高三数学习题课的教学设计
- 格式:doc
- 大小:26.00 KB
- 文档页数:2
高中数学习题教案
一、教学目标
1.了解并掌握相关数学知识,提高解题能力;
2.培养学生的数学思维和创新能力;
3.激发学生学习数学的兴趣;
二、教学内容
本节课主要讲解高中数学中的某一章节,例如“函数与导数”;
三、教学过程
1.引入:通过一个实际生活中的问题引入本节课的主题,激发学生的兴趣;
2.讲解:对所要讲解的知识点进行系统的讲解,并辅以示例说明;
3.练习:设计一些练习题让学生进行练习,巩固所学知识;
4.检查:对学生的练习情况进行检查和评价;
5.总结:总结本节课的重点内容,强调学生需要掌握的知识点;
6.拓展:对于学有余力的学生,可以提供一些拓展题目。
四、作业
布置适量的作业,巩固所学知识,让学生能够独立完成。
五、教学反思
对于本节课的教学效果进行反思,总结教学中存在的问题并加以改进。
六、教学资源
准备好所需的教学资源,包括课件、教材、练习题等。
七、教学评价
通过学生的课堂表现和作业完成情况来评价本节课的教学效果,看是否需优化教学方法。
高三数学习题课教案5篇最新高三数学习题课教案1数学广角说课教案设计教材分析:我执教的内容是人教版小学数学四年级下册第八单元数学广角中的例1。
本单元主要是渗透关于植树问题的一些思想方法,通过现实生活中一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用发现的规律解决生活中的一些简单实际问题。
例1是探讨关于一条线段的植树问题并且两端都要栽的情况,根据编者的意图,要让学生经历猜想、试验、推理等数学探索的过程,从简单的情况入手解决复杂的问题,让学生选用自身喜欢的方法来探究栽树的棵树和间隔数之间的关系,并启发学生透过现象发现规律,让学生初步体会解决植树问题的思想方法以及这种方法在解决实际问题中的应用。
设计理念:本节课主要是让学生在解决实际问题的过程中发现规律,抽取出其中的数学模型,找到解决问题的有效方法,经历分析、思考的过程。
因此,我这样设计:创设情境从学生身边事,引起学生兴趣;自主探索,构建数学模型;拓展应用,培养应用意识。
为此,本课制定了三个教学目标:1.通过探究发现一条线段上两端要种的植树问题的规律。
2.学生经历和体验“复杂问题简单化”的解题策略和方法。
3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。
教学重点:引导学生从实际问题中探索并总结出棵树与间隔数之间的关系。
教学难点:把现实生活中类似的问题同化为“植树问题”,并利用植树问题的思想方法解决这些实际问题。
说教法:在本节课的教学中,我根据教学内容的特点和学生的实际情况,安排了一次动手操作,引导学生积极参与,使学生在小组合作的学习活动中,加深对植树问题棵数与间隔数之间的关系的认识与理解。
1.关注学习起点。
学生是数学学习的主人,教师作为学生学习的组织者,引导者与合作者,应及时关注学生学习的起点。
在教学中,我选取生活中的学生了解的事例,在教师的引导中让学生探究,,建立知识表象,使学生得到启迪,悟到方法。
高三第一学期数学教学计划5篇一、指导思想高三数学教学要以《全日制普通高级中学教科书》、20xx年普通高等学校招生全国统一考试《北京卷考试说明》为依据,以学生的发展为本,全面复习并落实基础知识、基本技能、基本数学思想和方法,为学生进一步学习打下坚实的基础。
要坚持以人为本, 强化质量的意识,务实规范求创新,科学合作求发展。
二、教学建议1、认真学习《考试说明》,研究高考试题,把握高考新动向,有的放矢,提高复习课的效率。
考试说明》是命题的依据,备考的依据。
高考试题是《考试说明》的具体体现。
因此要认真研究近年来的考试试题,从而加深对《考试说明》的理解,及时把握高考新动向,理解高考对教学的导向,以利于我们准确地把握教学的重、难点,有针对性地选配例题,优化教学设计,提高我们的复习质量。
注意08年高考的导向:注重能力考查,反对题海战术。
《考试说明》中对分析问题和解决问题的能力要求是:能阅读、理解对问题进行陈述的材料;能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述;能选择有效的方法和手段对新颖的信息、情境和设问进行独立的思考与探究,使问题得到解决。
08年的高考试题无论是小题还是大题,都从不同的角度,不同的层次体现出这种能力的要求和对教学的导向。
这就要求我们在日常教学的每一个环节都要有目的地关注学生能力培养,真正提高学生的数学素养。
2、充分调动学生学习积极性,增强学生学习的自信心。
尊重学生的身心发展规律,做好高三复习的动员工作,调动学生学习积极性,因材施教,帮助学生树立学习的自信性。
3、注重学法指导,提高学生学习效率。
教师要针对学生的具体情况,进行复习的学法指导,使学生养成良好的学习习惯,提高复习的效率。
如:要求学生建立错题本,让学生养成反思的习惯;养成学生善于结合图形直观思维的习惯;养成学生表述规范,按照解答题的必要步骤和书写格式答题的习惯等。
数学题的思维训练教案高中
目标:通过解决一系列高中数学题,培养学生的逻辑思维能力和解决问题的能力。
教学内容:代数、几何、概率等高中数学题
教学步骤:
1. 导入:让学生回顾前几节课的知识点,并讨论解题思路和方法。
2. 练习:给学生提供一些代数、几何、概率等类型的数学题,让他们分组解答。
每道题都要求学生写出详细的解题过程。
3. 分析:让学生交流各自的解题方法,引导他们思考不同的解题思路,并指出解题中可能存在的错误。
4. 总结:对本节课所涉及的数学题进行总结,强调解题思路和方法的重要性,鼓励学生通过不同的思路解决问题。
5. 拓展:让学生在课后自行寻找更多类似的数学题,并尝试通过不同的方法解答。
评价:根据学生在练习中的表现和讨论中的表现给予评价,鼓励他们在思维训练中不断进步。
延伸活动:组织学生小组进行数学竞赛,让他们在竞争中提升解题能力和团队合作能力。
教学资源准备:数学题目、解答笔记、评价表等。
反思和改进:根据学生在训练中的反馈和表现,及时调整教学方法和内容,确保思维训练的有效进行。
高三数学教学工作计划5篇高三数学教师要全面提高学生对高中数学知识的掌握程度,以培养创新型人材为目标,深入钻研教材,靠集体智慧处理教研、教改资源及多媒体信息,接下来给大家带来高三数学教学工作计划,希望能给您大家带来帮助。
高三数学教学工作计划1教学目标:1.知识与技能目标:掌握等差数列的概念;理解等差数列的通项公式的推导过程;了解等差数列的函数特征;能用等差数列的通项公式解决相应的一些问题。
2.过程与方法目标:让学生亲身经历“从特殊入手,研究对象的性质,再逐步扩大到一般”这一研究过程,培养他们观察、分析、归纳、推理的能力。
通过阶梯性的强化练习,培养学生分析问题解决问题的能力。
3.情感态度与价值观目标:通过对等差数列的研究,培养学生主动探索、勇于发现的求索精神;使学生逐步养成细心观察、认真分析、及时总结的好习惯。
教学重点:等差数列的概念及通项公式教学难点:(1)对等差数列中“等差”两字的把握;(2)等差数列通项公式的推导。
教学用具:多媒体教学方法:启发探究式教学法、情境教学法教学过程:一、新课引入:1、小时候妈妈教我们数数,怎么数的呢?得到什么数列?(同学们:1,2,3,4,5,……)2、如果我们从0开始,每隔5记录一次得到什么样的数列呢?(同学们:0,5,10,15,20,……)3、爸爸到银行存了10000万元钱,年利率为0.36%,那么按照单利计算,5年内各年末的利息各是多少?本利和各分别是多少呢?(利息=本金_利率_存期,本利和=本金_(1+利率_存期,单利即不把利息加入本金计算下一期的利息)(同学们:利息分别为:36,72,108,144,180本利和分别为:10036,10072,10108,10144,10180)用多媒体给下列生活实例让学生轻松状态下接受新知识二、新课探究:用多媒体给出下面的数列,让学生找出它们的共性数列①:1,2,3,4,5,……数列②:0,5,10,15,20,……数列③:48,53,58,63数列④:18,15.5,15,10.5,8,5.5数列⑤:36,72,108,144,180数列⑥:10036,10072,10108,10144,10180学生经过讨论得到如下表格对于数列①:,从第2项起,每一项与前一项的差都等于_____1___; 对于数列②:,从第2项起,每一项与前一项的差都等于_____5___; 对于数列③:,从第2项起,每一项与前一项的差都等于____5____; 对于数列④:,从第2项起,每一项与前一项的差都等于___-2.5____; 对于数列⑤:,从第2项起,每一项与前一项的差都等于____36_____;对于数列⑥:,从第2项起,每一项与前一项的差都等于____36_____;引导学生得到等差数列的定义一般地,如果一个数列从第2项起,每一项与前一项的差等于同一个常数,那么这个数列就叫做等差数列这个常数叫做等差数列的公差(common difference),公差通常用字母d表示,数列的第一项叫首项如果让我们给上述6个数列下个定义,我们给它一个什么称谓最恰当呢?用多媒体给出给出定义教师引导学生认识公差的特点大家再回过来看上面的六个数列,他们的公差分别是多少?公差为正时数列有什么变化趋势?是递增的还是递减的呢?公差为负时呢?公差是不是可以为0呢?此时数列又如何变化呢?三、现在我们一起来探寻求等差数列通项公式的方法依据等差数列的定义可以得到a2-a1=d,a3-a2=d,a4-a3=d,……。
人教版高三数学教案5篇通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。
使学生善于从现实生活中数学的发现问题,解决问题,数学是每个学生的必修课,好的教师应当做好对应的数学教案。
通过本节学习,学生应当达到对数学理解有所提高,人教版高三数学教案1一、教材分析1、本节内容在全书及章节的地位:《函数的单调性》是必修1第一章第 3 节,高中数学《函数的单调性》说课稿教案模板是高考的重点考查内容之一,是函数的一个重要性质,在比较几个数的大小、求函数值域、对函数的定性分析以及与其他知识的综合上都有广泛的应用。
通过对这一节课的学习,可以让学生加深对函数的本质认识。
也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。
2、教学目标:根据上述教材结构与内容分析,考虑到学生已有的认知水平我制定如下教学目标:基础知识目标:了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;明确掌握利用函数单调性定义证明函数单调性的方法与步骤;并能用定义证明某些简单函数的单调性;能力训练目标:培养学生严密的.逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。
重点:形成增(减)函数的形式化定义。
难点。
形成增减函数概念的过程中,如何从图像升降的直观认识过渡到函数增减数学符号语言表述;用定义证明函数的单调性。
为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:二、教法在教学中我使用启发式教学,在教师的引导下,创设情景,通过开放性问题的设置来启发学生思考,在思考中体会数学概念形成过程中所蕴涵的数学方法,三、学法倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力”。
数学作为基础教育的核心课程之一,转变学生数学学习方式,不仅有利于提高学生的数学素养,而且有利于促进学生整体学习方式的转变。
高三数学复习课教学设计5篇作为一名老师,时常要开展教学设计的准备工作,教学设计是一个系统设计并实现学习目标的过程,它遵循学习效果最优的原则吗,是课件开发质量高低的关键所在。
教学设计应该怎么写才好呢以下是小编为大家收集的高三数学复习课教学设计,欢迎大家分享。
高三数学复习课教学设计1一、指导思想:以《高中语文教学大纲》和《高考考试说明》为本,全面提高学生语文素养和语文能力,争取20__年高考获取全面胜利。
二、学情分析:7班全班现有41人,经过两年多的高中学习,掌握了一些学习语文的方法,具备一定语文学习能力,但是还有相当一部分学生语文基础知识基本技能不够好,良好的语文学习习惯还没有养成,更有不少同学缺乏应试能力,还有一些同学对语文科学习不够重视,书写潦草,答题不规范。
8班全班现有40余人,多数同学语文基础较差,语文应试能力不高,语文学习积极性不是太高,同学之间语文成绩不平衡,甚至差别很大。
但职高语文考试能力要求不是太高,只要努力,明年高考一定会有好成绩的。
三、考点分析:知识点主要包括以下内容:字音字形,实词虚词,熟语,病句,标点,扩展语句压缩语段,选用仿用变换句式,语言表达准确鲜明生动简明连贯得体,八种修辞方法,名言名句,鉴赏古诗词的形象语言和表达技巧,评价古诗词的思想内容和作者的观点态度,文言实词的含义,文言虚词的意义和用法,文言句式,文言翻译,文言文分析综合,现代文文中重要概念的含义,重要句子的含义,筛选文中信息,分析文章结构把握文章思路,归纳内容要点概括中心意思,概括作者在文中的观点态度,文学类实用类的阅读要具备分析综合鉴赏评价和探究能力,写作能力。
四、具体措施:1. 制定长远的计划及详细的短期计划,做到心中有数,忙而不乱。
2.向45分钟语文课堂教学要质量。
高三学生多数同学把课外时间都给了理化和数学,如何提高语文成绩,只能是向45分钟的语文课堂要效率,在备课时要大量参考多种资料,力求知识的新、全、准。
高中数学习题课的教学活动的实践探索张雪峰㊀李㊀萌(江苏省连云港市新浦中学㊀222000)摘㊀要:中学数学复习是高中数学教学的重要环节ꎬ在集体备课活动中要敢于探索ꎬ敢于实践ꎬ根据学生的学习实际安排合适的复习内容和学习方法ꎬ让学生根据自己的学习实际去组织学习和练习.关键词:数学复习ꎻ集体备课ꎻ时间探索中图分类号:G632㊀㊀㊀㊀㊀㊀文献标识码:A㊀㊀㊀㊀㊀㊀文章编号:1008-0333(2021)15-0004-02收稿日期:2021-02-25作者简介:张雪峰(1979.11-)ꎬ江苏省连云港人ꎬ本科ꎬ中学高级教师ꎬ从事高中数学教学研究.李萌(1982.12-)ꎬ男ꎬ本科ꎬ中学一级教师ꎬ从事高中数学教学研究.㊀㊀高中数学复习课的教学是高中数学教学的重要内容和环节ꎬ在教学中ꎬ可以发挥集体的智慧去提高教学效果ꎬ特别是在高中数学复习中.组织和安排好集体教学实践活动可以提高教学的效果.㊀㊀一㊁精心安排好习题课的教学问题是数学的心脏 ꎬ习题教学是高中数学课堂教学的重要环节ꎬ怎样进行习题课教学?怎样真正培养学生分析问题㊁解决问题的能力?怎样把习题课教学功能切实发挥出来?这些都是数学教师一直思考的问题ꎬ优选恰当的例题ꎬ进行适度的变式ꎬ采用多样的教学手段ꎬ让习题教学功能发挥到最大.例1㊀(问题信息源)如图1ꎬ已知扇形OPQ是半径为1ꎬ圆心角为π3的扇形ꎬC是扇形弧上的动点ꎬABCD是扇形内接矩形.记øCOP=αꎬ求当角α取何值时ꎬ矩形ABCD的面积最大?并求出这个最大面积.这是课本上一道例题ꎬ集体备课时ꎬ教师们集思广益ꎬ改变视角设计变式题:变式1㊀已知扇形OPQ是半径为Rꎬ圆心角为π3的扇形.如图1ꎬC是扇形弧上的点ꎬABCD是扇形的内接矩形.记øCOP=αꎬ矩形ABCD的面积记为S(α)ꎬ求S(α)的最大值.变式2㊀如图2ꎬCꎬB是扇形弧上的两动点(PB=QC)ꎬABCD是扇形的内接矩形.记øCOB=θꎬ矩形ABCD的面积记为T(θ)ꎬ求T(θ)的最大值.变式3㊀要想在一块圆心角为θ(0<θ<π)ꎬ半径为R的扇形铁板中截出一块面积最大的矩形ABCDꎬ应怎样截取?并求出此时的矩形面积.学生在解题过程中遇到的困难主要表现在:(1)理解困难ꎬ对题意不理解或是不易发现隐含条件ꎻ(2)构造困难ꎬ不会将题中的条件转化为数学信息ꎬ列出相应的数学表达式ꎻ(3)运算困难ꎬ速度慢而且准确率低ꎬ常常出现半途而废的现象ꎻ(4)判断困难ꎬ对概念理解不清ꎬ解题结果不会检验.究其原因ꎬ学生没有掌握题目本质ꎬ很多学生是 记题型ꎬ背套路 .所以ꎬ充分发挥集体智慧ꎬ挖掘题目内涵ꎬ以题目为载体构建知识体系ꎬ锻炼学生的数学理解能力和数学思维能力ꎬ真正学以致用.㊀㊀二㊁数学复习课的备课实践复习课是数学教学中必不可少的一种课型ꎬ数学复习课不同于新授课ꎬ它是站在 整体 的高度上ꎬ对所学的某章或某节内容的概念㊁方法㊁思想的再理解和再提高ꎬ是学生综合能力的再提升的过程.在实际教学中ꎬ数学复习课存在课堂形式单一ꎬ教学效果不明显等问题.数学复习课常常出现两种偏向:一种是以题海代复习ꎬ学生听得晕头转向ꎻ另一种是整理干巴巴的知识点ꎬ学生听得枯燥乏味.因此集体备课时ꎬ需要在复习课的准度㊁深度和难度的定位上下足功夫ꎬ提高复习课的教学效率.1.研究学情ꎬ定位复习的 准度数学复习课教学的第一步是要研究学情ꎬ弄清楚学生在学习一个阶段之后ꎬ存在什么样的问题ꎬ清楚问题所在ꎬ才能有针对性地进行复习ꎬ才能恰当地切入复习点ꎬ起到复习课应有的作用和功能.4Copyright©博看网 . All Rights Reserved.笔者所在的高三数学理科备课组ꎬ在进行 函数与导数 专题复习时ꎬ把学生平时遇到的问题一一归纳:(1)函数与导数含了太多的知识点ꎬ导数的概念及几何意义㊁函数与不等式方程的基础知识㊁导数研究函数的性质等ꎬ对学生来说ꎬ这些知识在脑子里是杂乱无章的ꎬ所以复习的第一步是整理知识点ꎬ将它们归纳梳理ꎬ形成系统的知识网络ꎻ(2)用导数求解切线问题ꎬ学生总是将 曲线在某点处的切线 与 曲线过某点的切线 混淆ꎻ(3)用导数研究函数的单调性以及函数的最值问题ꎬ这是学生必须掌握的ꎬ但碰到含参数的函数ꎬ学生还是会频频出错ꎻ(4)明确函数的极值与导数对应的方程fᶄ(x)=0的根之间的关系ꎬ即fᶄ(x0)=0是x0为极值点的必要而不充分条件ꎬ这一步骤的检验常被学生忽略ꎬ导致结果错误ꎻ(5)学生的分类讨论有待加强ꎻ数形结合的意识和能力需大力培养ꎻ运算能力要高度重视.2.钻研考纲ꎬ定位复习的 深度备课中ꎬ教师们要结合考纲ꎬ注重落实学生的基础知识ꎬ还要清晰地把握重要知识的再现ꎬ一方面确定复习课的主线ꎬ一方面明确复习的深度.在 函数与导数 专题复习中ꎬ通过集体商议ꎬ把这个专题细化为四个小专题:(1)导数的几何意义与切线问题(曲线在某一点处的切线问题)ꎻ(2)用导数研究函数性质的问题ꎻ(3)不等式恒成立问题(分离参数将其转化为函数的最值问题)ꎻ(4)导数的实际应用问题.根据这四个小专题ꎬ将复习课的题型总结为:求切线方程㊁用导数研究函数的单调性(着重是含参数的函数)㊁用导数求函数的极值与最值㊁用导数研究不等式㊁用导数研究方程㊁导数实际应用等六种类型.数学复习课以学生的问题为出发点ꎬ生成教学资源ꎬ我们不能苛求一节复习课教学功能的全面性ꎬ但是我们追求复习课功能的最大化ꎬ将复习课的课程目标分解到各节数学课ꎬ实现复习课提炼与迁移的教学功能.㊀㊀三㊁精选例题ꎬ定位复习的 难度选择有代表性的题目ꎬ通过教材例题㊁习题的变式拓展ꎬ使问题深化ꎬ从中提炼数学思想和解题方法ꎬ研究高考题的命题思路ꎬ准确把握复习的难度.例题的选择处理考虑知识点的覆盖面ꎬ考虑所蕴含的数学思想方法ꎬ还要考虑学生的思维参与度.教师应改变对集体备课无所谓的想法ꎬ不能以应付的态度对待集体备课ꎬ而应该全身心地投入.集体备课是一个经验的交流㊁沟通和分享的过程ꎬ讨论交流㊁信息整合是建构主义学习中不可或缺的过程ꎬ与新课程共同成长的数学教师ꎬ必须学会合作学习ꎬ实现彼此专业知识和共同建构教师合作文化ꎬ在不断总结自己的经验ꎬ吸纳他人意见的过程中ꎬ建构自己的知识体系ꎬ实现自己的专业发展.例2㊀(高三周末练习)已知对任意实数xꎬ二次函数f(x)=ax2+bx+c恒非负ꎬ若a<bꎬ则M=a+b+cb-a的最小值为.(这道填空题分值4分ꎬ但学生完成情况非常不好ꎬ平均得分1.87分ꎬ不少数学老师也觉得此题有难度)鲍老师(高三年级备课组组长):学生对这道题感觉十分棘手ꎬ因为平时经常接触到的是已知两个变量来求某一函数的最值ꎬ而这道题涉及三个变量.第一步应该是减少变量个数ꎬ重新审视一下题目ꎬ我发现二次函数f(x)=ax2+bx+c恒非负ꎬ这表明b>a>0和b2-4acɤ0ꎬ而由M=a+b+cb-a的特点ꎬ感觉消去c较为合理.由条件知b>a>0且b2-4acɤ0ꎬ即cȡb24aꎬ得M=a+b+cb-aȡa+b+b24ab-aȡ1+ba+b24a2ba-1.令ba=tꎬt>1ꎬ则Mȡ1+t+14t2t-1=t-14+94(t-1)+32ȡ2t-1494(t-1)+32=3ꎬ当且仅当t=4ꎬ即b=4aꎬc=4a时ꎬM取得最小值3.在实际教学中ꎬ这种解法是常规解法ꎬ但计算量太大ꎬ我发现M=a+b+cb-a的分子恰好是由f(x)=ax2+bx+c的赋值而来的ꎬ于是尝试凑配ꎬ因为f(x)非负ꎬ故M=a+b+cb-a=4a-2b+c+3(b-a)b-a=f(-2)b-a+3ȡ0+3=3ꎬ当且仅当f(-2)=0ꎬ即f(x)=a(x+2)2ꎬ也即b=4aꎬc=4a时ꎬM取得最小值3.通过挖掘隐含条件ꎬ给出更简洁更准确的解答ꎬ让所有教师眼前一亮.像这样教师积极参与ꎬ特别是青年教师敢于讲出自己的观点ꎬ这在集体备课中要加以肯定和赞扬ꎬ只有老教师与青年教师相互促进㊁知识互补ꎬ才能实实在在地发挥集体备课的作用.通过集体备课为年轻教师创造一个良好的学习氛围ꎬ让中老年教师在集体合作中吸纳新的教育思想㊁教学观念ꎬ把生动的传统教学经历补充到了集体备课之中ꎬ从而达到促进教师的成长㊁个人资源的整合㊁资源共享的目的.社会互依理论启发我们:教师团队合作一方面可以使教师在相互交往中ꎬ汲取自身所需要的养分ꎬ发挥自身的优势ꎬ补充自己的不足ꎻ另一方面ꎬ可以通过相互的交流与互动ꎬ促使教师产生团体动力ꎬ发挥集体优势ꎬ进而提高教学质量ꎬ促进自身的专业发展.㊀㊀参考文献:[1]林伟ꎬ罗朝举ꎬ陈峥嵘. 思意数学 习题课教学模式的构建与实践[J].中学教研(数学)ꎬ2020(11):24-29.[责任编辑:李㊀璟]5Copyright©博看网 . All Rights Reserved.。
高三数学习题课的教学设计
(阳谷三中刘广礼)
高考实行“3+X”后,数学的重要性越来越明显。
数学复习效果的好坏,在很大程度上决定着一个考生高考的成败,因此搞好高三数学的复习至关重要。
课堂教学是学校教育的主战场,我们应该遵循教学规律和学生的认知规律,优化课堂教学设计,有效地进行复习,提高课堂复习的效益。
下面结合我在成都市高三数学分科会上的一堂示范课——《三角函数的值域(最值)的常用求法(一)》,谈谈如何进行高三数学习题课的教学设计,仅供参考。
三角函数的值域(最值)问题是学生感到困难的一个内容,求它们的方法多种多样,一节课不可能一一列举。
这节课的主要目的是教会学生灵活选用代数与三角两种工具解决问题,培养学生“转化”及“数形结合”的数学思想,体现“三角变换”的工具性。
虽然求函数的值域(最值)在《函数》单元已经复习过,但复习不等于重复,复习也不等于单纯的解题训练,而应该温故知新、温故求新。
所以在课堂教学设计时考虑了以下原则:
1.强化“三基”的原则
“三基”是发展数学能力的基础,是高考重点考查的内容。
1999年教育部颁发的《中学数学教学内容和教学要求的调整意见》已成为高考命题的重要依据。
考试说明明确指出,反对死记,注重对公式和定理的理解、运用,以减少考生因识记错误而导致解题错误的过失性失分,提高区分度和效度。
所以在复习中,要培养学生掌握和应用文字语言、图形语言和符号语言的能力,并能准确转换这三种语言;培养学生清晰、简明、合乎逻辑的书写;培养学生合理选择算理进行熟练而准确运算的能力……。
因此,在该课我设计了学生口述解题思路、用实物投影展示学生课堂练习的解题过程、请几位学生板书他们的解答等环节,加强对“三基”的巩固落实。
2.贯彻“双主”的原则
在教学过程中,学生是学习的主体,教师是学习的主导,复习资料(教材)是学习的依据。
在学生、教师、资料(教材)这些对象中,应该以学生为主。
学生有大脑、有手,教师不要代替学生思维,代替学生解题,而应该创造条件,给学生充分的时空和丰富的材料,使他们动手动脑,解习题、讲见解、议问题、作总结,从中发展思维、增长知识、培养能力。
要达到这个目标,教师的主导作用必须加强,使主导作用更趋智力化、概括化、合理化,并防止“主导=主讲”,“主体=自学”的错误倾向,废止“满堂灌”的陈旧教法,以及无秩序、无调控的放羊似混乱课堂。
因此,在该课设计中,我既考虑了如何放手让学生进行个别交流、小组讨论,有考虑了如何进行调控,使学生的活动有序开展,课堂生动活泼,有条不紊。
3.坚持精讲精练的原则
数学复习教学重在培养能力,发展智力,教师必须把自己的课堂教学设计成培养学生能力、发展学生智力的“催化剂”。
问题是数学的“心脏”,解题是能力的标志。
所以数学习题课要以解决问题为主要目标,突出“练”字。
然而,“练”不等于是搞题海战术,而是要练精选的、有代表性的习题。
因为不加选择的胡练一气,只能使学生身心疲惫,对数学产生厌倦感。
所以,
在该课的设计中,我精选了两个基础练习题和两个发散练习题,它们由浅入深,由易到难,彼此联系,互相渗透。
采用讲练结合,讲以导练,精讲精练的方式,教师只是在学生易错、易漏、不严谨、欠规范等要害处加以启发、指导、点拨,并及时作出评价,帮助学生认识各种思路的优劣,解法的长短,和学生一起探求最优解法,让学生动脑、动手、动口,使学生在练习中,在老师的点拨中,在成功与失败中,巩固知识,提升能力。
4.培养发散思维的原则
高三数学总复习既要全面,又要突出重点;既要加强基础,又要提高能力、发展智力。
在该课的设计中,我通过一题多变、一题多解、尝试错误等形式,充分发挥题目的效益,培养学生综合运用知识的能力,使学生练一题、学一法、会一类、通一片。
我从选择题1和填空题2
出发,引申出发散思维题3、4,遵循了学生的认知规律,作到循序渐进。
在解法上,从三角变换联系到代数式的运算,进而发散到与几何知识和复数知识的联系。
在要求上,立足通法,着眼于基础,解决学生“无米之炊”的急所;寻求巧法,着眼于提高,使学生“锦上添花”;警示误法,着眼于修正,给学生提供“反面教材”。
5.渗透数学思想方法的原则
数学思想方法是数学的精髓,是知识转化为能力的桥梁,具有普遍的应用意义。
在分析和解决问题时,它能指导我们揭示问题的本质,抓住解决问题的关键。
因此,为了使学生的思维能力有序而科学的发展,必须在课堂教学中渗透重要的数学思想方法,使学生能站在理性的高度思考问题,培养良好的思维品质。
在该课的选题上注意了互相联系,循序渐进,后面的问题可以通过数学变换转化成前面的问题解决,渗透“转化”的数学思想,培养学生化新为旧、化繁为简、化难为易的能力;在问题的解决方法上,挖掘三角函数式(代数式)的几何特征,沟通代数与几何的联系,渗透“数形结合”的数学思想,培养学生综合解决问题的能力。
在总体上本节课采用类比的方法,运用演绎思维方式,从特殊问题引申到一般问题,培养学生的发散思维能力。