单调递减,在(2,)+∞单调递增.故有24()(2)1ah x h e ≥=-. 当24e a <时,24()10,a h x e ≥->函数无零点,不合题意;当24e a =时,24()10,a h x e ≥-=函数只有一个零点,满足题意;当24e a >时,24()10,a h x e ≥-<由(0)1h =,所以()h x 在(0,2)有一个零点,由(1)得,当0x >时,2,xe x >所以33342241616161(4)11110()(2)a a a a a h a e e a a=-=->-=->,故有()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上所述,()f x 在(0,+∞)只有一个零点时,24e a =.解3 由()f x 在(0,)+∞只有一个零点可知方程20x e ax -=在(0,)+∞只有一个根,即 2xe a x=在(0,)+∞只有一个根,从而可得函数y a =与 2()x e G x x =的图像在(0,)+∞只有一个交点.'3(2)()x e x G x x-=,当(0,2)x ∈时,'()0G x <,当(2,)x ∈+∞时,'()0,G x >所以()G x 在(0,2)递减,在(2,)+∞递增;当0x →时,()G x →+∞,当x →+∞时,()G x →+∞,所以()f x 在(0,)+∞只有一个零点时,2(2)4e a G ==.思路点拨第(2)题解1是把零点问题转化为不等式问题,又转化为方程解的问题,但不是直接解方程,由于通过条件知道方程的解,就转化为验证是否是方程的解,有效回避解高次方程.解2是通过“两边夹”的方法得到c 的值,再验证其是唯一满足条件的值. 满分解答(1)()ax x x f 232'+=,令()0'=x f ,解得01=x ,322ax -=. 若0=a ,因()032'≥=x x f ,所以函数()x f 在R 上单调递增. 若0>a ,当32ax -<或0>x 时,()0'>x f ; 当032<<-x a 时,()0'<x f ,所以函数()x f 在⎪⎭⎫ ⎝⎛-∞-32,a 和()+∞,0上单调递增,在⎪⎭⎫⎝⎛-0,32a上单调递减.若0<a ,当32ax ->或0<x 时,()0'>x f ; 当320a x -<<时,()0'<x f ;所以函数()x f 在()0,∞-和⎪⎭⎫ ⎝⎛+∞-,32a 上单调递增,在⎪⎭⎫ ⎝⎛-32,0a 上单调递减. (2)解1 ()a c ax x x f -++=23,()ax x x f 232'+=,322ax -=. 由函数()x f 有三个不同的零点知0≠a 且()0320<⎪⎭⎫ ⎝⎛-⋅a f f ,即()02743<⎪⎪⎭⎫ ⎝⎛-+-a c a a c . 又因为a 的解集是()⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,2323,13, .31-=a ,12=a ,233=a 是()02743=⎪⎪⎭⎫ ⎝⎛-+-a c a a c 因为c a =一定是方程的一个根,若分别令31,,32c =-,则只要检验a 的其余两个值是否满足34027a c a +-=. (*) 当1=c 时,3a =-和32a =是(*)的根(32a =是重根);当3-=c 时,32a =和1a =不是(*)的根; 当23=c 时,3a =-和1a =不是(*)的根. 综上所述,1=c .解2 由(1)知,函数()x f 的两个极值为()b f =0,b a af +=⎪⎭⎫ ⎝⎛-327432,则函数()x f 有三个零点等价于()02743203<⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛-⋅b a b a f f ,从而30,40,27a a b >⎧⎪⎨-<<⎪⎩或30,40.27a b a <⎧⎪⎨<<-⎪⎩又a c b -=,所以当0>a 时,02743>+-c a a 或当0<a 时,02743<+-c a a . 设()c a a a g +-=3274,因为函数()x f 有三个零点时,a 的取值范围恰好是(),3-∞-331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,所以当(),3a ∈-∞-时,(g (),3a ∈-∞-时,()0<a g ,且当31,2a ⎛⎫∈ ⎪⎝⎭3,2⎛⎫+∞ ⎪⎝⎭时,()min 0g a >,()0g a >均恒成立,从而()013≤-=-c g ,且0123≥-=⎪⎭⎫ ⎝⎛c g ,因此1=c .此时,()a ax x x f -++=123()()[]ax a x x -+-++=1112,因函数有三个零点,则()0112=-+-+a x a x 有两个异于1-的不等实根, 所以()()2141a a ∆=---2a =+2a 30->,且()()2111320a a a ---+-=-≠,解得()⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a . 综上1=c . 解3 由解1得函数()f x 有三个不同的零点知0a ≠等价于()34027a c a c a ⎛⎫-+-< ⎪⎝⎭,即43222727270424a ca a ca c --+->,其解集恰为()⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a . 又不等式233102a a a +⋅-⋅->()()(),即4322727270424a a a a --+->的解集也是()⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a ,故不等式43222727270424a ca a ca c --+->与不等式4322727270424a a a a --+->同解,比较系数可得1=c .思路点拨第(1)的①可直接求解,②可转换为恒成立问题;(2)由f (0)=2知0就是g(x )的零点,由条件知这是唯一零点.利用导数判断g(x )的单调性,则需唯一的极小值为0,由此得ab 的值. 满分解答①()122xxf x ⎛⎫=+ ⎪⎝⎭,由01a <<可得1222x x+=,则()222210x x -⨯+=,即()2210x -=,则21x =,0x =. ②由题意得221122622xx x x m ⎛⎫++- ⎪⎝⎭≥恒成立. 令122x x t =+,则由20x >可得2t ≥,此时226t mt --≥恒成立,即244t m t t t+=+≤恒成立.因为2t ≥时44t t +=≥,当且仅当2t =时等号成立,因此实数ab 的最大值为4.(2)解1()()22xxg x f x a b =-=+-,()ln 'ln ln ln ln x x x xa b g x a a b b a b b a ⎡⎤⎛⎫=+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 由01a <<,1b >可得1b a >,令()ln ln xb ah x a b ⎛⎫=+ ⎪⎝⎭,则()h x 递增,而ln 0,ln 0a b <>,因此0ln log ln b aa xb ⎛⎫=-⎪⎝⎭时()00h x =,因此, 当()0,x x ∈-∞时,()0h x <,ln 0x a b >,则()'0g x <; 当()0,x x ∈+∞时,()0h x >,ln 0x a b >,则()'0g x >;所以,()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x , ① 若()00g x <,log 2a x <时,log 22ax a a >=,0x b >,则()0g x >;当x >log b 2时,0x a >,log 22bx b b >=,则()0g x >;当1log 2a x <且10x x <时,()10g x >,则()g x 在()10,x x 有零点,当2log 2b x >且20x x >时,()20g x >,则()g x 在()02,x x 有零点,所以()g x 至少有两个零点,与条件矛盾;② 若()00g x ≥,由函数()g x 有且只有1个零点,()g x 最小值为()0g x ,可得()00g x =,由()00020g a b =+-=,因此00x =.因此ln log 0ln b aa b ⎛⎫-= ⎪⎝⎭,即ln 1ln ab -=,即ln ln 0a b +=, 因此()ln 0ab =,则1ab =.解2 因为函数2)()(-=x f x g 只有1个零点,而022)0()0(00=-+=-=b a f g , 所以0是函数)(x g 的唯一零点.由解1知道()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x . 下证00x =.若00x <,则0002x x <<,于是0()(0)02x g g <=,又log 2log 2log 2(log 2)220a a a a g ab a =+->-=,且函数()g x 在以2x 和log 2a 为端点的闭区间上的图象不间断,所以在02x 和log 2a 之间存在()g x 的零点,记为1x .因为01a <<,所以log 20a <,又002x <,所以10x <与“0是函数()g x 的唯一零点”矛盾.若00x >,同理可得,在02x 和log 2a 之间存在()g x 的非0的零点,矛盾. 因此,00x =.于是ln 1ln ab-=,故ln ln 0a b +=,所以1ab =.。
用思维导图突破解导数压轴题专题5 导数与不等式恒成立、有解(存在性)问题函数不等式恒成立问题或不等式有解(存在性)等问题相联系来命题是近年高考常见题型之一,涉及导数知识可能会含有参数讨论。
恒成立问题常通过构造函数y =f (x ),转换为求y =f (x )在某个区间最值问题,这就需要确定y =f (x )导数的符号,为此,往往需要再次构造函数(以y =f (x )导函数中某个不能确定符号的代数式作为新构造函数的解析式),有时还需要分类讨论,分类讨论的标准一般用分析法求出,但解答时却用综合法书写(所以,不少情况下看不懂答案,即不知道分类标准怎么来的)。
有解(存在性)问题常转化为不等式f(x)≤g(x )有解,先求出不等式两边两个函数的最值(值域),根据具体条件确定最值之间的大小关系(或确定值域的包含关系),据此不等式(组)求出相关变量的范围。
如果含有双参数,可以把一个参数看作常数转化为一元变量求解。
此类问题解答思维导图如下: 其一双参可视一常量 构造函数明方向 分类求导是难点 综分结合最理想 其二有解不等恒成立 一式转化看两边 各自判断大和小 相关方法要熟练引例 已知实数,设函数()=ln 1,0.f x a x x x ++>(1)当时,求函数的单调区间; (2)对任意均有 求的取值范围. 注:为自然对数的底数.0a ≠34a =-()f x 21[,)e x ∈+∞(),2x f x a≤a e 2.71828...= 含双参的不等式恒成立、有解(存在性)视其中一参数为常数转化单变量不等式、有解 对恒成立问题:针对具体情况构造函数并求导、判断单调区间(有时可能需要多次构造函数),以求最值,有时要分类讨论(难点),分类标准用分析法,书写用综合法 对存在性:针对具体问题构造不等式f(x)≤g(x ),根据要求分别求两边的最值(值域),然后确定最值之间的大小关系(值域的包含关系)思路点拨第(1)求得,判断其符号有多种方法。
第三节导数与函数的极值、最值❖基础知识1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.①函数f(x)在x0处有极值的必要不充分条件是f′(x0)=0,极值点是f′(x)=0的根,但f′(x)=0的根不都是极值点(例如f(x)=x3,f′(0)=0,但x=0不是极值点).②极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质.极值点是函数在区间内部的点,不会是端点.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.❖常用结论(1)若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.(2)若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.(3)若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.考点一利用导数解决函数的极值问题考法(一)利用导数求函数的极值或极值点[典例](2018·天津高考改编)设函数f(x)=(x-t1)·(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(1)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若d =3,求f (x )的极小值点及极大值.[解] (1)由已知,可得f (x )=x (x -1)(x +1)=x 3-x ,故f ′(x )=3x 2-1.因此f (0)=0,f ′(0)=-1.因此曲线y =f (x )在点(0,f (0))处的切线方程为y -f (0)=f ′(0)(x -0),故所求切线方程为x +y =0. (2)由已知可得f (x )=(x -t 2+3)(x -t 2)(x -t 2-3) =(x -t 2)3-9(x -t 2)=x 3-3t 2x 2+(3t 22-9)x -t 32+9t 2.故f ′(x )=3x 2-6t 2x +3t 22-9.令f ′(x )=0,解得x =t 2-3或x =t 2+ 3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:[解题技法] 求函数的极值或极值点的步骤(1)求导数f ′(x ),不要忘记函数f (x )的定义域; (2)求方程f ′(x )=0的根;(3)检查在方程的根的左右两侧f ′(x )的符号,确定极值点或函数的极值. 考法(二) 已知函数极值点或极值求参数的值或范围[典例] (2018·北京高考节选)设函数f (x )=[ax 2-(3a +1)x +3a +2]e x ,若f (x )在x =1处取得极小值,求a 的取值范围.[解] 由f (x )=[ax 2-(3a +1)x +3a +2]e x ,得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x . 若a >1,则当x ∈⎝⎛⎭⎫1a ,1时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0, 所以f ′(x )>0.所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞).[解题技法]已知函数极值点或极值求参数的2个要领[题组训练]1.设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D ∵f (x )=2x+ln x (x >0),∴f ′(x )=-2x 2+1x ,令f ′(x )=0,则x =2.当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 所以x =2为f (x )的极小值点.2.(2019·广州高中综合测试)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则数对(a ,b )为( )A .(-3,3)B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11)解析:选Cf ′(x )=3x 2+2ax +b ,依题意可得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,消去b 可得a 2-a -12=0,解得a =-3或a =4,故⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x-1)2≥0,这时f (x )无极值,不合题意,舍去,故选C.3.设函数f (x )=ax 3-2x 2+x +c (a >0).(1)当a =1,且函数f (x )的图象过点(0,1)时,求函数f (x )的极小值; (2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围. 解:f ′(x )=3ax 2-4x +1.(1)函数f (x )的图象过点(0,1)时,有f (0)=c =1.当a =1时,f (x )=x 3-2x 2+x +1,f ′(x )=3x 2-4x +1, 由f ′(x )>0,解得x <13或x >1;由f ′(x )<0,解得13<x <1.所以函数f (x )在⎝⎛⎭⎫-∞,13和(1,+∞)上单调递增,在⎝⎛⎭⎫13,1上单调递减, 所以函数f (x )的极小值是f (1)=13-2×12+1+1=1. (2)若f (x )在(-∞,+∞)上无极值点, 则f (x )在(-∞,+∞)上是单调函数,即f ′(x )=3ax 2-4x +1≥0或f ′(x )=3ax 2-4x +1≤0恒成立. 因为a >0,所以f ′(x )=3ax 2-4x +1≥0在(-∞,+∞)上恒成立, 则有Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.故a 的取值范围为⎣⎡⎭⎫43,+∞. 考点二 利用导数解决函数的最值问题[典例] (2017·北京高考)已知函数f (x )=e x cos x -x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. [解] (1)因为f (x )=e x cos x -x ,所以f ′(x )=e x (cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (2)设h (x )=e x (cos x -sin x )-1,则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e x sin x . 当x ∈⎝⎛⎭⎫0,π2时,h ′(x )<0, 所以h (x )在区间⎣⎡⎦⎤0,π2上单调递减. 所以对任意x ∈⎝⎛⎦⎤0,π2,有h (x )<h (0)=0, 即f ′(x )<0.所以函数f (x )在区间⎣⎡⎦⎤0,π2上单调递减. 因此f (x )在区间⎣⎡⎦⎤0,π2上的最大值为f (0)=1, 最小值为f ⎝⎛⎭⎫π2=-π2.[解题技法]导数法求给定区间上函数的最值问题的一般步骤(1)求函数f (x )的导数f ′(x );(2)求f (x )在给定区间上的单调性和极值; (3)求f (x )在给定区间上的端点值;(4)将f (x )的各极值与f (x )的端点值进行比较,确定f (x )的最大值与最小值; (5)反思回顾,查看关键点,易错点和解题规范. [题组训练]1.(2018·珠海摸底)如图,将一张16 cm ×10 cm 的长方形纸片剪下四个全等的小正方形,使得剩余部分经过折叠能糊成一个无盖的长方体纸盒,则这个纸盒的最大容积是________ cm 3.解析:设剪下的四个小正方形的边长为x cm ,则经过折叠以后,糊成的长方体纸盒是一个底面是长为(16-2x ) cm ,宽为(10-2x ) cm 的长方形,其面积为(16-2x )(10-2x )cm 2,长方体纸盒的高为x cm ,则体积V =(16-2x )(10-2x )×x =4x 3-52x 2+160x (0<x <5)cm 3,所以V ′=12(x -2)·⎝⎛⎭⎫x -203,由V ′>0,得0<x <2,则函数V =4x 3-52x 2+160x (0<x <5)在(0,2)上单调递增;由V ′<0,得2<x <5,则函数V =4x 3-52x 2+160x (0<x <5)在(2,5)上单调递减,所以当x =2时,V max =144(cm 3). 答案:1442.已知函数f (x )=ln x -a x.(1)若a >0,试判断f (x )在定义域内的单调性; (2)若f (x )在[1,e]上的最小值为32,求实数a 的值.解:(1)由题意得f (x )的定义域是(0,+∞),且f ′(x )=x +ax 2, 因为a >0,所以f ′(x )>0, 故f (x )在(0,+∞)上单调递增. (2)由(1)可得f ′(x )=x +ax 2,因为x ∈[1,e],①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递增, 所以f (x )min =f (1)=-a =32,所以a =-32(舍去).②若a ≤-e ,则x +a ≤0,即f ′(x )≤0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递减, 所以f (x )min =f (e)=1-a e =32,所以a =-e2(舍去).③若-e<a <-1,令f ′(x )=0,得x =-a , 当1<x <-a 时,f ′(x )<0, 所以f (x )在(1,-a )上单调递减; 当-a <x <e 时,f ′(x )>0, 所以f (x )在(-a ,e)上单调递增,所以f (x )min =f (-a )=ln(-a )+1=32,所以a =- e.综上,a =- e.[课时跟踪检测]A 级1.(2019·辽宁鞍山一中模拟)已知函数f (x )=x 3-3x -1,在区间[-3,2]上的最大值为M ,最小值为N ,则M -N =( )A .20B .18C .3D .0解析:选A ∵f ′(x )=3x 2-3=3(x -1)(x +1),∴f (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,又∵f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1,∴M =1,N =-19,M -N =1-(-19)=20.2.(2018·梅州期末)函数y =f (x )的导函数的图象如图所示,则下列说法错误的是( )A .(-1,3)为函数y =f (x )的单调递增区间B .(3,5)为函数y =f (x )的单调递减区间C .函数y =f (x )在x =0处取得极大值D .函数y =f (x )在x =5处取得极小值解析:选C 由函数y =f (x )的导函数的图象可知,当x <-1或3<x <5时,f ′(x )<0,y =f (x )单调递减;当x >5或-1<x <3时,f ′(x )>0,y =f (x )单调递增.所以函数y =f (x )的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y =f (x )在x =-1,5处取得极小值,在x =3处取得极大值,故选项C 错误.3.(2019·湖北襄阳四校联考)函数f (x )=12x 2+x ln x -3x 的极值点一定在区间( )A .(0,1)内B .(1,2)内C .(2,3)内D .(3,4)内解析:选B 函数的极值点即导函数的零点,f ′(x )=x +ln x +1-3=x +ln x -2,则f ′(1)=-1<0,f ′(2)=ln 2>0,由零点存在性定理得f ′(x )的零点在(1,2)内,故选B.4.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( ) A .[-3,+∞) B .(-3,+∞) C .(-∞,-3)D .(-∞,-3]解析:选D 由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:5.(2019·皖南八校联考)已知函数f (x )=-13x 3+bx 2+cx +bc 在x =1处有极值-43,则b =( )A .-1B .1C .1或-1D .-1或3解析:选A f ′(x )=-x 2+2bx +c ,因为f (x )在x =1处有极值-43,所以⎩⎪⎨⎪⎧f ′(1)=-1+2b +c =0,f (1)=-13+b +c +bc =-43,Δ=4b 2+4c >0,解得⎩⎪⎨⎪⎧b =-1,c =3,故选A.6.设直线x =t 与函数h (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |最小时t 的值为( )A .1 B.12C.52D.22解析:选D 由已知条件可得|MN |=t 2-ln t ,设f (t )=t 2-ln t (t >0),则f ′(t )=2t -1t ,令f ′(t )=0,得t =22, 当0<t <22时,f ′(t )<0;当t >22时,f ′(t )>0. ∴当t =22时,f (t )取得最小值,即|MN |取得最小值时t =22. 7.(2019·江西阶段性检测)已知函数y =ax -1x2在x =-1处取得极值,则a =________.解析:因为y ′=a +2x 3,所以当x =-1时,a -2=0,所以a =2,经验证,可得函数y =2x -1x 2在x =-1处取得极值,因此a =2. 答案:28.f (x )=2x +1x 2+2的极小值为________.解析:f ′(x )=2(x 2+2)-2x (2x +1)(x 2+2)2=-2(x +2)(x -1)(x 2+2)2.令f ′(x )<0,得x <-2或x >1; 令f ′(x )>0,得-2<x <1.∴f (x )在(-∞,-2),(1,+∞)上是减函数,在(-2,1)上是增函数, ∴f (x )极小值=f (-2)=-12.答案:-129.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________百万件. 解析:y ′=-3x 2+27=-3(x +3)(x -3),当0<x <3时,y ′>0;当x >3时,y ′<0. 故当x =3时,该商品的年利润最大. 答案:310.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________. 解析:因为f ′(x )=3x 2+6ax +3b ,所以⎩⎪⎨⎪⎧ f ′(2)=3×22+6a ×2+3b =0,f ′(1)=3×12+6a +3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0.所以y ′=3x 2-6x ,令3x 2-6x =0,得x =0或x =2. 当x <0或x >2时,y ′>0;当0<x <2时,y ′<0.故当x =0时,f (x )取得极大值,当x =2时,f (x )取得极小值, 所以f (x )极大值-f (x )极小值=f (0)-f (2)=4. 答案:411.设函数f (x )=a ln xx+b (a ,b ∈R ),已知曲线y =f (x )在点(1,0)处的切线方程为y =x -1.(1)求实数a ,b 的值; (2)求f (x )的最大值.解:(1)因为f (x )的定义域为(0,+∞),f ′(x )=a (1-ln x )x 2.所以f ′(1)=a ,又因为切线斜率为1,所以a =1. 由曲线y =f (x )过点(1,0),得f (1)=b =0. 故a =1,b =0.(2)由(1)知f (x )=ln xx ,f ′(x )=1-ln x x 2.令f ′(x )=0,得x =e.当0<x <e 时,有f ′(x )>0,得f (x )在(0,e)上是增函数; 当x >e 时,有f ′(x )<0,得f (x )在(e ,+∞)上是减函数. 故f (x )在x =e 处取得最大值f (e)=1e .12.已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解:(1)当a =12时,f (x )=ln x -12x ,函数f (x )的定义域为(0,+∞),f ′(x )=1x -12=2-x2x.令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )(2)由(1)知,函数f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x(x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a >0时,令f ′(x )=0,得x =1a .当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0, 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0, 故函数f (x )在x =1a处有极大值.综上所述,当a ≤0时,函数f (x )无极值点; 当a >0时,函数f (x )有一个极大值点.B 级1.已知函数f (x )=x 3-3ax +b 的单调递减区间为(-1,1),其极小值为2,则f (x )的极大值是________. 解析:因为f (x )的单调递减区间为(-1,1),所以a >0.由f ′(x )=3x 2-3a =3(x -a )(x +a ),可得a =1, 由f (x )=x 3-3x +b 在x =1处取得极小值2, 可得1-3+b =2,故b =4.所以f (x )=x 3-3x +4的极大值为f (-1)=(-1)3-3×(-1)+4=6. 答案:62.(2019·“超级全能生”高考全国卷26省联考)已知函数f (x )=t 3x 3-32x 2+2x +t 在区间(0,+∞)上既有极大值又有极小值,则t 的取值范围是________.解析:f ′(x )=tx 2-3x +2,由题意可得f ′(x )=0在(0,+∞)上有两个不等实根,即tx 2-3x +2=0在(0,+∞)有两个不等实根,所以⎩⎪⎨⎪⎧t ≠0,3t >0,2t >0,Δ=9-8t >0,解得0<t <98.答案:⎝⎛⎭⎫0,98 3.已知函数f (x )=a ln x +1x(a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.贾老师数学解:由题意,知函数的定义域为(0,+∞),f ′(x )=a x -1x 2=ax -1x 2(a >0). (1)由f ′(x )>0,解得x >1a, 所以函数f (x )的单调递增区间是⎝⎛⎭⎫1a ,+∞; 由f ′(x )<0,解得0<x <1a, 所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1a . 所以当x =1a 时,函数f (x )有极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a ,无极大值. (2)不存在实数a 满足条件.由(1)可知,当x ∈⎝⎛⎭⎫0,1a 时,函数f (x )单调递减; 当x ∈⎝⎛⎭⎫1a ,+∞时,函数f (x )单调递增.①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数, 故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件a ≥1.②若1<1a <e ,即1e<a <1时,函数f (x )在⎣⎡⎭⎫1,1a 上为减函数,在⎝⎛⎦⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a =a (1-ln a )=0,即ln a =1,解得a =e ,故不满足条件1e<a <1. ③若1a ≥e ,即0<a ≤1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e=a +1e=0, 即a =-1e ,故不满足条件0<a ≤1e. 综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.。
用思维导图突破导数压轴题解答数学题的“思维导图”:逛公园顺道看景,好风光驻足留影. 把条件翻成图式,关键处深挖搞清. 综合法由因导果,分析法执果索因. 两方法嫁接联姻,让难题无以遁形.这里把解题比作逛公园,沿路而行,顺道看景,既有活跃气氛,又有借景喻理之意,即理解题意后把已知条件“翻译”出来,如果能得到结论那是最好,如果不行就要转化,即从已知条件入手推出中间结论(可知),当中间结论能直接证明最终结论时,则解题成功.当中间结论不能直接证明最终结论时,可把最终结论等价转化为“需知”,再用中间结论证明“需知”从而达到解题目的.有时还要挖掘题目的隐含条件.从某种意义上说,解题就是“找关系”----找出已知与未知的联系,不断缩小以至消除二者之间的差距,从而达到解题目的.这个思维导图不仅是用来解答压轴题,其实,每个层次的学生都有相应的难题。
中等以下水平的学生高考基本不用做压轴题的,但他们做中档题会有困难,思维导图一样适用。
专题01 导数与函数的最(极)值问题利用导数求函数f (x )极值、最值的基本方法是先求f (x )的导数f 'x (),再求f 'x ()的零点i x ,i N ∈,根据f 'x ()在i x 两边的符号判断的单调性,最后确定i f x ()是极大值或极小值,再确定最值。
先求导数 再定零点 考查单调极值来了思路点拨第(1)只要直接计算即可。
第(2)题先求出()f x 和()f x '的含参数零点(用a 、b 表示),再根据零点均在集合{3-,1,3}中确定a 、b 的值。
第(3)题求出()f x '的零点12,x x (设12x x <),根据单调性确定极大值为321111()(1)=-++f x x b x bx ,这里含有两个变量,最容易想到的方法就是转化为一元变量,但恒等变形能力要求较高,也可以挖掘隐含条件利用基本不等式整体消元。
第(3)解题思维导图如下:.(2)a b ≠,b c =,设2()()()f x x a x b =--, 令2()()()0f x x a x b =--=,解得x a =,或x b =.又2()()2()()()(32)f x x b x a x b x b x b a '=-+--=---,令()0f x '=,解得x b =,或23a bx +=. 因为()f x 和()f x '的零点均在集合{3A =-,1,3}中,所以3a =-,1b =,则2615333a b A +-+==-∉,舍去; 1a =,3b =-,则2231333a b A +-==-∉,舍去; 3a =-,3b =,则263133a b A +-+==-∉,舍去; 3a =,3b =-,则263133a b A +-==∈; 3a =,1b =,则2617333a b A ++==∉,舍去; 1a =,3b =,则2533a b A +=∉,舍去.因此3a =,3b =-,213a bA +=∈,从而2()(3)(3)f x x x =-+,()3[(3)](1)f x x x '=---, 令()0f 'x =,得3x =-或1x =.列表如下:从而可知,()f x 的单调递增区间为(−∞,−3]和[1,+∞),单调递减区间为[−3,1],由此可知当1x =时,函数()f x 取得极小值,2(1)2432f =-⨯=-.(3)证明:0a =,01b <„,1c =,()()(1)f x x x b x =--,则2()()(1)(1)()3(22)f x x b x x x x x b x b x b '=--+-+-=-++.因为△22214(1)124444()332b b b b b =+-=-+=-+…,所以()0f x '=有两实根12,x x ,设12x x <,则()f x 单调递增区间为(−∞,1x ]和[2x ,+∞),单调递减区间为12[,]x x ,于是()f x 取得极大值为1111()()(1)M f x x x b x ==--。
专题3.5 导数与函数的极值、最值1.函数的极值与导数条件f ′(x 0)=0x 0附近的左侧f ′(x )>0,右侧f ′(x )<0x 0附近的左侧f ′(x )<0,右侧f ′(x )>0图象极值 f (x 0)为极大值 f (x 0)为极小值 极值点x 0为极大值点x 0为极小值点2.函数的最值(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【题型1 根据函数图象判断极值】【方法点拨】由图象判断函数y=f(x)的极值,要抓住两点:(1)由y=f′(x)的图象与x轴的交点,可得函数y=f(x)的可能极值点;(2)由导函数y=f′(x)的图象可以看出y=f′(x)的值的正负,从而可得函数y=f(x)的单调性.两者结合可得极值点.【例1】(2022春•杨浦区校级期末)已知函数y=f(x)(a<x<b)的导函数是y=f'(x)(a<x<b),导函数y=f'(x)的图象如图所示,则函数y=f(x)在(a,b)内有()A.3个驻点B.4个极值点C.1个极小值点D.1个极大值点【解题思路】由题意结合导函数图像即可确定函数的性质.【解答过程】解:由导函数的图象可知,原函数存在4个驻点,函数有3个极值点,其中2个极大值点,1个极小值点.故选:C.【变式1-1】(2022春•纳雍县期末)已知函数f(x)的导函数的图像如图所示,则下列结论正确的是()A.﹣1是f(x)的极小值点B.曲线y=f(x)在x=2处的切线斜率小于零C.f(x)在区间(﹣∞,3)上单调递减D.﹣3是f(x)的极小值点【解题思路】根据题意,由函数导数与单调性的关系依次分析选项,即可得答案.【解答过程】解:根据题意,依次分析选项:对于A,在x=﹣1左右都有f′(x)<0,﹣1不是f(x)的极值,A错误;对于B,f′(x)的图象在(﹣3,3)上,f′(x)<0,f(x)为减函数,则曲线y=f(x)在x=2处的切线斜率即f′(2)小于零,B正确;对于C,f′(x)的图象在(﹣∞,﹣3)上,f′(x)>0,f(x)为增函数,C错误;对于D,f′(x)的图象在(﹣∞,﹣3)上,f′(x)>0,在(﹣3,3)上,f′(x)<0,则﹣3是f (x)的极大值点,D错误;故选:B.【变式1-2】(2022春•朝阳区校级月考)如图,可导函数y=f(x)在点P(x0,f(x0))处的切线方程为y=g(x),设h(x)=g(x)﹣f(x),h'(x)为h(x)的导函数,则下列结论中正确的是()A.h'(x0)=0,x0是h(x)的极大值点B.h'(x0)=0,x0是h(x)的极小值点C.h'(x0)≠0,x0不是h(x)的极大值点D.h'(x0)≠0,x0是h(x)的极值点【解题思路】由图判断函数h(x)的单调性,结合y=g(x)为y=f(x)在点P处的切线方程,则有h'(x0)=0,由此可判断极值情况.【解答过程】解:由题得,当x∈(﹣∞,x0)时,h(x)单调递减,当x∈(x0,+∞)时,h(x)单调递增,又h'(x0)=g'(x0)﹣f'(x0)=0,则有x0是h(x)的极小值点,故选:B.【变式1-3】(2022春•南阳期末)函数f(x)的导函数是f'(x),下图所示的是函数y=(x+1)•f'(x)(x∈R)的图像,下列说法正确的是()A.x=﹣1是f(x)的零点B.x=2是f(x)的极大值点C.f(x)在区间(﹣2,﹣1)上单调递增D.f(x)在区间[﹣2,2]上不存在极小值【解题思路】根据函数y=(x+1)•f'(x)(x∈R)的图像判断f′(x)的符号,进而判断f(x)的单调性和极值即可.【解答过程】解:由函数y=(x+1)•f'(x)(x∈R)的图像知,当﹣2<x<﹣1时,x+1<0,y>0,∴f'(x)<0,f(x)在(﹣2,﹣1)上减函数,当﹣1<x<2时,x+1>0,y>0,∴f'(x)>0,f(x)在(﹣1,2)上增函数,当x>2时,x+1>0,y<0,f'(x)<0,f(x)在(2,+∞)上减函数,∴x=﹣1、x=2分别是f(x)的极小值点、极大值点.∴选项A、C、D错误,选项B正确,故选:B.【题型2 求已知函数的极值(点)】【方法点拨】求函数f(x)极值的一般解题步骤:①确定函数的定义域;②求导数f′(x);③解方程f′(x)=0,求出函数定义域内的所有根;④列表检验f′(x)在f′(x)=0的根x0左右两侧值的符号.【例2】(2022•扬中市校级开学)已知函数f(x)=12x−sinx在[0,π2]上的极小值为()A .π12−√32B .π12−12C .π6−12D .π6−√32【解题思路】根据极小值的定义,结合导数的性质进行求解即可. 【解答过程】解:由f(x)=12x −sinx ⇒f′(x)=12−cosx , 当x ∈(0,π3)时,f ′(x )<0,f (x )单调递减,当x ∈(π3,π2)时,f ′(x )>0,f (x )单调递增,所以π3是函数的极小值点,极小值为:f(π3)=π6−√32, 故选:D .【变式2-1】(2022春•资阳期末)函数f (x )=x 3﹣3x 的极大值为( ) A .﹣4B .﹣2C .1D .2【解题思路】求导,利用导数确定f (x )的单调区间,从而即可求极大值. 【解答过程】解:因为f (x )=x 3﹣3x ,x ∈R , 所以f ′(x )=3x 2﹣3=3(x +1)(x ﹣1), 令f ′(x )=0,得x =﹣1或x =1,所以当x <﹣1时,f ′(x )>0,f (x )单调递增;当﹣1<x <1时,f ′(x )<0,f (x )单调递减;当x >1时,f ′(x )>0,f (x )单调递增;所以f (x )的单调递增区间为:(﹣∞,﹣1),(1,∞);单调递减区间为(﹣1,1). 所以f (x )极大值=f (﹣1)=2. 故选:D .【变式2-2】(2022春•平谷区期末)函数f (x )=x +2cos x 在[0,π]上的极小值点为( ) A .π3B .π6C .5π6D .2π3【解题思路】分析函数导数的符号变化,由此可得函数的单调性,由单调性得出结论即可. 【解答过程】解:对于函数f (x )=x +2cos x ,f ′(x )=1﹣2sin x , 因为x ∈[0,π],当0<x <π6时,f ′(x )>0, 当π6<x <5π6时,f ′(x )<0,当5π6<x <π时,f ′(x )>0,所以f (x )在区间[0,π6]上是增函数,在区间[π6,5π6]上是减函数,在[5π6,π]是增函数. 因此,函数f (x )=x +2cos x 在[0,π]上的极小值点为5π6.故选:C .【变式2-3】(2022春•新乡期末)已知函数f (x )=(x ﹣1)2(2﹣x )3,则f (x )的极大值点为( ) A .1B .75C .﹣1D .2【解题思路】解:因为f '(x )=2(x ﹣1)(2﹣x )3﹣3(x ﹣1)2(2﹣x )2=(x ﹣1)(2﹣x )2(7﹣5x ),所以f (x )在(﹣∞,1),(75,+∞)上单调递减,在(1,75)上单调递增, 所以f (x )的极大值点为75,故选:B .【解答过程】解:f '(x )=2(x ﹣1)(2﹣x )3﹣3(x ﹣1)2(2﹣x )2=(x ﹣1)(2﹣x )2(7﹣5x ), 令f ′(x )=0得x =1或x =75,所以f (x )在(﹣∞,1),(75,+∞)上单调递减,在(1,75)上单调递增, 所以f (x )的极大值点为75,故选:B .【题型3 由函数的极值(点)求参数】 【方法点拨】根据函数极值情况求参数的两个要领:①列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解. ②验证:求出参数后,验证所求结果是否满足题意.【例3】(2022春•龙海市校级期末)函数f (x )=4x 3﹣ax 2﹣2bx +2在x =1处有极大值﹣3,则a ﹣b 的值等于( ) A .0B .6C .3D .2【解题思路】对函数求导,利用f (1)=﹣3以及f ′(1)=0解出a ,b ,进而得出答案. 【解答过程】解:由题意得f ′(x )=12x 2﹣2ax ﹣2b ,因为f (x )在x =1处有极大值﹣3, 所以f ′(1)=12﹣2a ﹣2b =0,f (1)=4﹣a ﹣2b +2=﹣3,解得a =3,b =3, 所以a ﹣b =0. 故选:A .【变式3-1】(2022春•哈尔滨期末)若函数f(x)=6alnx +12x 2−(a +6)x 有2个极值点,则实数a 的取值范围是()A.(﹣∞,6)∪(6,+∞)B.(0,6)∪(6,+∞)C.{6}D.(0,+∞)【解题思路】根据条件函数f(x)有两个极值点,转化为方程f′(x)=0有两个不等正实数根,得到求解.【解答过程】解:函数f(x)的定义域(0,+∞),f′(x)=6ax+x−(a+6)=(x−6)(x−a)x,令f′(x)=0得,x=6或x=a,∵函数f(x)有2个极值点,∴f'(x)=0有2个不同的正实数根,∴a>0且a≠6,故选:B.【变式3-2】(2022春•淄博期末)已知x=2是函数f(x)=ax3﹣3x2+a的极小值点,则f(x)的极大值为()A.﹣3B.0C.1D.2【解题思路】先对函数求导,然后结合极值存在条件可求a,进而可求函数的极大值.【解答过程】解:因为f′(x)=3ax2﹣6x,由题意可得,f′(2)=12a﹣12=0,故a=1,f′(x)=3x2﹣6x,当x>2或x<0时,f′(x)>0,函数单调递增,当0<x<2时,f′(x)<0,函数单调递减,故当x=0时,函数取得极大值f(0)=1.故选:C.【变式3-3】(2022春•赣州期末)已知函数f(x)=x3+a2x2+(2b2﹣7)x+1(a>0,b>0)在x=1处取得极值,则a+b的最大值为()A.1B.√2C.2D.2√2【解题思路】根据题意,对函数求导,令f′(1)=0可求得a2+b2=2,利用基本不等式可求a+b的最大值.【解答过程】解:函数f(x)=x3+a2x2+(2b2﹣7)x+1(a>0,b>0)的导数为f′(x)=3x2+2a2x+2b2﹣7,因为函数在x=1处取得极值,所以f′(1)=3+2a2+2b2﹣7=0,即a2+b2=2,因为a 2+b 2=(a +b )2﹣2ab =2,即(a +b )2﹣2=2ab , 因为ab ≤(a+b 2)2,所以(a +b)2−2≤2(a+b 2)2, 整理得(a +b )2≤4,所以a +b ≤2,当且仅当a =b =1时等号成立,此时f ′(x )=3x 2+2x ﹣5=(3x +5)(x ﹣1),满足函数在x =1处取得极值, 所以a +b 的最大值为2, 故选:C .【题型4 利用导数求函数的最值】 【方法点拨】(1)若函数f (x )在闭区间[a ,b ]上单调递增或单调递减,f (a )与f (b )一个为最大值,一个为最小值. (2)若函数f (x )在闭区间[a ,b ]内有极值,要先求出[a ,b ]上的极值,与f (a ),f (b )比较,最大的是最大值, 最小的是最小值,可列表完成.(3)函数f (x )在区间(a ,b )上有唯一一个极大(或极小)值点,这个极值点就是最大(或最小)值点,此结论在导 数的实际应用中经常用到.【例4】(2022•河南开学)函数f(x)=x 2−2x +8x 在(0,+∞)上的最小值为( ) A .2B .3C .4D .5【解题思路】由题意求导,从而确定函数的单调性,从而求函数的最值.【解答过程】解:因为f ′(x)=2x −2−8x 2=(x 3−2x 2)+(x 3−8)x 2=(x−2)(2x 2+2x+4)x 2,所以f (x )在(0,2)上单调递减,在(2,+∞)上单调递增, 故f (x )min =f (2)=4. 故选:C .【变式4-1】(2022春•中山市校级月考)函数y =x ﹣2sin x 在区间[0,2]上的最小值是( ) A .π6−√3B .−π3−√3C .−π6−√3D .π3−√3【解题思路】利用导数研究函数区间单调性,进而求其最小值即可. 【解答过程】解:由y ′=1﹣2cos x , 当0≤x <π3时,y ′<0,即y 递减; 当π3<x ≤2时,y ′>0,即y 递增;所以y min =π3−2sin π3=π3−√3.【变式4-2】(2022春•乐山期末)已知函数f (x )=x 2﹣lnx ,则函数f (x )在[1,2]上的最小值为( ) A .1B .√22C .18+12ln2 D .12+12ln2【解题思路】求导确定函数在[1,2]上的单调性,求出最小值即可.【解答过程】解:因为f (x )=x 2﹣lnx (x >0),所以f ′(x )=2x −1x =2x 2−1x ,所以当x ∈[1,2]时,f ′(x )=2x 2−1x >0,则f (x )在[1,2]上单调递增,则f (x )在[1,2]上的最小值为f (1)=1. 故选:A .【变式4-3】(2022•绿园区校级开学)函数f (x )=lnx +1x −12与g (x )=xe x ﹣lnx ﹣x 的最小值分别为a ,b ,则( ) A .a =b B .a >bC .a <bD .a ,b 的大小不能确定【解题思路】根据函数的单调性分别求出函数f (x ),g (x )的最小值,比较a ,b 即可. 【解答过程】解:f (x )的定义域是(0,+∞), f ′(x)=1−1x =x−1x, 令f ′(x )<0,解得:0<x <1,令f ′(x )>0,解得:x >1, f (x )在(0,1)递减,在(1,+∞)递增, f (x )的最小值是f (1)=1,故a =1, g (x )=xe x ﹣lnx ﹣x ,定义域(0,+∞), g ′(x)=(x +1)e x −1x −1=x+1x (xe x −1),令h (x )=xe x ﹣1,则h ′(x )=(x +1)e x >0,x ∈(0,+∞),则可得h (x )在(0,+∞)上单调递增,且h (0)=﹣1<0,h (1)=e ﹣1>0, 故存在x 0∈(0,1)使得h (x )=0即x 0e x 0=1,即x 0+lnx 0=0, 当x ∈(0,x 0)时,h (x )<0,g ′(x )<0,函数g (x )单调递减, 当x ∈(x 0,+∞)时,g ′(x )>0,函数g (x )单调递增,故当x =x 0时,函数取得最小值g(x 0)=x 0e x 0−lnx 0−x 0=1−lnx 0−x 0=1,即b =1, 所以a =b ,【题型5 由函数的最值求参数】【例5】(2022春•烟台期末)若函数f(x)=x 3−3a 2x 2+4在区间[1,2]上的最小值为0,则实数a 的值为( ) A .﹣2B .﹣1C .2D .103【解题思路】对函数求导后,分a ≤0和a >0两种情况求出函数的单调区间,从而可求出函数的最小值,使最小值等于零,从而可出实数a 的值. 【解答过程】解:由f(x)=x 3−3a 2x 2+4,得f '(x )=3x 2﹣3ax =3x (x ﹣a ), 当a ≤0时,f '(x )>0在[1,2]上恒成立, 所以f (x )在[1,2]上递增,所以f(x)min =f(1)=1−3a2+4=0,解得a =103(舍去), 当a >0时,由f '(x )=0,得x =0或x =a , 当0<a ≤1时,f '(x )>0在[1,2]上恒成立, 所以f (x )在[1,2]上递增, 所以f(x)min =f(1)=1−3a 2+4=0,解得a =103(舍去), 当1<a <2时,当1<x <a 时,f '(x )<0,当a <x <2时,f '(x )>0, 所以f (x )在(1,a )上递减,在(a ,2)上递增,所以当x =a 时,f (x )取得最小值,所以f(a)=a 3−3a2a 2+4=0,解得a =2(舍去), 当a ≥2时,当1≤x ≤2时,f '(x )<0,所以f (x )在[1,2]上递减, 所以f(x)min =f(2)=23−3a2×4+4=0,解得a =2, 综上,a =2, 故选:C .【变式5-1】(2022春•贵阳期末)若函数f(x)=e x +lnx +x √x −1+a 在x ≤20222021上的最小值为e +1,则a 的值为( ) A .0B .1C .20202021D .20212020【解题思路】判断函数f (x )的定义域,可知函数f (x )在定义域上单调递增,由此可建立关于a 的方程,解出即可得到答案.【解答过程】解:函数的定义域为[1,20222021],而函数y =e x ,y =lnx ,y =x √x −1在[1,+∞)上均为增函数,∴函数f(x)=e x +lnx +x √x −1+a 在[1,20222021]单调递增, ∴f (x )min =f (1)=e +a =e +1,解得a =1. 故选:B .【变式5-2】(2022春•江北区校级期末)若函数f (x )=x 3﹣3x 在区间(2a ,a +3)上有最小值,则实数a 的取值范围是( ) A .(−2,12)B .(﹣2,1)C .[−1,12)D .(﹣2,﹣1]【解题思路】由导数性质得f (x )的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1),x =1时,f (x )min =﹣2.由此利用函数性质列不等式即可求解a 的范围. 【解答过程】解:∵f (x )=x 3﹣3x ,∴f ′(x )=3x 2﹣3, 由f ′(x )=0,得x =±1,x ∈(﹣∞,﹣1)时,f ′(x )>0;x ∈(﹣1,1)时,f ′(x )<0;x ∈(1,+∞)时,f ′(x )>0, ∴f (x )的增区间是(﹣∞,﹣1),(1,+∞),减区间是(﹣1,1), ∴x =1时,f (x )min =﹣2. f (x )=x 3﹣3x =﹣2时, x 3﹣3x +2=0,x 3﹣x ﹣2x +2=0, x (x 2﹣1)﹣2x +2=0,x (x +1)(x ﹣1)﹣2(x ﹣1)=0, (x 2+x )(x ﹣1)﹣2(x ﹣1)=0, (x ﹣1)(x 2+x ﹣2)=0, (x ﹣1)(x +2)(x ﹣1)=0, (x ﹣1)2(x +2)=0, 解得x =1,x =﹣2,∴﹣2≤2a <1<a +3,∴﹣1≤a <12. 即实数a 的取值范围是[﹣1,12),故选:C.【变式5-3】(2022春•公安县校级月考)已知函数f(x)=x2e ax+1﹣2lnx﹣ax﹣2,若f(x)的最小值为0对任意x>0恒成立,则实数a的最小值为()A.2√eB.−2e C.1√eD.√e【解题思路】把f(x)转化为f(x)=e2lnx+ax+1﹣(2lnx+ax+1)﹣1,证明e x﹣1≥x恒成立,得到f(x)≥0恒成立,从而得到a=−2lnx−1x,令g(x)=−2lnx−1x,利用导数求出函数g(x)的最小值即可求出结果.【解答过程】解:∵函数f(x)=x2e ax+1﹣2lnx﹣ax﹣2,∴f(x)=e lnx2+ax+1−(lnx2+ax+1)−1,令t=lnx2+ax+1,则h(t)=e t﹣t﹣1,f′(t)=e t﹣1,当t∈(﹣∞,0)时h′(t)<0,h(t)单调递减,当t∈(0,+∞)时,h′(t)>0,h(t)单调递增,∴h(t)≥h(0)=0,∴f(x)=e lnx2+ax+1−(lnx2+ax+1)−1≥0,等号成立的条件是lnx2+ax+1=0,即a=−1−2lnxx在(0,+∞)上有解,设g(x)=−2lnx+1x,则g′(x)=−2−(2lnx+1)x2=2lnx−1x2,令g′(x)=0,解得x=√e,∴当x∈(0,√e)时,g′(x)<0,g(x)单调递减,当x∈(√e,+∞)时,g′(x)>0,g(x)单调递增,∴g(x)min=g(√e)=2√e,即a的最小值为2√e.故选:A.【题型6 极值和最值的综合问题】【方法点拨】解决函数极值、最值综合问题的策略:(1)求极值、最值时,要求步骤规范,含参数时,要讨论参数的大小.(2)求函数最值时,不可想当然地认为极值点就是最值点,要通过比较才能下结论.(3)函数在给定闭区间上存在极值,一般要将极值与端点值进行比较才能确定最值.【例6】(2022春•城厢区校级期末)已知函数f(x)=x3−32(k+1)x2+3kx+1,其中k∈R.(1)当k=3时,求函数f(x)在(0,3)内的极值点;(2)若函数f(x)在[1,2]上的最小值为3,求实数k的取值范围.【解题思路】(1)首先求得导函数,然后利用导函数研究函数的单调性,据此可求得函数的值域;(2)求得函数的解析式,然后结合导函数的符号确定函数的单调性,分类讨论即可求得实数k的取值范围.【解答过程】解:(1)k=3时,f(x)=x3﹣6x2+9x+1,则f'(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),令f'(x)=0得x1=1,x2=3,当x<1时,f′(x)>0,f(x)单调递增;当1<x<3时,f′(x)<0,f(x)单调递减;当x>3时,f′(x)>0,f(x)单调递增;所以f(x)的单调递增区间为(﹣∞,1),(3,+∞),单调递减区间为(1,3);所以f(x)在(0,1)上单调递增,在(1,3)上单调递减.故f(x)在(0,3)内的极大值点为x=1,无极小值点;(2)方法一:f'(x)=3x2﹣3(k+1)x+3k=3(x﹣1)(x﹣k),①当k≤1时,∀x∈[1,2],f'(x)≥0,函数f(x)在区间[1,2]单调递增,所以f(x)min=f(1)=1−32(k+1)+3k+1=3,即k=53(舍);②当k≥2时,∀x∈[1,2],f'(x)≤0,函数f(x)在区间[1,2]单调递减,所以f(x)min=f(2)=8﹣6(k+1)+3k⋅2+1=3,符合题意;③当1<k<2时,当x∈[1,k)时,f'(x)≤0,f(x)区间在[1,k)单调递减,当x∈(k,2]时,f'(x)>0,f(x)区间在(k,2]单调递减,所以f(x)min=f(k)=k3−32(k+1)k2+3k2+1=3,化简得:k3﹣3k2+4=0,即(k+1)(k﹣2)2=0,所以k=﹣1或k=2(都舍);综上所述:实数k取值范围为k≥2.【变式6-1】(2022春•德州期末)已知函数f(x)=x3−3ax+1(a>12 ).(1)若函数f(x)在x=﹣1处取得极值,求实数a的值;(2)当x∈[﹣2,1]时.求函数f(x)的最大值.【解题思路】(1)利用导数求得函数极值,代入计算即可得到a的值;(2)f'(x)=0的根分类讨论,然后列表表示f'(x)的正负,极值点,同时注意比较端点处函数值,从而得最大值.【解答过程】解:(1)由题意可知f'(x)=3x2﹣3a,因为函数f(x)在x=﹣1处取得极值,所以f'(﹣1)=0,即3﹣3a=0,解得a=1,经检验a=1,符合题意,所以a=1;(2)由(1)知f'(x)=3x2﹣3a,令f'(x)=0,x=±√a,当0<√a<1,即0<a<1时,f(x)和f'(x)随x的变化情况如下表:x﹣2(−2,−√a)−√a(−√a,√a)√a(√a,1)1 f'(x)+0﹣0+f(x)﹣7+6a单调递增单调递减单调调增2﹣3a由表格可知f(x)在x=−√a取极大值,此时f(−√a)=2a√a+1>2−3a,所以f(x)在[﹣2,1]的最大值为2a√a+1.当1≤√a<2,即1≤a<4时,f(x)和f'(x)随x的变化情况如下表:x﹣2(−2,−√a)−√a(−√a,1)1f'(x)+0﹣f(x)﹣7+6a单调递增单调递减2﹣3a由表格可知f(x)在x=−√a取极大值,此时f(−√a)=2a√a+1>2−3a,所以f(x)在[﹣2,1]的最大值为2a√a+1.当√a≥2即a≥4时,f'(x)=3x2﹣3a≤0恒成立,即f(x)在[﹣2,1]上单调递减,所以f(x)的最大值为f (﹣2)=﹣7+6a ,综上所述,当12<a <4时,f (x )的最大值为2a √a +1;当a ≥4时,f (x )的最大值为﹣7+6a .【变式6-2】(2022春•漳州期末)已知函数f(x)=(x −1)e x −t2x 2−2x ,f '(x )为f (x )的导函数,函数g (x )=f '(x ).(1)当t =1时,求函数g (x )的最小值;(2)已知f (x )有两个极值点x 1,x 2(x 1<x 2)且f(x 1)+52e −1<0,求实数t 的取值范围. 【解题思路】(1)当t =1时,根据题意可得g (x )=xe x ﹣tx ﹣2,求导得g '(x )=(x +1)e x ﹣1,分析g (x )的单调性,进而可得g (x )min .(2)问题可化为t =e x −2x,有两个根x 1,x 2,令ℎ(x)=e x −2x,则ℎ′(x)=e x +2x 2>0,求导分析单调性,又x →﹣∞时,h (x )→0;x →+∞时,h (x )→+∞且ℎ(12)<0,推出t >0且t =e x 1−2x 1=e x 2−2x 2(x 1<0<x 2),分析f (x 1)的单调性,又φ(−1)=−52e +1,推出﹣1<x 1<0,即可得出答案.【解答过程】解:g (x )=f '(x )=xe x ﹣tx ﹣2,(1)当t =1时,g (x )=xe x ﹣x ﹣2,g '(x )=(x +1)e x ﹣1, 当x ≤﹣1时,x +1≤0,e x >0, 所以g '(x )=(x +1)e x ﹣1≤0﹣1<0, 当﹣1<x <0时,0<x +1<1,0<e x <1, 所以g '(x )=(x +1)e x ﹣1<1×1﹣1=0, 当x >0时,x +1>1,e x >1,所以g '(x )=(x +1)e x ﹣1>1×1﹣1=0.综上g (x )在(﹣∞,0)上为减函数,在(0,+∞)上为增函数, 所以g (x )min =g (0)=﹣2.(2)依题有:方程g (x )=0有两个不同的根x 1,x 2, 方程g (x )=0可化为t =e x −2x , 令ℎ(x)=e x −2x ,则ℎ′(x)=e x +2x 2>0, 所以h (x )在(﹣∞,0)和(0,+∞)都是增函数,因为x →﹣∞时,h (x )→0;x →+∞时,h (x )→+∞且ℎ(12)<0, 所以t >0且t =e x 1−2x 1=e x 2−2x 2(x 1<0<x 2), 所以f(x 1)=(x 1−1)e x 1−t2x 12−2x 1 =(x 1−1)e x 1−12(e x 1−2x 1)x 12−2x 1=(−x 122+x 1−1)e x 1−x 1<−52e +1,令φ(x)=(−x 22+x −1)e x −x(x <0),则φ′(x)=−12x 2e x −1<0,所以φ(x )在(﹣∞,0)上为减函数,又因为φ(−1)=−52e +1, 所以﹣1<x 1<0, 所以t =e x 1−2x 1>1e+2. 【变式6-3】(2022春•潞州区校级期末)有三个条件: ①函数f (x )在x =1处取得极小值2; ②f (x )在x =﹣1处取得极大值6; ③函数f (x )的极大值为6,极小值为2.这三个条件中,请任意选择一个填在下面的横线上(只要填写序号),并解答本题. 题目:已知函数f (x )=x 3﹣3ax +b (a >0),并且 _____. (1)求f (x )的解析式;(2)当x ∈[﹣3,1]时,求函数f (x )的最值.【解题思路】(1)求出函数f (x )的导数f ′(x ),选择条件①,②,利用给定的极值点及对应的极值列式求解并验证作答;选择条件③,判断极大值与极小值列式求解并验证作答. (2)利用(1)的结论,利用导数求出给定区间上的最值作答. 【解答过程】解:(1)选条件①:求导得f ′(x )=3x 2﹣3a ,由{f ′(1)=0f(1)=2,得{a =1b =4,此时f ′(x )=3(x +1)(x ﹣1),当﹣1<x <1时,f ′(x )<0,当x >1时,f ′(x )>0, 则f (x )在x =1处取得极小值2, 所以f (x )=x 3﹣3x +4;选条件②:求导得f ′(x )=3x 2﹣3a ,由{f ′(−1)=0f(−1)=6,得{a =1b =4,此时f ′(x )=3(x +1)(x ﹣1),当x <﹣1时,f ′(x )>0,当﹣1<x <1时,f ′(x )=<0,则f(x)在x=﹣1处取得极大值6,所以f(x)=x3﹣3x+4.选条件③:求导得f′(x)=3x2﹣3a,令f′(x)=3x2﹣3a=0,得x=±√a,当x<−√a或x>√a时,f′(x)>0,当−√a<x<√a时时,f′(x)<0,因此,当x=−√a时,f(x)取得极大值f(−√a),当x=√a时,f(x)取得极小值f(√a),于是得{(−√a)3−3a(−√a)+b=6(√a)3−3a√a+b=2,解得{a=1b=4,此时f′(x)=3(x+1)(x﹣1),当x<﹣1或x>1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,则f(x)在x=1处取得极小值2,在x=﹣1处取得极大值6,所以f(x)=x3﹣3x+4;(2)由(1)知,f(x)=x3﹣3x+4,当x∈[﹣3,1]时,f′(x)=3(x+1)(x﹣1),当﹣3<x<﹣1时,f′(x)>0,当﹣1<x<1时,f′(x)<0,则f(x)在[﹣3,﹣1)上递增,在(﹣1,1]上递减,而f(﹣3)=﹣14,f(1)=2,所以f(x)max=f(﹣1)=6,f(x)min=f(﹣3)=﹣14.。
用思维导图突破导数压轴题《挑战压轴题•高中数学•精讲解读篇》(华东师大出版社第1-10版(2009-2019年))、《上海高考好题赏析》(浙江大学出版社2019年)、330多篇论文(文章)作者特级教师文卫星专题02 导数与函数、不等式导数与函数、不等式综合题是近年高考试题的一个热点,往往是在运用导数知识以后,由不等式提升试题难度。
证明不等式f x g x ≥()()一般是作h(x )f x g x =-()(),通过对h x ()求导,求出h x ()的最小值大于或大于0,;证明不等式f x g x <()()成立的方法类似。
如果要证明的不等式中含有参数,需要分类讨论,才能确定单调性,就要根据题设条件确定恰当的分类标准。
如果要求参数的范围,在得到相关不等式后可以分离变量,也可能需要构造新函数,找出参数满足的条件,才能求出参数的范围。
作差求导 判断单调 求出极值思路点拨第(1)题由或解出相应的x 的范围即可确定单调区间。
第(2)题记不等式左边为,证明指定区间上函数值非负,理想状态是在该区间单调,且最小值为0。
第(3)题利用第(2)结论,由,得'()0f x >'()0f x <()h x ()h x ()h x ππ2,2π42n x n n π∈++(),记,那么 ,由(2)可得由(2)知,,有两条路径:一条是通过分解、变形、代换、放缩等化归为熟悉的基本的函数单调性问题(解1-解3);另一条是把变量n 转化成x n ,构造函数,回归导数基本运算,借助研究定义域内函数单调性的变化,转化为最值问题(解4)。
思维导图如下:满分解答解(1)由已知,有()e (cos sin )xf 'x x x =-, 当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()0f 'x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()0f 'x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . ππ2,2π42n x n n π∈++()2n n y x π=-(,)42n y ππ∈π()()()02n n n f y g y y +-≥(2)证明:记()()()2h x f x g x x π⎛⎫=+-⎪⎝⎭.函数定义域为,依题意及(Ⅰ),有()e (cos sin )xg x x x =-,从而()2e sin xg'x x =-. 当,42x ππ⎛⎫∈⎪⎝⎭时,0()g'x <,故 ()()()()(1)()022h'x f 'x g'x x g x g'x x ππ⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭.所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭. (3)思路一:借助前问巧带入,不等证明化函数观察到本问与第二问结构类似,范围类似,充分利用前问,对一个非基本问题通过分解、变形、代换、放缩等多种方式,化归为熟悉的基本的函数单调性问题,从而得到解答.解1 依题意,()()10n n u x f x =-=,即cos e 1n xn x =.记2n n y x n =-π,则,42n y ππ⎛⎫∈ ⎪⎝⎭,且22()cos cos(2)()n n y x n n n n n f y e y e x n e n N πππ--==-=∈.由()()20e1n n f y f y -π==≤及(Ⅰ),得0n y y ≥即024ππ>≥>n y y .令函数()sin cos ()42m x x x x ππ=-<<,()cos sin 0m x x x '=+>,所以()m x 在,42ππ⎡⎤⎢⎥⎣⎦上为增函数,所以0)()(()04π≥>=n m m y y m ,故 ()()()()()()22222200000=2sin cos sin co e e e e e s en n n n n n y n n n n n n n f y y g y g y e m y m y m y y y x x -π-π-π-π-π-ππ--=-<⋅≤==-≤-所以,20022sin c s e o n n n x x x -πππ+-<-.解2 依题意,()()10n n u x f x =-=,即cos e 1n xn x =,即c eos nx n x -=,,42ππ⎡⎤⎢⎥⎣⎦因为(2,2)42n x n n ππππ∈++,所以2(,)42n x n πππ-∈, 由(2)知(2)(2)(2)02n n n f x n g x n x n ππππ-+--+≥,所以[]22cos(2)cos(2)sin(2)(2)02n n x n x n n n n n e x n e x n x n x n πππππππ---+----+≥,所以cos (cos sin )(2)02n n n n x x x x n ππ+--+≥,因为(2,2)42n x n n ππππ∈++,所以cos sin n n x x <,又cos n x n e x -=, 上式可化为22sin cos nx n n ne x n x x ππ--+≤-,只需证200sin cos sin cos n x n n n e e x x x x π--<--, 因为2n x n π>,所以20nx n ee π--<<,下面只需证明00sin cos sin cos n n x x x x -≥-. 令()sin cos ()42m x x x x ππ=-<<,只需证明0(2)()n m x n m x π-≥,因为()cos sin 0m x x x '=+>,所以()m x 在(,)42ππ上单调递增 因为0n x x ≥,所以0nx x e e --≤,则0cos cos n x x ≤,则0cos(2)cos n x n x π-≤,因为cos x 在(,)42ππ内单调递减,所以0242n x x n πππ<≤-<, (或者:因为20(2)1()n n f x n ef x ππ--=≤=,且()f x 在(,)42ππ单调递增,所以0242n x x n πππ<≤-<),所以0(2)()n m x n m x π-≥所以原式得证.解3(前一部分与解法二相同,省略)只需证200sin cos sin cos n x n n n e e x x x x π--<-- 令函数1()(22)(sin cos )42=+<<+-x k x n x n e x x ππππ, 所以22sin ()(22)(sin cos )42x x k x n x n e x x ππππ-'=+<<+-,显然()0k x '<,则函数()k x 在(2,2)42n n ππππ++单调递减, 只需证2001()(sin cos )n n k x e x x π<-,因为00222000(2)cos(2)cos 1()x n x n n n f x n e x n e x e e f x πππππ++=⋅+=⋅=≥=,其中0,(2,2)42n x x n n ππππ∈++, 且由(Ⅰ)知()f x 在(2,2)42n n ππππ++内单调递减,所以022242n n x n x n πππππ+<+≤<+,所以002001()(2)(sin cos )n x n k x k x n e x x ππ+≤+=-0220000(sin cos )sin cos n n x e e e x x x x ππ--=<--, 所以原式得证.(解3中不等式左侧也可以构造成1()n g x -,利用函数()n g x 解题,方法雷同,不再赘述)思路二:不等证明法若干,差值函数要优先仿照第二问的证明方法,但是本问难在变量不统一,既有n 又有n x ,需要将它们化成同一变量,通过自变量的改变,构造函数,回归导数基本运算,借助研究定义域内函数单调性的变化,转化为最值问题,达到证明不等式的目的.解4 记2n n y x n =-π,则,42n y ππ⎛⎫∈⎪⎝⎭, 因为()()10n n u x f x =-=,即cos 1e ,=n xn x . 所以2cos(21e)n y n n y n ππ++=,所以2e cos n y n n y π--=要证20022sin c s e o n n n x x x -πππ+-<-,只需证00co 2sin cos s π-<-n n n y e y y x x ,显然有1n n x x +>12(1)2n n y n y n ππ+++>+即,所以12(1)2n n y n y n e e ππ+--+-->,即1cos cos n n y y +<,因为42n y ππ⎛⎫∈⎪⎝⎭,,所以1n n y y +>则{}n y 关于n 单调递增,所以0,)2n y x π⎡∈⎢⎣.(或者用第一问结论,进行如下证明:1112(1)2(1)11()cos n n n y y y n n n n f y e y e e e ππ+++--+-+++=⋅==,所以2()n n f y e π-=,因为21()1()n n f y e f y π-+=<,且()0n f y >,所以1()()n n f y f y +<,由(1)知,()f x 在,42ππ⎡⎤⎢⎥⎣⎦内单调递减,所以1n n y y +>, 所以{}n y 关于n 单调递增,所以0,)2n y x π⎡∈⎢⎣)记000cos ,)sin cos 2()2,x ππ=--⎡∈⎢-⎣x e x x x x x h x ,只需证0,)2()0x 时,π⎡∈⎢⎣<h x x ,因为00,42x y ππ⎛⎫=∈⎪⎝⎭,所以()000sin cos )0,14x x x π-=-∈,所以0000sin cos )2sin 0sin cos sin co (()s )xx e x x e xx x x h x x h x ->--'''==(-1,,所以()x h '在⎪⎭⎫⎢⎣⎡20π,x 内单调递增,所以00()()=10xh x h x e ''≥->,所以()x h 在⎪⎭⎫⎢⎣⎡20π,x 内单调递增,即()()=02h x h π<.所以原式得证.思路三:中学数学较难题,高等数学解悬疑以高等数学背景为指导,以函数图像为直观,充分考察了学生直观想象的数学核心素养.教学过程中我们可以适当给学生介绍拉格朗日中值定理、洛必达法则等高等数学内容,内容虽然超纲,但本质大都可以用高中生已有的知识来介绍清楚,可以试着在这些高观点和思想的指导下用高中阶段的知识完成解题.解5 构造函数)(221)()(n n x x x n x u x F --+--=ππ,(,2)2n x x n ππ∈+ ,则0)(=n x F ,0)22(=+ππn F ,1()()22nF x u x n x ππ-''=-+-,()()=()2sin 0'''''==-<x F x u x g x e x所以()F x '在(,2)2n x n ππ+单调递减,假设()0n F x '≤,则()0n F x '≤在)22,(ππ+n x n 内恒成立,则)()22(n x F n F <+ππ, 与()(2)02n F x F n ππ=+=矛盾,所以假设错误,所以()0n F x '>,假设(2)02F n ππ'+≥,则()0n F x '≥在 )22,(ππ+n x n 内恒成立,则)()22(n x F n F >+ππ,与()(2)02n F x F n ππ=+=矛盾, 所以假设错误,所以0)22('<+ππn F ,由零点存在性定理,在)22,(ππ+n x n 内存在ξ,使0)('=ξF ,即n x n u -+-=221)('ππξ.所以'122()n n x u ππξ+-=-, 要证明002cos sin 22x x e x n n n -<-+-πππ只需证)cos (sin )(002'x x e u n ->-πξ,因为'()()(cos sin )xu x g x e x x ==-在区间(,2)2ππ+n x n 内递减,所以''()()n u u x ξ<,即)cos (sin )cos (sin )(2'n n n n n xx x e x x e u n ->->-πξ,只需证明00cos sin cos sin x x x x n n -≥-:以下与解法二相同,省略.本题在命题上环环相扣,逻辑清晰,解法中灵活构造别具一格,呈现数学思维之美.考查学生的运算能力、直观意识,分类讨论,转化化归,数形结合思想,具有很好的区分度与选拔性.思路点拨(1)讨论()f x 的单调性,就是要比较)('x f 与0的大小。
专题01 曲线与方程 训练篇A1.已知抛物线的焦点为,准线为,若与双曲线的两条渐近线分别交于点和点,且(为原点),则双曲线的离心率为 ( )C. 解 因为抛物线的焦点为,焦点,准线的方程为。
因为l 与双曲线的两条渐近线分别交于点和点,且为原点),所以,, ,,,离心率为,故选D.2. 过曲线的焦点并垂直于轴的直线分别与曲线交于、,在上方,为抛物线上一点,,则 .解 依题意求得:,,设坐标为,有:,代入有:,即.3. 双曲线的右焦点为,点在的一条渐近线上,为坐标原点,若,则的面积为 ( )A.C. D.解 双曲线的右焦点为,渐近线方程为:,不妨在第一象限,可得,,所以的面积为:. 故选.4.设为双曲线的右焦点,为坐标原点,以为直径的圆与圆交于,两点,若,则的离心率为( ) A.C.2解1 由题,得,,为等腰直角三角形,.故填2. 24y x =F l l 22221(0,0)x y a b a b -=>>A B ||4||AB OF =O 232524y x =F (1,0)F ∴l 1x =-22221(0,0)x y a b a b-=>>A B ||4||(AB OF O =2||b AB a ∴=||1OF =24ba=2b a ∴=225c a b a ∴=+5ce a=24y x =F x 24y x =A B A BM (2)OM OA OB λλ=+-u u u u r u u u r u u u rλ=(1,2)A (1,2)B -M (,)M x y (,)(1,2)(2)(1,2)(22,4)x y λλλ=+-⋅-=-24y x =164(22)λ=⋅-3λ=22:142x y C -=F P C O ||||PO PF =PFO ∆323223222:142x y C -=(6F 0)2y =P 2tan POF ∠6(P 3PFO ∆133262=A F 2222:1(0,0)x y C a b a b-=>>O OF 222x y a +=P Q ||||PQ OF =C 235||OFc =||OP a =OPF ∆∴2ce a==解2由题意,把代入,得再由,得,即, ,解得.故选:. 5.设,为椭圆的两个焦点,为上一点且在第一象限,若△为等腰三角形,则的坐标为 .解 设,,,椭圆的,,,,由于为上一点且在第一象限,可得,△为等腰三角形,可能或,即有,即,;,即,舍去.可得.6.在平面直角坐标系xOy 中取两个定点A 1(-6,0),A 2(6,0),再取两个动点N 1(0,m ),N 2(0,n ),且mn =2.(1)求直线A 1N 1与A 2N 2的交点M 的轨迹C 的方程;(2)过R (3,0)的直线与轨迹C 交于P ,Q 两点,过点P 作PN ⊥x 轴且与轨迹C 交于另一点N ,F 为轨迹C 的右焦点,若RP ―→=λR Q ―→ (λ>1),求证:NF ―→=λF Q ―→.解 (1)依题意知,直线A1N 1的方程为y =m6(x +6),① 直线A 2N2的方程为y =-n6(x -6),② 设M (x ,y )是直线A 1N 1与A 2N 2的交点, ①×②得y 2=-mn 6(x 2-6), 又mn =2,整理得x 26+y 22=1.故点M 的轨迹C 的方程为x 26+y 22=1.(2)证明:设过点R 的直线l :x =ty +3,P (x 1,y 1),Q(x 2,y 2),则N (x 1,-y 1), 由⎩⎪⎨⎪⎧x =ty +3,x 26+y 22=1,消去x ,得(t 2+3)y 2+6ty +3=0,(*) 所以y 1+y 2=-6t t 2+3,y 1y 2=3t 2+3.由RP ―→=λR Q ―→,得(x 1-3,y 1)=λ(x 2-3,y 2),故x 1-3=λ(x 2-3),y 1=λy 2, 由(1)得F (2,0),要证NF ―→=λF Q ―→, 即证(2-x 1,y 1)=λ(x 2-2,y 2), 只需证2-x 1=λ(x 2-2),只需x 1-3x 2-3=-x 1-2x 2-2, 2c x =222x y a +=PQ =||||PQ OF =c =222a c =∴222c a =ce a==A 1F 2F 22:13620x y C +=M C 12MF F M (,)M m n m 0n >22:13620x y C +=6a =b =4c =23c e a ==M C 12||||MF MF >12MF F 1||2MF c=2||2MF c =2683m +=3m =n =2683m -=30m =-<M即证2x1x2-5(x1+x2)+12=0,又x1x2=(ty1+3)(ty2+3)=t2y1y2+3t(y1+y2)+9,x1+x2=ty1+3+ty2+3=t(y1+y2)+6,所以2t2y1y2+6t(y1+y2)+18-5t(y1+y2)-30+12=0,即2t2y1y2+t(y1+y2)=0,而2t2y1y2+t(y1+y2)=2t2·3t2+3-t·6tt2+3=0成立,即NF―→=λF Q―→成立.7.设椭圆22221(0)x ya ba b+=>>的左焦点为F,左顶点为A,上顶点为B.已知|2||(OA OB O=为原点).(1)求椭圆的离心率;(2)设经过点F且斜率为34的直线l与椭圆在x轴上方的交点为P,圆C同时与x轴和直线l相切,圆心C在直线4x=上,且//OC AP.求椭圆的方程.分析第(1)2b=,再由离心率公式可得所求值。
用思维导图突破导数压轴题《挑战压轴题•高中数学•精讲解读篇》(华东师大出版社第1-10版(2009-2019年))、《上海高考好题赏析》(浙江大学出版社2019年)、330多篇论文(文章)作者上海市特级教师文卫星解答数学题的“思维导图”:逛公园顺道看景,好风光驻足留影.把条件翻成图式,关键处深挖搞清. 综合法由因导果,分析法执果索因. 两方法嫁接联姻,让难题无以遁形.这里把解题比作逛公园,沿路而行,顺道看景,既有活跃气氛,又有借景喻理之意,即理解题意后把已知条件“翻译”出来,如果能得到结论那是最好,如果不行就要转化,即从已知条件入手推出中间结论(可知),当中间结论能直接证明最终结论时,则解题成功.当中间结论不能直接证明最终结论时,可把最终结论等价转化为“需知”,再用中间结论证明“需知”从而达到解题目的.有时还要挖掘题目的隐含条件.从某种意义上说,解题就是“找关系”----找出已知与未知的联系,不断缩小以至消除二者之间的差距,从而达到解题目的.这个思维导图不仅是用来解答压轴题,其实,每个层次的学生都有相应的难题。
中等以下水平的学生高考基本不用做压轴题的,但他们做中档题会有困难,思维导图一样适用。
专题01 导数与函数的最(极)值问题利用导数求函数f(x)极值、最值的基本方法是先求f(x)的导数f 'x (),再求f 'x ()的零点i x ,i N ∈,根据f 'x ()在i x 两边的符号判断的单调性,最后确定i f x ()是极大值或极小值,再确定最值。
先求导数再定零点 考查单调 极值来了否已知条件隐含条件中间结论(可知)已知条件的等价转化待求(证)的结论结论的等价转化(需知)能否能引例(2019江苏卷第19题)设函数()()()()f x x a x b x c =---,a ,b ,c R ∈,()f x '为()f x 的导函数.(1)若a b c ==,f (4)8=,求a 的值;(2)若a b ≠,b c =,且()f x 和()f x '的零点均在集合{3-,1,3}中,求()f x 的极小值;(3)若0a =,01b <„,1c =,且()f x 的极大值为M ,求证:427M „.思路点拨第(1)只要直接计算即可。
专题01 导数与函数的最(极)值(训练篇A )-用思维导图突破导数压轴题《挑战压轴题•高中数学•精讲解读篇》(华东师大出版社第1-10版(2009-2019年))、《上海高考好题赏析》(浙江大学出版社2019年)、330多篇论文(文章)作者上海市特级教师文卫星A 组:1.(2017年山东理第15题)若函数()xe f x ( 2.71828e =L是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为_______.①()2xf x -=②()3xf x -=③3()f x x =④2()2f x x =+解析:① ()2xf x -=,有()()2xxe ef x =在R 上单调递增②()3xf x -=,有()()3xxe ef x =在R 上单调递减③3()f x x =,有()x e f x 的导函数为2(3)x e x x +,有()()()()322'33xxx e f x e xx e x x =+=⋅+,因此在(),3-∞-上,函数()x e f x 单调递减;④2()2f x x =+,有()x e f x 的导函数为22(22)[(1)1]0x x e x x e x ++=++>在R 上单调递增. 综上所述,具有M 性质的函数的序号是(1)(4).2.若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )A.1-B.32e --C.35e -D.1解 由题可得12121()(2)(1)[(2)1]x x x f x x a e x ax e x a x a e ---'=+++-=+++-.因为(2)0f '-=,所以1a =-,21()(1)x f x x x e -=--,故21()(2)x f x x x e -'=+-.令()0f x '>,解得2x <-或1x >,所以()f x 在(,2),(1,)-∞-+∞单调递增,在(2,1)-单调递减,所以()f x 极小值(1)f =11(111)1e -=--=-,故选A.3.(2015年四川文第理15题)已知函数,2)(x x f =2()g x x ax =+,R a Î.对于不相等的实数21,x x ,设,)()(2121x x x f x f m --=2121)()(x x x g x g n --=.现有如下命题:①对于任意不相等的实数21,x x ,都有0>m ;②对于任意的a 及任意不相等的实数21,x x ,都有0>n ;③对于任意的a ,存在不相等的实数21,x x ,使得n m =;④对于任意的a ,存在不相等的实数21,x x ,使得n m -=.其中的真命题有 (写出所有真命题的序号).解 由定义a x x n x x m x x ++=--=2121,2221.若21x x >,则由)(x f 在R 上单调增,2122x x >,所以0>m ,若21x x <,则2122x x <,仍有0>m ,①正确;由a x x n ++=21易知②错误;令n m =,有a x x x x x x ++=--21212122, 整理得2122x x -)(212221x x a x x -+-=,即=-)()(21x f x f )()(21x g x g -,所以)()()()(2211x g x f x g x f -=-.令ax x x g x f x h x--=-=22)()()(,则题意转化为存在不相等的实数21,x x ,使得)()(21x h x h =.由()2ln 22xh x x a ¢=--,2h 222x(x )ln ''=-(). 令0()0h x ⅱ=,且210<<x ,可得0()h x ¢为极小值;若10000a =-,则0()0h x ¢>,即()0h x ¢>,()h x 单调递增,不满足题意,③错误; 令0n >,同③可得)()()()(2211x g x f x g x f +=+, 设ax x x g x f x h x++=+=22)()()(,则()2ln 22x h x x a '=++,2()2(ln 2)2x h x ⅱ=+0>恒成立,()h x '单调递增且当-∞→x 时,()h x '→-∞,当+∞→x 时,()h x '→+∞,所以()h x 先减后增,所以对于任意的0n >,存在不相等的实数a ,使得)()(21x h x h =,即使得0n >成立,④正确.4.(2017年浙江理第20题)已知函数f (x )=x x e -⋅((12x ≥). (Ⅰ)求f (x )的导函数;(Ⅱ)求f (x )在区间1[+)2∞,上的取值范围.解 (Ⅰ)(1x '-=,()x xe e --'=-,所以()(1(x xf x e x e --'=--- 1)2xx -=>.(Ⅱ)由()0f x '==,解得1x =或52x =.因为又2()1)02x f x e -=≥, 故()f x 在区间1[,)2+∞上的取值范围是121[0,]2e -.5.(2016年天津理第20题)设函数3()(1)f x x ax b =---,R x ∈,其中R b a ∈,(1)求)(x f 的单调区间;(2) 若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:1023x x +=; (3)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间[0,2]上的最大值不小于...41. 解(1)()()31f x x ax b =---,()()2'31f x x a =--,①0a ≤, ()f x 在(,)-∞+∞上单调递增;②0a >,令'()=0f x 得1x =,当x 变化时,'()f x ,()f x 变化如下:所以,()f x 的单调递增区间为,1⎛-∞- ⎝,1⎛⎫+∞ ⎪ ⎪⎝⎭,单调递减区间为11⎛+ ⎝. (2)由(1)知,当0a >,且01x ≠时,()0'0f x =得()2031x a -=,所以()()()320000131f x x x x b =----()()200121x x b =----,()()()()32000032223132f x x x x b -=-----()[]200018896x x x b =---+- ()()200=121x x b ----,所以()()0032f x f x -=,由(1)知,存在唯一实数1x ,使得()()01=f x f x ,且01x x ≠, 因此,0132x x -=,1023x x +=.(3)欲证()g x 在区间[02],上的最大值不小于14,只需证在区间[02],上存在12,x x ,使得121()()2g x g x -≥即可①当3a ≥时,()f x 在[]02,上单调递减,(2)12f a b =--,(0)1f b =--,1(0)(2)2242f f a -=->≥递减,成立② 当03a <<时,311f a b ⎛⎛⎛=-- ⎝⎝⎝a b =+23a b =-,11f a b ⎛⎛+=- ⎝⎝23a b =--. 因为(2)12f a b =--,(0)1f b =--,所以(2)(0)22f f a -=-.若304a <≤时,()()102222f f a -=-≥,成立当334a <<时,411132f f ⎛⎛-=> ⎝⎝成立.6.(2019·贵阳模拟)已知函数f (x )=ln x +12x 2-ax +a (a ∈R).(1)若函数f (x )在(0,+∞)上为单调递增函数,求实数a 的取值范围;(2)若函数f (x )在x =x 1和x =x 2处取得极值,且x 2≥ e x 1(e 为自然对数的底数),求f (x 2)-f (x 1)的最大值.解 (1)∵f ′(x )=1x +x -a (x >0),又f (x )在(0,+∞)上单调递增,∴恒有f ′(x )≥0, 即1x +x -a ≥0恒成立,∴a ≤⎝⎛⎭⎫x +1x min ,而x +1x ≥2 x ·1x =2,当且仅当x =1时取“=”,∴a ≤2.即函数f (x )在(0,+∞)上为单调递增函数时,a 的取值范围是(-∞,2].(2)∵f (x )在x =x 1和x =x 2处取得极值,且f ′(x )=1x +x -a =x 2-ax +1x (x >0), ∴x 1,x 2是方程x 2-ax +1=0的两个实根, 由根与系数的关系得x 1+x 2=a ,x 1x 2=1,∴f (x 2)-f (x 1)=ln x 2x 1+12(x 22-x 21)-a (x 2-x 1)=ln x 2x 1-12(x 22-x 21)=ln x 2x 1-12(x 22-x 21)1x 1x 2=ln x 2x 1-12⎝⎛⎭⎫x 2x 1-x 1x 2.设t =x 2x 1(t ≥ e),令h (t )=ln t -12⎝⎛⎭⎫t -1t (t ≥ e), 则h ′(t )=1t -12⎝⎛⎭⎫1+1t 2=-t -122t 2<0,∴h (t )在[e ,+∞)上是减函数,∴h (t )≤h (e)=12⎝⎛⎭⎫1- e +e e ,故f (x 2)-f (x 1) 的最大值为12⎝⎛⎭⎫1- e +e e .7.已知函数f (x )=13x 3+x 2+ax .(1)若函数f (x )在区间[1,+∞)上单调递增,求实数a 的最小值;(2)若函数g (x )=x e x ,对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立,求实数a 的取值范围.解 (1)由题设知f ′(x )=x 2+2x +a ≥0在[1,+∞)上恒成立,即a ≥-(x +1)2+1在[1,+∞)上恒成立,而函数y =-(x +1)2+1在[1,+∞)单调递减,则y max =-3,∴a ≥-3,∴a 的最小值为-3.(2)“对∀x 1∈⎣⎡⎦⎤12,2,∃x 2∈⎣⎡⎦⎤12,2,使f ′(x 1)≤g (x 2)成立”等价于“当x ∈⎣⎡⎦⎤12,2时,f ′(x )max ≤g (x )max ”.因为f ′(x )=x 2+2x +a =(x +1)2+a -1在⎣⎡⎦⎤12,2上单调递增,所以f ′(x )max =f ′(2)=8+a .而g ′(x )=1-xe x ,由g ′(x )>0,得x <1,由g ′(x )<0,得x >1, 所以g (x )在(-∞,1)上单调递增,在(1,+∞)上单调递减. 所以当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (1)=1e .由8+a ≤1e ,得a ≤1e -8,所以实数a 的取值范围为⎝⎛⎦⎤-∞,1e -8.注 (1)∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值,但并不要求大于函数y =g (x )的所有函数值.(2)∀x 1∈D 1,∃x 2∈D 2,f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于函数g (x )在D 2上的最大值(这里假设f (x )max ,g (x )max 存在).其等价转化的基本思想是:函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值,但并不要求小于函数y =g (x )的所有函数值.8.(丰台区2017届高三上学期期末)已知函数()e xf x x =与函数21()2g x x ax =+的图象在点(00),处有相同的切线. (Ⅰ)求a 的值;(Ⅱ)设()()()()h x f x bg x b =-∈R ,求函数()h x 在[12],上的最小值. 解:(Ⅰ)因为()e e x xf x x '=+,所以(0)1f '=.因为()g x x a '=+,所以(0)g a '=. .因为()f x 与()g x 的图象在(0,0)处有相同的切线,所以(0)(0)f g ''=,所以1a =.(Ⅱ)由(Ⅰ)知, 21()2g x x x =+, 令21()()()e 2xh x f x bg x x bx bx =-=--,[1,2]x ∈,则()e e (1)(1)(e )x x x h x x b x x b '=+-+=+-.(1)当0b ≤时,[1,2]x ∀∈,()0h x '>,所以()h x 在[1,2]上是增函数, 故h (x ) 的最小值为.(2)当0b >时,由()=0h x '得,ln x b =,①若ln 1b ≤,即0e b <≤,则[1,2]x ∀∈,()0h x '>,所以()h x 在[1,2]上是增函数, 故h (x )的最小值为3(1)=e 2h b -. ②若1ln 2b <<,即2e e b <<,则(1,ln )x b ∀∈,()0h x '<,所以()h x 在(1,ln )b 上是减函数,在(ln 2)b ,上是增函数,()0h x '>,故()h x 的最小值为21(ln )=ln 2h b b b -. ③若ln 2b ≥,即2e b ≥,则[1,2]x ∀∈,()0h x '<,所以()h x 在[1,2]上是减函数,故()h x 的最小值为2(2)=2e 4h b -.综上所述,当e b ≤时,()h x 的最小值为3(1)=e 2h b -;当2e e b <<时,()h x 的最小值为21ln 2b b -;当2e b ≥时,()h x 的最小值为22e 4b -. 9.(2017年山东,文20)已知函数321(),3f x x ax a R =-∈(1)当2a =时,求曲线()y f x =在点(3,(3))f 处的切线方程;(2)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.解 (1)由题意2'()f x x ax =-,所以,当2a =时,(3)0f =,2'()2f x x x =-,所以'(3)3f =,因此,曲线()y f x =在点(3,(3))f 处的切线方程是3(3)y x =-,即390x y --=.(2)因为'()()()sin g x x x a x a x =--- ()(sin )x a x x =--.令()sin '()1cos 0h x x x h x x =-⇒=->,所以()sin h x x x =-单调递增,且(0)0h =,则当0x >时,sin 0x x ->;当0x <时,sin 0x x -<(i )当0a <时,'()()(sin )g x x a x x =--,当(,)x a ∈-∞时,0,'()0,()x a g x g x -<>单调递增; 当(,0)x a ∈时,0,'()0,()x a g x g x -><单调递减; 当(0,)x ∈+∞时,0,'()0,()x a g x g x ->>单调递增. 所以,当x a =时,()g x 取到极大值,极大值是31()sin 6g a a a =--, 当0x =时,()g x 取到极小值,极小值是(0)g a =-.(ii )当0a =时,'()(sin )g x x x x =-,当(,)x ∈-∞+∞时'()0,()g x g x ≥单调递增; 所以,()g x 在(,)x ∈-∞+∞上单调递增,()g x 无极大值也无极小值. (iii )当0a >时,'()()(sin )g x x a x x =--,当(,0)x ∈-∞时,0,'()0,()x a g x g x -<>单调递增; 当(0,)x a ∈时,0,'()0,()x a g x g x -<<单调递减; 当(,)x a ∈+∞时,0,'()0,()x a g x g x ->>单调递增.所以,当0x =时,()g x 取到极大值,极大值是(0)g a =-; 当x a =时,()g x 取到极小值,极小值是31()sin 6g a a a =--.综上所述:当0a <时,函数()g x 在(,0)x ∈-∞和(0,)x ∈+∞上单调递增,在(,0)x a ∈上单调递减,函数既有极大值,又有极小值,极大值是31()sin 6g a a a =--,极小值是(0)g a =-.当0a =时,函数()g x 在(,)-∞+∞上单调递增,无极值;当0a >时,函数()g x 在(,0)x ∈-∞和(,)x a ∈+∞上单调递增,在(0,)x a ∈上单调递减,函数既有极大值,又有极小值,极大值是(0)g a =-,极小值是31()sin 6g a a a =--.10.(2016年天津,理20)设函数b ax x x f ---=31)()(,R x ∈,其中a ,R b ∈. (1)求)(x f 的单调区间;(2)若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:3201=+x x ; (3)设0>a ,函数)()(x f x g =,求证:)(x g 在区间],[20上的最大值不小于...41.解 (1)由3()(1)f x x ax b =---,可得2()3(1)f x x a '=--. 下面分两种情况讨论:(i )当0a ≤时,有2'()3(1)0f x x a =--≥恒成立,所以()f x 的单调递增区间为(,)-∞+∞.(ii )当0a >时,令'()0f x =,解得13x =+,或13x =-. 当x 变化时,'(),()f x f x 的变化情况如下表:x 313a + 3(1,)3a ++∞()f x '0 +()f x 极小值 单调递增所以()f x 的单调递减区间为33(1,1)33a a -+,单调递增区间为33(,1),(1,)33a a-∞-++∞. (2)因为()f x 存在极值点,所以由(Ⅰ)知0a >,且01x ≠,由题意,得200'()3(1)0f x x a =--=即20(1)3a x -=,进而3000()(1)f x x ax b =--- 0233a ax b =---,又300(32)(22)f x x -=- 0(32)a x b ---008(1)233ax ax a b =-+--002()33a a x b f x =---=,且0032x x -≠,由题意及(Ⅰ)知,存在唯一实数1x 满足10()()f x f x =,且10x x ≠,因此1032x x =-,所以1023x x +=.(3)设()g x 在区间[]0,2上得最大值为M ,{}max ,x y 表示,x y 两数的最大值,下面分三种情况讨论:(i )当3a ≥时,331021a a-≤<≤+,由(Ⅰ)知,()f x 在区间[]0,2上单调递减,所以()f x 在区间[]0,2上的取值范围为[](2),(0)f f ,因此max{|(2)|,|(0)|}max{|12|,|1|}M f f a b b ==----max{|1()|,|1()|}a a b a a b =-++--+1(),01(),0a ab a b a a b a b -+++≥⎧=⎨--++<⎩, 所以12M a a b =-++≥.(ii )当334a ≤<时,101≤<12133<+<≤+,由(Ⅰ)和(Ⅱ)知,(0)(1(133f f f ≥-=+,(2)(1(1f f f ≤=, 所以()f x 在区间[]0,2上的取值范围为(1(1f f ⎡⎤⎢⎥⎣⎦,因此max{|(1|,|(1|}M f f =+max{||,||}a b a b =--max{|()|,|()|}a b a b =++231||944a b =+≥⨯=.。