STM32 实时时钟和闹钟程序
- 格式:pdf
- 大小:18.46 KB
- 文档页数:8
使用STM32和DS3231 RTC:设置并获取时间和日期——笔记在本文中,将使用STM32开发一个驱动程序,用于在DS3231中设置和获取时间存储。
在本文中,将介绍以下内容:DS3231模块。
与STM32F411核-64的连接。
源文件。
产品图片DS3231模块DS3231是一款低成本、极其精确的I 2 C实时时钟(RTC),集成温度补偿晶体振荡器(TCXO)和晶体。
该器件集成了电池输入,并在器件的主电源中断时保持精确的计时。
晶体谐振器的集成提高了设备的长期精度,并减少了生产线中的零件数量。
RTC 维护秒、分钟、小时、星期、日期、月份和年份信息。
对于少于31 天的月份,月底的日期会自动调整,包括闰年的更正。
时钟以24 小时制或12 小时制运行,带有AM/PM 指示器。
提供两个可编程时间闹钟和一个可编程方波输出。
地址和数据通过I 2 C双向总线串行传输。
该模块可在3.3 或5 V 电压下工作,适用于许多开发平台或微控制器。
电池输入为3V,典型的CR2032 3V电池可以为模块供电并保持信息超过一年。
与STM32F411核-64的连接:在开始开发驱动器之前,需要I2C多读和多写才能使DS3231工作。
我们首先创建名称为ds3231.h 的新头文件。
在头文件中,我们将声明一个结构如下:该结构将包含以下内容:秒。
分。
小时。
月中的某天。
月。
年。
计算所需的其他数据。
此外,声明以下三个函数:首先是设置时间和数据,并以结构为参数。
第二个是从DS3231读取时间,并获取指向结构的指针。
第三个功能将打印时间。
因此,整个头文件如下所示:创建一个名称为ds3231.c 的新源代码。
在此声明以下宏:此外,还有两个功能:第一个将 dec 转换为 BCD 的方法:第二个是将 BCD 转换为 dec :为了设置时间和日期:由于我们已经超过了2000 年,因此我们将世纪位设置为1:并从给定年份中减去2000。
然后将变量转换为BCD,并将变量发送到DS3231,以设置时间和日期。
2017年6月Doc ID 018624 Rev 1 [English Rev 5]1/45AN3371应用笔记在 STM32 F0、F2、F3、F4 和 L1 系列MCU 中使用硬件实时时钟(RTC )前言实时时钟 (RTC) 是记录当前时间的计算机时钟。
RTC 不仅应用于个人计算机、服务器和嵌入式系统,几乎所有需要准确计时的电子设备也都会使用。
支持 RTC 的微控制器可用于精密计时器、闹钟、手表、小型电子记事薄以及其它多种设备。
本应用笔记介绍超低功耗中等容量、超低功耗大容量、F0、F2和 F4 系列器件微控制器中嵌入式实时时钟 (RTC) 控制器的特性,以及将 RTC 用于日历、闹钟、定时唤醒单元、入侵检测、时间戳和校准应用时所需的配置步骤。
本应用笔记提供了含有配置信息的示例,有助于您快速准确地针对日历、闹钟、定时唤醒单元、入侵检测、时间戳和校准应用配置 RTC 。
注:所有示例和说明均基于 STM32L1xx 、STM32F0xx 、STM32F2xx 、STM32F4xx 和STM32F3xx 固件库,以及 STM32L1xx (RM0038)、STM32F0xx (RM0091)、STM32F2xx (RM0033)、STM32F4xx (RM0090)、STM32F37x (RM0313) 和 STM32F30x(RM0316) 的参考手册。
本文提到的STM32 指超低功耗中等容量、超低功耗大容量、F0、F2 和 F4 系列器件。
超低功耗中等 (ULPM) 容量器件包括 STM32L151xx 和 STM32L152xx 微控制器,Flash 容量在 64 KB 到 128 KB 之间。
超低功耗大 (ULPH) 容量器件包括 STM32L151xx 、STM32L152xx 和 STM32L162xx 微控制器,Flash 容量为 384 KB 。
F2 系列器件包括 STM32F205xx 、STM32F207xx 、STM32F215xx 和 STM32F217xx 微控制器。
stm32 rtc实时时钟STM32 RTC实时时钟一、介绍STM32是意法半导体公司(STMicroelectronics)推出的一系列32位ARM Cortex-M微控制器。
其中,RTC(Real-Time Clock)是STM32微控制器中的一个重要组件,用于实时时钟和日历功能。
本文将详细介绍STM32 RTC的实时时钟功能及其应用。
二、RTC概述RTC模块是一种独立的硬件模块,可以在微控制器断电时继续运行。
它提供了一个与时间和日期相关的计数器,通过时钟信号源来驱动计数器,从而实现实时时钟的功能。
RTC模块通常由一个独立的低功耗振荡器来提供时钟源。
STM32微控制器中的RTC模块支持多种工作模式,如年历模式、单位数字模式和二进制模式等。
三、RTC的主要功能1. 实时时钟:RTC模块可以提供精确的实时时钟,可以记录时间、日期和星期等信息。
2. 闹钟功能:RTC可以设置多个闹钟时间,并在闹钟时间到达时触发中断或其他操作。
3. 倒计时功能:RTC模块可以进行倒计时操作,并在倒计时结束时触发中断。
4. 调度功能:RTC可以设置预定的时间点,并在该时间点触发中断。
5. 报警功能:RTC可以设置报警功能,当发生特定事件时触发中断或其他操作。
四、配置RTC模块在使用STM32微控制器的RTC功能之前,需要进行一些配置。
首先,需要选择合适的时钟源。
通常,RTC模块使用低功耗振荡器作为时钟源。
其次,需要配置RTC的预分频器和计数器,以实现所需的时间精度。
还需配置中断和/或事件触发条件,以便在特定事件发生时触发中断或其他操作。
五、RTC的中断与事件RTC模块可以生成多个中断和事件,以满足应用的需求。
常见的中断和事件有:1. 秒中断:每当计数器的秒字段更新时触发中断。
2. 分钟中断:每当计数器的分钟字段更新时触发中断。
3. 小时中断:每当计数器的小时字段更新时触发中断。
4. 日期中断:每当计数器的日期字段更新时触发中断。
stm32——RTC实时时钟一、关于时间2038年问题在计算机应用上,2038年问题可能会导致某些软件在2038年无法正常工作。
所有使用UNIX时间表示时间的程序都将将受其影响,因为它们以自1970年1月1日经过的秒数(忽略闰秒)来表示时间。
这种时间表示法在类Unix(Unix-like)操作系统上是一个标准,并会影响以其C编程语言开发给其他大部份操作系统使用的软件。
在大部份的32位操作系统上,此“time_t”数据模式使用一个有正负号的32位元整数(signedint32)存储计算的秒数。
也就是说最大可以计数的秒数为 2^31次方可以算得:2^31/3600/24/365 ≈ 68年所以依照此“time_t”标准,在此格式能被表示的最后时间是2038年1月19日03:14:07,星期二(UTC)。
超过此一瞬间,时间将会被掩盖(wrap around)且在内部被表示为一个负数,并造成程序无法工作,因为它们无法将此时间识别为2038年,而可能会依个别实作而跳回1970年或1901年。
对于PC机来说,时间开始于1980年1月1日,并以无正负符号的32位整数的形式按秒递增,这与UNIX时间非常类似。
可以算得:2^32/3600/24/365 ≈ 136年到2116年,这个整数将溢出。
Windows NT使用64位整数来计时。
但是,它使用100纳秒作为增量单位,且时间开始于1601年1月1日,所以NT将遇到2184年问题。
苹果公司声明,Mac在29,940年之前不会出现时间问题!二、RTC使用说明"RTC"是Real Time Clock 的简称,意为实时时钟。
stm32提供了一个秒中断源和一个闹钟中断源,修改计数器的值可以重新设置系统当前的时间和日期。
RTC模块之所以具有实时时钟功能,是因为它内部维持了一个独立的定时器,通过配置,可以让它准确地每秒钟中断一次。
但实际上,RTC就只是一个定时器而已,掉电之后所有信息都会丢失,因此我们需要找一个地方来存储这些信息,于是就找到了备份寄存器。
stm32的时钟配置(⾮常详细)⼤家都知道在使⽤单⽚机时,时钟速度决定于外部晶振或内部RC振荡电路的频率,是不可以改变的。
⽽ARM的出现打破了这⼀传统的法则,可以通过软件随意改变时钟速度。
这⼀出现让我们的设计更加灵活,但是也给我们的设计增加了复杂性。
为了让⽤户能够更简单的使⽤这⼀功能,STM32的库函数已经为我们设计的更加简单⽅便。
在⽐较靠前的版本中,我们需要向下⾯那样设置时钟:ErrorStatus HSEStartUpStatus;void RCC_Configuration(void){RCC_DeInit(); // RCC system reset(for debug purpose)RCC_HSEConfig(RCC_HSE_ON); // Enable HSEHSEStartUpStatus = RCC_WaitForHSEStartUp(); // Wait till HSE is readyif (HSEStartUpStatus == SUCCESS) // 当HSE准备完毕切振荡稳定后{RCC_HCLKConfig(RCC_SYSCLK_Div1); // HCLK = SYSCLKRCC_PCLK2Config(RCC_HCLK_Div1); // PCLK2 = HCLKRCC_PCLK1Config(RCC_HCLK_Div2); // PCLK1 = HCLK/2FLASH_SetLatency(FLASH_Latency_2); // Flash 2 wait stateFLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); // Enable Prefetch BufferRCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9); // PLLCLK = 8MHz * 9 = 72 MHzRCC_PLLCmd(ENABLE); // Enable PLLwhile(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET){; // Wait till PLL is ready}RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); // Select PLL as system clock sourcewhile (RCC_GetSYSCLKSource() != 0x08) // Wait till PLL is used as system clock source {;}}}随之函数库的不断升级,到3.0以上时,我们就不⽤再这样编写时钟设置了,我们只要做如下两部即可:第⼀个: system_stm32f10x.c 中 #define SYSCLK_FREQ_72MHz 72000000第⼆个:调⽤SystemInit()说明:在stm32固件库3.0中对时钟频率的选择进⾏了⼤⼤的简化,原先的⼀⼤堆操作都在后台进⾏。
STM32L4如何用闹钟唤醒待机模式STM32L4微控制器是一款低功耗型的微控制器,具有多种低功耗模式,包括待机模式。
待机模式是一种非常低功耗的模式,减少了系统的功耗和电池的消耗。
在待机模式下,微控制器处于最低功耗状态,只有少数外设处于工作状态。
为了实现在待机模式下使用闹钟唤醒,需要使用RTC(实时时钟)和唤醒时钟。
以下是在STM32L4微控制器上使用闹钟唤醒待机模式的步骤:第一步:配置RTCRTC是一个计时器和日历,可以配置为以低功耗模式运行,以实现在待机模式下仍然运行。
需要配置RTC的时钟源和时钟预分频器,以及闹钟的时间和日期。
可以使用STM32CubeMX工具来生成初始化代码,并进行配置。
第二步:配置唤醒时钟唤醒时钟是唤醒待机模式的时钟源,可以选择RTC时钟或者外部时钟。
需要配置唤醒时钟源的时钟频率和预分频器。
第三步:配置RTC闹钟唤醒RTC闹钟唤醒是通过比较RTC计数器的值和闹钟的时间来实现的。
需要设置闹钟的时间和日期,并使能RTC的闹钟中断。
可以使用RTC中断处理函数来处理闹钟中断。
第四步:配置待机模式需要将微控制器设置为待机模式,并选择所需的待机模式。
可以选择从WFI或WFE指令进入待机模式,然后在唤醒时钟中断发生时唤醒。
第五步:进入待机模式通过设置待机模式位,可以将微控制器设置为待机模式。
可以在主循环中或者其他适当的位置调用待机模式函数,以便在满足一定条件时进入待机模式。
例如,在任何其他可能导致系统空闲的地方,可以插入检查唤醒条件的代码,并在满足条件时调用待机模式函数。
第六步:处理唤醒中断当RTC闹钟的时间和日期与RTC计数器的值匹配时,将会发生唤醒中断,并从待机模式中唤醒。
可以在RTC中断处理函数中处理唤醒中断,例如重新配置RTC闹钟或恢复其他外设。
通过以上步骤,就可以实现在待机模式下使用RTC闹钟唤醒STM32L4微控制器。
这样可以大大降低系统的功耗,并在指定的时间唤醒系统进行相应的操作。
STM32单片机RTC时钟的使用方法及步骤以下是使用STM32单片机的RTC时钟的步骤:1.初始化RTC模块:首先,需要在RCC寄存器中使能RTC和LSE(Low-Speed External)晶振模块。
然后,配置RTC的时钟源和预分频器,选择合适的时钟频率。
2.配置RTC时间和日期:通过设置RTC的寄存器来配置当前时间和日期。
需要设置秒、分钟、小时、星期、日期、月份和年份,确保其具有正确的值。
3.启动RTC时钟:设置RTC的控制寄存器,使其开始工作。
可以选择启用或禁用闹钟功能,设置闹钟的时间和日期。
4.读取RTC数据:可以随时读取RTC的时间和日期数据。
读取数据后,可以进行各种计算和处理,如计算两个时间之间的差异、比较时间等。
5.处理RTC中断:可以设置RTC中断来触发一些操作,如闹钟触发时执行一些任务。
需要配置NVIC(Nested Vector Interrupt Controller)中断向量表,使能相应的中断。
6.备份和恢复RTC数据:RTC模块提供了备份寄存器,可以用来存储额外的信息。
可以使用一些特殊的寄存器,如BKP (Backup)寄存器或CPU的系统寄存器来备份和恢复数据。
7.断电维持能力:RTC模块的一个关键特性是其断电维持能力。
即使在断电情况下,RTC模块中的数据仍然能够保持。
可以通过电池供电电路来提供必要的电力。
8.节能模式:可以利用RTC模块的节能模式来降低功耗。
可以选择性地关闭RTC模块的不需要的功能,以减少功耗。
需要注意的是,具体的步骤可能会因芯片型号和开发工具的不同而有所差异。
因此,在使用STM32单片机的RTC时钟之前,需查阅相关的技术文档和参考手册,以了解具体操作步骤和寄存器配置。
以上是使用STM32单片机的RTC时钟的基本步骤。
在实际应用中,可以根据具体需求对RTC进行更多的配置和使用。
stm32 rtc用法STM32是一款功能强大的微控制器系列,RTC(Real Time Clock)是其中一个重要的功能模块。
RTC模块为嵌入式设备提供了高精度的实时时钟功能,能够在断电后依然保持时间的准确性。
本篇文章将详细介绍STM32 RTC的使用方法,一步一步回答相关问题。
第一步:使用前的准备在开始使用STM32 RTC之前,需要对RTC模块进行一些准备工作。
首先,在Keil或者其他集成开发环境(IDE)中,需要将RTC作为外设来进行配置。
其次,需要对RTC外设的时钟进行配置,通常可以选择外部晶体振荡或者内部LSI振荡作为时钟源。
最后,还需要配置RTC的预分频器和计数器,以满足实际应用的需求。
第二步:初始化RTC模块在进行RTC模块的初始化之前,需要先对RTC外设进行使能。
通过启用RCC_AHB1ENR或RCC_APB1ENR寄存器中的RTCEN位,可以使能RTC外设。
接着,可以通过RCC_CSR寄存器中的备份域访问位(BDCR寄存器)来对RTC 模块进行初始化。
在初始化RTC模块时,可以设置时钟源、预分频器和计数器的初值,以及其他一些参数,如是否使能闹钟功能等。
第三步:设置RTC时间在RTC模块初始化完成后,可以通过写入RTC_TR和RTC_DR寄存器来设置RTC的时间。
其中,RTC_TR寄存器用于设置小时、分钟和秒钟的值,RTC_DR寄存器用于设置年、月和日期的值。
需要注意的是,写入RTC_TR和RTC_DR寄存器的时候,应该先禁用RTC写保护,然后再进行写操作。
完成时间设置后,可以重新启用RTC写保护。
第四步:读取RTC时间除了设置RTC时间外,还可以通过读取RTC_TR和RTC_DR寄存器来获取当前的RTC时间。
读取RTC时间的时候,同样需要先禁用RTC写保护,然后再进行读取操作。
完成读取后,需要重新启用RTC写保护。
第五步:使用闹钟功能RTC模块还支持闹钟功能,可以通过设置RTC_ALRMxR(x为1、2或3)寄存器来设置闹钟的时间和触发方式。
stm32时钟概念
在STM32微控制器中,时钟是控制系统时序和同步的重要元件。
时钟通过提供时钟信号来驱动计时器、外设和处理器核心等,实现数据传输和操作的同步。
STM32微控制器使用了多种类型的时钟,包括系统时钟、高
速外设时钟、低速外设时钟和RTC(实时时钟)时钟。
以下
是对每种时钟的概念的简要描述:
1. 系统时钟:
系统时钟(SYSCLK)是微控制器所有部分的主时钟源,它
控制处理器核心以及许多外设的运行。
系统时钟的频率可以通过配置寄存器来选择,通常是通过增加倍频器或分频器来实现。
2. 高速外设时钟(HCLK):
高速外设时钟是系统时钟分频得到的一个时钟,它驱动一些
对实时性要求较高的外设,例如DMA(直接内存访问控制器)和GPIO(通用输入/输出端口)等。
3. 低速外设时钟(PCLK):
低速外设时钟也是通过系统时钟分频得到的一个时钟,它驱
动一些低速外设,如USART(通用异步收发传输器)和I2C (串行通信接口)等。
4. RTC时钟:
RTC时钟是由外部低速晶体振荡器提供的时钟,用于实时时钟和日历功能。
它通常用于实现计时、日期和闹钟等功能。
时钟源的选择和设置可以通过微控制器的时钟控制寄存器来完成,这些寄存器提供了配置时钟的选项。
根据具体的应用需求,可以选择不同的时钟源和频率来优化系统性能和功耗。
stm32数字时钟课程设计一、课程目标知识目标:1. 学生能理解STM32的内部时钟结构和定时器工作原理;2. 学生能掌握利用STM32设计数字时钟的基本步骤和方法;3. 学生能了解数字时钟的显示原理,并掌握与STM32定时器相结合的编程技巧;4. 学生能解释数字时钟在实际应用中的重要性。
技能目标:1. 学生能运用C语言进行STM32定时器的编程;2. 学生能通过调试工具解决数字时钟编程中的问题;3. 学生能设计并实现一个具有基本功能的数字时钟,包括时、分、秒显示和闹钟功能;4. 学生能对所设计的数字时钟进行测试和优化。
情感态度价值观目标:1. 学生培养对电子制作的兴趣,增强实践操作的自信心;2. 学生培养团队协作意识,学会在项目中相互沟通、共同解决问题;3. 学生通过数字时钟设计,认识到技术与生活的紧密联系,激发创新意识;4. 学生培养严谨的科学态度,注重实验数据的准确性和程序的可维护性。
二、教学内容1. STM32内部时钟结构:介绍STM32的时钟树,讲解时钟源、时钟分频、时钟使能等概念,为学生设计数字时钟提供基础理论知识。
2. 定时器工作原理:详细讲解STM32定时器的工作原理,包括计数器、预分频器、自动重装载寄存器等组成部分,使学生了解定时器在数字时钟中的作用。
3. C语言编程:回顾与定时器编程相关的C语言知识,包括数据类型、运算符、控制语句等,为编写数字时钟程序打下基础。
4. 数字时钟设计步骤:按照以下步骤组织教学内容:a. 硬件设计:讲解如何使用STM32最小系统板,选择合适的显示屏和驱动芯片,连接电路;b. 软件设计:介绍定时器初始化、中断处理、时间计算等编程方法;c. 程序调试:指导学生使用调试工具,如Keil、ST-Link等,进行程序调试;d. 测试与优化:要求学生完成数字时钟设计后进行功能测试,并根据测试结果进行优化。
5. 教材章节关联:教学内容与教材第3章“STM32定时器”和第5章“STM32中断与事件”相关,结合实例进行讲解,使学生更好地掌握相关知识。