2019年高考数学专题:导数中恒成立与存在性问题(解析版)
- 格式:docx
- 大小:639.09 KB
- 文档页数:10
函数与导数14 导数及其应用 恒成立及存在性问题一、具体目标: 1.导数在研究函数中的应用:①了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(对多项式函数一般不超过三次)。
②了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(对多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(对多项式函数一般不超过三次). 2.生活中的优化问题:会利用导数解决某些实际问题。
考点透析:1.以研究函数的单调性、单调区间、极值(最值)等问题为主,与不等式、函数与方程、函数的图象相结合;2.单独考查利用导数研究函数的某一性质以小题呈现,综合研究函数的性质以大题呈现;3.适度关注生活中的优化问题. 3.备考重点:(1) 熟练掌握导数公式及导数的四则运算法则是基础;(2) 熟练掌握利用导数研究函数的单调性、极值(最值)的基本方法,灵活运用数形结合思想、分类讨论思想、函数方程思想等,分析问题解决问题. 二、知识概述: 一)函数的单调性:1.设函数y =f (x )在某个区间内可导,如果0)(>'x f ,则函数y =f (x )为增函数;如果f ' (x )<0,则函数y =f (x )为减函数;如果恒有f ' ( x )=0,则y =f (x )为常函数.2.应当理解函数的单调性与可导性并无本质的联系,甚至具有单调性的函数并不一定连续.我们只是利用可导来研究单调性,这样就将研究的范围局限于可导函数.3.f (x )在区间I 上可导,那么0)(>'x f 是f (x )为增函数的充分条件,例如f (x )=x 3是定义于R 的增函数, 但 f '(0)=0,这说明f '(x )>0非必要条件.)(x f 为增函数,一定可以推出0)(≥'x f ,但反之不一定.4. 讨论可导函数的单调性的步骤: (1)确定)(x f 的定义域;【考点讲解】(2)求)(x f ',令0)(='x f ,解方程求分界点; (3)用分界点将定义域分成若干个开区间;(4)判断)(x f '在每个开区间内的符号,即可确定)(x f 的单调性.5.我们也可利用导数来证明一些不等式.如f (x )、g (x )均在[a 、b ]上连续,(a ,b )上可导,那么令h (x )=f (x )-g (x ),则h (x )也在[a ,b ]上连续,且在(a ,b )上可导,若对任何x ∈(a ,b )有h '(x )>0且 h (a )≥0,则当x ∈(a ,b )时 h (x )>h (a )=0,从而f (x )>g (x )对所有x ∈(a ,b )成立. 二)函数的极、最值: 1.函数的极值 (1)函数的极小值:函数y =f(x)在点x =a 的函数值f(a)比它在点x =a 附近其它点的函数值都小,f′(a)=0,而且在点x =a 附近的左侧f′(x)<0,右侧f′(x)>0,则点a 叫做函数y =f(x)的极小值点,f(a)叫做函数y =f(x )的极小值. (2)函数的极大值:函数y =f(x)在点x =b 的函数值f(b)比它在点x =b 附近的其他点的函数值都大,f′(b)=0,而且在点x =b 附近的左侧f′(x)>0,右侧f′(x)<0,则点b 叫做函数y =f(x)的极大值点,f(b)叫做函数y =f(x)的极大值. 极小值点,极大值点统称为极值点,极大值和极小值统称为极值. 2.函数的最值(1)在闭区间[a ,b ]上连续的函数f(x)在[a ,b ]上必有最大值与最小值.(2)若函数f(x)在[a ,b ]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a ,b ]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.三)高考中全称命题和存在性命题与导数的结合是近年高考的一大亮点,下面结合高考试题对此类问题进行归纳探究相关结论:结论1:1212min max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∀∈>⇔>; 结论2:1212max min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∃∈>⇔>; 结论3:1212min min [,],[,],()()[()][()]x a b x c d f x g x f x g x ∀∈∃∈>⇔>; 结论4:1212max max [,],[,],()()[()][()]x a b x c d f x g x f x g x ∃∈∀∈>⇔>;结论5:1212[,],[,],()()()x a b x c d f x g x f x ∃∈∃∈=⇔的值域和()g x 的值域交集不为空.1. 【2019年高考天津理数】已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥【真题分析】在R 上恒成立,则a 的取值范围为( ) A .[]0,1B .[]0,2C .[]0,eD .[]1,e【解析】当1x =时,(1)12210f a a =-+=>恒成立;当1x <时,22()22021x f x x ax a a x =-+≥⇔≥-恒成立,令2()1x g x x =-,则222(11)(1)2(1)1()111x x x x g x x x x -----+=-=-=----112201x x ⎛⎫⎛⎫=--+-≤-= ⎪ ⎪ ⎪-⎝⎭⎝⎭,当111x x-=-,即0x =时取等号,∴max 2()0a g x ≥=,则0a >. 当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤恒成立,令()ln xh x x=,则2ln 1()(ln )x h x x -'=,当e x >时,()0h x '>,函数()h x 单调递增,当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =,∴min ()e a h x ≤=,综上可知,a 的取值范围是[0,e]. 【答案】C2.【优选题】设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数t ,使得()0f t <,则a的取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭【解析】本题考点是函数的单调性、存在性问题的综合应用.令()()()21,xg x e x h x ax a =-=-.由题意知存在唯一整数t ,使得()g t 在直线()h x 的下方.()()21'=+xg x ex ,当12x <-时,函数单调递减,当12x >-,函数单调递增,当12x =-时,函数取得最小值为122e --.当0x =时,(0)1g =-,当1x =时,(1)0g e =>,直线()h x ax a =-过定点()1,0,斜率为a ,故()0a g ->且()113g e a a --=-≥--,解得3,12⎡⎫∈⎪⎢⎣⎭a e . 【答案】D3.【2019年高考北京】设函数()e e xxf x a -=+(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.【解析】首先由奇函数的定义得到关于a 的恒等式,据此可得a 的值,然后利用()0f x '≥可得a 的取值范围.若函数()e e xxf x a -=+为奇函数,则()(),f x f x -=-即()ee e e xx x x a a --+=-+,即()()1e e0xxa -++=对任意的x 恒成立,则10a +=,得1a =-.若函数()e e xxf x a -=+是R 上的增函数,则() e e 0x xf x a -'=-≥在R 上恒成立,即2e x a ≤在R 上恒成立,又2e 0x >,则0a ≤,即实数a 的取值范围是(],0-∞. 【答案】(]1,0--∞4.【优选题】已知函数f (x )=mx 2-x +ln x ,若在函数f (x )的定义域内存在区间D ,使得该函数在区间D 上为减函数,则实数m 的取值范围为________.【解析】f ′(x )=2mx -1+1x =2mx 2-x +1x ,即2mx 2-x +1<0在(0,+∞)上有解.当m ≤0时,显然成立;当m >0时,由于函数y =2mx 2-x +1的图象的对称轴x =14m >0,故只需Δ>0,即1-8m >0,解得m <18.故实数m 的取值范围为⎝⎛⎭⎫-∞,18. 【答案】⎝⎛⎭⎫-∞,18 5.【优选题】若曲线3()ln f x ax x =+存在垂直于y 轴的切线,则实数a 取值范围是_____________. 【解析】 由题意可知'21()2f x ax x=+,又因为存在垂直于y 轴的切线, 所以231120(0)(,0)2ax a x a x x+=⇒=->⇒∈-∞. 【答案 】 (,0)-∞ 6.【2018年江苏卷】若函数()()R a ax x x f ∈+-=1223在()∞+,0内有且只有一个零点,则()x f 在[]11,-上的最大值与最小值的和为________.【解析】本题考点是函数的零点、函数的单调性与最值的综合应用. 由题意可求得原函数的导函数为()0262=-='ax x x f 解得3,0ax x ==,因为函数在()∞+,0上有且只有一个零点,且有()10=f ,所以有03,03=⎪⎭⎫⎝⎛>a f a,因此有3,0133223==+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛a a a a ,函数()x f 在[]01,-上单调递增,在[]10,上单调递减,所以有()()10max ==f x f ,()()41min -=-=f x f ,()()3min max -=+x f x f .【答案】–37.【2018年理新课标I 卷】已知函数()x x x f 2sin sin 2+=,则()x f 的最小值是_____________.【解析】本题考点是函数的单调性、最值与三角函数的综合应用. 由题意可()()⎪⎭⎫ ⎝⎛-+=-+=+='21cos 1cos 42cos 2cos 42cos 2cos 22x x x x x x x f ,所以当21cos <x 时函数单调减,当21cos >x 时函数单调增,从而得到函数的减区间为 ()Z k k k ∈⎥⎦⎤⎢⎣⎡--32,352ππππ,函数的增区间为()Z k k k ∈⎥⎦⎤⎢⎣⎡+-32,32ππππ,所以当()Z k k x ∈-=,32ππ时,函数()x f 取得最小值,此时232sin ,23sin -=-=x x ,所以()23323232min-=-⎪⎪⎭⎫ ⎝⎛-=x f ,故答案是233-. 【答案】233-8.【优选题】已知21()ln (0)2f x a x x a =+>,若对任意两个不等的正实数12x x 、都有1212()()2f x f x x x ->-恒成立,则a 的取值范围是 . 【解析】由题意可知()'2af x x x=+≥(x >0)恒成立,∴22a x x ≥-恒成立, 令()()22211g x x x x =-=--+则()max x g a ≥,∵()22g x x x =-为开口方向向下,对称轴为x =1的抛物线,∴当x =1时,()22g x x x =-取得最大值()11=g ,∴1≥a 即a 的取值范围是[1,+∞).【答案】[)1,+∞9. 【2019年高考全国Ⅲ卷理数】已知函数32()2f x x ax b =-+. (1)讨论()f x 的单调性;(2)是否存在,a b ,使得()f x 在区间[0,1]的最小值为1-且最大值为1?若存在,求出,a b 的所有值;若不存在,说明理由.【解析】(1)2()622(3)f x x ax x x a '=-=-.令()0f x '=,得x =0或3ax =. 若a >0,则当(,0),3a x ⎛⎫∈-∞+∞⎪⎝⎭U 时,()0f x '>;当0,3a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在(,0),,3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在0,3a ⎛⎫⎪⎝⎭单调递减;若a =0,()f x 在(,)-∞+∞单调递增;若a <0,则当,(0,)3a x ⎛⎫∈-∞+∞ ⎪⎝⎭U 时,()0f x '>;当,03a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<.故()f x 在,,(0,)3a ⎛⎫-∞+∞ ⎪⎝⎭单调递增,在,03a ⎛⎫⎪⎝⎭单调递减.(2)满足题设条件的a ,b 存在.(i )当a ≤0时,由(1)知,()f x 在[0,1]单调递增,所以()f x 在区间[0,l ]的最小值为(0)=f b ,最大值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当1b =-,21a b -+=,即a =0,1b =-. (ii )当a ≥3时,由(1)知,()f x 在[0,1]单调递减,所以()f x 在区间[0,1]的最大值为(0)=f b ,最小值为(1)2f a b =-+.此时a ,b 满足题设条件当且仅当21a b -+=-,b =1,即a =4,b =1.(iii )当0<a <3时,由(1)知,()f x 在[0,1]的最小值为3327a a f b ⎛⎫=-+ ⎪⎝⎭,最大值为b 或2a b -+.若3127a b -+=-,b =1,则a =,与0<a <3矛盾.若3127a b -+=-,21a b -+=,则a =或a =-或a =0,与0<a <3矛盾.综上,当且仅当a =0,1b =-或a =4,b =1时,()f x 在[0,1]的最小值为-1,最大值为1.10.【2019年高考浙江】已知实数0a ≠,设函数()=ln 0.f x a x x +>(1)当34a =-时,求函数()f x 的单调区间;(2)对任意21[,)e x ∈+∞均有()f x ≤ 求a 的取值范围. 注:e=2.71828…为自然对数的底数.【解析】(1)当34a =-时,3()ln 04f x x x =->.3()4f 'x x =-+=()f x 的单调递减区间为(0,3),单调递增区间为(3,+∞).(2)由1(1)2f a≤,得04a <≤.当04a <≤时,()f x ≤2ln 0x ≥.令1t a=,则t ≥.设()22ln ,g t tx t =≥2()2ln g t t x=-.(i )当1,7x ⎡⎫∈+∞⎪⎢⎣⎭≤()2ln g t g x ≥=.记1()ln ,7p x x x =≥,则1()p'x x =-==. 故所以,()(1)0p x p ≥=.因此,()2()0g t g p x ≥=≥.(ii )当211,e 7x ⎡⎫∈⎪⎢⎣⎭时,()g t g =….令211()(1),,e 7q x x x x ⎡⎤=++∈⎢⎥⎣⎦,则()10q'x =>, 故()q x 在211,e 7⎡⎤⎢⎥⎣⎦上单调递增,所以1()7q x q ⎛⎫ ⎪⎝⎭„. 由(i )得,11(1)07777q p p ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭.所以,()<0q x .因此()0g t g =>…. 由(i )(ii )知对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,),()0t g t ∈+∞…,即对任意21,e x ⎡⎫∈+∞⎪⎢⎣⎭,均有()2f x a „. 综上所述,所求a的取值范围是0,4⎛ ⎝⎦. 【答案】(1)()f x 的单调递增区间是()3,+∞,单调递减区间是()0,3;(2)0,4⎛ ⎝⎦.1.设函数a ax x x x f -+--=53)(23,若存在唯一的正整数0x ,使得0)(0<x f ,则a 的取值范围是( )A .)31,0( B .]45,31( C .]23,31( D .]23,45(【解析】当32a =时,3237()322f x x x x =--+,()()20,30f f <<,不符合题意,故排除C ,D.当54a =时,32515()344f x x x x =--+,()()()()10,20,30,40f f f f ><=>,故54a =符合题意.【答案】B2.设函数()(21)xf x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是( ) A .3[,1)2e -B .33[,)24e - C .33[,)24e D .3[,1)2e【解析】 ()0(21)xf x e x ax a <⇔-<-,记()(21)xg x e x =-,则题意说明存在唯一的整数0x ,使()g x 的图象在直线y ax a =-下方,【模拟考场】'()(21)x g x e x =+,当12x <-时,'()0g x <,当12x >-时,'()0g x >,因此当12x =-时,()g x 取得极小值也是最小值21()22g e --=-,又(0)1g =-,(1)0g e =>,直线y ax a =-过点(1,0)且斜率为a ,故1(0)1(1)3a g g e a a-->=-⎧⎨-=-≥--⎩,解得312a e≤<. 【答案】D3.若函数()()2ln 201x f x a x x a m a a =+-⋅-->≠且有两个零点,则m 的取值范围( ) A.()1,3- B.()3,1- C.()3,+∞ D.(),1-∞- 【解析】考查函数()2ln xg x a x x a m =+--,则问题转化为曲线()y g x =与直线2y =有两个公共点,则()()ln 2ln 1ln 2x x g x a a x a a a x '=+-=-+,则()00g '=, 当01a <<时,ln 0a <,当0x <时,10x a ->,()1ln 0x a a -<,20x <,则()1ln 20x a a x -+<, 当0x >,10x a -<,()1ln 0x a a ->,20x >,则()1ln 20x a a x -+>,此时,函数()2ln xg x a x x a m =+--在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,同理,当1a >时,函数()2ln xg x a x x a m =+--在区间(),0-∞上单调递减,在区间()0,+∞上单调递增,因此函数()2ln xg x a x x a m =+--在0x =处取得极小值,亦即最小值,即()()min 01g x g m ==-,)由于函数()()2ln 201x f x a x x a m a a =+-⋅-->≠且有两个零点, 结合图象知12m -<,解得13m -<<,故选A. 【答案】A 4. (1)求函数()f x 的单调区间;(2)若当[]1,2x ∈-时()f x m <恒成立,求m 的取值范围 【解析】试题分析:(1)由原函数求出导数,通过导数的正负求出相应的单调区间(2)将不等式恒成立问题转化为求函数的最值问题,本题中需求函数()f x 的最大值,可通过导数求解.试题解析:(1)由()'2320fx x x =--> 得1x >或()1,+∞(2上递减,在区间[]1,2上递增,又,所以在区间[]1, 2-上max 7f =要使()f x m <恒成立,只需7m >即可.【答案】(1,()1,+∞ 2)7m >5.【2018年高考全国Ⅰ卷理数】已知函数1()ln f x x a x x=-+. (1)讨论()f x 的单调性;(2)若()f x 存在两个极值点12,x x ,证明:()()12122f x f x a x x -<--.【解析】(1)()f x 的定义域为(0,)+∞,22211()1a x ax f x x x x -+'=--+=-.(i )若2a ≤,则()0f x '≤,当且仅当2a =,1x =时()0f x '=,所以()f x 在(0,)+∞单调递减.(ii )若2a >,令()0f x '=得,2a x =或2a x =.当)x ∈+∞U 时,()0f x '<;当x ∈时,()0f x '>.所以()f x在)+∞单调递减,在单调递增. (2)由(1)知,()f x 存在两个极值点当且仅当2a >.由于()f x 的两个极值点12,x x 满足210x ax -+=,所以121x x =,不妨设12x x <,则21x >. 由于12121221212121222()()ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=-+=-+----, 所以1212()()2f x f x a x x -<--等价于22212ln 0x x x -+<.设函数1()2ln g x x x x=-+,由(1)知,()g x 在(0,)+∞单调递减,又(1)0g =,从而当(1,)x ∈+∞时,()0g x <.所以22212ln 0x x x -+<,即1212()()2f x f x a x x -<--. 6.已知函数()ln 2a xf x x x =++. (1)求函数()f x 的单调区间;(2)设函数()()ln 1g x x x f x =+-,若1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x >恒成立,求实数a 的取值范围.【解析】(1)()f x 的定义域为()0,+∞,()222112222a x x af x x x x +-'=-+=,令()0f x '=,则2220x x a +-=,480a ∆=+>时,即12a >-,方程两根为11x ==--2x =-122x x +=-,122x x a =-,①当12a ≤-时,0∆≤,()0f x '≥恒成立,()f x 的增区间为()0,+∞;②当102a -<≤时,1220x x a =-≥,10x <,20x ≤,()0,x ∈+∞时,()0f x '≥,()f x 的增区间为()0,+∞;③当0a >时,10x <,20x >,当()20,x x ∈时,()0f x '<,()f x 单调递减,当()2+x x ∈∞,时,()0f x '>,单调递增;综上,当0a ≤时,()f x 的增区间为()0,+∞; 当0a >时,()f x的减区间为(0,1-,增区间为()1-+∞.(2)1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x >恒成立,即ln ln 102a x x x x x ---+>,∴22ln ln 2x a x x x x x <--+,令()221ln ln 22x h x x x x x x x ⎛⎫=--+> ⎪⎝⎭,()2ln ln 11h x x x x x x '=+---+,()()21ln h x x x '=-,当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '<,()h x 单调递减;当()1+x ∈∞,时,()0h x '>,()h x 单调递减; ∴()()min 112h x h ==,∴12a <,则实数a 的取值范围时12⎛⎫-∞ ⎪⎝⎭,.【答案】(1)当0a ≤时,()f x 的增区间为()0,+∞;当0a >时,()f x的减区间为(0,1-,增区间为()1-+∞;(2)12⎛⎫-∞ ⎪⎝⎭,.7.已知函数f (xln x .(Ⅰ)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8−8ln2;(Ⅱ)若a ≤3−4ln2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.【解析】(Ⅰ)函数f (x)的导函数1()f x x '=-,由12()()f x f x ''=1211x x -=-, 因为12x x ≠12+==≥ 因为12x x ≠,所以12256x x >.由题意得121212()()ln ln ln()f x f x x x x x +=+=.设()ln g x x =,则1()4)4g x x'=, 所以所以g (x )在[256,+∞)上单调递增,故12()(256)88ln 2g x x g >=-,即12()()88ln 2f x f x +>-. (Ⅱ)令m =()e a k -+,n =21()1a k++,则f (m )–km –a >|a |+k –k –a ≥0, f (n )–kn –a <)a n k n --≤)n k -<0,所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a , 所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点. 由f (x )=kx +a 得k =设()h x =22ln )1)((12x ag x x x a x h '=-+--+=,其中(n )l g x x -=. 由(Ⅰ)可知g (x )≥g (16),又a ≤3–4ln2,故–g (x )–1+a ≤–g (16)–1+a =–3+4ln 2+a ≤0, 所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )–kx –a =0至多1个实根. 综上,当a ≤3–4ln 2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 8.【优选题】已知函数21()(2)2ln 2f x x a x a x =-++(0)a >. (1)若曲线()y f x =在点(1,(1))f 处的切线为2y x b =+,求2a b +的值; (2)讨论函数()f x 的单调性;(3)设函数()(2)g x a x =-+,若至少存在一个0[,4]x e ∈,使得00()()f x g x >成立,求实数a 的取值范围.【解析】本题是函数的综合问题.(1)()f x 的定义域为(0,)+∞,2()(2)'=-++a f x x a x, ∴1(1)(2)22f a b =-+=+,(1)1(2)22'=-++=f a a , 解得132,2a b ==-,∴210a b +=-.(2)2(2)2(2)()()-++--'==x a x a x x a f x x x,当2a =时,()0(0,)'≥⇒∈+∞f x x ,∴()f x 的单调增区间为(0,)+∞.当02a <<时,由'()0(0,)(2,)f x x a >⇒∈+∞U ,∴()f x 的单调增区间为(0,)a ,(2,)+∞由'()0(,2)f x x a <⇒∈,∴()f x 的单调减区间为(,2)a .当2a >时,由'()0(0,2)(,)f x x a >⇒∈+∞U ,∴()f x 的单调增区间为(0,2),(,)a +∞由'()0(2,)f x x a <⇒∈,∴()f x 的单调减区间为(2,)a .综上所述:当2a =时,'()0(0,)f x x ≥⇒∈+∞,∴()f x 的单调增区间为(0,)+∞,当02a <<时,∴()f x 的单调增区间为(0,)a ,(2,)+∞,()f x 的单调减区间为(,2)a 当2a >时,∴()f x 的单调增区间为(0,2),(,)a +∞,()f x 的单调减区间为(2,)a .(3)若至少存在一个0[,4]x e ∈,使得00()()f x g x >,∴212ln 02x a x +>, 当[,4]x e ∈时,ln 1x >,∴2122ln xa x>-有解,令212()ln x h x x=-,∴min 2()a h x >.2'22111ln (ln )22()0(ln )(ln )x x x x x x h x x x -⋅-=-=-<, ∴()h x 在[,4]e 上单调递减,min 4()(4)ln 2h x h == ∴42ln 2a >得,2ln 2a >. 9.【2018山东模拟】设函数0),(,)1(31)(223>∈-++-=m R x x m x x x f 其中 (Ⅰ)当时,1=m 曲线))(,在点(11)(f x f y =处的切线斜率.(Ⅱ)求函数的单调区间与极值;(Ⅲ)已知函数)(x f 有三个互不相同的零点0,21,x x ,且21x x <.若对任意的],[21x x x ∈,)1()(f x f > 恒成立,求m 的取值范围.【解析 】本小题主要考查导数的几何意义,导数的运算,以及函数与方程的根的关系解不等式等基础知识,考查综合分析问题和解决问题的能力. (1)当1)1(,2)(,31)(1'2/23=+=+==f x x x f x x x f m 故时, 所以曲线))(,在点(11)(f x f y =处的切线斜率为1.(2) 12)(22'-++-=m x x x f ,令0)('=x f ,得到m x m x +=-=1,1因为m m m ->+>11,0所以当x 变化时,)(),('x f x f 的变化情况如下表:x )1,(m --∞m -1)1,1(m m +-m +1),1(+∞+m)('x f+0 - 0 +)(x f极小值极大值)(x f 在)1,(m --∞和),1(+∞+m 内减函数,在)1,1(m m +-内增函数。
问题04 函数中的存在性与恒成立问题一、考情分析函数内容作为高中数学知识体系的核心,也是历年高考的一个热点.在新课标下的高考越来越注重对学生的综合素质的考察,恒成立与存在性问题便是一个考察学生综合素质的很好途径,它主要涉及到一次函数、二次函数、三角函数、指数函数和对数函数等常见函数的图象和性质及不等式等知识,渗透着换元、化归、数形结合、函数与方程等思想方法,在培养思维的灵活性、创造性等方面起到了积极的作用,故备受高考命题者的青睐,成为高考能力型试题的首选. 二、经验分享(1) 设)0()(2≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a .(2) 对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 (3)根据方程有解求参数范围,若参数能够分离出来,可把求参数范围转化为求函数值域.(4) 利用分离参数法来确定不等式(),0f x λ≥,( D x ∈,λ为实参数)恒成立中参数λ的取值范围的基本步骤:①将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; ②求()f x 在x D ∈上的最大(或最小)值;③解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围.(5) 对于参数不能单独放在一侧的,可以利用函数图象来解.利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围.(6) 某些含参不等式恒成立问题,在分离参数会遇到讨论的麻烦或者即使能容易分离出参数与变量,但函数的最值却难以求出时,可考虑变换思维角度.即把主元与参数换个位置,再结合其它知识,往往会取得出奇制胜的效果. 三、知识拓展(1)恒成立问题①. ∀x∈D,均有f(x)>A恒成立,则f(x)min>A;②. ∀x∈D,均有f(x)﹤A恒成立,则 f(x)ma x<A;③. ∀x∈D,均有f(x) >g(x)恒成立,则F(x)= f(x)- g(x) >0,∴ F(x)min >0;④. ∀x∈D,均有f(x)﹤g(x)恒成立,则F(x)= f(x)- g(x) <0,∴ F(x) ma x <0;⑤. ∀x1∈D, ∀x2∈E,均有f(x1) >g(x2)恒成立,则f(x)min> g(x)ma x;⑥. ∀x1∈D, ∀x2∈E,均有f(x1) <g(x2)恒成立,则f(x) ma x < g(x) min.(2)存在性问题①. ∃x0∈D,使得f (x0)>A成立,则f(x) ma x >A;②. ∃x0∈D,使得f(x0)﹤A成立,则 f(x) min <A;③. ∃x0∈D,使得f(x0) >g(x0)成立,设F(x)= f(x)- g(x),∴F(x) ma x >0;④. ∃x0∈D,使得f(x0) <g(x0)成立,设F(x)= f(x)- g(x),∴F(x) min <0;⑤. ∃x1∈D, ∃x2∈E, 使得f(x1) >g(x2)成立,则f(x) ma x > g(x) min;⑥. ∃x1∈D, ∃x2∈E,均使得f(x1) <g(x2)成立,则f(x) min < g(x) ma x.(3)相等问题若f(x)的值域分别为A,B,则⊆;①. ∀x1∈D, ∃x2∈E,使得f(x1)=g(x2)成立,则A B②∃x 1∈D, ∃x2∈E, 使得f(x1)=g(x2)成立,则A B≠∅.(4)恒成立与存在性的综合性问题①∀x1∈D, ∃x2∈E, 使得f(x1) >g(x2)成立,则f(x)m in> g(x)m in;②∀x1∈D, ∃x2∈E, 使得f(x1) <g(x2)成立,则f(x)max < g(x)max.四、题型分析解决高中数学函数的存在性与恒成立问题常用以下几种方法:①函数性质法;②分离参数法;③主参换位法;④数形结合法等.(一) 函数性质法【例1】已知函数f(x)=x3-ax2+10,若在区间[1,2]内至少存在一个实数x,使得f(x)<0成立,求实数a的取值范围.【分析】本题实质是存在性问题【点评】 解法一在处理时,需要用分类讨论的方法,讨论的关键是极值点与区间[1,2]的关系;解法二是用的参数分离,由于ax 2>x 3+10中x 2∈[1,4],所以可以进行参数分离,而无需要分类讨论. 【牛刀小试】【2017山西大学附中第二次模拟】设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数t ,使得()0f t <,则a 的取值范围是( ) A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭【答案】D【解析】令()()()21,xg x e x h x ax a =-=-.由题意知存在唯一整数t ,使得()g t 在直线()h x 的下方.()()'21xg x ex =+,当12x <-时,函数单调递减,当12x >-,函数单调递增,当12x =-时,函数取得最小值为122e--.当0x =时,(0)1g =-,当1x =时,(1)0g e =>,直线()h x ax a =-过定点()1,0,斜率为a ,故()0a g ->且()113g e a a --=-≥--,解得3,12m e ⎡⎫∈⎪⎢⎣⎭. (二)分离参数法【例2】已知函数()ln f x ax x x =+的图象在点e x =(e 为自然对数的底数)处的切线的斜率为3. (1)求实数a 的值;(2)若2()f x kx ≤对任意0x >成立,求实数k 的取值范围. 【分析】(1)由'()l n 1f x a x =++结合条件函数()ln f x ax x x =+的图象在点e x =处的切线的斜率为3,可知'(e)3f =,可建立关于a 的方程:lne 13a ++=,从而解得1a =;(2)要使2()f x kx ≤对任意0x >恒成立,只需max2()[]f x k x ≥即可,而由(1)可知()ln f x x x x =+,∴问题即等价于求函数1ln ()xg x x+=的最大值,可以通过导数研究函数()g x 的单调性,从而求得其最值:221(1ln )ln '()x x xx g x x x⋅-+==-,令'()0g x =,解得1x =,当01x <<时,'()0g x >,∴()g x 在(0,1)上是增函数;当1x >时,'()0g x <,∴()g x 在(1,)+∞上是减函数,因此()g x 在1x =处取得最大值(1)1g =,∴1k ≥即为所求.(2)由(1)知,()ln f x x x x =+, ∴2()f x kx ≤对任意0x >成立1ln xk x+⇔≥对任意0x >成立, 令1ln ()xg x x +=,则问题转化为求()g x 的最大值, 221(1ln )ln '()x x xx g x x x ⋅-+==-,令'()0g x =,解得1x =, 当01x <<时,'()0g x >,∴()g x 在(0,1)上是增函数; 当1x >时,'()0g x <,∴()g x 在(1,)+∞上是减函数. 故()g x 在1x =处取得最大值(1)1g =,∴1k ≥即为所求.【点评】在函数存在性与恒成立问题中求含参数范围过程中,当其中的参数(或关于参数的代数式)能够与其它变量完全分离出来并,且分离后不等式其中一边的函数(或代数式)的最值或范围可求时,常用分离参数法.此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧看成新函数,于是将问题转化成新函数的最值问题.利用分离参数法来确定不等式(),0f x λ≥,(,x D λ∈为实参数)恒成立中参数λ的取值范围的基本步骤: (1)将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; (2)求()f x 在x D ∈上的最大(或最小)值;(3)解不等式()()max g f x λ≥ (或()()min g f x λ≤) ,得λ的取值范围. 【牛刀小试】【2017湖南省郴州市上学期第一次教学质量监测】已知函数()log a f x x =,()2log (22)a g x x t =+-,其中0a >且1a ≠,t R ∈.(1)若4t =,且1[,2]4x ∈时,()()()F x g x f x =-的最小值是-2,求实数a 的值; (2)若01a <<,且1[,2]4x ∈时,有()()f x g x ≥恒成立,求实数t 的取值范围. 【答案】(1)15;(2)[2,)+∞.(2)∵()()f x g x ≥恒成立,即log 2log (22)a a x x t ≥+-恒成立,∴1log log (22)2a a x x t ≥+-.又∵01a <<,1[,2]4x ∈,22x t ≤+-,22t x ≥-+∴恒成立,∴max (22)t x ≥-.令2117122)([,2])484y x x =-=-+∈,∴max 2y =.故实数t 的取值范围为[2,)+∞. (三)主参换位法【例3】已知函数()ln()(x f x e a a =+为常数)是实数集R 上的奇函数,函数()()sin g x f x x λ=+是区间[]1,1-上的减函数,(1)求a 的值;(2)若[]2()11,1g x t t x λ≤++∈-在上恒成立,求t 的取值范围.【分析】在第二小题所给条件中出现了两个字母:λ及t ,那么解题的关键恰恰就在于该把其中哪个字母看成是一个变量,另一个作为常数.而根据本题中的条件特征显然可将λ视作自变量,则上述问题即可转化为在(],1-∞-内关于λ的一次函数大于等于0恒成立的问题,问题即可求解.【解析】(1)1a =(2)由(1)知:()f x x =,()sin g x x x λ∴=+,()g x 在[]11-,上单调递减, ()cos 0g x x λ'∴=+≤cos x λ∴≤-在[]11-,上恒成立, 1λ∴≤-,[]max ()(1)sin1g x g λ=-=--, ∴只需2sin11t t λλ--≤++,2(1)sin110t t λ∴++++≥(其中1λ≤-)恒成立,由上述②结论:可令()2(1)sin110(1f t t λλλ=++++≥≤-),则2t 101sin110t t +≤⎧⎨--+++≥⎩, 21sin10t t t ≤-⎧∴⎨-+≥⎩,而2sin10t t -+≥恒成立,1t ∴≤-. 【点评】某些函数存在性与恒成立问题中,当分离参数会遇到讨论的麻烦或者即使能容易分离出参数与变量,但函数的最值却难以求出时,可考虑变换思维角度.即把主元与参数换个位置,再结合其它知识,往往会取得出奇制胜的效果.此类问题的难点常常因为学生的思维定势,易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x 为参数,以为变量,构造新的关于参数的函数,再来求解参数应满足的条件这样问题就轻而易举的得到解决了.【牛刀小试】若不等式()2211x m x ->-对任意[]1,1m ∈-恒成立,求实数x 的取值范围.12x <<【解析】()2211x m x ->-可转化为()21210m x x --+<,设()()21210f m m x x =--+<,则()f m是关于m 的一次型函数,要使()0f m <恒成立,只需()()221201220f x x f x x ⎧=-<⎪⎨-=--+<⎪⎩,12x <<. (四)数形结合法【例4】已知函数()222f x x kx =-+,在1x ≥-恒有()f x k ≥,求实数k 的取值范围.【分析】为了使题中的条件()f x k ≥在[)1,x ∈-+∞恒成立,应能想到构造出一个新的函数()()F x f x k =-,则可把原题转化成所构造新的函数在区间[)1,-+∞时恒大于等于0的问题,再利用二次函数的图象性质进行分类讨论,即可使问题得到圆满解决.【点评】如果题中所涉及的函数对应的图象、图形较易画出时,往往可通过图象、图形的位置关系建立不等式从而求得参数范围. 解决此类问题经常要结合函数的图象,选择适当的两个函数,利用函数图像的上、下位置关系来确定参数的范围.利用数形结合解决不等式问题关键是构造函数,准确做出函数的图象.常见的有两类函数:若二次函数()20y ax bx c a =++≠大于0恒成立,则有00a >⎧⎨∆<⎩,同理,若二次函数()20y ax bx c a =++≠小于0恒成立,则有0a <⎧⎨∆<⎩.若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解.【牛刀小试】【2017河北省武邑上学期第三次调研考试】已知定义在R 上的奇函数()f x 满足:当0x ≥时,()3f x x =,若不等式()()242f t f m mt ->+对任意实数t 恒成立,则实数m 的取值范围是( )A .(,-∞ B .()C. ()),0-∞⋃+∞ D .(),-∞⋃+∞【答案】A(五)存在性之常用模型及方法 【例5】设函数()21ln 2a f x a x x bx -=+-,a R ∈且1a ≠.曲线()y f x =在点()()1,1f 处的切线的斜率为0.(1)求b 的值;(2)若存在[)1,x ∈+∞,使得()1af x a <-,求a 的取值范围. 【分析】(1)根据条件曲线()y f x =在点()()1,1f 处的切线的斜率为0,可以将其转化为关于a ,b 的方程,进而求得b 的值:()()1af x a x b x'=+--,()10f '=⇒()101a a b b +--=⇒=;(2)根据题意分析可得若存在[1,)x ∈+∞,使得不等式()1a f x a <-成立,只需min ()1af x a >-即可,因此可通过探求()f x 的单调性进而求得()f x 的最小值,进而得到关于a 的不等式即可,而由(1)可知()21ln 2a f x a x x x -=+-,则()()()11x a x a f x x---⎡⎤⎣⎦'=,因此需对a 的取值范围进行分类讨论并判断()f x 的单调性,从而可以解得a 的取值范围是()()11,-+∞.【解析】(1)()()1af x a x b x'=+--, 由曲线()y f x =在点()()1,1f 处的切线的斜率为0,得()10f '=, 即()10a a b +--=,1b =; 4分(2)由(1)可得,()21ln 2a f x a x x x -=+-, ()()()()()211111x a x a a x x a a f x a x x x x---⎡⎤--+⎣⎦'=+--==, 令()0f x '=,得11x =,21a x a=-,而21111a a a a --=--, ①当12a ≤时,11aa≤-, 在[)1,+∞上,()0f x '≥,()f x 为增函数,()()()min111122a a f x f ---==-=,令121a aa --<-,即2210a a +-<,解得11a <<. ②当11a <<时,1a >,()()()2minln 112111a a a a a f x f a a a a a a ⎛⎫==++> ⎪-----⎝⎭, 不合题意,无解,10分 ③当1a >时,显然有()0f x <,01a a >-,∴不等式()1af x a <-恒成立,符合题意,综上,a 的取值范围是()()11,+∞.【点评】解决函数中存在性问题常见方法有两种:一是直接法同上面所讲恒成立;二是间接法,先求其否定(恒成立),再求其否定补集即可解决.它的逻辑背景:原命题为",()"x M P x ∀∈的否定为",()"x M P x ∃∈⌝;原命题为",()"x M P x ∃∈的否定为“,()"x M P x ∀∈⌝.处理的原则就是:不熟系问题转化为熟悉问题. 【牛刀小试】已知=)(x f x x +221,=)(x g a x -+)1ln(, (1)若存在]2,0[,21∈x x ,使得)()(21x g x f >,求实数a 的取值范围; (2)若存在]2,0[,21∈x x ,使得)()(21x g x f =,求实数a 的取值范围.五、迁移运用1.【2018届江西省上高县高三上学期第四次月考】若不等式230xa x log -<对任意10,3x ⎛⎫∈ ⎪⎝⎭恒成立,则实数a 的取值范围为( ) A. [1,127)B. 1,127⎛⎫ ⎪⎝⎭C. 10,27⎛⎫ ⎪⎝⎭D. 10,27⎛⎤⎥⎝⎦【答案】A【解析】构造函数f (x )=3x 2,g (x )=-log a x, 10,3x ⎛⎫∈ ⎪⎝⎭∵不等式3x 2-log a x <0对任意10,3x ⎛⎫∈ ⎪⎝⎭恒成立,∴f (13)≤g(13)∴3•19- 13a log ≤0.∴0<a <1且a≥127∴实数a 的取值范围为[1127,),故选A 2.【2018届广西贵港市高三上学期12月联考】若不等式()()21313ln1ln33x xa x ++-⋅≥-⋅对任意的(],1x ∈-∞恒成立,则a 的取值范围是( )A. 10,3⎛⎤-∞ ⎥⎝⎦ B. 10,3⎡⎫+∞⎪⎢⎣⎭C. [)2,+∞D. (],2-∞ 【答案】D【解析】由题意结合对数的运算法则有: ()213133lnln 33x xxa ++-⋅≥,由对数函数的单调性有:()21313333x xxa ++-⋅≥,整理可得: 2133x x a +≤,由恒成立的条件有: 2min133x xa ⎛⎫+≤ ⎪⎝⎭,其中21313233xx xx y +⎛⎫==+≥ ⎪⎝⎭,当且仅当0x =时等号成立.即0x =时,函数2133x xy +=取得最小值2. 综上可得: 2a ≤.本题选择D 选项.3.【2018届福建省闽侯高三12月月考】已知函数()222,02,0x x x f x x x x ⎧-+≥=⎨-<⎩,若关于的不等式()()20f x af x ⎡⎤+<⎣⎦恰有个整数解,则实数的最大值是( )A. B. C. 5 D. 【答案】D4.【2018届甘肃省高台高三上学期第五次模拟】已知函数()1xf x x e =+,若对任意x R ∈, ()f x ax >恒成立,则实数a 的取值范围是( )A. (),1e -∞-B. (]1,1e -C. [)1,1e - D. ()1,e -+∞ 【答案】B【解析】函数()1x f x x e =+,对任意x R ∈, ()f x ax >恒成立,∴1x x ax e +>恒成立,即()11x a x e>-x 恒成立;设()()()1,1x g x h x a x e==-,x ∈R ;在同一坐标系内画出两个函数的图象,如图所示;则满足不等式恒成立的是h (x )的图象在g (x )图象下方,求()g x 的导数()'xg x e -=-,且过()g x 图象上点()00,x y 的切线方程为()000x y y e x x --=--,且该切线方程过原点(0,0),则000x y ex -=-⋅,即000x x e e x --=-⋅,解得01x =-;∴切线斜率为0x k e e -=-=-,∴应满足a −1>−e ,即a >1−e ;又a −1⩽0,∴a ⩽1,∴实数a 的取值范围是(1−e ,1].故选B.5.【2018届广东省五校高三12月联考】已知函数()()ln 224(0)f x x a x a a =+--+>,若有且只有两个整数1x , 2x 使得()10f x >,且()20f x >,则a 的取值范围是( ) A. ()ln3,2 B. [)2ln3,2- C. (]0,2ln3- D. ()0,2ln3- 【答案】C【解析】由题意可知, ()0f x >,即()()ln 2240,0x a x a a +--+>>, ()22ln 40ax a x x a ∴->-->,设()()2ln 4,2g x x x h x ax a =--=-,由()121'2x g x x x -=-=,可知()2ln 4g x x x =--,在10,2⎛⎫⎪⎝⎭上为减函数,在1,2⎛⎫+∞⎪⎝⎭上为增函数, ()2h x ax a =-的图象恒过点()2,0,在同一坐标系中作出()(),g x h x 的图象如下:若有且只有两个整数12,x x ,使得()10f x >,且()20f x >,则()()()(){11 33a h g h g >>≤,即0{2 23a a a ln >->-≤-,解得02ln3a <≤-,故选C.6.【2018届陕西省西安高三上学期期中】已知函数()3213f x x a x =-,若对于任意的[]12,0,1x x ∈,都有()()121f x f x -≤成立,则实数a 的取值范围是( )A. ⎡⎢⎣⎦B. ⎛ ⎝⎭C. ,00,33⎡⎫⎛-⋃⎪ ⎢⎪ ⎣⎭⎝⎦D. ,00,33⎛⎫⎛⎫-⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【答案】A7.【东北师范大学附属中学2018届高三第五次模拟】已知函数,,当时,不等式恒成立,则实数的取值范围为A .B .C .D .【答案】D 【解析】 不等式即, 结合可得恒成立,即恒成立,构造函数,由题意可知函数在定义域内单调递增,故恒成立,即恒成立,令,则,当时,单调递减;当时,单调递增;则的最小值为,据此可得实数的取值范围为.本题选择D选项.8.【山东省实验中学2019届高三第一次诊断】已知对任意的,总存在唯一的,使得成立(为自然对数的底数),则实数的取值范围是( )A. B. C. D.【答案】D【解析】9.【贵州省铜仁市第一中学2019届高三上学期第二次月考】设函数,其中,若存在唯一的整数,使得,则的取值范围是()A. B. C. D.【答案】B【解析】令,则,当时,,所以在上是单调减函数;当时,,所以在上是单调增函数;所以的图像如图所示:直线恒过点,设过的直线与曲线相切于点且切线方程为:,代入,故,解得或者,当时,,所以当时,直线可与在轴下方的图像相交.因为有且只有一个整数解,故曲线上的点在直线下方,在直线上方或在直线上,故即,故选B.10.【山东省安丘市、诸城市、五莲县、兰山区2019届高三10月联考】已知函数①f(x)=x+1;②f(x)=-2;③f(x)=;④f(x)=lnx;⑤f(x)=cosx。
关于高考数学中的恒成立问题与存在性问题 Last revised by LE LE in 2021“恒成立问题”的解法常用方法:①函数性质法; ②主参换位法; ③分离参数法; ④数形结合法。
一、函数性质法1.一次函数型:给定一次函数()(0)f x ax b a =+≠,若()y f x =在[m,n]内恒有()0f x >,则根据函数的图象(直线)可得上述结论等价于⎩⎨⎧>)(0)(n f m f ;同理,若在[m,n]内恒有()0f x <,则有⎩⎨⎧((n f m f 例1.p ,求使不等式2x x 的取值范围。
略解:不等式即为2(1)210x p x x -+-+>,设2()(1)21f p x p x x =-+-+,则()f p 在[2,2]-上恒大于0,故有:⎩⎨⎧>>-)2(0)2(f f ,即⎪⎩⎪⎨⎧>->+-0103422x x x 3111x x x x ><⎧⇒⎨><-⎩或或13x x ⇒<->或.2.二次函数:①.若二次函数2()(0)0f x ax bx c a =++≠>(或0<)在R 上恒成立,则有00a >⎧⎨∆<⎩(或0a <⎧⎨∆<⎩); ②.若二次函数2()(0)0f x ax bx c a =++≠>(或0<)在指定区间上恒成立,可以利用韦达定理以及根的分布等知识求解。
例2.已知函数()()()22241,f x mx m x g x mx =--+=,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是( )A .(0,2)B .(0,8)C .(2,8)D .(-∞,0)选B 。
例3.设2()22f x x ax =-+,当[1,)x ∈-+∞时,都有()f x a ≥恒成立,求a 的取值范围。
函数中恒成立与存在性问题二、函数中恒成立问题【例1】不等式3ln 1xx e a x x --≥+对任意(1,)x ∈+∞恒成立,则实数a 的取值范围( )A .(,1]e -∞-B .2(,2]e -∞-C .(,2]-∞-D .(,3]-∞-【解析】3ln 1x a x x e x -≤--对()1,x ∀∈+∞恒成立,即31ln x x e x a x ---≤对()1,x ∀∈+∞恒成立,从而求31ln x x e x y x ---=,()1,x ∈+∞的最小值,而33ln 3ln 3ln 1x x x x x x e e e e x x ---==≥-+故313ln 113ln x x e x x x x x ---≥-+--=-即313ln 3ln ln x x e x xx x----≥=-当3ln 0x x -=时,等号成立,方程3ln 0x x -=在()1,+∞内有根,故3min13ln x x e x x -⎛⎫--=- ⎪⎝⎭,所以3a ≤-,故选D.【例2】已知函数()ln f x ax x x =+的图象在点e x =(e 为自然对数的底数)处的切线的斜率为3. (1)求实数a 的值;(2)若2()f x kx ≤对任意0x >成立,求实数k 的取值范围. 【解析】(1)∵()ln f x ax x x =+,∵'()ln 1f x a x =++, 又∵()f x 的图象在点e x =处的切线的斜率为3,∵'(e)3f =, 即lne 13a ++=,∵1a =; (2)由(1)知,()ln f x x x x =+, ∵2()f x kx ≤对任意0x >成立1ln xk x+⇔≥对任意0x >成立, 令1ln ()xg x x +=,则问题转化为求()g x 的最大值, 221(1ln )ln '()x x x x g x x x ⋅-+==-,令'()0g x =,解得1x =, 当01x <<时,'()0g x >,∵()g x 在(0,1)上是增函数; 当1x >时,'()0g x <,∵()g x 在(1,)+∞上是减函数. 故()g x 在1x =处取得最大值(1)1g =,∵1k ≥即为所求. 2.巩固提升综合练习【练习1】已知函数()log a f x x =,()2log (22)a g x x t =+-,其中0a >且1a ≠,t R ∈. (1)若4t =,且1[,2]4x ∈时,()()()F x g x f x =-的最小值是-2,求实数a 的值; (2)若01a <<,且1[,2]4x ∈时,有()()f x g x ≥恒成立,求实数t 的取值范围. 【答案】(1)15;(2)[2,)+∞. 【解析】(1)∵4t =,∵24(1)()()()2log (22)log log a a a x F x g x f x x x x+=-=+-=1log 4(2)a x x=++ 易证1()4(2)h x x x =++在1[,1]4上单调递减,在[1,2]上单调递增,且1()(2)4h h >,∵min ()(1)16h x h ==,max 1()()254h x h ==,∵当1a >时,min ()log 16a F x =,由log 162a =-,解得14a =(舍去)当01a <<时,min ()log 25a F x =,由log 252a =-,解得15a =. 综上知实数a 的值是15. (2)∵()()f x g x ≥恒成立,即log 2log (22)a a x x t ≥+-恒成立,∵1log log (22)2a a x x t ≥+-.又∵01a <<,1[,2]4x ∈22x t ≤+-,22t x ≥-+∵恒成立,∵max (22)t x ≥-.令2117122)([,2])484y x x =-=-+∈,∵max 2y =.故实数t 的取值范围为[2,)+∞.【练习2】若(0,)x ∈+∞,1ln x e x x a x-≥-+恒成立,则a 的最大值为( )A .1B .1eC .0D .e -【答案】C【解析】设x x t ln -=,则11x t e e x--=,原不等式等价于1t e t a --≥恒成立,设1ln ,1y x x y x-='=-是单调递增的,零点为1x =,函数y 的最小值为1,故1t ≥,()()11,1t t f t e t f t e --'=-=-,零点是1t = ()f t 在[)1,+∞上单调递增,故()min 0f t =,故0a ≤.故选C.【练习3】已知a R ∈,设函数⎩⎨⎧>-≤+-=1,ln 1,22)(2x x a x x a ax x x f 若关于x 的不等式0)(≥x f 在R 上恒成立,则a 的取值范围为( ) A .[]0,1 B .[]0,2 C .[]0,e D .[]1,e【答案】C 【解析】∵(0)0f ≥,即0a ≥,当01a ≤≤时,2222()22()22(2)0f x x ax a x a a a a a a a =-+=-+-≥-=->, 当1a <时,(1)10f =>,故当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 若ln 0x a x -≥在(1,)+∞上恒成立,即ln xa x≤在(1,)+∞上恒成立, 令()ln xg x x=,则2ln 1'()(ln )x g x x -=,当,x e >函数单增,当0,x e <<函数单减,故max ()()g x g e e ==,所以a e ≤.当0a ≥时,2220x ax a -+≥在(,1]-∞上恒成立; 综上可知,a 的取值范围是[0,]e , 故选C.1.例题【例1】定义域为R 的函数()f x 满足()()22f x f x +=,当[]0,2x 时,()[)[)232,0,11,1,22x x x x f x x -⎧-∈⎪⎪=⎨⎛⎫-∈⎪ ⎪⎪⎝⎭⎩,若当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,则实数m 的取值范围是( )A .[]2,3B .[]1,3C .[]1,4D .[]2,4【答案】B【解析】因为当[)4,2x ∈--时,不等式()2142m f x m ≥-+恒成立,所以()2min 142m f x m ≥-+,当[)[)4,2,40,2x x ∈--+∈时,()()()112424f x f x f x =+=+ ()()[)[)2342144,40,1411,41,242x x x x x +-⎧⎡⎤+-++∈⎪⎣⎦⎪=⎨⎛⎫⎪-+∈ ⎪⎪⎝⎭⎩当[)40,1x +∈时,()()()211114444416f x x x ⎡⎤=+-+≥-⨯=-⎣⎦,当[)41,2x +∈时,()342111424x f x +-⎛⎫=-≥- ⎪⎝⎭,因此当[)4,2x ∈--时,()2min1113442m f x m m =-≥-+∴≤≤,选B.【例2】若对I x ∀,()2,x m ∈+∞,且12x x <,都有122121ln ln 1x x x x x x -<-,则m 的取值范围是( )注:( e 为自然对数的底数,即 2.71828e =…) A .1,e ⎡⎫+∞⎪⎢⎣⎭B .[),e +∞C .[)1,+∞D .[)1,-+∞ 【答案】C【解析】因为对于()ln f x x =,定义域为()0,∞+ ,所以120x x << 当满足120x x <<时,122121ln ln 1x x x x x x -<-成立化简可得122121ln ln x x x x x x -<-,移项合并后可得121221ln ln x x x x x x +<+,即()()1221ln 11ln x x x x +<+因为120x x <<,所以可等价于()()2121ln 1ln 1x x x x ++<即满足()ln 1x g x x +=为减函数,()221ln 1ln 'x xg x x x ---==, 因为()ln 1x g x x +=为减函数,所以()'0g x ≤,即2ln 0xx -≤, 则1x ≥ ,因为对1x ∀,()2,x m ∈+∞,且12x x <,都有122121ln ln 1x x x x x x -<-所以1m ≥ ,即m 的取值范围为[)1,+∞,故选C. 【例3】已知函数21ln 21)(2-+-=x x a x x f ,对任意x ∈[1,+∞),当mx x f ≥)(恒成立时实数m 的最 大值为1,则实数a 的取值范围是 .【解析】对任意x ∈[1,+∞),有f(x)≥mx恒成立,即()f x m x ≥恒成立,即min()f x m x ⎡⎤≤⎢⎥⎣⎦,又当f(x)≥mx 恒成立时实数m 的最大值为1,所以min()1f x x ⎡⎤=⎢⎥⎣⎦.因为(1)11f = 所以问题等价转化为()1f x x≥在[1,)+∞上恒成立,即()0f x x -≥在[1,)+∞上恒成立. 设()()g x f x x =-211ln 22x a x =--(1x ≥),2()x ag x x-'=①当1a ≤时,因为1x ≥,所以2()0x ag x x-'=≥,因此()g x 在[1,)+∞上是单调递增函数,所以()(1)0g x g ≥=,即()0f x x -≥在[1,)+∞上恒成立;②当1a >时,在上,有()0g x '<;在)+∞上,有()0g x '>, 所以()g x 在上为单调递减函数,在)+∞上为单调递增函数. 当(1,)x a ∈,有()(1)0g x g <=,即()0f x x -≥在[1,)+∞上不恒成立. 综合①②得:实数a 的取值范围是(,1]-∞.2.巩固提升综合练习 【练习1】已知函数,,当时,不等式恒成立,则实数的取值范围为( )A .(]e ,∞-B .),(e ∞-C .),(2-e∞ D .⎥⎦⎤ ⎝⎛∞2-e , 【答案】D【解析】因为所以即,即当时,恒成立,所以在内是一个增函数,设,则有即 ,设则有, 当时,即,当时,即所以当时,最小,即 ,故选D.【练习2】已知定义在R 上的偶函数()f x 在[0,)+∞上递减,若不等式2(ln 1)(ln 1)f ax x f ax x -+++--()31f ≥对[]1,3x ∈恒成立,则实数a 的取值范围是( )A .[]2,e B .1[,)e+∞C .1[,]e eD .12ln 3[,]3e +【答案】D【解析】由题设可得(ln 1)(ln 1)f ax x f ax x -++=--,则原不等式可化为(ln 1)(1)f ax x f -++≥, 即ln 11ax x --≤,也即ln 20ax x --≤在[1,3]上恒成立,由于0x >,因此2ln xa x+≤, 令2ln ()x h x x +=,则/2212ln 1ln ()x x h x x x --+==-,所以当1ln 1x x e >-⇒>时,/()0h x <,函数2ln ()x h x x+=单调递减,因11e <,故函数2ln ()x h x x+=在[1,3]上单调递减, 故min max 2ln13ln 3()2,()13h x h x ++===, 当11x e e -==时,函数1min 12ln ()e h x e e --+==,所以a e ≤,应选答案D.【练习3】若,满足恒成立,则实数的取值范围为__________.【答案】【解析】(1),显然成立;(2)时,由 ,由在为增在恒成立,由在为增,,,综上,,故答案为.【三】数形结合法1.例题【例1】已知函数()222f x x kx =-+,在1x ≥-恒有()f x k ≥,求实数k 的取值范围.【解析】令()()222F x f x k x kx k=-=-+-,则()0F x ≥对[)1,x ∈-+∞恒成立,而()F x 是开口向上的抛物线.当图象与x 轴无交点满足0∆<,即()24220k k ∆=--<,解得21k -<<.当图象与x 轴有交点,且在[)1,x ∈-+∞时()0F x ≥,则由二次函数根与系数的分布知识及图象可得: ()010212F k ⎧⎪∆≥⎪⎪-≥⎨⎪-⎪-≤-⎪⎩,解得32k -≤≤-,故由①②知31k -≤<.【例2】已知函数f (x )=⎩⎨⎧-|x 3-2x 2+x |, x <1,ln x , x ≥1,若对于∀t ∈R ,f (t )≤kt 恒成立,则实数k 的取值范围是________. 【答案】[1e,1]【解析】令y =x 3-2x 2+x ,x <1,则y ′=3x 2-4x +1=(x -1)·(3x -1), 令y ′>0,即(x -1)(3x -1)>0,解得x <13或x >1.又因为x <1,所以x <13.令y ′<0,得13<x <1,所以y 的增区间是(-∞,13),减区间是(13,1),所以y 极大值=427.根据图像变换可作出函数y =-|x 3-2x 2+x |,x <1的图像.又设函数y =ln x (x ≥1)的图像经过原点的切线斜率为k 1,切点(x 1,ln x 1),因为y ′=1x ,所以k 1=1x 1=ln x 1-0x 1-0,解得x 1=e ,所以k 1=1e .函数y =x 3-2x 2+x 在原点处的切线斜率k 2=1.因为∀t ∈R ,f (t )≤kt ,所以根据f (x )的图像,数形结合可得1e≤k ≤1.2.巩固提升综合练习【练习1】已知定义在R 上的奇函数()f x 满足:当0x ≥时,()3f x x =,若不等式()()242f t f m mt ->+对任意实数t 恒成立,则实数m 的取值范围是( )A .(,-∞ B .()C. ()),0-∞⋃+∞ D .(),-∞⋃+∞【答案】A【解析】当0x <时,()33()()()()f x f x x f x x x R f x =--=⇒=∈⇒在R 上是增函数242t m mt ⇒->+对任意实数t 恒成立2442t mt t m ⇒->++对任意实数t 恒成立,结合二次函数图象可得201680m m m <⎧⇒⇒∈⎨∆-<⎩(,-∞,故选A.【练习2】若不等式()2211x m x ->-对任意[]1,1m ∈-恒成立,实数x 的取值范围是 .12x <<【解析】()2211x m x ->-可转化为()21210m x x --+<,设()()21210f m m x x =--+<,则()f m 是关于m 的一次型函数,要使()0f m <恒成立,只需()()221201220f x x f x x ⎧=-<⎪⎨-=--+<⎪⎩,12x <<. 【练习3】已知函数23ln ,1(),46,1x x f x x x x -≤⎧=⎨-+>⎩若不等式()|2|f x x a ≥-对任意(0,)x ∈+∞上恒成立,则实数a 的取值范围为( ) A .13,3e ⎡⎤-⎢⎥⎣⎦B .[3,3ln 5]+C .[3,4ln 2]+D .13,5e⎡⎤-⎢⎥⎣⎦【答案】C【解析】由题意得:设g(x)=|2|x a -,易得a >0,可得2,2g(x)=2,2a x a x ax a x ⎧-≥⎪⎪⎨⎪-+⎪⎩<,g(x)与x 轴的交点为(,0)2a ,①当2ax ≥,由不等式()|2|f x x a ≥-对任意(0,)x ∈+∞上恒成立,可得临界值时,()g()f x x 与相 切,此时2()46,1f x x x x =-+>,()2,2a g x x a x =-≥,可得'()24f x x =-,可得切线斜率为2,242x -=,3x =,可得切点坐标(3,3), 可得切线方程:23y x =-,切线与x 轴的交点为3(,0)2,可得此时322a =,3a =, 综合函数图像可得3a ≥;②同理,当2ax <,由()g()f x x 与相切, (1)当2()46,1f x x x x =-+>,()2,2a g x x a x =-+<,可得'()24f x x =-,可得切线斜率为-2,242x -=-,1x =,可得切点坐标(1,3),可得切线方程25y x =-+,可得5a =,综合函数图像可得5a ≤,(2)当()3ln ,1f x x x =-≤,()2,2a g x x a x =-+<,()g()f x x 与相切,可得'1()f x x, 此时可得可得切线斜率为-2,12x -=-,12x =,可得切点坐标1(,32)2In +,可得切线方程:1(32)2()2y In x -+=--,242y x In =-++可得切线与x 轴的交点为2(2,0)2In +,可得此时2222a In =+,42a In =+, 综合函数图像可得42a In ≤+,综上所述可得342a In ≤≤+,故选C.1.例题【例1】 已知函数f (x )=x ||x 2-a ,若存在x ∈[]1,2,使得f (x )<2,则实数a 的取值范围是________. 【答案】 (-1,5)【解析】解法1 当x ∈[1,2]时,f (x )<2,等价于|x 3-ax |<2,即-2<x 3-ax <2,即x 3-2<ax <x 3+2,得到x 2-2x <a <x 2+2x,即⎝⎛⎭⎫x 2-2x min <a <⎝⎛⎭⎫x 2+2x max ,得到-1<a <5. 解法2 原问题可转化为先求:对任意x ∈[1,2],使得f (x )≥2时,实数a 的取值范围. 则有x |x 2-a |≥2,即|a -x 2|≥2x.(1) 当a ≥4时,a ≥x 2+2x ≥22+22=5,得到a ≥5.(2) 当a ≤1时,x 2-a ≥2x ,有a ≤x 2-2x ≤1-21=-1,得到a ≤-1.(3) 当1<a <4时,|a -x 2|≥0,与2x >0矛盾.那么有a ≤-1或a ≥5,故原题答案为-1<a <5. 【例2】已知=)(x f x x +221,=)(x g a x -+)1ln(,若存在]2,0[,21∈x x ,使得)()(21x g x f >,求实数a 的取值范围;【答案】()4,-+∞【解析】()(),f x g x 在[]0,2上都是增函数,所以()f x 的值域,,]40[=A ()g x 的值域]3ln ,[a a B --=.若存在]2,0[,21∈x x ,使得)()(21x g x f >,则min max )()(x g x f >,即4>a -,所以4->a .实数a 的取值围是()4,-+∞.AB ≠∅.(【例3】已知=)(x f x x +221,=)(x g a x -+)1ln(,若存在]2,0[,21∈x x ,使得)()(21x g x f =,求实数a 的取值范围.【答案】[]4,ln3-【解析】()(),f x g x 在[]0,2上都是增函数,所以()f x 的值域,,]40[=A ()g x 的值域]3ln ,[a a B --=. 若存在21,x x 使得)()(21x g x f =,则A B ≠∅,∵4a -≤且ln30a -≥,∵实数a 的取值围是[]4,ln3-.2.巩固提升综合练习【练习1】已知函数22()()()xaf x x a e e=+++,若存在0x ,使得024()1f x e ≤+,则实数a 的值为______. 【答案】2211e e -+ 【解析】函数f (x )=(x+a )2+(e x +a e)2, 函数f (x )可以看作是动点M (x ,e x )与动点N (-a ,-ae)之间距离的平方, 动点M 在函数y=e x 的图象上,N 在直线y=1e x 的图象上,问题转化为求直线上的动点到曲线的最小距离,由y=e x 得,y′=e x =1e,解得x=-1,所以曲线上点M (-1,1e )到直线y=1e x 的距离最小,最小距离则f (x )≥241e +, 根据题意,要使f (x 0)≤241e +,则f (x 0)=241e +, 此时N 恰好为垂足,由K MN =-e ,解得a=2211e e -+ . 故答案为:2211e e -+.【练习2】已知函数2,1()1,1x ax x f x ax x ⎧-+≤=⎨->⎩,若1x ∃、2R x ∈,12x x ≠,使得12()()f x f x =成立,则a的取值范围是( ). A .2a > B .2a <C .22a -<<D .2a <-或2a >【答案】B【解析】当2a <时,12a <,函数()f x 在,2a ⎛⎫-∞ ⎪⎝⎭上递增,在,12a ⎛⎫⎪⎝⎭上递减,则:1x ∃、2R x ∈,12x x ≠,使得12()()f x f x =成立.当2a ≥时,12a≥,函数()f x 在(),1-∞上递增,在()1,+∞也递增, 又21111a a -+⨯=⨯-,所以函数()f x 在R 上单调递增,此时一定不存在1x 、2R x ∈,12x x ≠,使得12()()f x f x =成立.故选B.【练习3】已知函数24,0(),0x x x f x e e x x⎧+-≤⎪=⎨->⎪⎩,2()314g x x x =--,若存在实数x ,使得()()18g m f x -=成立,则实数m 的取值范围为( ) A .)7,4(- B .[4,7]-C .(,4)(7,)-∞-+∞D .(,4][7,)-∞-+∞【答案】D【解析】由题意,当0x ≤时,()|2|44f x x =+-≥-,当且仅当2x =-时取“=”,当0x >时,函数()x e f x e x =-,则2(1)'()xx e f x x-=, 当(0,1)x ∈时,()0f x '<,当时,()0f x '>,所以函数()f x 在区间(0,1)上单调递减,在区间(1,)+∞上单调增, 所以()(1)0f x f ≥=,综上可得()4f x ≥-,因为存在实数x ,使得()()18g m f x -=成立,则()()1841814g m f x =+≥-+=, 即231414m m --≥,即23280m m --≥,解得或4m ≤-,故实数m 的取值范围为(,4][7,)-∞-+∞,故选D. 【练习4】已知函数()ln f x x =,()()h x a x a R =∈.(1)函数()f x 的图象与()h x 的图象无公共点,求实数a 的取值范围;(2)是否存在实数m ,使得对任意的1(,)2x ∈+∞,都有函数()m y f x x =+的图象在()x e g x x =的图象的下方?若存在,请求出整数m 的最大值;若不存在,请说理由.(参考数据:ln 20.6931=,ln3 1.0986=1.3956==). 【解析】(1)函数()f x 与()h x 无公共点,等价于方程ln xa x=在(0,)+∞无解 令ln ()x t x=,则21ln '(),xt x -=令'()0,t x =得x e =因为x e =是唯一的极大值点,故max ()t t e e==……………4分 故要使方程ln xa x =在(0,)+∞无解, 当且仅当1a e >,故实数a 的取值范围为1(,)e +∞(2)假设存在实数m 满足题意,则不等式ln x m e x x x +<对1(,)2x ∈+∞恒成立.即ln x m e x x <-对1(,)2x ∈+∞恒成立.令()ln xr x e x x =-,则'()ln 1xr x e x =--,令()ln 1xx e x ϕ=--,则1'()x x e x ϕ=-,∵'()x ϕ在1(,)2+∞上单调递增,121'()202e ϕ=-<,'(1)10e ϕ=->,且'()x ϕ的图象在1(,1)2上连续,∵存在01(,1)2x ∈,使得0'()0x ϕ=,即0010xe x -=,则00ln x x =-,∵ 当01(,)2x x∈时,()x ϕ单调递减;当0(,)x x ∈+∞时,()x ϕ单调递增,则()x ϕ取到最小值000001()ln 11xx e x x x ϕ=--=+-110≥=>, ∵ '()0r x >,即()r x 在区间1(,)2+∞内单调递增. 11221111()ln ln 2 1.995252222m r e e ≤=-=+=,∵存在实数m 满足题意,且最大整数m 的值为1.【例1】已知函数[]()2(),2,2f x x x =∈-,2()sin(2)3,0,62g x a x a x ππ⎡⎤=++∈⎢⎥⎣⎦,[]12,2x ∀∈-,总00,2x π⎡⎤∃∈⎢⎥⎣⎦,使得()()01g x f x =成立,则实数a 的取值范围是____________.【答案】(][),46,-∞-+∞【解析】∵[2,2]x ∈-,∵2()[0,4]f x x =∈∵0,2x π⎡⎤∈⎢⎥⎣⎦,∵72666x πππ≤+≤,∵1sin(2)126x π-≤+≤ ∵221()[3,3]2g x a a a a ∈-++ 要使[]12,2x ∀∈-,总00,2x π⎡⎤∃∈⎢⎥⎣⎦,使得()()01g x f x =成立, 则需满足:221[0,4][3,3]2a a a a ⊆-++ ∵22130234a a a a ⎧-+≤⎪⎨⎪+≥⎩,解得4a ≤-或6a ≥ ∵a 的取值范围是(,4][6,)-∞-⋃+∞.【例2】已知函数f (x )=x 2-2ax +1,g (x )=ax,其中a >0,x ≠0.(1) 对任意[]2,1∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;(2) 对任意[]2,11∈x ,任意[]4,22∈x ,都有)()(21x g x f >恒成立,求实数a 的取值范围; (3) 对任意[]2,11∈x ,存在[]4,22∈x ,使)()(21x g x f >成立,求实数a 的取值范围; (4) 存在[]2,11∈x ,任意[]4,22∈x ,使)()(21x g x f >成立,求实数a 的取值范围. 【解答】(1) 因为对任意x ∈[1,2],都有f (x )>g (x )恒成立,即对任意x ∈[1,2],x 2-2ax +1>ax恒成立,所以a <x 3+x2x 2+1在x ∈[1,2]上恒成立.令φ(x )=x 3+x 2x 2+1,则φ′(x )=2x 4+x 2+1(2x 2+1)2>0,所以φ(x )min =φ(1)=23,所以a <23.又因为a >0,所以实数a 的取值范围是⎝⎛⎭⎫0,23. (2)函数f (x )=x 2-2ax +1=(x -a )2+1-a 2在区间[1,2]上的最小值有以下三种情况:①当0<a ≤1时,f (x )min =f (1)=2-2a ;②当1<a <2时,f (x )min =f (a )=a 2-2a 2+1=1-a 2; ③当a ≥2时,f (x )min =f (2)=5-4a . 函数g (x )的最大值为a2.当0<a ≤1时,由f (x )min >a 2,即2-2a >a 2,解得0<a <45;当1<a <2时,由f (x )min =1-a 2>a2,无解;当a ≥2时,f (x )min =5-4a >a2,无解.综上可知,实数a 的取值范围是⎝⎛⎭⎫0,45. (3)函数f (x )=x 2-2ax +1=(x -a )2+1-a 2在区间[1,2]上的最小值有以下三种情况:①当0<a ≤1时,f (x )min =f (1)=2-2a ;②当1<a <2时, f (x )min =f (a )=a 2-2a 2+1=1-a 2; ③当a ≥2时,f (x )min =f (2)=5-4a . 函数g (x )的最小值为4a当0<a ≤1时,由f (x )min >4a ,即2-2a >4a ,解得0<a <98;当1<a <2时,由f (x )min =1-a 2>4a,无解; 当a ≥2时,f (x )min =5-4a >4a,无解. 综上可知,实数a 的取值范围是⎪⎭⎫ ⎝⎛980,. (4)函数g (x )的最大值为a2.函数f (x )=x 2-2ax +1=(x -a )2+1-a 2在区间[1,2]上的最大值有以下三种情况: ①当0<a ≤23时,245)2()(max a a f x f >-==,解得0<a <910; ②当23>a 时,222)1()(max aa f x f >-==,无解.综上可知,实数a 的取值范围是⎪⎭⎫ ⎝⎛9100,. 2. 巩固提升综合练习【练习1】已知二次函数 f (x )=ax 2+bx +c (a >0) 的图象过点 (1,0)若对任意的 x 1∈[0,2],存在 x 2∈[0,2],使得 f (x 1)+f (x 2)>32a ,求 ba 的取值范围.【解析】 由题意,对任意的 x 1∈[0,2],存在 x 2∈[0,2],使得 f (x 1)+f (x 2)>32a . 所以 f min (x )+f max (x )>32a .因为 a +b +c =0 ,所以 f (x )=ax 2+bx −a −b ,其对称轴为 x =−b2a . ①当 −b2a <0 即 ba >0 时,f (x ) 在 [0,2] 上单调递增,所以 f min (x )+f max (x )=f (0)+f (2)=−a −b +3a +b =2a >32a .所以b a>0 符合题意.②当 0≤−b2a <1 即 −2<ba ≤0 时,f (x ) 在 [0,−b2a ] 上递减,在 [−b2a ,2] 上递增且 f (0)<f (2) . 所以 f min (x )+f max (x )=f (−b2a)+f (2)=−b 24a −a −b +3a +b =−b 24a +2a . 所以由 −b 24a +2a >32a 得:−√2<ba ≤0 符合题意. ③当 1≤−b2a <2 即 −4<ba ≤−2 时, f (x ) 在 [0,−b 2a ] 上递减,在 [−b 2a,2] 上递增且 f (0)≥f (2) .所以 f min (x )+f max (x )=f (−b2a )+f (0)=−b 24a −a −b −a −b =−b 24a −2a −2b . 所以由 −b 24a −2a −2b >32a 得:−4−√2<ba <−4+√2. 所以 −4<b a <−4+√2 符合题意.④当 −b 2a≥2 即 b a≤−4 时,f (x ) 在 [0,2] 上单调递减,所以 f min (x )+f max (x )=f (2)+f (0)=3a +b −a −b =2a >32a . 所以 ba ≤−4 符合题意.综上所述:所以 ba <−4+√2 或 ba >−√2 .【练习2】 已知函数 f (x )=12ax 2−(2a +1)x +2lnx (a ∈R ).(1)若曲线 y =f (x ) 在 x =1 和 x =3 处的切线互相平行,求 a 的值; (2)求 f (x ) 的单调区间;(3)设 g (x )=x 2−2x ,若对 x 1∈(0,2],均存在 x 2∈(0,2],使得 f (x 1)<g (x 2),求 a 的取值范围 【解析】(1) fʹ(x )=ax −(2a +1)+2x (x >0). 由题意知 fʹ(1)=fʹ(3),即 a −(2a +1)+2=3a −(2a +1)+23,解得 a =23. (2) fʹ(x )=(ax−1)(x−2)x(x >0).① 当 a ≤0 时,因为 x >0,所以 ax −1<0,在区间 (0,2) 上,fʹ(x )>0, 在区间 (2,+∞) 上,fʹ(x )<0,故 f (x ) 的单调递增区间是 (0,2),单调递减区间是 (2,+∞).②当 0<a <12 时,1a >2,在区间 (0,2) 和 (1a ,+∞) 上,fʹ(x )>0, 在区间 (2,1a ) 上 fʹ(x )<0,故 f (x ) 的单调递增区间是 (0,2) 和 (1a ,+∞),单调递减区间是 (2,1a ). ③当 a =12 时,fʹ(x )=(x−2)22x≥0,故 f (x ) 的单调递增区间是 (0,+∞).④当 a >12 时,0<1a <2,在区间 (0,1a ) 和 (2,+∞) 上,fʹ(x )>0, 在区间 (1a ,2) 上,fʹ(x )<0,故 f (x ) 的单调递增区间是 (0,1a ) 和 (2,+∞),单调递减区间是 (1a ,2).(3) 由题意知,在 (0,2] 上有 f (x )max <g (x )max . 由已知得 g (x )max =0,由(2)可知,①当 a ≤12时,f (x ) 在 (0,2] 上单调递增,故 f (x )max =f (2)=2a −2(2a +1)+2ln2=−2a −2+2ln2, 所以 −2a −2+2ln2<0,解得 a >ln2−1, 故 ln2−1<a ≤12.②当 a >12 时,f (x ) 在 (0,1a ) 上单调递增; 在 [1a ,2] 上单调递减,故 f (x )max =f (1a )=−2−12a −2lna .由 a >12 可知 lna >ln 12>ln 1e =−1,所以 2lna >−2,即 −2lna <2,所以 −2−2lna <0, 所以 f (x )max <0,符合. 综上所述,a >ln2−1. 1.已知函数()ln f x ax x x =+的图象在点e x =(e 为自然对数的底数)处的切线的斜率为3. (1)求实数a 的值;(2)若2()f x kx ≤对任意0x >成立,求实数k 的取值范围.(2)由(1)知,()ln f x x x x =+, ∴2()f x kx ≤对任意0x >成立1ln xk x+⇔≥对任意0x >成立, 令1ln ()xg x x +=,则问题转化为求()g x 的最大值, 221(1ln )ln '()x x x x g x x x⋅-+==-,令'()0g x =,解得1x =, 当01x <<时,'()0g x >,∴()g x 在(0,1)上是增函数; 当1x >时,'()0g x <,∴()g x 在(1,)+∞上是减函数. 故()g x 在1x =处取得最大值(1)1g =,∴1k ≥即为所求.2.已知函数()log a f x x =,()2log (22)a g x x t =+-,其中0a >且1a ≠,t R ∈. (1)若4t =,且1[,2]4x ∈时,()()()F x g x f x =-的最小值是-2,求实数a 的值; (2)若01a <<,且1[,2]4x ∈时,有()()f x g x ≥恒成立,求实数t 的取值范围. 【答案】(1)15;(2)[2,)+∞.(2)∵()()f x g x ≥恒成立,即log 2log (22)a a x x t ≥+-恒成立,∴1log log (22)2a a x x t ≥+-.又∵01a <<,1[,2]4x ∈,22x t ≤+-,22t x ≥-+∴max (22)t x ≥-.令2117122)([,2])484y x x =-=-+∈,∴max2y=.故实数t 的取值范围为[2,)+∞.3.设函数()()21xf x e x ax a =--+,其中1a <,若存在唯一的整数t ,使得()0f t <,则a 的取值范围是( )A .3,12e ⎡⎫-⎪⎢⎣⎭ B .33,24e ⎡⎫-⎪⎢⎣⎭ C .33,24e ⎡⎫⎪⎢⎣⎭ D .3,12e ⎡⎫⎪⎢⎣⎭【答案】D【解析】令()()()21,xg x ex h x ax a =-=-.由题意知存在唯一整数t ,使得()g t 在直线()h x 的下方.()()'21x g x e x =+,当12x <-时,函数单调递减,当12x >-,函数单调递增,当12x =-时,函数取得最小值为122e --.当0x =时,(0)1g =-,当1x =时,(1)0g e =>,直线()h x ax a =-过定点()1,0,斜率为a ,故()0a g ->且()113g e a a --=-≥--,解得3,12m e ⎡⎫∈⎪⎢⎣⎭.4.已知函数f (x )=x 3-ax 2+10,若在区间[1,2]内至少存在一个实数x ,使得f (x )<0成立,求实数a 的取值范围.5.若不等式()2211x m x ->-对任意[]1,1m ∈-恒成立,求实数x 的取值范围.12x <<【解析】()2211x m x ->-可转化为()21210m x x --+<,设()()21210f m m x x =--+<,则()f m 是关于m 的一次型函数,要使()0f m <恒成立,只需()()221201220f x x f x x ⎧=-<⎪⎨-=--+<⎪⎩,12x <<. 6.若不等式()()21313ln1ln33x xa x ++-⋅≥-⋅对任意的(],1x ∈-∞恒成立,则a 的取值范围是( )A. 10,3⎛⎤-∞ ⎥⎝⎦ B. 10,3⎡⎫+∞⎪⎢⎣⎭C. [)2,+∞D. (],2-∞ 【答案】D【解析】由题意结合对数的运算法则有: ()213133lnln 33x xxa ++-⋅≥,由对数函数的单调性有:()21313333x xxa ++-⋅≥,整理可得: 2133x x a +≤,由恒成立的条件有: 2min133x xa ⎛⎫+≤ ⎪⎝⎭,其中21313233xx xxy +⎛⎫==+≥ ⎪⎝⎭,当且仅当0x =时等号成立.即0x =时,函数2133x x y +=取得最小值2.综上可得: 2a ≤.本题选择D 选项.7.已知函数()222,02,0x x x f x x x x ⎧-+≥=⎨-<⎩,若关于的不等式()()20f x af x ⎡⎤+<⎣⎦恰有个整数解,则实数的最大值是( ) A.B.C. 5D.【答案】D8.已知函数()1x f x x e=+,若对任意x R ∈, ()f x ax >恒成立,则实数a 的取值范围是( ) A. (),1e -∞- B. (]1,1e - C. [)1,1e - D. ()1,e -+∞ 【答案】B【解析】函数()1x f x x e =+,对任意x R ∈, ()f x ax >恒成立,∴1x x ax e +>恒成立,即()11xa x e >-x 恒成立;设()()()1,1x g x h x a x e==-,x ∈R ;在同一坐标系内画出两个函数的图象,如图所示;则满足不等式恒成立的是h (x )的图象在g (x )图象下方,求()g x 的导数()'xg x e -=-,且过()g x 图象上点()00,x y 的切线方程为()000x y y e x x --=--,且该切线方程过原点(0,0),则000x y ex -=-⋅,即000x x e e x --=-⋅,解得01x =-;∴切线斜率为0x k e e -=-=-,∴应满足a −1>−e ,即a >1−e ;又a −1⩽0,∴a ⩽1,∴实数a 的取值范围是(1−e ,1].故选B.9.已知函数()()ln 224(0)f x x a x a a =+--+>,若有且只有两个整数1x , 2x 使得()10f x >,且()20f x >,则a 的取值范围是( )A. ()ln3,2B. [)2ln3,2-C. (]0,2ln3- D. ()0,2ln3- 【答案】C【解析】由题意可知, ()0f x >,即()()ln 2240,0x a x a a +--+>>, ()22ln 40ax a x x a ∴->-->,设()()2ln 4,2g x x x h x ax a =--=-,由()121'2x g x x x -=-=,可知()2ln 4g x x x =--,在10,2⎛⎫⎪⎝⎭上为减函数,在1,2⎛⎫+∞⎪⎝⎭上为增函数, ()2h x ax a =-的图象恒过点()2,0,在同一坐标系中作出()(),g x h x 的图象如下:若有且只有两个整数12,x x ,使得()10f x >,且()20f x >,则()()()(){11 33a h g h g >>≤,即0{2 23a a a ln >->-≤-,解得02ln3a <≤-,故选C.10.已知对任意的,总存在唯一的,使得成立(为自然对数的底数),则实数的取值范围是( ) A . B .C .D .【答案】D 【解析】。
高三复习专题——恒成立与存在性问题知识点总结:(1)恒成立问题1. ∀x∈D,均有f(x)>A恒成立,则f(x)min>A;2. ∀x∈D,均有f(x)﹤A恒成立,则f(x)ma x<A.3. ∀x∈D,均有f(x) >g(x)恒成立,则F(x)=f(x)- g(x) >0,∴F(x)min >04. ∀x∈D,均有f(x)﹤g(x)恒成立,则F(x)=f(x)- g(x) ﹤0,∴F(x) ma x﹤05. ∀x1∈D, ∀x2∈E,均有f(x1) >g(x2)恒成立,则f(x)min> g(x)ma x6. ∀x1∈D, ∀x2∈E,均有f(x1) <g(x2)恒成立,则f(x) ma x < g(x) min(2)存在性问题1. ∃x0∈D,使得f(x0)>A成立,则f(x) ma x >A;2. ∃x0∈D,使得f(x0)﹤A成立,则f(x) min <A3. ∃x0∈D,使得f(x0) >g(x0)成立,设F(x)=f(x)- g(x),∴F(x) ma x >04. ∃x0∈D,使得f(x0) <g(x0)成立,设F(x)=f(x)- g(x),∴F(x) min <05. ∃x1∈D, ∃x2∈E, 使得f(x1) >g(x2)成立,则f(x) ma x > g(x) min6. ∃x1∈D, ∃x2∈E,均使得f(x1) <g(x2)成立,则f(x) min < g(x) ma x(3)相等问题1. ∀x1∈D, ∃x2∈E,使得f(x1)=g(x2)成立,则{ f(x)}{g(x)}(4)恒成立与存在性的综合性问题1. ∀x1∈D, ∃x2∈E, 使得f(x1) >g(x2)成立,则f(x)m in>g(x)m in2. ∀x1∈D, ∃x2∈E, 使得f(x1) <g(x2)成立,则f(x)max <g(x)max(5)恰成立问题1. 若不等式f(x)>A在区间D上恰成立,则等价于不等式f(x)>A的解集为D;2.若不等式f(x)<B在区间D上恰成立,则等价于不等式f(x)<B的解集为D.► 探究点一 ∀x ∈D ,f (x )>g (x )的研究例1、已知函数12)(2+-=ax x x f ,xa x g =)(,其中0>a ,0≠x . 对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;【思路分析】等价转化为函数0)()(>-x g x f 恒成立,通过分离变量,创设新函数求最值解决.简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x x x x ϕ的最小值大于a 即可.对12)(23++=x x x x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a .► 探究点二 ∃x ∈D ,f (x )>g (x )的研究对于∃x ∈D ,f (x )>g (x )的研究,先设h (x )=f (x )-g (x ),再等价为∃x ∈D ,h (x )max >0,其中若g (x )=c ,则等价为∃x ∈D ,f (x )max >c .例 已知函数f (x )=x 3-ax 2+10.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x ,使得f (x )<0成立,求实数a 的取值范围.【解答】 (1)当a =1时,f ′(x )=3x 2-2x ,f (2)=14,曲线y =f (x )在点(2,f (2))处的切线斜率k =f ′(2)=8,所以曲线y =f (x )在点(2,f (x ))处的切线方程为8x -y -2=0.(2)解法一:f ′(x )=3x 2-2ax =3x ⎝⎛⎭⎫x -23a (1≤x ≤2), 当23a ≤1,即a ≤32时,f ′(x )≥0,f (x )在[1,2]上为增函数,故f (x )m in =f (1)=11-a ,所以11-a <0,a >11,这与a ≤32矛盾.当1<23a <2,即32<a <3时,当1≤x <23a ,f ′(x )<0;当23a <x ≤2,f ′(x )>0,所以x =23a 时,f (x )取最小值,因此有f ⎝⎛⎭⎫23a <0,即827a 3-49a 3+10=-427a 3+10<0,解得a >3352,这与32<a <3矛盾; 当23a ≥2,即a ≥3时,f ′(x )≤0,f (x )在[1,2]上为减函数,所以f (x )m in =f (2)=18-4a ,所以18-4a <0,解得a >92,这符合a ≥3.综上所述,a 的取值范围为a >92.解法二:由已知得:a >x 3+10x 2=x +10x 2,设g (x )=x +10x 2(1≤x ≤2),g ′(x )=1-20x 3,∵1≤x ≤2,∴g ′(x )<0,所以g (x )在[1,2]上是减函数.g (x )m in =g (2),所以a >92.【点评】 解法一在处理时,需要用分类讨论的方法,讨论的关键是极值点与区间[1,2]的关系;解法二是用的参数分离,由于ax 2>x 3+10中x 2∈[1,4],所以可以进行参数分离,而无需要分类讨论.► 探究点三 ∀x 1∈D ,∀x 2∈D ,f (x 1)>g (x 2)的研究例、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.思路分析:解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x xa b +-≤或x b x a )10(2-+-≤; 方法3:变更主元,0101)(≤-++⋅=b x a x a ϕ,]2,21[∈a 简解:方法1:对b x x a b x x g x h ++=++=)()(求导,22))((1)(xa x a x x ax h +-=-=', 由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者. ⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴a b a b b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b .► 探究点四 ∀x 1∈D ,∃x 2∈D ,f (x 1)>g (x 2)的研究对于∀x 1∈D ,∃x 2∈D ,f (x 1)>g (x 2)的研究,第一步先转化为∃x 2∈D ,f (x 1)m in >g (x 2),再将该问题按照探究点一转化为f (x 1)m in >g (x 2)m in .例、已知函数f (x )=2|x -m |和函数g (x )=x |x -m |+2m -8.(1)若方程f (x )=2|m |在[-4,+∞)上恒有惟一解,求实数m 的取值范围;(2)若对任意x 1∈(-∞,4],均存在x 2∈[4,+∞),使得f (x 1)>g (x 2)成立,求实数m 的取值范围.【解答】 (1)由f (x )=2|m |在x ∈[-4,+∞)上恒有惟一解,得|x -m |=|m |在x ∈[-4,+∞)上恒有惟一解.当x -m =m 时,得x =2m ,则2m =0或2m <-4,即m <-2或m =0.综上,m 的取值范围是m <-2或m =0.(2)f (x )=⎩⎪⎨⎪⎧ 2x -m x ≥m ,2m -x x <m ,原命题等价为f (x 1)m in >g (x 2)m in .①当4≤m ≤8时,f (x )在(-∞,4]上单调递减,故f (x )≥f (4)=2m -4,g (x )在[4,m ]上单调递减,[m ,+∞)上单调递增,故g (x )≥g (m )=2m -8,所以2m -4>2m -8,解得4<m <5或m >6.所以4<m <5或6<m ≤8.②当m >8时,f (x )在(-∞,4]上单调递减,故f (x )≥f (4)=2m -4,g (x )在⎣⎡⎦⎤4,m 2单调递增,⎣⎡⎦⎤m 2,m 上单调递减,[m ,+∞)上单调递增,g (4)=6m -24>g (m )=2m -8,故g (x )≥g (m )=2m -8,所以2m -4>2m -8,解得4<m <5或m >6.所以m >8.③0<m <4时,f (x )在(-∞,m ]上单调递减,[m ,4]上单调递增,故f (x )≥f (m )=(x )在[4,+∞)上单调递增,故g (x )≥g (4)=8-2m ,所以8-2m <1,即72<m <4.④m ≤0时,f (x )在(-∞,m ]上单调递减,[m ,4]上单调递增,故f (x )≥f (m )=(x )在[4,+∞)上单调递增,故g (x )≥g (4)=8-2m ,所以8-2m <1,即m >72(舍去).综上,m 的取值范围是⎝⎛⎭⎫72,5∪(6,+∞). 【点评】 因为对于∀x ∈D ,f (x )>c ,可以转化为f (x )m in >c ;∃x ∈D ,c >g (x ),可以转化为c >g (x )m in ,所以本问题类型可以分两步处理,转化为f (x )m in >g (x )m in .► 探究点五 ∀x 1∈D ,∃x 2∈D ,f (x 1)=g (x 2)的研究对于∀x 1∈D ,∃x 2∈D ,f (x 1)=g (x 2)的研究,若函数f (x )的值域为C 1,函数g (x )的值域为C 2,则该问题等价为C 1⊆C 2.例、设函数f (x )=-13x 3-13x 2+53x -4.(1)求f (x )的单调区间;(2)设a ≥1,函数g (x )=x 3-3a 2x -2a .若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得f (x 1)=g (x 0)成立,求a 的取值范围.【解答】 (1)f ′(x )=-x 2-23x +53,令f ′(x )>0,即x 2+23x -53<0,解得-53<x <1,∴f (x )的单调增区间为⎝⎛⎭⎫-53,1;单调减区间为⎝⎛⎭⎫-∞,-53和(1,+∞). (2)由(1)可知:当x ∈[0,1]时,f (x )单调递增,∴当x ∈[0,1]时,f (x )∈[f (0),f (1)],即f (x )∈[-4,-3].又g ′(x )=3x 2-3a 2,且a ≥1,∴当x ∈[0,1]时,g ′(x )≤0,g (x )单调递减,∴当x ∈[0,1]时,g (x )∈[g (1),g (0)],即g (x )∈[-3a 2-2a +1,-2a ],又对于任意x 1∈[0,1],总存在x 0∈[0,1],使得f (x 1)=g (x 0)成立⇔[-4,-3]⊆[-3a 2-2a +1,-2a ],即⎩⎪⎨⎪⎧-3a 2-2a +1≤-4,-3≤-2a , 解得1≤a ≤32.恒成立与存在有解的区别:恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一体。
第7讲 导数中的恒成立与存在性问题1.设函数()(21)x f x e x ax a =--+,其中1a <,若存在唯一的整数0x 使得0()0f x <,则a 的取值范围是() A .3[,1)2e-B .33[,)24e -C .33[,)24e D .3[,1)2e【解析】解:设()(21)x g x e x =-,y ax a =-,由题意知存在唯一的整数0x 使得0()g x 在直线y ax a =-的下方,()(21)2(21)x x x g x e x e e x '=-+=+,∴当12x <-时,()0g x '<,当12x >-时,()0g x '>, ∴当12x =-时,()g x 取最小值122e --,当0x =时,(0)1g =-,当1x =时,g (1)0e =>, 直线y ax a =-恒过定点(1,0)且斜率为a , 故(0)1a g ->=-且1(1)3g e a a --=---,解得312a e< 故选:D .2.设函数()(21)x f x e x ax a =--+,其中1a <,若存在两个整数1x ,2x ,使得1()f x ,2()f x 都小于0,则a 的取值范围是( )A .25[3e ,3)2eB .3[2e -,3)2eC .25[3e ,1) D .3[2e,1) 【解析】解:函数()(21)x f x e x ax a =--+, 其中1a <,设()(21)x g x e x =-,y ax a =-, 存在两个整数1x ,2x , 使得1()f x ,2()f x 都小于0,∴存在两个整数1x ,2x ,使得()g x 在直线y ax a =-的下方,()(21)x g x e x '=+,∴当12x <-时,()0g x '<, ∴当12x =-时,121[()]()22min g x g e -=-=-.当0x =时,(0)1g =-,g (1)0e =>,直线y ax a =-恒过(1,0),斜率为a ,故(0)1a g ->=-, 且1(1)3g e a a --=-<--,解得32a e <.(2)2g a a ---,解得253a e , a ∴的取值范围是25[3e ,3)2e. 故选:A .3.设函数()(21)x f x x e =-,()(1)g x a x =-,其中1a <,若存在唯一的整数0x 使得00()()f x g x <,则a 的取值范围是( )A .3[2e-,1) B .3[2e,1) C .3[2e -,3)4D .3[2e ,3)4【解析】解:设()(21)x f x e x =-,()(1)g x a x =-, 由存在唯一的整数0x 使得00()()f x g x <,()(21)2(21)x x x f x e x e e x '=-+=+,∴当12x <-时,()0f x '<,当12x >-时,()0f x '>, ∴当12x =-时,()f x 取最小值122e --,当0x =时,(0)1f =-,当1x =时,f (1)0e =>, 直线()(1)g x a x =-恒过定点(1,0)且斜率为a , 故(0)1a f ->=-且1(1)3f e a a --=---,解得312a e< 故选:B .4.设函数()(31)x f x e x ax a =--+,其中1a <,若有且只有一个整数0x 使得0()0f x ,则a 的取值范围是()A .23(,)4eB .23[,)4eC .2(,1)eD .2[,1)e【解析】解:设()(31)x g x e x =-,()h x ax a =-, 则()(32)x g x e x '=+,2(,)3x ∴∈-∞-,()0g x '<,()g x 单调递减,2(3x ∈-,)+∞,()0g x '>,()g x 单调递增,23x ∴=-,取最小值233e --,(0)1(0)g a h ∴=-<-=,g (1)h -(1)20e =>,直线()h x ax a =-恒过定点(1,0)且斜率为a ,1(1)(1)420g h e a -∴---=-+>, 2a e∴>, 1a <,a ∴的取值范围2(e,1).故选:C .5.已知函数2()()f x x a lnx =-,曲线()y f x =上存在两个不同点,使得曲线在这两点处的切线都与y 轴垂直,则实数a 的取值范围是( ) A .21(,0)e -B .(1,0)-C .21(,)e -+∞ D .(1,)-+∞【解析】解:曲线()y f x =上存在不同的两点,使得曲线在这两点处的切线都与y 轴垂直, ()20af x xlnx x x∴'=+-=有两个不同的解, 即得222a x lnx x =+有两个不同的解, 设222y x lnx x =+,则44y xlnx x '=+, 10x e ∴<<,0y '<,函数递减,1x e>,0y '>,函数递增, 1x e∴=时,函数取得极小值2e --,x →+∞,y →+∞,20e a -∴-<<,故选:A .6.已知函数1()()xf x x a e =-,曲线()y f x =上存在两个不同点,使得曲线在这两点处的切线都与y 轴垂直,则实数a 的取值范围是( ) A .2(e -,)+∞B .2(e -,0)C .21(e -,)+∞ D .21(e -,0) 【解析】解:曲线()y f x =上存在不同的两点, 使得曲线在这两点处的切线都与y 轴垂直,()(1)0x f x a x e -∴'=+-=有两个不同的解, 即得(1)x a x e -=-有两个不同的解, 设(1)x y x e -=-,则(2)x y x e -'=-,2x ∴<,0y '<,函数递减,2x >,0y '>,函数递增, 2x ∴=时,函数取得极小值2e --,x →+∞,0y →,20a e -∴>>-.故选:D .7.已知21()(0)2f x alnx x a =+>,若对任意两个不等的正实数1x ,2x 都有1212()()2f x f x x x --恒成立,则a 的取值范围是( ) A .(1,)+∞B .[1,)+∞C .(0,1]D .(0,1)【解析】解:设对任意两个不等的正实数12x x >都有2>恒成立,则1212()()22f x f x x x --, 1122()2()2f x x f x x ∴--,令21()()222g x f x x alnx x x =-=+-,则12()()g x g x ,所以函数()g x 是增函数, ()20(0)ag x x x x'=+->恒成立, 22a x x ∴-恒成立,222(1)1x x x -=--+,∴当1x =时,2()2g x x x =-取得最大值g (1)1=,1a ∴.即a 的取值范围是[1,)+∞. 故选:B .8.已知21()2f x alnx x =+,若对任意两个不等的正实数1x ,2x 都有1212()()0f x f x x x ->-成立,则实数a 的取值范围是( ) A .[0,)+∞B .(0,)+∞C .(0,1)D .(0,1]【解析】解:对任意两个不等的正实数1x ,2x ,都有1212()()0f x f x x x ->-恒成立则当0x >时,()0f x '>恒成立()0af x x x'=+>在(0,)+∞上恒成立 则2()max a x >- 而20x -<,则0a 故选:A .9.已知函数2()(1)f x aln x x =+-,若对p ∀,(0,1)q ∈,且p q ≠,有(1)(1)2f p f q p q+-+>-恒成立,则实数a 的取值范围为( )A .(,18)-∞B .(-∞,18]C .[18,)+∞D .(18,)+∞【解析】解:因为2()(1)f x aln x x =+-,所以2(1)[(1)1](1)f x aln x x +=++-+, 所以(1)2(1)2af x x x '+=-++. 因为p ,(0,1)q ∈,且p q ≠,所以(1)(1)2f p f q p q +-+>-恒成立(1)(1)2(1)(1)f p f q p q +-+⇔>+-+恒成立(1)2f x '⇔+恒成立,即2(1)2(01)2ax x x -+<<+恒成立, 所以22(2)(01)a x x >+<<恒成立,又因为(0,1)x ∈时,282(2)18x <+<,所以18a . 故选:C .10.已知函数21()(1)2f x aln x x =+-,在区间(0,1)内任取两个数p ,q ,且p q ≠,不等式(1)(1)3f p f q p q +-+>-恒成立,则实数a 的取值范围是( ) A .[8,)+∞B .(3,8]C .[15,)+∞D .[8,15]【解析】解:由函数21()(1)2f x aln x x =+-,22111(1)[(1)1](1)(2)222f x aln x x aln x x x ∴+=++-+=+---(1)12af x x x ∴'+=--+, p ,(0,1)q ∈,且p q ≠,不等式(1)(1)3f p f q p q +-+>-恒成立等价式(1)(1)3(1)(1)f p f q p q +-+>+-+恒成立,转化为(1)3f x '+>恒成立,即132ax x -->+,(01)x <<恒成立, 整理可得:268a x x >++,01x <<,∴函数2268(3)1y x x x =++=+-在(0,1)是递增函数.15max y ∴<故得15a . 故选:C .11.设函数3()(33)(2)x x f x e x x ae x x =-+---,若不等式()0f x 有解,则实数a 的最小值为( ) A .21e- B .22e -C .11e-D .212e +【解析】解:()0f x 可化为 3(33)0x x e x x ae x -+--,即333xx a x x e -+-, 令3()33xx F x x x e =-+-, 则21()33(1)(33)x x x F x x x x e e--'=-+=-++, 令()33x G x x e -=++,则()3x G x e -'=-, 故当3x e -=,即3x ln =-时,()33x G x x e -=++有最小值(3)3363(23)0G ln ln ln -=-+=->,故当[2x ∈-,1)时,()0F x '<,(1,)x ∈+∞时,()0F x '>;故()F x 有最小值F (1)111331e e =-+-=-;故实数α的最小值为11e -.故选:C .12.设函数3()()(31)(3)f x x lnx x lnx a x =-++-,若不等式()0f x 有解,则实数a 的最小值为( ) A .21e- B .22e-C .212e +D .11e-【解析】解:若不等式()0f x 有解,则31()(3)3a lnx lnx x -++有解,令31()()(3)3g x lnx lnx x =-++,则11()(1)[3(1)]g x lnx lnx x x '=-++,令1()3(1)h x lnx x=++, 则231()x h x x -'=, 令()0h x '>,解得:13x >, 令()0h x '<,解得:103x <<,故()h x 在1(0,)3递减,在1(3,)+∞,故1()()3(23)03min h x h ln ==->,故()0h x >,令()0g x '>,即10lnx ->,解得:x e >, 令()0g x '<,即10lnx -<,解得:0x e <<, 故()g x 在(0,)e 递减,在(,)e +∞递增,故()min g x g =(e )11e =-,故a 的最小值是11e -,故选:D .13.设函数323()(62)22x x f x e x x x ae x =+-+--,若不等式()0f x 在[2-,)+∞上有解,则实数a 的最小值为( )A .312e --B .322e --C .3142e --D .11e--【解析】解:323()(62)202x x f x e x x x ae x =+-+--在[2-,)+∞上有解3232(62)2x x ae e x x x x ⇔+-+-在[2-,)+∞上有解323(62)22[](2)x min xe x x x x a x e +-+-⇔-.令32323(62)32()622x x xe x x x xx g x x x x e e +-+-==+-+-, 则211()336(1)(36)x x x g x x x x x e e-'=+--=-++, [2x ∈-,)+∞,∴当[2x ∈-,1)时,()0g x '<,()g x 在区间[2-,1)上单调递减;当(1,)x ∈+∞时()0g x '>,()g x 在区间(1,)+∞上单调递增;∴当1x =时,()g x 取得极小值g (1)313116222e e=+-+-=--,也是最小值, 3122a e∴--, 3142a e∴--. 故选:C .14.已知函数2()()()lnx x b f x b R x +-=∈,若存在1[2x ∈,2],使得()()f x x f x >-',则实数b 的取值范围是() A .(,-∞ B .3(,)2-∞C .9(,)4-∞D .(,3)-∞【解析】解:2()()lnx x b f x x+-=,0x >, 2212()()()x x b lnx x b f x x +----∴'=, 12()()()x x b f x xf x x+-∴+'=, 存在1[2x ∈,2],使得()()0f x xf x +'>,12()0x x b ∴+->12b x x∴<+, 设1()2g x x x=+, ()max b g x ∴<,2221()2x g x x -∴'=, 当()0gx '=时,解得:x , 当()0gx '>2x <时,函数单调递增,当()0g x '<时,即1222x <时,函数单调递减, ∴当2x =时,函数()g x 取最大值,最大值为g (2)94=, 94b ∴<, 故选:C .15.已知()x f x xe =,2()(1)g x x a =-++,若存在1x ,2x R ∈,使得21()()f x g x 成立,则实数a 的取值范围为( )A .1[e ,)+∞B .1[e-,)+∞C .(0,)eD .1[e-,0)【解析】解:1x ∃,2x R ∈,使得21()()f x g x 成立, 等价于()()min max f x g x , ()(1)x x x f x e xe x e '=+=+,当1x <-时,()0f x '<,()f x 递减, 当1x >-时,()0f x '>,()f x 递增,所以当1x =-时,()f x 取得最小值1()(1)min f x f e=-=-;当1x =-时()g x 取得最大值为()(1)max g x g a =-=, 所以1a e -,即实数a 的取值范围是1a e-, 故选:B .16.设过曲线()2cos g x ax x =+上任意一点处的切线为1l ,总存在过曲线()x f x e x =--上一点处的切线2l ,使得12//l l ,则实数a 的取值范围为( ) A .[1,)+∞B .[1,]+∞C .(-∞,3]-D .(,3)-∞-【解析】解:设()2cos g x ax x =+上为1(x ,1())g x ,()f x 上切点为2(x ,2())f x , 依题得1x R ∀∈,2x R ∃∈,有112sin 1x a x e -=--,[2a -,2](,1)a +⊆-∞- 易得3a <-. 故选:D .17.设函数24(),()x x f x g x xe x +==,若对任意1x ,2(0x ∈,]e ,不等式12()()1g x f x +恒成立,则正数的取值范围为( )A .141(,]e e e+ B .(e ,4] C .1(0,]4e e e +-D .14(0,]4e e +- 【解析】解:对任意1x ,2(0x ∈,]e ,不等式12()()1g x f x +恒成立,等价于12()()()()1max min g x f x +恒成立, 2444()24x f x x x x x x+==+⋅=,当且仅当2x =时等号成立,∴2()4()min f x =;又()x g x xe =,()(1)0x x x g x e xe x e ∴'=+=+>在(0,]e 上恒成立,则11()()11e maxg x e +++, ∴141e e ++,又0>,解得1404e e +<-.∴正数的取值范围为14(0,]4e e +-. 故选:D .18.设e 表示自然对数的底数,函数22()()()()4x e a f x x a a R -=+-∈,若关于x 的不等式1()5f x 有解,则实数a 的值为15. 【解析】解:22()()()()4x e a f x x a a R -=+-∈,若关于x 的不等式1()5f x 有解,5有解,由y ,可得函数y 的几何意义为点(,)2x e x 和点(,)2aa 的距离,由于两点在曲线2xe y =和直线20x y -=运动,当直线20x y t -+=与曲线相切,设切点为(,)2me m ,可得切线的斜率为122m e =,解得0m =,则切点为1(0,)2,可得切点到直线20x y -=的距离为d =,5有解,且等号成立, 由20x y -=和122y x =-+联立,可得交点为1(5,1)10, 即有15a =,故答案为:15.19.已知21()2f x alnx x x =++,若对任意两个不等的正实数1x ,2x ,都有122212()()1f x f x x x -<-恒成立,则a 的取值范围是 (-∞,1]4- .【解析】解:设12x x >,则221212()()f x f x x x -<-, 221122()()f x x f x x ∴-<-,令221()()2g x f x x alnx x x =-=-+,12()()g x g x ∴<,()g x ∴在(0,)+∞上单调递减,()10ag x x x∴'=-+, 2211()24a x x x ∴-=--,14x ∴=时,21()4min x x -=-, 14a ∴-. a ∴的取值范围是(-∞,1]4-.故答案为:(-∞,1]4-.20.(1)设函数()(21)x f x e x ax a =--+,其中1a <,若存在唯一的整数0x ,使得0()0f x <,则a 的取值范围是 3[2e,1) . (2)已知()x f x xe =,2()(1)g x x a =-++,若1x ∃,2x R ∈,使得21()()f x g x 成立,则实数a 的取值范围 .【解析】解:(1)函数()(21)x f x e x ax a =--+,其中1a <, 设()(21)x g x e x =-,y ax a =-, 存在唯一的整数0x ,使得0()0f x <,∴存在唯一的整数0x ,使得0()g x 在直线y ax a =-的下方,()(21)x g x e x '=+,∴当12x <-时,()0g x '<, ∴当12x =-时,121[()]()22min g x g e -=-=-.当0x =时,(0)1g =-,g (1)0e =>,直线y ax a =-恒过(1,0),斜率为a ,故(0)1a g ->=-, 且1(1)3g e a a --=---,解得32a e. a ∴的取值范围是3[,1)2e. (2)1x ∃,2x R ∈,使得21()()f x g x 成立,等价于()()min max f x g x , ()x f x xe =-, ()(1)x f x x e ∴'=+,当1x <-时,()0f x '<;1x >-时,()0f x '>.1x ∴=-时,1()min f x e =-.2()(1)g x x a =++, ()max g x a ∴=.1a e∴-, ∴实数m 的取值范围是1[,)e-+∞.故答案分别为:(1)3[,1)2e;(2)1[,)e -+∞.21.当(0,)x ∈+∞时,不等式22(1)0c x cx lnx cx -++恒成立,则实数c 的取值范围是 1[e ,){}e +∞- .【解析】解:当(0,)x ∈+∞时,不等式22(1)0c x cx lnx cx -++恒成立, 即(0,)x ∈+∞时,()(1)0xc lnx xc -+恒成立, 即(0,)x ∈+∞时,1lnx c x c x ⎧⎪⎪⎨⎪-⎪⎩或1lnx c xc x ⎧⎪⎪⎨⎪-⎪⎩,令()lnx f x x =,21()lnx f x x -'=, 令()0f x '>,解得:0x e <<, 令()0f x '<,解得:x e >,()f x ∴在(0,)e 递增,在(,)e +∞递减, ()max f x f ∴=(e )1e =,而10y x=-<, 又当1x e =时,2()(1)(1)0cxc lnx xc e-+=+符合条件,c e ∴=-, 故1ce,或c e =-, 故答案为:1[e,){}e +∞-.22.若关于x 的不等式(1)()0x ax e aex +-在(0,)+∞上恒成立,则实数a 的取值范围是 [0,1] . 【解析】解:当0a =时,不等式(1)()0x ax e aex +- 即为0x e >显然成立;当0a >时,0x >,10ax +>,只要0x e aex -,即有xe ae x的最小值,令()x e g x x =,2(1)()x e x g x x -'=,当1x >时,()0g x '>,()g x 递增; 当01x <<时,()0g x '<,()g x 递减. 即有1x =处取得最小值,且为e , 则ae e ,解得01a <; 当0a <时,0x >,0x e aex ->, 只要10ax +恒成立,由于11ax +, 则0a <不恒成立.综上可得a 的范围是[0,1]. 故答案为:[0,1].23.关于x 的不等式(1)()0ax lnx ax -+在(0,)+∞上恒成立,则实数a 的取值范围是 1a e -或a e = .【解析】解:0a <,则0lnx ax +,令y lnx ax =+,则1y a x'=+, 10x a ∴<<-时,0y '>,1x a>-时,0y '<1x a∴=-时,函数取得最大值1()1ln a --,0lnx ax +,1()10ln a ∴--,1a e∴-;0a =时,则0lnx ,在(0,)+∞上不恒成立,不合题意;0a >时,100ax lnx ax -⎧⎨+⎩或100ax lnx ax -⎧⎨+⎩,a e =, 综上,1a e-或a e =.24.已知关于x 的不等式321ax x x lnx x+++在(0,)+∞上恒成立,则实数a 的取值范围是 (-∞,1]- . 【解析】解:当0a 时,取1x =,则3222ax x x a ++=+>,11lnx x +=,不等式321ax x x lnx x+++在(0,)+∞上不恒成立,0a ∴<.①当1a -时,3232ax x x x x x ++-++, 令32()g x x x x =-++,2()321(31)(1)g x x x x x '=-++=-+-,当(0,1)x ∈时,()0g x '>,()g x 为增函数,当(1,)x ∈+∞时,()0g x '<,()g x 为减函数, ()g x ∴在(0,)+∞上的极大值也是最大值为g (1)1=.又1()f x lnx x =+,22111()x f x x x x-'=-=,当(0,1)x ∈时,()0f x '<,()f x 为减函数,当(1,)x ∈+∞时,()0f x '>, ()f x 为增函数,()f x ∴在(0,)+∞上的极小值也是最小值为f (1)11ln g =+=(1). ()()f x g x ∴在(0,)+∞上恒成立;②当(1,0)a ∈-时,取1x =,则3221ax x x a ++=+>,11lnx x +=,不等式321ax x x lnx x+++在(0,)+∞上不恒成立. 综上,1a -. 故答案为:(-∞,1]-.25.已知函数()1(0)f x x alnx a =--<,4()g x x=,若对任意1x ,2(0x ∈,1]都有1212|()()||()()|f x f x g x g x --成立,则实数a 的取值范围为 [3-,0) .【解析】解:函数()f x 的定义域为(0,)+∞,则当0a <时,()10af x x'=->恒成立, 此时,函数()f x 在(0,)+∞上是增函数, 又函数4()g x x=,在(0,1]上是减函数 不妨设1201x x <,则1221|()()|()()f x f x f x f x -=-,121244|()()|g x g x x x -=-, 则不等式1212|()()||()()|f x f x g x g x --等价为121211|()()|4||f x f x x x --, 即212144()()f x f x x x ++设44()()1h x f x x alnx x x=+=--+, 则121211|()()|4||f x f x x x --,等价于函数()h x 在区间(0,1]上是减函数22244()1a x ax h x x x x --'=--=, 240x ax ∴--在(0,1]上恒成立,即4a x x -在(0,1]上恒成立,即a 不小于4y x x =-在(0,1]内的最大值.而函数4y x x=-在(0,1]是增函数,4y x x ∴=-的最大值为3-3a ∴-,又0a <,[3a ∴∈-,0). 故答案为:[3-,0). 26.若()1f x x alnx =--,()xexg x e =,0a <,且对任意1x ,2[3x ∈,124]()x x ≠,121211|()()|||()()f x f x g x g x -<-的恒成立,则实数a 的取值范围为 22[33e -,0) .【解析】解:易知1(),()f x g x 在[3x ∈,4]上均为增函数,不妨设12x x <,则121211|()()|||()()f x f x g x g x -<- 等价于212111()()()()f x f xg x g x -<-, 即212111()()()()f x f xg x g x -<-; 令1()()1()xe h xf x x alnxg x ex=-=---,则()h x 在[3x ∈,4]为减函数,则2(1)()10x a e x h x x ex '-=--在(3,4)x ∈上恒成立,∴11,[3,4]x x e a x ex x---+∈恒成立; 令11(),[3,4]x x e u x x ex x--=-+∈, ∴11122(1)113()11[()],[3,4]24x x x e x u x ee x x x ----'=-+=--+∈,()u x ∴为减函数,()u x ∴在[3x ∈,4]的最大值为22(3)33u e =-;综上,实数a 的取值范围为22[33e -,0).故答案为:22[33e -,0).27.设过曲线()3x f x e x a =--+上任意一点处的切线为1l ,总存在过曲线()(1)2cos g x x a x =-+上一点处的切线2l ,使得12l l ⊥,则实数a 的取值范围为 [1-,2] . 【解析】解:由()x f x e x =--,得()1x f x e '=--, 11x e +>,∴1(0,1)1xe ∈+, 由()(1)2cos g x x a x =-+,得()2sin g x a x '=-,又2sin [2x -∈-,2], 2sin [2a x a ∴-∈-+,2]a +,要使过曲线()3x f x e x a =--+上任意一点的切线为1l ,总存在过曲线()(1)2cos g x a x x =-+上一点处的切线2l ,使得12l l ⊥, 则2021a a -⎧⎨+⎩,解得12a -.即a 的取值范围为[1-,2], 故答案为[1-,2].28.设函数2221(),()x e x e x f x g x x e +==,对任意1x 、2(0,)x ∈+∞,不等式12()()1f x g x k k+,恒成立,则正数k 的取值范围是 1k .【解析】解:当0x >时,21()2f x e x x=+2x e x =,1(0,)x ∴∈+∞时,函数1()f x 有最小值2e ,2()x e x g x e =,2(1)()xe x g x e -∴'=, 当1x <时,()0g x '>,则函数()g x 在(0,1)上单调递增, 当1x >时,()0g x '<,则函数在(1,)+∞上单调递减,1x ∴=时,函数()g x 有最大值g (1)e =,则有1x 、2(0,)x ∈+∞,12()2()min max f x e g x e =>=, 不等式12()()1f x g x k k+恒成立且0k >, ∴21e ek k +, 1k ∴故答案为:1k .29.已知函数()1()f x x alnx a R =--∈,()xe g x x =,当0a <时,且对任意的1x ,2[4x ∈,125]()x x ≠,1212|()()||()()|f x f x g x g x -<-恒成立,则实数a 的取值范围为 .【解析】当0a <时,()10af x x'=->在[4x ∈,5]上恒成立, ∴函数()f x 在[4x ∈,5]上单调递增,()xe g x x=,2(1)()0x e x g x x -'=>在[4x ∈,5]上恒成立,()g x ∴在[4,5]上为增函数.当0a <时,且对任意的1x ,2[4x ∈,125]()x x ≠, 1212|()()||()()|f x f x g x g x -<-恒成立,即2211()()()()f x g x f x g x -<-在[4x ∈,5]上恒成立.设()()()1xe F xf xg x x alnx x =-=---,则()F x 在[4x ∈,5]上为减函数.2(1)()10x a e x F x x x -'=--在[4x ∈,5]上恒成立,化为x xe a x e x-+恒成立. 设()xxe H x x e x=-+,222(1)11113()11(1)1[()]24x xx x e x H x e e e x x x x -'=-+=--+=--+,[4x ∈,5]. 231133[()]1244x e e x ∴-+>>,[4x ∈,5].()0H x ∴'<在[4x ∈,5]上恒成立,即()H x 为减函数.()H x ∴在[4x ∈,5]上的最大值为H (4)444134444e e e =-+=-.43404e a ∴-<.。
专题19恒成立与存在性问题专题知识梳理恒成立问题①∀x∈D,均有f(x)>A恒成立,则f(x)min>A;②∀x∈D,均有f(x)﹤A恒成立,则f(x)ma x<A;③∀x∈D,均有f(x)>g(x)恒成立,则F(x)=f(x)-g(x)>0,∴F(x)min>0;④∀x∈D,均有f(x)﹤g(x)恒成立,则F(x)=f(x)-g(x)<0,∴F(x)ma x<0;⑤∀x1∈D,∀x2∈E,均有f(x1)>g(x2)恒成立,则f(x)min>g(x)ma x;⑥∀x1∈D,∀x2∈E,均有f(x1)<g(x2)恒成立,则f(x)ma x<g(x)min.存在性问题①∃x0∈D,使得f(x0)>A成立,则f(x)ma x>A;②∃x0∈D,使得f(x0)﹤A成立,则f(x)min<A;③∃x0∈D,使得f(x0)>g(x0)成立,设F(x)=f(x)-g(x),∴F(x)ma x>0;④∃x0∈D,使得f(x0)<g(x0)成立,设F(x)=f(x)-g(x),∴F(x)min<0;⑤∃x1∈D,∃x2∈E,使得f(x1)>g(x2)成立,则f(x)ma x>g(x)min;⑥∃x1∈D,∃x2∈E,均使得f(x1)<g(x2)成立,则f(x)min<g(x)ma x.考点探究【例1】(2018·徐州模拟)若关于x的不等式x3﹣3x2+ax+b<0对任意的实数x∈[1,3]及任意的实数b∈[2,4]恒成立,则实数a的取值范围是.【解析】关于x的不等式x3﹣3x2+ax+b<0对任意的实数x∈[1,3]及任意的实数b∈[2,4]恒成立,可得x3﹣3x2+ax<﹣b的最小值,即为x3﹣3x2+ax<﹣4,可得a<3x﹣x2﹣的最小值,设f (x )=3x ﹣x 2﹣,x ∈[1,3],导数为f′(x )=3﹣2x+,可得1<x <2时,f′(x )>0,f (x )递增;2<x <3时,f′(x )<0,f (x )递减,又f (1)=﹣2,f (3)=﹣,可得f (x )在[1,3]的最小值为﹣2,可得a <﹣2.即有a 的范围是(﹣∞,﹣2).故答案为:(﹣∞,﹣2).【例2】已知函数()(0,0,1,1)x x f x a b a b a b =+>>≠≠.设12,2a b ==.若对任意x R ∈,不等式(2)()6f x mf x ≥-恒成立,求实数m 的最大值;【解析】由条件知2222(2)22(22)2(())2x x x x f x f x --=+=+-=-.因为(2)()6f x mf x ≥-对于x R ∈恒成立,且()0f x >,所以2(())4()f x m f x +≤对于x R ∈恒成立.而2(())44()4()()f x f x f x f x +=+≥=,且2((0))44(0)f f +=,所以4m ≤,故实数m 的最大值为4.【例3】已知=)(x f x x +221,=)(x g a x -+)1ln(,(1)若存在]2,0[,21∈x x ,使得)()(21x g x f >,求实数a 的取值范围;(2)若存在]2,0[,21∈x x ,使得)()(21x g x f =,求实数a 的取值范围.【解析】()(),f x g x 在[]0,2上都是增函数,所以()f x 的值域,,]40[=A ()g x 的值域]3ln ,[a a B --=.(1)若存在]2,0[,21∈x x ,使得)()(21x g x f >,则min max )()(x g x f >,即4>a -,所以4->a .(2)若存在21,x x 使得)()(21x g x f =,则A B ≠∅ ,∴4a -≤且ln 30a -≥,∴实数a 的取值围是[]4,ln 3-.题组训练1.已知函数()()32ln 3,a f x x x g x x x x =++=-,若()()12121,,2,03x x f x g x ⎡⎤∀∈-≥⎢⎥⎣⎦,则实数a 的取值范围为_________________.【解析】由题意()()12121,,2,03x x f x g x ⎡⎤∀∈-≥⎢⎥⎣⎦得()()min max f x g x ≥()32g x x x =-,()´232g x x x =-所以()g x 在1233⎡⎤⎢⎥⎣⎦,单调递减,在223⎡⎤⎢⎥⎣⎦单调递增,所以()()()12243max g x max g g g ⎧⎫⎛⎫===⎨⎬ ⎪⎝⎭⎩⎭,,则()ln 34a f x x x x =++>得2a x x lnx ≥-令()2h x x x lnx =-,()´12h x xlnx x =--,()¨23h x lnx =--,在1,23⎡⎤⎢⎥⎣⎦上()¨0h x <,则()´h x 单调递减,又()10h =,所以()h x 在113⎡⎤⎢⎥⎣⎦,单调递增,在[]12,单调递减,()()max 11h x h ==,所以1a ≥,故填[)1,+∞.2.已知函数f(x)=22e 1+x x ,g(x)=2e ex x ,对任意的x 1,x 2∈(0,+∞),不等式1()g x k ≤2()1+f x k 恒成立,则正数k的取值范围是.【解析】因为k 为正数,所以对任意的x 1,x 2∈(0,+∞),不等式1()g x k ≤2()1+f x k 恒成立⇒max()⎡⎤⎢⎥⎣⎦g x k ≤min ()1⎡⎤⎢⎥+⎣⎦f x k .令g'(x)=0,即2e (1-)e xx =0,得x=1,当x∈(0,1)时,g'(x)>0,当x∈(1,+∞)时,g'(x)<0,所以max ()⎡⎤⎢⎥⎣⎦g x k =(1)g k =e k .同理,令f'(x)=0,即222e -1x x =0,得x=1e ,当x∈10,e ⎛⎫ ⎪⎝⎭时,f'(x)<0,当x∈1,e ∞⎛⎫+ ⎪⎝⎭时,f'(x)>0,所以min ()1⎡⎤⎢⎥+⎣⎦f x k =1e 1⎛⎫ ⎪⎝⎭+f k =2e 1+k ,所以e k ≤2e 1+k ,又k>0,所以k≥1.3.已知()1()2,11f x x x x =-->-+,若2()21f x t at ≤-+对于所有的()[]1,,1,1x a ∈-+∞∈-恒成立,求实数t 的取值范围.【解析】2()21f x t at ≤-+对于所有的()[]1,,1,1x a ∈-+∞∈-恒成立,即()f x 的最大值都小于等于221t at -+;即220ta t -≤对于所有的[]1,1a ∈-恒成立,令2()2g a ta t =-,只要(1)0(1)0g g -≤⎧⎨≤⎩,即可解出实数t 的取值范围.容易得出11()23132111f x x x x x ⎛⎫=--=-++≤-= ⎪++⎝⎭,即()f x 的最大值为1,则2()21f x t at ≤-+对于所有的()[]1,,1,1x a ∈-+∞∈-恒成立⇔2121t at ≤-+对于所有的[]1,1a ∈-恒成立,即220ta t -≤对于所有的[]1,1a ∈-恒成立,令2()2g a ta t =-,只要(1)0(1)0g g -≤⎧⎨≤⎩,∴2t ≤-或2t ≥或0t =.4.已知函数()()1522>+-=a ax x x f .若()x f 在区间(]2,∞-上是减函数,且对任意的[]1,1,21+∈a x x ,总有()()421≤-x f x f ,求实数a 的取值范围;【解析】条件12()()4f x f x -≤表示的含义是函数f (x )在[1,1]a +上的最大值与最小值的差小于或等于4.若2a ≥.又[1,1]x a a =∈+,且(1)1a a a +-≤-.所以max ()(1)62f x f a ==-.2min ()()5f x f a a ==-.因为对任意的12,[1,1]x x a ∈+.总有12()()4f x f x -≤.所以max min ()()4f x f x -≤.即2(62)(5)4a a ---≤.解得13a -≤≤.又2a ≥.所以23a ≤≤.若12a <<.2max ()(1)6f x f a a =+=-.2min ()()5f x f a a ==-.max min ()()4f x f x -≤显然成立.综上13a <≤.5.函数()()m mx x g x x x f 25,342-+=+-=,若对任意的[]4,11∈x ,总存在[]4,12∈x ,使()()21x g x f =成立,求实数m 的取值范围.【解析】由题可知函数()f x 的值域为函数()g x 的值域的子集[][]2()43,1,4,()1,3f x x x x f x =-+∈∴∈-,以下求函数()52g x mx m =+-的值域:①0m =时,()52g x m =-为常函数,不符合题意;②0m >,[]()52,52g x m m ∈-+,∴521,523,m m -≤-⎧⎨+≥⎩解得6m ≥;③0m <,[]()52,52g x m m ∈+-,∴521,523,m m +≤-⎧⎨-≥⎩解得3m ≤-.综上所述,m 的取值范围为(][),36,-∞-+∞ .6.已知函数()()1ln f x x x ax a =+-+(a 为正常数).(1)若()f x 在()0,+∞上单调递增,求a 的取值范围;(2)若不等式()()10≥-x f x 恒成立,求a 的取值范围.【解析】(1)()()1ln f x x x ax a =+-+,1()ln 0x f x x a x +'=+-≥,1ln 1≤++a x x 恒成立令1()ln 1g x x x =++,21()x g x x-'=列表略min ()(1)2g x g ==,02a <≤.(2)当0a <≤2时,由(1)知,若()f x 在()0,+∞上单调递增,又()10f =,当(0,1),()0x f x ∈<;当(1,),()0x f x ∈+∞>,故不等式()()10x f x -≥恒成立当2a >,ln (1)1()x x a x f x x+-+'=,令()ln (1)1p x x x a x =+-+,令()ln 20p x x a '=+-=,则21a x e -=>,当2(1,)a x e -∈时,()0p x '<,则()(1)20p x p a <=-<,当2(1,)a x e -∈,()0f x '<,则()f x 单调递减,()(1)0f x f <=,矛盾,因此02≤<a .法二:1()()ln 1g x f x x a x '==++-,22111()x g x x x x-'=-=,讨论单调性可得min ()(1)2g x g a ==-.当02a <<时,()()0g x f x '=>,()f x 在(0,)+∞单调递增,又(1)0f =,符合题意;当2a >时,(1)20g a =-<,1()10a a g e e=+>,因为()g x 在(0,)+∞不间断,所以()g x 在(1,)a e 上存在零点1x ,1(1,),()∈x x f x 单调减,1(,),()∈a x x e f x 单调增,所以当11<<x x 时,()(1)0<=f x f 不合题意;当2a =时,符合题意;综上02≤<a .。
高三数学专题——恒成立与存在性问题高三复专题——恒成立与存在性问题知识点总结:1.___成立问题:1) 若对于D中的任意x,都有f(x)>A,则f(x)的最小值>A;2) 若对于D中的任意x,都有f(x)<A,则f(x)的最大值<A;3) 若对于D中的任意x,都有f(x)>g(x),则F(x)=f(x)-g(x)>0,因此F(x)的最小值>0;4) 若对于D中的任意x,都有f(x)<g(x),则F(x)=f(x)-g(x)<0,因此F(x)的最大值<0;5) 若对于D中的任意x1和E中的任意x2,都有f(x1)>g(x2),则f(x)的最小值>g(x)的最大值;6) 若对于D中的任意x1和E中的任意x2,都有f(x1)<g(x2),则f(x)的最大值<g(x)的最小值。
2.存在性问题:1) 若存在D中的x,使得f(x)>A,则f(x)的最大值>A;2) 若存在D中的x,使得f(x)<A,则f(x)的最小值<A;3) 若存在D中的x,使得f(x)>g(x),则F(x)=f(x)-g(x),因此F(x)的最大值>0;4) 若存在D中的x,使得f(x)<g(x),则F(x)=f(x)-g(x),因此F(x)的最小值<0;5) 若存在D中的x1和E中的x2,使得f(x1)>g(x2),则f(x)的最大值>g(x)的最小值;6) 若存在D中的x1和E中的x2,使得f(x1)<g(x2),则f(x)的最小值<g(x)的最大值。
3.相等问题:1) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)=g(x2),则{f(x)}={g(x)};4.___成立与存在性的综合性问题:1) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)>g(x2),则f(x)的最小值>g(x)的最小值;2) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)<g(x2),则f(x)的最大值<g(x)的最大值。
专题04 利用导数解决恒成立与存在性问题常见考点考点一 恒成立问题典例1.已知函数()e xf x ax b =++(e 是自然对数的底数),曲线()y f x =在点()()0,0f 处的切线为y a b =-.(1)求a ,b 的值;(2)若不等式()1f x mx >-在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,求正实数m 的取值范围.【答案】(1)1a =-,1b =- (2)()0,e 1- 【解析】 【分析】(1)求导,由切线为y a b =-,可得(0)10(0)1f a f b a b=+=⎧⎨=+=-'⎩,运算即得解;(2)参变分离可得e 1x m x <-,令()e 1xg x x=-,求导分析单调性,可得()g x 的最小值为()1e 1g =-,分析即得解 (1)()e x f x ax b =++可得()e x f x a '=+,因为曲线()y f x =在点()()0,0f 处的切线为y a b =-.所以(0)10(0)1f a f b a b =+=⎧⎨=+=-'⎩,解得1a =-,1b =-.(2)由(1)知()e 1xf x x =--,∵不等式()1f x mx >-在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,∴e xx mx ->在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,即e1xm x<-在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立.令()e 1xg x x=-,∵()()2e 1x x g x x ='-,当()()2e 10x x g x x '-==时,解得1x =. ∴当11ex <<时,()0g x '<,()g x 为减函数,当1e x <≤时,()0g x '>,()g x 为增函数,∴()g x 的最小值为()1e 1g =-,∴e 1m <-,∴正实数m 的取值范围为()0,e 1-. 变式1-1.已知函数()ln xf x x=, ()()1g x k x =-. (1)证明: R k ∀∈,直线y g x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.【答案】(1)证明见解析 (2)e ,e 1⎡⎫+∞⎪⎢-⎣⎭【解析】 【分析】(1)求出()f x 的导数,设出切点,可得切线的斜率,根据斜率相等,进而构造 函数()h =ln 1x x x +-,求出导数和单调区间,即可证明;(2)由2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦,再 利用导数法求出()()n 1l x x x x ϕ-=在2e,e ⎡⎤⎣⎦的最大值即可求解.(1)由题意可知,()f x 的定义域为()()0,11,+∞, 由()ln x f x x=,得()()2ln 1ln x f x x -'=, 直线y g x 过定点()1,0,若直线y g x 与曲线()y f x =相切于点()00000,01ln x x x x x ⎛⎫>≠ ⎪⎝⎭且,则 ()002000ln 1ln 1ln x x x k x x --==-,即00ln 10x x +-=① 设()()h =ln 1,0x x x x +-∈+∞,则(),1=10h x x+>,所以()h x 在()0+∞上单调递增,又()h 1ln1110=+-=, 从而当且仅当01x =时,①成立,这与01x ≠矛盾.所以,R k ∀∈,直线y g x 都不是曲线()y f x =的切线. (2)由()()f x g x ≤,得()1ln xxk x ≤-, 22e e ,0e 11e 1x x ∴≤≤∴<-≤-≤-,()l 1n xk x x -∴≥若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1xk x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦即可. 令()()n 1l x x x x ϕ-=,2e,e x ⎡⎤∈⎣⎦,则()()2ln 1ln 1x x x x x ϕ---+'=⎡⎤⎣⎦,令()ln 1t x x x =--+,2e,e x ⎡⎤∈⎣⎦,则()11x t x x xx +⎛⎫'=--=- ⎪⎝⎭221110e e ,011e ex x x +∴<≤≤∴<+≤≤+,所以()0t x '<, 所以()t x 在2e,e ⎡⎤⎣⎦上是单调递减;所以()()e lne e 1e<0t x t ≤=--+=-,故()0ϕ'<x()ϕx 在2e,e ⎡⎤⎣⎦上是单调递减;当e x =时,()ϕx 取得最大值为,()()e e e e 1ln e e 1ϕ==--,即e e 1k ≥-. 所以实数k 的取值范围为e ,e 1⎡⎫+∞⎪⎢-⎣⎭【点睛】解决此题的关键利用导数的几何意义及两点求斜率,再根据同一切线斜率相等即可证明, 对于恒成立问题通常采用分离常数法,进而转化为求函数的最值问题,利用导数法即可求解.变式1-2.已知函数()ln(1)xf x e a x =++.(1)当1a =-时,求函数()f x 的单调区间; (2)若()1f x ≥恒成立,求实数a 的值.【答案】(1)递减区间为(1,0)-,递增区间为(0,)+∞; (2)1-.【解析】 【分析】(1)当1a =-时,求得()11x x xe e f x x +-'=+,令()1x xg x xe e =+-,得到()0g x '>,且()00g =,即可求得函数的单调区间;(2)求得()(1)1x x e a f x x ++'=+,设()(1)xg x x e a =++,当0a ≥时,不满足题意;当0a <时,得到()g x 单调递增,设()0g x =有唯一的零点0x ,使得00(1)0xx e a ++=,结合函数单调性得到()()00min 01[(1)1]ln()ln()1f x f x a x a a a a a x ==-++-+-≥-+-+,再令()ln(),(,0)h a a a a a =-+-∈-∞,结合单调性求得()1f x ≤,即可求解. (1)解:当1a =-时,函数()ln(1)xf x e x =-+,其定义域为(1,)-+∞可得()1111x x xxe e f x e x x +-'=-=++, 令()1x x g x xe e =+-,可得()(2)0xg x e x '=+>,()g x 单调递增,又由()00g =,当(1,0)x ∈-时,()0g x '<,可得()0f x '<,()f x 单调递减; 当,()0x ∈+∞时,()0g x '>,可得()0f x '>,()f x 单调递增, 所以()f x 的递减区间为(1,0)-,递增区间为(0,)+∞. (2)解:由()ln(1)xf x e a x =++,可得()(1)11x xa x e a f x e x x ++'=+=++, 设()(1)xg x x e a =++,当0a ≥时,()0g x >,可得()0f x '>,()f x 单调递增, 当1x →-时,()f x →-∞,不满足题意;当0a <时,由()(2)0xg x x e '=+>,()g x 单调递增,设()0g x =有唯一的零点0x ,即00(1)0xx e a ++=,当0(1,)x x ∈-时,()0g x '<,可得()0f x '<,()f x 单调递减; 当0(,)x x ∈+∞时,()0g x '>,可得()0f x '<,()f x 单调递增,所以()()000000min ln(1)lnln()x xx x af x f x e a x e a e a a ax e-==++=+=+-- 00001ln()()ln()11a ax a a a x a a x x =--+-=-++-++ 001[(1)1]ln()1a x a a x =-++-+-+ 因为010x +>,可得001121x x ++≥+, 当且仅当00x =时,等号成立,所以001(1)111x x ++-≥+,所以001[(1)1]ln()ln()1a x a a a a a x -++-+-≥-+-+,因为()1f x ≥恒成立,即ln()1a a a -+-≥恒成立,令()ln(),(,0)h a a a a a =-+-∈-∞,可得()1ln()1ln()h a a a '=-+-+=-, 当(,1)a ∈-∞-时,()0h a '>,()h a 单调递增; 当(1,0)a ∈-时,()0h a '<,()h a 单调递减, 所以()()11h a h ≤-=,即()1f x ≤,又由()1f x ≥恒成立,即()ln()0h a a a a =-+-=,所以1a =-.变式1-3.已知函数()2ln x x f x ax x =--(a R ∈)恰有两个极值点12,x x 且12x x <.(1)求实数a 的取值范围;(2)若不等式122ln ln 2x x λλ+>+恒成立,求实数λ的取值范围. 【答案】(1)10,2e ⎛⎫ ⎪⎝⎭(2)[)2,+∞ 【解析】 【分析】(1)对()f x 求导后分析其导数的零点(2)将12,x x 代入后消去a ,然后为不等式恒成立问题,换元后分类讨论最值 (1)∵()'ln 2f x x ax =-,依题意得12,x x 为方程ln 20x ax -=的两不等正实数根, ∴0a ≠,ln 2x a x =,令()ln x g x x=,()21ln 'xg x x -=, 当()0,e x ∈时,()'0g x >;当()e,x ∈+∞时,()'0g x <,∴()g x 在(0,e)上单调递增,在()e,+∞上单调递减,且()10g =,当e x >时,()0g x >, ∴()102e ea g <<=,解得102e a <<,故实数a 的取值范围是10,2e ⎛⎫ ⎪⎝⎭; (2)由(1)得11ln 2x ax =,22ln 2x ax =,两式相减得()1212ln ln 2x x a x x -=-,1212ln ln 2x x a x x -=-, ()12122ln ln 2222x x a x x λλλλ+>+⇔+>+()()1112122211222ln2ln ln 221x x x x x x x x x x x x λλλλ⎛⎫+ ⎪+-⎝⎭⇔>+⇔>+--, ∵120x x <<,令()120,1x t x =∈,∴()2ln 21t t t λλ+>+-,即()()()2ln 210t t t λλ+-+-<, 令()()()()2ln 21h t t t t λλ=+-+-,则需满足()0h t <在()0,1上恒成立, ∵()'2ln h t t tλλ=+-,令()2ln I t t tλλ=+-,则()2222't I t t t tλλ-=-=(()0,1t ∈), ①当2λ≥时,()'0I t <,∴()'h t 在()0,1上单调递减,∴()()''10h t h >=, ∴()h t 在(0,1)上单调递增,∴()()10h t h <=,符合题意,②当0λ≤时,()'0I t >,∴()'h t 在()0,1上单调递增,∴()()''10h t h <=, ∴()h t 在()0,1上单调递减,∴()()10h t h >=,不符合题意, ③当02λ<<时,()'012I t t λ>⇔<<,∴()'h t 在,12λ⎛⎫⎪⎝⎭上单调递增,∴()()''10h t h <=, ∴()h t 在,12λ⎛⎫⎪⎝⎭上单调递减,∴()()10h t h >=,不符合题意,综上所述,实数λ的取值范围是[)2,+∞.考点二 存在性问题典例2.已知函数2()(2)ln (0)f x ax a x x a =-++>. (1)讨论函数()f x 的单调性;(2)若存在[1,)x ∈+∞,使得()e 0f x +≤成立,求实数a 的取值范围. 【答案】(1)答案见解析 (2)10,e ⎛⎤⎥⎝⎦ 【解析】 【分析】(1)求得()'f x ,对a 进行分类讨论,由此求得()f x 的单调区间.(2)根据(1)的结论对a 进行分类讨论,由min e ()f x ≤-,结合构造函数法以及导数来求得a 的取值范围. (1)已知函数2()(2)ln f x ax a x x =-++,定义域为(0,)+∞,212(2)1(1)(21)()2(2)ax a x ax x f x ax a x x x-++--=-++==',①当02a <<时,11>,()f x 在110,,,2a ⎛⎫⎛⎫+∞⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减; ②当2a =时,2142()0x f x x⎛⎫- ⎪⎝⎭'=≥,函数()f x 在(0,)+∞单调递增; ③当2a >时,112a <,()f x 在110,,,2a ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减. 综上所述,02a <<时,()f x 在110,,,2a ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫⎪⎝⎭上单调递减;2a =时,()f x 在(0,)+∞单调递增;2a >时,()f x 在110,,,2a ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减.(2)若存在[1,)x ∈+∞,使得()e 0f x +≤成立,即使得min e ()f x ≤-.由(1),可知当1a ≥时,()f x 在[1,)+∞上单调递增,()min (1)2f f x ==-, 不满足min e ()f x ≤-; 当01a <<时,11a>min 11()1ln f x f a a a ⎛⎫==--- ⎪⎝⎭,所以e 11ln a a ---≤-,即1ln 1e a a +≥-,令1()ln (01)g x x x x =+<<,∴22111()0x g x x x x-='=-<, ∴1()ln g x x x=+在(0,1)上单调递减,又∵1e 1e g ⎛⎫=- ⎪⎝⎭,由1ln 1e a a +≥-,得10ea <≤.综上,实数a 的取值范围为10,e ⎛⎤⎥⎝⎦.变式2-1.已知函数()()ln 11xf x x x =>-.(1)判断函数()f x 的单调性;(2)已知0λ>,若存在()1,x ∈+∞时使不等式()()1eln 0xx f x λ--≥成立,求λ的取值范围.【答案】(1)函数()y f x =在区间()1,+∞上单调递减; (2)1(0,]e. 【解析】 【分析】(1)求出函数()f x 的导数()f x ',判断()f x '的符号作答.(2)对给定不等式作等价变形,借助(1)脱去法则“f ”,分离参数构造函数,再求出函数最值作答. (1) 函数ln 1xf xx ,1x >,求导得:()()211ln 1x x f x x --'=-,令()11ln g x x x =--,1x >,则()210xg x x-'=<,即函数()y g x =在区间()1,+∞单调递减, 而()10g =,则当()1,x ∈+∞时,()(1)0g x g <=,即()0f x '<, 所以函数()y f x =在区间()1,+∞上单调递减. (2)当1x >时ln 0x >,()()()()()ln 1eln 0e e 1xxxxx f x f f f x x λλλ--≥⇔≥⇔≥-, 因0λ>且1x >,则()e 1,xλ∈+∞,由(1)知,()y f x =在()1,+∞单调递减,则存在()1,x ∈+∞,不等式()()ln e e ln x xxf f x x x x xλλλλ≥⇔≤⇔≤⇔≤成立, 令()()ln 1x x x x ϕ=>,则()21ln xx xϕ-'=,当()1,e x ∈时,()0x ϕ'>,当()e,x ∈+∞时,()0x ϕ'<, 因此,函数()x ϕ在()1,e 上单调递增,在()e,+∞上单调递减,()()max 1e e x ϕϕ==,于是得10eλ<≤, 所以λ的取值范围是1(0,]e. 【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,构造函数,再利用函数的导数探讨解决问题.变式2-2.已知函数()()222ln f x x a x =++.(1)当5a =-时,求()f x 的单调区间; (2)若存在[]2,e x ∈,使得()2242a f x x x x+->+成立,求实数a 的取值范围. 【答案】(1)单调递减区间为()0,2,单调递增区间为()2,+∞;(2)2e e 2,e 1∞⎛⎫-++⎪-⎝⎭. 【解析】 【分析】(1)当5a =-时,()28ln f x x x =-,得出()f x 的定义域并对()f x 进行求导,利用导数研究函数的单调性,即可得出()f x 的单调区间; (2)将题意等价于()24222ln 0a x a x x ++-+<在[]2,e 内有解,设()()24222ln a h x x a x x+=+-+,即在[]2,e 上,函数()min 0h x <,对()h x 进行求导,令()0h x '=,得出2x a =+,分类讨论2a +与区间[]2,e 的关系,并利用导数研究函数()h x 的单调和最小值,结合()min 0h x <,从而得出实数a 的取值范围. (1)解:当5a =-时,()28ln f x x x =-,可知()f x 的定义域为()0,+∞,则()28282,0x f x x x x x-'=-=>, 可知当()0,2x ∈时,0f x ;当()2,x ∈+∞时,0fx ;所以()f x 的单调递减区间为()0,2,单调递增区间为()2,+∞. (2)解:由题可知,存在[]2,e x ∈,使得()2242a f x x x x+->+成立, 等价于()24222ln 0a x a x x++-+<在[]2,e 内有解, 可设()()24222ln a h x x a x x+=+-+,即在[]2,e 上,函数()min 0h x <, ()()()()()()()22222122422222242x x a a a x a x a h x x xx x ⎡⎤+-+++-+-+⎣⎦∴=--==',令()0h x '=,即()()120x x a ⎡⎤+-+=⎣⎦,解得:2x a =+或1x =-(舍去), 当2e a +≥,即e 2a ≥-时,()0h x '<,()h x 在[]2,e 上单调递减,()()min24e 2e+220e a h x h a +∴==--<,得2e e 2e 1a -+>-,又2e e 2e 2e 1-+>--,所以2e e 2e 1a -+>-; 当22a +≤时,即0a ≤时,()0h x '>,()h x 在[]2,e 上单调递增,()()()min 2622ln 20h x h a a ∴==+-+<,得6ln 40ln 41a ->>-,不合题意; 当22e a <+<,即0e 2a <<-时,则()h x 在[]2,2a +上单调递减,在[]2,e a +上单调递增,()()()()min 22622ln 2h x h a a a a ∴=+=+-++,()ln 2ln 2lne 1a <+<=,()()()22ln 222ln 2222a a a a ∴+<++<+, ()()()22622ln 226224h a a a a a a ∴+=+-++>+--=,即()min 4h x >,不符合题意;综上得,实数a 的取值范围为2e e 2,e 1∞⎛⎫-++ ⎪-⎝⎭.【点睛】思路点睛:本题考查利用导数研究函数的单调性,以及利用导数解决不等式成立的综合问题: (1)利用导数解决单调区间问题,应先确定函数的定义域,否则,写出的单调区间易出错;利用导数解决含有参数的单调性问题,要注意分类讨论和化归思想的应用;(2)利用导数解决不等式的综合问题的一般步骤是:构造新函数,利用导数研究的单调区间和最值,再进行相应证明.变式2-3.已知函数()ln f x x a x =-,()1(0)ag x a x+=->. (1)若1a =,求函数()f x 的极值;(2)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(3)若存在[]01x e ∈,,使得()()00f x g x <成立,求a 的取值范围.【答案】(1)极小值为1,无极大值(2)单调递增区间为()1,a ++∞,单调递减区间为()0,1a +.(3)21,1e e ⎛⎫++∞⎪-⎝⎭【解析】 【分析】(1)研究()ln f x x x =-的单调区间,进而求出()f x 的极值;(2)先求()h x ',再解不等式()0h x '>与()0h x '<,求出单调区间,注意题干中的0a >的条件;(3)先把题干中的问题转化为在[]1x e ∈,上有()min 0h x <,再结合第二问研究的()h x 的单调区间,对a 进行分类讨论,求出不同范围下的()min h x ,求出最后结果 (1)当1a =时,()ln f x x x =-,定义域为()0,∞+,()111x f x x x-'=-=令()0f x '=得:1x =,当1x >时,()0f x '>,()f x 单调递增;当01x <<时,()0f x '<,()f x 单调递减,故1x =是函数()f x 的极小值点,()f x 的极小值为()11f =,无极大值 (2)()()()()1ln 0ah x f x g x x a x a x+=-=-+>,定义域为()0,∞+ ()()()222211111x x a a a x ax a h x x x x x+--+---'=--== 因为0a >,所以10a +>,令()0h x '>得:1x a >+,令()0h x '<得:01x a <<+,所以()h x 在()1,a ++∞单调递增,在()0,1a +单调递减.综上:()h x 单调递增区间为()1,a ++∞,单调递减区间为()0,1a +. (3)存在[]01x e ∈,,使得()()00f x g x <成立,等价于存在[]01x e ∈,,使得()00h x <,即在[]1x e ∈,上有()min 0h x <由(2)知,()h x 单调递增区间为()1,a ++∞,单调递减区间为()0,1a +,所以当1a e +≥,即1a e ≥-时,()h x 在[]1x e ∈,上单调递减,故()h x 在x e =处取得最小值,由()()min10a h x h e e a e +==-+<得:211e a >e +-,因为2111e e e +>--,故211e a >e +-. 当11a e <+<,即01a e <<-时,由(2)知:()h x 在()1,1x a ∈+上单调递减,在()1,x a e ∈+上单调递增,()h x 在[]1x e ∈,上的最小值为 令()()12ln 1h a a a a +=+-+因为()0ln 11a <+<,所以()0ln 1a a a <+<,则()2ln 12a a a +-+>,即()12h a +>,不满足题意,舍去综上所述:a 的取值范围为21,1e e ⎛⎫++∞⎪-⎝⎭【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.巩固练习练习一 恒成立问题1.已知函数()1ln x f x x+=. (1)求()f x 在1x =处的切线方程; (2)当e x ≥时,不等式()ekf x x ≥+恒成立,求实数k 的取值范围; 【答案】(1)1y = (2)(],4∞- 【解析】 【分析】(1)利用导数的几何意义直接求解即可;(2)分离变量可得()()()e 1ln x x k g x x++≤=,利用导数可求得()()e 4g x g ≥=,由此可得k 的取值范围. (1)()2211ln ln x xf x x x--'==-,()10f '∴=,又()11f =, ()f x ∴在1x =处的切线方程为1y =;(2)当e x ≥时,由()e k f x x ≥+得:()()()()e 1ln e x x k x f x x++≤+=,令()()()e 1ln x x g x x++=,则()2eln x xg x x -'=, 令()eln h x x x =-,则()ee1x h x xx-'=-=, ∴当e x ≥时,()0h x '≥,()h x ∴在[)e,+∞上单调递增,()()e e elne 0h x h ∴≥=-=,()0g x '∴≥,()g x ∴在[)e,+∞上单调递增,()()()2e 1ln e e 4eg x g +∴≥==, 4k ∴≤,即实数k 的取值范围为(],4∞-.【点睛】方法点睛:本题考查导数的几何意义、利用导数解决函数中的恒成立问题;解决恒成立问题的基本思路是采用分离变量的方式,将问题转化为变量与函数最值之间关系,即由()a f x ≥得()max a f x ≥;由()a f x ≤得()min a f x ≤.2.已知函数2()e 1x f x ax x =---. (1)当1a =-时,讨论()f x 的单调性;(2)当0x ≥时,321()22f x x ax ≥-恒成立,求实数a 的取值范围.【答案】(1)()f x 在()0+∞,上单调递增,在()0-∞,上单调递减; (2)274e a -≥【解析】 【分析】(1)直接求导,先确定导数的单调性及零点,即可确定()f x 的单调性;(2)当0x =时, a R ∈,当0x >时,参变分离得3211e 2xx x a x ++-≥,构造函数()h x 求导得()321e 2()21xx x h x x x ⎛⎫⎪⎝⎭'--=--,再构造函数21e 12()x m x x x ---=确定()h x 单调性后,即可求出实数a 的取值范围.(1)当1a =-时,2()e 1x f x x x =+--,()e 21x f x x '=+-,易得()'f x 在R 上递增,又(0)0f '=,故当()0x ∈+∞,时,()0f x '>,()f x 单调递增;故当(),0x ∈-∞时,()0f x '<,()f x 单调递减, 所以()f x 在()0+∞,上单调递增,在()0-∞,上单调递减; (2)当0x =时,不等式321()22f x x ax ≥-恒成立,可得a R ∈;当0x >时,由2321e 122x ax x x ax ---≥-恒成立可得3211e 2xx x a x++-≥恒成立,设3211e 2()x x x h x x ++-=,则()4223333111e 222(2)1e e 22x x x h x x x x x x x x x x x⎛⎫⎛⎫+-⋅-⋅+'+=--+-- ⎪ ⎪⎝⎭⎭=⎝()()()33322211e 22e 1222x x x x x x x x x x x x⎛⎫ ⎪⎝⎭=⎛⎫-+-+-----⎪⎝⎭=-, 可设21e 12()x m x x x ---=,可得e 1()x x m x =--',设e 1,e 1()()x x k x k x x '-=--=,由0x >,可得()0k x '>恒成立,可得()k x 在()0+∞,递增,即()m x '在()0+∞,递增,所以()(0)0m x m ''>=,即()0m x '>恒成立,即()m x 在()0+∞,递增, 所以()(0)0m x m >=,再令()0h x '=,可得2x =,当02x <<时,()0h x '>,()h x 在()0,2上递增,当2x >时,()0h x '<,()h x 在()2,+∞递减,所以2max 7e ()(2)4h x h -==,所以274e a -≥;综上可得274e a -≥. 【点睛】本题关键点在于参变分离构造函数求导后,通过因式分解将导数变为()321e 2()21xx x h x x x ⎛⎫⎪⎝⎭'--=--,再把分子的因式构造成函数21e 12()x m x x x ---=,确定()(0)0m x m >=后,即得()h x '的正负,进而求解.3.已知函数()()e x f x x m =+⋅.(1)若()f x 在(],1-∞上是减函数,求实数m 的取值范围;(2)当0m =时,若对任意的0x ≥,不等式()2e x ax f x ⋅≤恒成立,求实数a 的取值范围. 【答案】(1)(],2-∞-(2)2e ,4⎛⎤-∞ ⎥⎝⎦【解析】 【分析】(1)求出导函数,得到11m --≥,即可求出m 的取值范围;(2)把题意转化为2xax e ≤,分类讨论:当0x =时,求出R a ∈;当0x >时,转化为2x e a x≤,令2()x e g x x =,利用导数求出min ()g x ,即可求出实数a 的取值范围. (1)因为()()e x f x x m =+⋅,所以()(1)e x f x x m '=++⋅,令()0f x '≤,得1x m ≤--,则()f x 的单调递减区间为(,1]m -∞--, 因为()f x 在(,1]-∞上是减函数,所以11m --≥,即2m ≤-, 故m 的取值范围是(],2-∞-; (2)由题知:()e x f x x =⋅,则22e 0,e x x x ax ∀≥⋅≤,即2e x ax ≤, 当0x =时,01≤恒成立,则a R ∈,当0x >时,2e x a x≤,令2(e )x g x x =,则2432e e e (2)()x x x x x x g x x x ⋅-⋅⋅-'==,则当02x <<时,()0g x '<,()g x 递减;当2x >时,()0g x '>,()g x 递增, 故2mine ()(2)4g x g ==,则2e 4a ≤,综上所述,实数a 的取值范围是2e ,4⎛⎤-∞ ⎥⎝⎦.4.已知函数()()e 11xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当20e <≤a ,且2x >时,()()ln 1f x b a x ⎡>-⎣]恒成立,求b 的取值范围. 【答案】(1)25y x =+ (2)[1,)-+∞ 【解析】 【分析】(1)求出()'f x ,然后算出(0),(0)f f '即可;(2)由条件可得e (ln )1ln(1)xb x a x b x a +->-+-恒成立,构造函数()ln (1)h x x b x x =+>,则原不等式等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立,然后可证明2e 1e 10x x x x a --+≥-+>,然后得()h x 在()1,+∞上单调递增,然后即可求解. (1)当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=- 又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为25y x =+. (2)()()ln 1f x b a x ⎡>-⎣恒成立,即e 1ln(1)ln x bx x b x b a a +-+>-+恒成立.等价于e (ln )1ln(1)xb x a x b x a+->-+-恒成立.构造函数()ln (1)h x x b x x =+>,则e e ln 1ln(1)x x b x b x a a +>-+-在(2,)x ∈+∞上恒成立等价于e()x h a(1)h x >-在(2,)x ∈+∞上恒成立.因为20e <≤a ,所以2e e ,xx a-≥令函数2()e 1(2)x H x x x -=-+>,则2()e1x H x -'=-,显然()H x '是增函数,则()(2)0,()H x H H x ''>=在()2,+∞上单调递增,所以()()20H x H >=,故2e 1e 10xx x x a--+≥-+>,从而可得()h x 在()1,+∞上单调递增, 所以当()1,x ∈+∞时,()10b h x x'=+≥恒成立.所以b x ≥-,所以1b ≥-,即b 的取值范围是[-1,+∞) 【点睛】关键点睛:解答本题第二问的关键是将原不等式变形,构造出函数()ln (1)h x x b x x =+>,属于函数的同构类型,解答的关键是观察不等式的特点,变成同一函数在两个变量处的取值.练习二 存在性问题5.己知函数()2ln f x x ax x =+-.(1)当1a =时,求()f x 的单调区间.(2)存在1≥x ,使得()3112f x x ≥+成立,求整数a 的最小值. 【答案】(1)增区间为()0,∞+,无单减区间 (2)2 【解析】 【分析】(1)利用导数与函数的单调性之间的关系可求得结果; (2)由题意可知,存在1≥x ,使得2111ln 2x a x x x -≥++,构造函数()211ln 12x g x x x x +=+-,其中1≥x ,利用导数分析函数()g x 的单调性,求出()min g x 的取值范围,可求得整数a 的最小值. (1)解:当1a =时,()2ln f x x x x =+-,该函数的定义域为()0,∞+,则()121110f x x x'=+-≥=>,当且仅当2x =时,等号成立, 故函数()f x 的增区间为()0,∞+,无单减区间. (2)解:存在1≥x ,使得231ln 12x ax x x +-≥+成立,即2111ln 2xa x x x -≥++,令()211ln 12x g x x x x +=+-,其中1≥x ,则()min a g x ≥, ()323312ln 3112ln 322x x x x g x x x x-+--'=-+=,令()312ln 32h x x x x =-+-,则()3232324122x x h x x x x-+'=-+=,令()3324m x xx =-+,()2920m x x '=->对任意的1≥x 恒成立,故函数()m x 在[)1,+∞上为增函数,则()()15m x m ≥=, 即()0h x '>对任意的1≥x 恒成立,则函数()h x 为增函数. 因为34532ln 02162h ⎛⎫=-+< ⎪⎝⎭,()22ln 210h =->,所以存在3,22t ⎛⎫∈ ⎪⎝⎭,使得()()312ln 302h t g t t t t '==-+-=,当()1,x t ∈时,()0g x '<,此时函数()g x 单调递减, 当(),x t ∞∈+时,()0g x '>,此时函数()g x 单调递增, 所以,()()3333222min 111131ln 1322224224t t t t t t t t t g xg t t t t +-++++--+-====,3,22t ⎛⎫∈ ⎪⎝⎭, 设()2311422t t t t ϕ=+-,则()3233311324424t t t t t t ϕ-+'=-+=, 令()3324p t t t =-+,则()2920p t t '=->对任意的3,22t ⎛⎫∈ ⎪⎝⎭恒成立,故函数()p t 在3,22⎛⎫⎪⎝⎭上为增函数,则()302p t p ⎛⎫>> ⎪⎝⎭,即()0t ϕ'>对任意的3,22t ⎛⎫∈ ⎪⎝⎭恒成立,故函数()t ϕ在3,22⎛⎫⎪⎝⎭为增函数,故()()322t ϕϕϕ⎛⎫<< ⎪⎝⎭,即()8913728t ϕ<<,即()min 8913728g x <<, 因为a 为整数,所以整数a 的最小值为2. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.6.已知函数()321sin 1,,462f x x x x ππαα⎡⎤=-++∈-⎢⎥⎣⎦,(1)讨论函数()f x 的单调性;(2)证明:存在,62ππα⎡⎤∈-⎢⎥⎣⎦,使得不等式()e xf x > 有解(e 是自然对数的底).【答案】(1)讨论见解析 (2)证明见解析 【解析】 【分析】(1)对原函数求导后利用判别式对α 进行分类讨论即可;(2)理解“有解”的含义,构造函数将原不等式转化为求函数的最大值. (1)()f x 的定义域为R ,()232sin 14f x x x α'=-+, ()22332sin 44sin 44αα⎛⎫∆=--⨯=- ⎪⎝⎭ ,①当,32ππα⎛⎤∈ ⎥⎝⎦时,0∆> ,()0f x '=有两个不等实数根为:x =x ⎛∈-∞ ⎝⎭时,()0f x '>,()f x 单调递增,x ∈⎝⎭时, ()0f x '<,()f x 单调递减,x ⎫∈+∞⎪⎪⎝⎭时,()0f x '>,()f x 单调递增, ②当,63a ππ⎛⎤∈- ⎥⎝⎦时,0∆≤ ,()0f x '≥,所以()f x 在(),-∞+∞上单调递增; (2)不等式()e xf x > 等价于321sin 1e 14x x x x α-⎛⎫-++> ⎪⎝⎭,所以只需证321sin 1e 4xx x x α-⎛⎫-++ ⎪⎝⎭的最大值大于1,因为,62a ππ⎡⎤∈-⎢⎥⎣⎦,11sin 2α-≤-≤,又[)20,x ∈+∞,所以221sin 2x x α-≤,6πα=-时等号成立, 所以3232111sin 1e 1e 442x x x x x x x x α--⎛⎫⎛⎫-++≤+++ ⎪ ⎪⎝⎭⎝⎭, 设函数()32111e 42x g x x x x -⎛⎫=+++ ⎪⎝⎭ ,()()211e 4x g x x x -'=-- , (),1x ∈-∞,()0g x '≥,()g x 单调递增,()1,x ∈+∞,()0g x '<,()g x 单调递减,因为()1111 2.754211e eg +++==> ,所以存在,62a ππ⎡⎤∈-⎢⎥⎣⎦,使不等式()e x f x > 有解. 【点睛】对于第二问使用函数的缩放法是核心, 对原函数321sin 1e 4x x x x α-⎛⎫-++ ⎪⎝⎭由于α的不确定性使得求其最大值很困难, “化繁为简”,“化难为易”的数学思想就显得特别重要,通过本题的计算应该能够体会到这种数学思想,在以后的数学计算中遇到很复杂的计算应该首先考虑这种数学思想.7.已知函数()(1)e 1x f x x ax =---.(1)当0a >时,证明函数()f x 在区间(0,)+∞上只有一个零点;(2)若存在x ∈R ,使不等式()e 1f x <--成立,求a 的取值范围.【答案】(1)证明见解析(2){0|a a <或}e a >【解析】【分析】(1)首先求得导函数的解析式,然后讨论函数的单调性,结合函数的性质即可确定函数零点的个数;(2)首先讨论函数的单调性,然后结合函数的最小值构造新函数,结合构造函数的性质分类讨论即可确定a 的取值范围.(1)证明:当0a >时,()()e ,0,x f x x a x ∞'=-∈+,令()()()(),1e 0x g x f x g x x =+''=>,∴()e x f x x a '=-在(0,)+∞上为增函数,∵()()00,e 0a f a f a a a ''=-<=->,∴()00,x a ∃∈,使()000e 0x f x x a '=-=, ∴当()00,x x ∈时,()0f x '<;当0(,)x x ∈+∞时,0f x ,因此,()f x 在()00,x 上为减函数,()f x 在 0(,)x +∞上为增函数,当()00,x x ∈时,()()020f x f <=-<,当x >时,()()()211120f x x x ax x ax >-+--=-->, 故函数f(x)在(0,)+∞上只有一个零点.(2)解:当0a >时,()e ,x f x x a '=-,由(1)可知,()00f x '=,即00e x a x =, ∴当0x x <时,()0f x '<,()f x 在0(,)x -∞上为减函数,当0x x >时,0f x,()f x 在 0(,)x +∞上为增函数, ∴()()()()()0000220000000min 1e 11e e 11e 1x x x x f x f x x ax x x x x ==---=---=-+--, 由00e x a x =,知00x >, 设()()()21e 10x h x x x x =-+-->,则()()()2e 00x h x x x x '=--<>,∴()h x 在(0,)+∞上为减函数,又()1e 1h =--,∴当001x <<时,()0e 1f x >--,当01x >时,()0e 1f x <--,∴存在0x R ∈,使不等式()01f x e <--成立,此时00e e x a x =>;当0a =时,由(1)知,()f x 在(,0)∞-上为减函数,()f x 在(0,)∞+上为增函数,所以()()02e 1f x f ≥=->--,所以不存在x ∈R ,使不等式 ()e 1f x <--成立,当0a <时,取e 10x a+<<,即e 1ax -<--,所以()1e 1e 1x x ax ---<--, 所以存在x ∈R ,使不等式 ()1f x e <--成立,综上所述,a 的取值范围是{0|a a <或}e a >.【点睛】方法点睛:在解决能成立问题时一般是将不等式能成立问题转化为求函数的最值问题,利用()f x m >能成立max ()f x m ⇔>;()f x m <能成立min ()f x m ⇔<.8.已知函数()()e R x f x ax a =-∈,()ln x g x x=. (1)当1a =时,求函数()f x 的极值;(2)若存在()0,x ∈+∞,使不等式()()e x f x g x ≤-成立,求实数a 的取值范围.【答案】(1)函数()f x 在(),0∞-上递增,在()0,∞+上递减,极大值为1-,无极小值 (2)12ea ≤ 【解析】【分析】(1)求出函数的导函数,再根据导数的符号求得单调区间,再根据极值的定义即可得解;(2)若存在()0,x ∈+∞,使不等式()()e x f x g x ≤-成立,问题转化为()2maxln ,0x a x x ⎛⎫≤> ⎪⎝⎭,令()2ln x h x x =,0x >,利用导数求出函数的最大值即可得出答案.(1)解:当1a =时,()e x f x x =-,则()'1e x f x =-,当0x <时,()0f x '>,当0x >时,()0f x '<,所以函数()f x 在(),0∞-上递增,在()0,∞+上递减,所以函数()f x 的极大值为()01f =-,无极小值;(2)解:若存在()0,x ∈+∞,使不等式()()e x f x g x ≤-成立, 则()ln ,0x ax x x ≤>,即()2ln ,0x a x x≤>, 则问题转化为()2max ln ,0x a x x ⎛⎫≤>⎪⎝⎭,令()2ln x h x x =,0x >, ()432ln 12ln x x x x h x x x --'==,当0x <<()0h x '>,当x >()0h x '<,所以函数()h x 在(递增,在)+∞上递减, 所以()max 12e h x =, 所以12e a ≤.。
导数背景下的恒成立与存在性问题“恒成立”问题与“存在性”问题是高中数学中的常见问题,它不仅考查了函数、不等式等传统知识和方法,而且导数的加入更是极大的丰富了该类问题的表现形式,充分体现了能力立意的原则,越来越受到命题者的青睐,成为高中数学的一个热点问题。
本文仅从以下九方面总结一下有关这类问题的不同的表现形式及解决方法,希望能对大家高考复习起到一定的帮助作用。
一、 若对∀x I ∈,)(x f a >恒成立,则只需max )(x f a >即可;若对∀x I ∈,)(x f a <恒成立,则只需min )(x f a <即可;例1. 已知函数)30(ln )(≤<+=x x a x x f ,若以其图象上任意一点),(00y x P 为切点的切线的斜率21≤k 恒成立,求实数a 的取值范围.二、 若I ∈∃x ,满足不等式)(x f a >,则只需min )(x f a >即可; 若I ∈∃x ,满足不等式)(x f a <,则只需max )(x f a >即可;例2:已知函数ax ax x f 2)(2+=,x e x g =)(,若在),0(+∞上至少存在一个实数0x ,使得)()(00x g x f >成立,求实数a 的取值范围.三、若对I ∈∀21,x x ,使得不等式a x f x f <-)()(21(a 为常数)恒成立,则只需a x f x f <-min max )()(即可例3:已知函数)1()1(21ln )(2e a x a x x a x f ≤<+-+=.证明:对于(]a x x ,1,21∈∀,恒有1)()(21<-x f x f 成立.四、若I x x ∈∃21,,满足方程)()(21x g x f =,则只需两函数值域交集不空即可.例4:已知函数⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤ ⎝⎛∈+⎥⎦⎤⎢⎣⎡∈+-=)1,21(12)21,0(6131)(3x x x x x x f ,函数)0(226sin )(>+-=a a x a x g π,若[]1,0,21∈∃x x ,使得)()(21x g x f =成立,试求实数a 的取值范围.五、若对∀1x 1I ∈总∃2x 2I ∈使得)()(21x g x f =成立,则只需)(x f 值域⊆)(x g 值域即可例5:已知函数)1(23)(,274)(232≥--=--=a a x a x x g xx x f 对∀1x []1,0∈总∃2x []1,0∈使得)()(21x g x f =成立,试求实数a 的取值范围.六、若对∀1x 1I ∈,2x 2I ∈使得不等式)()(21x g x f <恒成立,则只需min max )()(x g x f <即可 例6:已知两个函数x x x x g c x x x f 4042)(,287)(232-+=--=,若对∀1x []3,3-∈,2x []3,3-∈,都有不等式)()(21x g x f ≤恒成立,求实数c 的取值范围.七、若对∃1x 1I ∈,2x 2I ∈满足不等式)()(21x g x f <,则只需max min )()(x g x f <即可 例7:已知两个函数12)(,93)(223++=+--=x x x g c x x x x f ,若对∃1x []6,2-∈,2x []6,2-∈,使得不等式)()(21x g x f <成立,求实数c 的取值范围.八、若对∀1x 1I ∈,总∃2x 2I ∈,使得)()(21x g x f >成立,则只需min min )()(x g x f >即可 例8:已知两个函数k e e e e x g x xx x f x x x x ++++=++=--22)(,ln 28)(,若对∀1x []4,1∈,总∃2x R ∈,使得)()(21x g x f >成立,求实数k 的取值范围.九、若对∀1x 1I ∈,总∃2x 2I ∈,使得)()(21x g x f <成立,则只需max max )()(x g x f <即可 例9:已知两个函数b x x x g R x xx x x f ++-=∈--+-=2)(),(14341ln )(2,若对∀1x )2,0(∈,总∃2x []2,1∈,使得)()(21x g x f <成立,求实数b 的取值范围.__________________________________________________答案:1.⎪⎭⎫⎢⎣⎡+∞,21 2. ),212(2+∞-e3. 3.略4. ⎥⎦⎤⎢⎣⎡34,21 5. ⎥⎦⎤⎢⎣⎡23,1 6. [)+∞,195 7.)76,(-∞ 8.)2ln 22,(+-∞ 9. ),25(+∞-。
高考数学精品复习资料2019.5第18练 存在与恒成立问题[内容精要] “存在”与“恒成立”两个表示范围的词语在题目问法中出现是近年高考的一大热点,其本质是“特称”与“全称”量词的一个延伸,弄清其含义,适当进行转化来加以解决.题型一 不等式的恒成立问题例1 已知函数f (x )=ax -1-ln x ,a ∈R . (1)讨论函数f (x )的单调区间;(2)若函数f (x )在x =1处取得极值,对∀x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的取值范围.破题切入点 有关不等式的恒成立求参数范围的问题,通常采用的是将参数分离出来的方法. 解 (1)在区间(0,+∞)上,f ′(x )=a -1x =ax -1x,当a ≤0时,f ′(x )<0恒成立,f (x )在区间(0,+∞)上单调递减; 当a >0时,令f ′(x )=0得x =1a ,在区间(0,1a )上,f ′(x )<0,函数f (x )单调递减,在区间(1a ,+∞)上,f ′(x )>0,函数f (x )单调递增.综上所述:当a ≤0时,f (x )的单调递减区间是(0,+∞), 无单调递增区间;当a >0时,f (x )的单调递减区间是(0,1a ),单调递增区间是(1a,+∞).(2)因为函数f (x )在x =1处取得极值, 所以f ′(1)=0,解得a =1, 经检验可知满足题意.由已知f (x )≥bx -2,即x -1-ln x ≥bx -2, 即1+1x -ln xx≥b 对∀x ∈(0,+∞)恒成立,令g (x )=1+1x -ln xx,则g ′(x )=-1x 2-1-ln x x 2=ln x -2x 2,易得g (x )在(0,e 2]上单调递减,在[e 2,+∞)上单调递增, 所以g (x )min =g (e 2)=1-1e 2,即b ≤1-1e 2.题型二 存在性问题例2 已知函数f (x )=ax 3+bx 2+cx 在x =±1处取得极值,且在x =0处的切线的斜率为-3. (1)求f (x )的解析式;(2)若过点A (2,m )可作曲线y =f (x )的三条切线,求实数m 的取值范围. 破题切入点 (1)利用极值处导数为0及导数的几何意义求出f (x ).(2)借助导数几何意义表示切线方程,然后分离参数,利用数形结合求m 范围. 解 (1)f ′(x )=3ax 2+2bx +c .依题意⎩⎪⎨⎪⎧ f ′(1)=3a +2b +c =0,f ′(-1)=3a -2b +c =0,⇒⎩⎪⎨⎪⎧b =0,3a +c =0.又f ′(0)=-3,∴c =-3,∴a =1,∴f (x )=x 3-3x . (2)设切点为(x 0,x 30-3x 0),∵f ′(x )=3x 2-3.∴f ′(x 0)=3x 20-3. ∴切线方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0).又切线过点A (2,m ).∴m -(x 30-3x 0)=(3x 20-3)(2-x 0). ∴m =-2x 30+6x 20-6.令g (x )=-2x 3+6x 2-6,则g ′(x )=-6x 2+12x =-6x (x -2), 由g ′(x )=0得x =0或x =2.g (x )极小值=g (0)=-6,g (x )极大值=g (2)=2. 画出草图如右图.∴当-6<m <2时,m =-2x 3+6x 2-6有三解. 即可作曲线y =f (x )的三条切线. 题型三 存在与恒成立的综合性问题例3 已知a >0,函数f (x )=ln x -ax 2,x >0.(f (x )的图象连续不断) (1)求f (x )的单调区间;(2)当a =18时,证明:存在x 0∈(2,+∞),使f (x 0)=f ⎝⎛⎭⎫32; (3)若存在均属于区间[1,3]的α,β,且β-α≥1,使f (α)=f (β),证明:ln 3-ln 25≤α≤ln 23.破题切入点 考查导数的运算,利用导数研究函数的单调性,解不等式函数的零点等基础知识,既有存在,又有恒成立问题.(1)解 f ′(x )=1x -2ax =1-2ax 2x ,x ∈(0,+∞),令f ′(x )=0,解得x =2a2a, 当x 变化时,f ′(x ),f (x )的变化情况如下表:所以f (x )(2)证明 当a =18时,f (x )=ln x -18x 2.由(1)知f (x )在(0,2)内单调递增,在(2,+∞)内单调递减. 令g (x )=f (x )-f ⎝⎛⎭⎫32, 由于f (x )在(0,2)内单调递增, 故f (2)>f ⎝⎛⎭⎫32,即g (2)>0.取x ′=32e>2,则g (x ′)=41-9e 232<0.所以存在x 0∈(2,x ′),使g (x 0)=0,即存在x 0∈(2,+∞),使f (x 0)=f ⎝⎛⎭⎫32. (说明:x ′的取法不唯一,只要满足x ′>2,且g (x ′)<0即可) (3)证明 由f (α)=f (β)及(1)的结论知α<2a2a<β, 从而f (x )在[α,β]上的最小值为f (α).又由β-α≥1,α,β∈[1,3],知1≤α≤2≤β≤3.故⎩⎪⎨⎪⎧ f (2)≥f (α)≥f (1),f (2)≥f (β)≥f (3),即⎩⎪⎨⎪⎧ln 2-4a ≥-a ,ln 2-4a ≥ln 3-9a .从而ln 3-ln 25≤a ≤ln 23.总结提高 (1)存在与恒成立两个热点词汇在高考中频繁出现,关键要把握两个词语的本质:存在即特称量词,“有的”意思;恒成立即全称量词,“任意的”意思.(2)解决这类问题的关键是转化与化归思想,转化为求解函数的最大值与最小值问题. (3)函数与方程思想的应用在求解参数范围中体现的淋漓尽致,将参数分离出来,另一侧设为函数,转化为求解另一侧函数的最大值和最小值问题.1.(20xx·课标全国Ⅱ)若存在正数x 使2x (x -a )<1成立,则a 的取值范围是( ) A .(-∞,+∞) B .(-2,+∞) C .(0,+∞) D .(-1,+∞)答案 D解析 ∵2x (x -a )<1, ∴a >x -12x .令f (x )=x -12x ,∴f ′(x )=1+2-x ln 2>0. ∴f (x )在(0,+∞)上单调递增, ∴f (x )>f (0)=0-1=-1,∴a 的取值范围为(-1,+∞),故选D.2.已知函数f (x )=2ax 3-3ax 2+1,g (x )=-a 4x +32,若任意给定的x 0∈[0,2],总存在两个不同的x i (i =1,2)∈[0,2],使得f (x i )=g (x 0)成立,则实数a 的取值范围是( ) A .(-∞,-1) B .(1,+∞)C .(-∞,-1)∪(1,+∞)D .[-1,1] 答案 A解析 当a =0时,显然不成立,故排除D ; 当a >0时,注意到f ′(x )=6ax 2-6ax =6ax (x -1), 即f (x )在[0,1]上是减函数,在[1,2]上是增函数, 又f (0)=1<32=g (0),当x 0=0时,结论不可能成立;进一步,可知a <0,此时g (x )在[0,2]上是增函数, 且取值范围是[32,-a 2+32],同时f (x )在0≤x ≤1时,函数值从1增大到1-a , 在1≤x ≤2时,函数值从1-a 减少到1+4a , 所以“任意给定的x 0∈[0,2], 总存在两个不同的x i (i =1,2)∈[0,2], 使得f (x i )=g (x 0)成立”当且仅当⎩⎪⎨⎪⎧f (x )的最大值>g (x )的最大值,f (x )的最小值<g (x )的最小值,即⎩⎨⎧1-a >-a 2+32,1+4a <32,解得a <-1.3.(20xx·课标全国Ⅱ)设函数f (x )=3sin πx m .若存在f (x )的极值点x 0满足x 20+[f (x 0)]2<m 2,则m 的取值范围是( ) A .(-∞,-6)∪(6,+∞) B .(-∞,-4)∪(4,+∞) C .(-∞,-2)∪(2,+∞) D .(-∞,-1)∪(1,+∞) 答案 C解析 ∵f (x )=3sinπxm的极值点即为函数图象中的最高点或最低点的横坐标,由三角函数的性质可知T =2ππm =2m ,∴x 0=m 2+km (k ∈Z ).假设不存在这样的x 0,即对任意的x 0都有x 20+[f (x 0)]2≥m 2,则(m 2+km )2+3≥m 2,整理得m 2(k 2+k -34)+3≥0,即k 2+k -34≥-3m 2恒成立,因为y=k 2+k -34的最小值为-34(当k =-1或0时取得),故-2≤m ≤2,因此原特称命题成立的条件是m >2或m <-2.4.(20xx·山东)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A.1x 2+1>1y 2+1 B .ln(x 2+1)>ln(y 2+1) C .sin x >sin y D .x 3>y 3答案 D解析 因为0<a <1,a x <a y ,所以x >y .采用赋值法判断,A 中,当x =1,y =0时,12<1,A 不成立.B 中,当x =0,y =-1时,ln 1<ln 2,B 不成立.C 中,当x =0,y =-π时,sin x =sin y =0,C 不成立.D 中,因为函数y =x 3在R 上是增函数,故选D.5.若x ∈[0,+∞),则下列不等式恒成立的是( ) A .e x ≤1+x +x 2 B.11+x≤1-12x +14x 2C .cos x ≥1-12x 2D .ln(1+x )≥x -18x 2答案 C解析 对于C 项,设f (x )=cos x +12x 2-1,则f ′(x )=-sin x +x ≥0(x ≥0), 所以f (x )=cos x +12x 2-1是增函数,所以f (x )=cos x +12x 2-1≥f (0)=0,即cos x ≥1-12x 2.6.(20xx·辽宁)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( ) A .[-5,-3] B .[-6,-98]C .[-6,-2]D .[-4,-3] 答案 C解析 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R . 当x ∈(0,1]时,ax 3≥x 2-4x -3,a ≥x 2-4x -3x 3, ∴a ≥⎣⎡⎦⎤x 2-4x -3x 3max . 设φ(x )=x 2-4x -3x 3,φ′(x )=(2x -4)x 3-(x 2-4x -3)3x 2x 6=-x 2-8x -9x 4=-(x -9)(x +1)x 4>0, ∴φ(x )在(0,1]上递增,φ(x )max =φ(1)=-6. ∴a ≥-6.当x ∈[-2,0)时,a ≤x 2-4x -3x 3,∴a ≤⎣⎡⎦⎤x 2-4x -3x 3min .仍设φ(x )=x 2-4x -3x 3,φ′(x )=-(x -9)(x +1)x 4. 当x ∈[-2,-1)时,φ′(x )<0,当x ∈(-1,0)时,φ′(x )>0.∴当x =-1时,φ(x )有极小值,即为最小值. 而φ(x )min =φ(-1)=1+4-3-1=-2,∴a ≤-2. 综上知-6≤a ≤-2.7.设函数f (x )=ax 3-3x +1(x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数a 的值为________. 答案 4解析 若x =0,则不论a 取何值,f (x )≥0显然成立;当x >0时,即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3.即g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,所以g (x )在区间(0,12]上单调递增,在区间[12,1]上单调递减,因此g (x )max =g (12)=4,从而a ≥4.当x <0时,即x ∈[-1,0)时,同理a ≤3x 2-1x 3.g (x )在区间[-1,0)上单调递增, 所以g (x )min =g (-1)=4, 从而a ≤4,综上可知a =4.8.(20xx·江苏)已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________. 答案 (-22,0) 解析 作出二次函数f (x )的图象,对于任意x ∈[m ,m +1],都有f (x )<0,则有⎩⎪⎨⎪⎧f (m )<0,f (m +1)<0,即⎩⎪⎨⎪⎧m 2+m 2-1<0,(m +1)2+m (m +1)-1<0,解得-22<m <0.9.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若对于任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________. 答案 ⎣⎡⎭⎫94,+∞解析 由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增,所以x ∈[0,1]时,f (x )min=f (0)=-1.根据题意可知存在x ∈[1,2],使得g (x )=x 2-2ax +4≤-1,即x 2-2ax +5≤0,即a ≥x 2+52x 能成立,令h (x )=x 2+52x ,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min ,又函数h (x )=x 2+52x 在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.10.(20xx·浙江)已知函数f (x )=x 3+3|x -a |(a ∈R ).(1)若f (x )在[-1,1]上的最大值和最小值分别记为M (a ),m (a ),求M (a )-m (a ); (2)设b ∈R ,若[f (x )+b ]2≤4对x ∈[-1,1]恒成立,求3a +b 的取值范围.解 (1)因为f (x )=⎩⎪⎨⎪⎧x 3+3x -3a ,x ≥a ,x 3-3x +3a ,x <a ,所以f ′(x )=⎩⎪⎨⎪⎧3x 2+3,x ≥a ,3x 2-3,x <a .由于-1≤x ≤1.①当a ≤-1时,有x ≥a ,故f (x )=x 3+3x -3a . 此时f (x )在(-1,1)上是增函数,因此,M (a )=f (1)=4-3a ,m (a )=f (-1)=-4-3a , 故M (a )-m (a )=(4-3a )-(-4-3a )=8. ②当-1<a <1时,若x ∈(a,1),f (x )=x 3+3x -3a ,在(a,1)上是增函数; 若x ∈(-1,a ),f (x )=x 3-3x +3a ,在(-1,a )上是减函数, 所以,M (a )=max{f (1),f (-1)},m (a )=f (a )=a 3. 由于f (1)-f (-1)=-6a +2,因此当-1<a ≤13时,M (a )-m (a )=-a 3-3a +4;当13<a <1时,M (a )-m (a )=-a 3+3a +2. ③当a ≥1时,有x ≤a ,故f (x )=x 3-3x +3a , 此时f (x )在(-1,1)上是减函数,因此,M (a )=f (-1)=2+3a ,m (a )=f (1)=-2+3a , 故M (a )-m (a )=(2+3a )-(-2+3a )=4.综上可知,M (a )-m (a )=⎩⎪⎨⎪⎧8,a ≤-1,-a 3-3a +4,-1<a ≤13,-a 3+3a +2,13<a <1,4,a ≥1.(2)令h (x )=f (x )+b ,则h (x )=⎩⎪⎨⎪⎧ x 3+3x -3a +b ,x ≥a ,x 3-3x +3a +b ,x <a ,h ′(x )=⎩⎪⎨⎪⎧3x 2+3,x ≥a ,3x 2-3,x <a .因为[f (x )+b ]2≤4对x ∈[-1,1]恒成立, 即-2≤h (x )≤2对x ∈[-1,1]恒成立, 所以由(1)知,①当a ≤-1时,h (x )在(-1,1)上是增函数, h (x )在[-1,1]上的最大值是h (1)=4-3a +b , 最小值是h (-1)=-4-3a +b ,则-4-3a +b ≥-2且4-3a +b ≤2,矛盾;②当-1<a ≤13时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (1)=4-3a +b , 所以a 3+b ≥-2且4-3a +b ≤2,从而-2-a 3+3a ≤3a +b ≤6a -2且0≤a ≤13.令t (a )=-2-a 3+3a ,则t ′(a )=3-3a 2>0,t (a )在⎝⎛⎭⎫0,13上是增函数, 故t (a )≥t (0)=-2, 因此-2≤3a +b ≤0.③当13<a <1时,h (x )在[-1,1]上的最小值是h (a )=a 3+b ,最大值是h (-1)=3a +b +2, 所以a 3+b ≥-2且3a +b +2≤2, 解得-2827<3a +b ≤0.④当a ≥1时,h (x )在[-1,1]上的最大值是 h (-1)=2+3a +b ,最小值是h (1)=-2+3a +b ,所以3a +b +2≤2且3a +b -2≥-2,解得3a +b =0. 综上,得3a +b 的取值范围是-2≤3a +b ≤0. 11.已知函数f (x )=(x +1)ln x -x +1. (1)若xf ′(x )≤x 2+ax +1,求a 的取值范围; (2)证明:(x -1)f (x )≥0.(1)解 f ′(x )=x +1x +ln x -1=ln x +1x,xf ′(x )=x ln x +1,而xf ′(x )≤x 2+ax +1(x >0)等价于ln x -x ≤a .令g (x )=ln x -x ,则g ′(x )=1x-1.当0<x <1时,g ′(x )>0;当x ≥1时,g ′(x )≤0,x =1是 g (x )的最大值点,∴g (x )≤g (1)=-1. 综上可知,a 的取值范围是[)-1,+∞.(2)证明 由(1)知,g (x )≤g (1)=-1,即ln x -x +1≤0.当0<x <1时,f (x )=(x +1)ln x -x +1=x ln x +(ln x -x +1)<0,∴(x -1)f (x )>0; 当x ≥1时,f (x )=ln x +(x ln x -x +1)=ln x +x ⎝⎛⎭⎫ln x +1x -1=ln x -x ⎝⎛⎭⎫ln 1x -1x +1≥0. ∴(x -1)f (x )≥0.综上,在定义域内满足(x -1)f (x )≥0恒成立. 12.(20xx·陕西)设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数;(3)若对任意b >a >0,f (b )-f (a )b -a <1恒成立,求m 的取值范围.解 (1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -ex2,∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23. 又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点; ②当m =23时,函数g (x )有且只有一个零点; ③当0<m <23时,函数g (x )有两个零点; ④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点; 当m =23或m ≤0时,函数g (x )有且只有一个零点; 当0<m <23时,函数g (x )有两个零点. (3)对任意的b >a >0,f (b )-f (a )b -a<1恒成立, 等价于f (b )-b <f (a )-a 恒成立.(*)设h (x )=f (x )-x =ln x +m x-x (x >0), ∴(*)等价于h (x )在(0,+∞)上单调递减.由h ′(x )=1x -m x2-1≤0在(0,+∞)上恒成立, 得m ≥-x 2+x =-(x -12)2+14(x >0)恒成立, ∴m ≥14(对m =14,h ′(x )=0仅在x =12时成立), ∴m 的取值范围是[14,+∞).。
精品文档导数背景下的恒成立与存在性问题“恒成立”问题与“存在性”问题是高中数学中的常见问题,它不仅考查了函数、不等式等传统知识和方法,而且导数的加入更是极大的丰富了该类问题的表现形式,充分体现了能力立意的原则,越来越受到命题者的青睐,成为高中数学的一个热点问题。
本文仅从以下九方面总结一下有关这类问题的不同的表现形式及解决方法,希望能对大家高考复习起到一定的帮助作用。
一、若对x, a f ( x) 恒成立,则只需 a f ( x) max即可;若对x, a f ( x) 恒成立,则只需 a f ( x)min即可;例 1.已知函数 f (x) ln x a(0 x 3) ,若以其图象上任意一点P( x0, y0)为切点的切线的斜x率 k 1恒成立,求实数a的取值范围 . 2二、若 x,满足不等式 a f (x) ,则只需 a f ( x) min即可;若 x,满足不等式 a f ( x) ,则只需 a f ( x) max即可;例 2 :已知函数 f ( x) ax 22ax , g( x) e x,若在 ( 0, ) 上至少存在一个实数x0,使得f ( x0 )g (x0 ) 成立,求实数a 的取值范围.三、若对x1 , x2,使得不等式 f (x1 ) f ( x2 )a( a 为常数)恒成立,则只需f (x)max f ( x) min a 即可例 3:已知函数1x2(a1)x(1)证明:对于x1, x21, a,恒有f ( x) a ln x a e .2f ( x1 ) f ( x2 )1成立.四、若 x1 , x2 I ,满足方程 f (x1 )g( x2 ) ,则只需两函数值域交集不空即可.1 x 1( x0,1)例 4:已知函数f (x)362,函数 g ( x) a sin x 2a 2( a0) ,若2x31,1 )6( xx 12x1 , x2 0,1 ,使得 f (x1 )g( x2 ) 成立,试求实数 a 的取值范围.五、若对x1 1总 x22使得 f ( x1 )g(x2 ) 成立,则只需 f( x ) 值域g( x ) 值域即可例 5:已知函数f (x)4x27, g( x)x 33a 2 x 2a(a 1) 对x1 0,1总 x20,1 使得2xf ( x1 ) g( x2 ) 成立,试求实数 a 的取值范围.六、若对x1 1, x22使得不等式 f ( x1 )g(x2 ) 恒成立,则只需 f ( x) max g( x)min即可例 6:已知两个函数 f ( x)7x 228x c, g (x) 2 x34x240 x ,若对 x13,3 ,x23,3 ,都有不等式 f ( x1 ) g( x2 ) 恒成立,求实数 c 的取值范围.七、若对 x1 1, x2 2 满足不等式f( x1 ) g( x2 ),则只需 f ( x) min g( x) max即可例 7:已知两个函数 f (x)x33x29x c, g(x) x22x 1 ,若对x12,6 , x22,6 ,使得不等式 f ( x1 ) g( x2 )成立,求实数 c 的取值范围.八、若对x1 1 ,总x2 2 ,使得f ( x1)g( x2 ) 成立,则只需 f ( x)min g( x) min即可例 8:已知两个函数 f ( x) x 82 ln x, g( x) e2x e 2 x e x e x k ,若对x11,4 ,总xx2R ,使得f ( x1)g (x2 ) 成立,求实数k的取值范围.九、若对x1 1,总x2 2,使得 f ( x1 )g( x2 ) 成立,则只需 f ( x) max g ( x) max即可例 9:已知两个函数 f (x)ln x 1 x31(x R), g ( x)x 22x b ,若对x1( 0,2),总44xx2 1,2 ,使得 f ( x1 )g( x2 ) 成立,求实数b的取值范围.1答案: 1.,2. (2 1 e 2, ) 23. 3.略4.1 ,4 2 35.1,326.195,7.( ,76)8. (,22ln 2)9. ( 5 ,)2。
高考数学复习历年考点题型专题讲解32 函数的存在与恒成立问题一、题型精讲 解题方法与技巧题型一、函数的存在问题函数的恒成立问题往往采取分离参数法,参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:①()(),x D g a f x ∃∈≤,则只需要()()max g a f x M ≤=()(),x D g a f x ∃∈<,则只需要()()max g a f x M <=②()(),x D g a f x ∃∈≥,则只需要()()min g a f x m ≥=()(),x D g a f x ∃∈>,则只需要()()min g a f x m >=例1、【2019年高考浙江】已知a ∈R ,函数3()f x ax x =-,若存在t ∈R ,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是___________. 【答案】43【解析】存在t ∈R ,使得2|(2)()|3f t f t +-≤,即有332|(2)(2)|3a t t at t +-+-+≤,化为()22|23642|3a t t ++-≤,可得()2222364233a t t -≤++-≤,即()22436433a t t ≤++≤,由223643(1)11t t t ++=++≥,可得403a <≤.则实数a 的最大值是43.例2、(2016泰州期末)若命题“存在x ∈R ,ax 2+4x +a ≤0”为假命题,则实数a 的取值范围是________.【答案】 (2,+∞)【解析】“存在x ∈R ,ax 2+4x +a ≤0”为假命题,则其否定“对任意x ∈R ,ax 2+4x +a >0”为真命题,当a =0,4x >0不恒成立,故不成立;当a ≠0时,⎩⎪⎨⎪⎧a>0,Δ=16-4a2<0,解得a >2,所以实数a 的取值范围是(2,+∞).易错警示转为真命题来处理,二次项系数为参数的不等式恒成立问题,要注意讨论二次项系数为0时能否成立例3、(2016苏锡常镇调研)已知函数f (x )=x ||x2-a ,若存在x ∈[]1,2,使得f (x )<2,则实数a 的取值范围是________.【答案】. (-1,5)【解析】解法1当x ∈[1,2]时,f (x )<2,等价于|x 3-ax |<2,即-2<x 3-ax <2,即x 3-2<ax <x 3+2,得到x 2-2x <a <x 2+2x ,即⎝ ⎛⎭⎪⎫x2-2x min <a <⎝ ⎛⎭⎪⎫x2+2x max ,得到-1<a <5. 解法2原问题可转化为先求:对任意x ∈[1,2],使得f (x )≥2时,实数a 的取值范围.则有x |x 2-a |≥2,即|a -x 2|≥2x .(1) 当a ≥4时,a ≥x 2+2x ≥22+22=5,得到a ≥5.(2) 当a ≤1时,x 2-a ≥2x ,有a ≤x 2-2x ≤1-21=-1,得到a ≤-1.(3) 当1<a <4时,|a -x 2|≥0,与2x >0矛盾.那么有a ≤-1或a ≥5,故原题答案为-1<a <5.题型二、函数的恒成立问题函数的恒成立问题往往采取分离参数法,参变分离法的适用范围:判断恒成立问题是否可以采用参变分离法,可遵循以下两点原则:(1)已知不等式中两个字母是否便于进行分离,如果仅通过几步简单变换即可达到分离目的,则参变分离法可行。
专题2导数在不等式、恒成立及存在性问题中的应用刷难关1.设实数A>0,若对任意的X ∈(0,+∞),不等式ln ≥-λλxx e 恒成立,则λ的最小值为( )A .e 1B .e 21C .e 2D .3e2.已知对任意实数k>1,若关于x 的不等式k (x-a )>xe x 2在(0,+∞)上恒成立,则a 的最大整数值为( ) A .0 B .-1 C .-2 D .-33.设函数ƒ(x)=xe (2x -1) -ax+a ,其中a<1,若存在唯一的整数x ₀,使得ƒ(x ₀)<0,则a 的取值范围是( )A .⎪⎭⎫⎢⎣⎡-1,23eB .⎪⎭⎫⎢⎣⎡-43,23e C .⎪⎭⎫⎢⎣⎡43,23e D .⎪⎭⎫⎢⎣⎡1,23e 4.函数ƒ(x)的导函数为f ’(x ),若∀X ∈R 恒有f ’(x )<ƒ(x)成立,且ƒ(2)=1,则不等式ƒ(x)>e x-2的解集为( ) A .(-∞,1) B .(1,+∞)C .(2,+∞)D .(-∞,2)5.若函数ƒ’(x)是奇函数ƒ(x)(x ∈R)的导函数,当x>0时,Inx ·ƒ’(x )<-x 1ƒ(x ),则使得(x²-1)ƒ(x)>0成立的x 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1) 6.[安徽合肥2018调研]已知函数x axx x f -=ln )(,若有且仅有一个整数k ,使[ƒ(k]²-ƒ(k)>0,则实数a 的取值范围是_____.7.[河北武邑中学2018期中]已知函数ƒ(x)=lnx ,g (x )=bx x -221(b为常数).(1)函数ƒ(x)的图像在点(1,ƒ(1))处的切线与函数g (x )的图像相切,求实数b 的值;(2)若函数h (x )=ƒ(x)+g(x)在定义域上存在单调减区间,求实数b 的取值范围;(3)若b ≥2,∀x ₁,X ₂∈[1,2],且x ₁≠x ₂,都有|ƒ(x ₁)-ƒ(x ₂)|>|g(x ₁) -g (x ₂)|成立,求实数b 的取值范围.8.[河南郑州2018 一模]已知函数ƒ(x)=Inx-a(x+1),a ∈R 在(1,ƒ(1))处的切线与x 轴平行. (1)求ƒ(x)的单调区间; (2)若存在x ₀>1,当x ∈(1,x ₀)时,恒有ƒ(x )-22x +2x+21>k (x-1)成立,求k 的取值范围.9.[安徽合肥2018调研]已知函数21)(-=x e x f . (1)判断函数ƒ(x)的单调性;(2)求证:xe ln (x+1)≥x ²+ln(x+1).10.[广东惠州2018调研]已知函数ƒ(x)=xe 2 - (x -a)² +3,a ∈R . (1)若函数ƒ(x)的图像在x=0处的切线与x 轴平行,求a 的值;(2)若x ≥0 ƒ(x)≥0恒成立,求a 的取值范围.11.[西藏拉萨2018 一模]设函数ƒ(x)=Inx ,g(x)=ax+x b-c(a,b,c ∈R).(1)当c=0时,若函数ƒ(x)与g (x )的图像在x=1处有相同的切线,求a ,b 的值;(2)当b=3 -a 时,若对任意x ₀∈(1,+∞)和任意a ∈(0,3),总存在不相等的正实数x ₁,x ₂,使得g (x ₁)=g(x ₂)=ƒ(x ₀),求c 的最小值;(3)当a=1时,设函数y=ƒ(x)与y=g (x )的图像交于A(x ₁,y ₁),B (X ₂,Y ₂)(x ₁<X ₂)两点.求证:x ₁x ₂ -x ₂ <b <x ₁x ₂ -x ₁.12.[河南濮阳2018 一模]已知函数ƒ(x)=xInx- 21mx ² -x(x ∈R).(1)若函数ƒ(x)在(0,+∞)上是减函数,求实数m 的取值范围;(2)若函数ƒ(x)在(0,+∞)上存在两个极值点x ₁,X ₂且x ₁<X ₂,证明:ln x ₁ +lnX ₂>2.专题2导数在不等式、恒成立及存在性问题中的应用 刷难关 1.A 【解析】由ln ≥-λλxx e 得λλxx e ln ≥.设xe x g λ=)(,λxx h ln )(=,因为函数xex g λ=)(的图像与函数λxx h ln )(=的图像关于直线y=x 对称,所以函数x e x g λ=)(。
第六节 导数中不等式的恒成立与存在性问题一、 基础知识1.与函数单调性有关的恒成立(前面章节已讲)类型1.函数f x () 在区间D 上单调递增,只需≥f x ()0' 类型2.函数f x () 在区间D 上单调递减,只需≤f x ()0' 2.单变量的恒成立转换类型1.任意x ,使得>)(f x 0,只需>)(f x 0min类型2.任意x ,使得<)(f x 0,只需<)(f x 0max 类型3.任意x ,使得>)(f x k ,只需>)(f x k min 类型4.任意x ,使得<)(f x k ,只需<)(f x k max类型5.任意x ,使得>)(f x g x (),只需>)(=−h x f x g x ()()0min min ][ 类型6.任意x ,使得<)(f x g x (),只需<)(=−h x f x g x ()()0max max ][3.双变量的恒成立转换(注意两个函数的顺序) 类型1.>∀∈x x D f x g x ,,()()1212,只需>f x g x ()()min max 类型2.>∀∈∃∈x D x D f x g x ,,()()112212,只需>f x g x ()()min min 类型3.<∀∈∃∈x D x D f x g x ,,()()112212,只需<f x g x ()()max max 类型4.<∃∈∃∈x D x D f x g x ,,()()112212,只需<f x g x ()()min max类型5.若∃∈∃∈=x D x D f x g x ,,()()112212,则只需两个函数值域的交集不为空集 类型6.若∀∈∃∈=x D x D f x g x ,,()()112212,则f x ()的值域⊆)(g x 的值域二、 课堂练习 1.单变量翻译例1.已知函数=++f x e x ax x x ()(cos 1)2.(1)当=a 0时,判断+⋅−x f x x1()12与1的大小关系,并说明理由; (2)若对于∀∈x [0,1],+f x x ()21恒成立,求a 的最小值. 【答案】【解答】解:(1)当=a 0时,=+f x e x x ()(1)2,+∴⋅=−−x f x x e xx 1()(1)12, +⋅−x f x x1()112; 理由:设=−g x x e x ()(1),∴'=−g x xe x (), 当<x 0时,'>g x ()0,函数g x ()单调递增, 当>x 0时,'<g x ()0,函数g x ()单调递减, ∴==g x g max ()(0)1,∴g x ()1,+∴⋅−x f x x1()112; (2)∀∈x [0,1],+f x x ()21恒成立, 即+++e x ax x x x (cos 1)212在[0,1]恒成立, 由f x ()的图象经过点(0,1),=+y x 21经过点(0,1), 当直线=+y x 21为f x ()的切线,且切点为(0,1), 由'=++++−f x e x ax x x a x ax x x ()(cos 12cos sin )2, 可得'=+=f a (0)12,解得=a 1;当a 1时,'=+++−f x e x e x x x x x x x ()(1)(cos cos sin )2,当∈x [0,π4]时,x x cos sin ,+−>x x x x x cos cos sin 0,'>f x ()0;当∈πx 4(,1]时,+−=+−x x x x x x x x x cos cos sin cos (1tan ),由+∈+πx 41(1,2],∈πx x 4tan (,tan1],且<<+π4tan11,则'>f x ()0,可得f x ()在[0,1]递增, 则a 的最小值为1.变式1.已知函数=++f x ax lnx ()1. (Ⅰ)若=−a 1,求函数f x ()的最大值;(Ⅱ)对任意的>x 0,不等式f x xe x ()恒成立,求实数a 的取值范围. 【答案】【解答】(Ⅰ)解:=−++I f x x lnx ()()1,∴='−xf x x()1, ∴f x ()在(0,1)上单调递增,在+∞(1,)上单调递减,(Ⅱ)不等式++ax lnx xe x1恒成立,等价于−−xa xe lnx x 1在+∞(0,)恒成立,令=>−−x g x x xe lnx x (),01,∴='+x g x x e lnxx ()22, 令=+>=++>'xh x x e lnx x h x x x e x x (),0,()(2)0122, ∴h x ()在+∞(0,)单调递增,∴=−<h ln e416()220141,h (1)>0, ∴h x ()存在唯一零点x 0,且∈x 4(,1)10,+=x e lnx x 00020∴g x ()在x (0,)0单调递减,在x (0,+∞)单调递增. ∴==−−x g x g x x e lnx minx ()()10000. +=x e lnx x 00020,即=−==x x x x x e ln e ln lnx x x ln 111000000100,构造函数=ϕx xe x (),易证ϕx ()在+∞(0,)单调递增, 所以=x x ln100,则=x e x 10, 将这两个式子代入===−−+−x x g x x e lnx x x ()11110000000, 所以a 1.解法2:不等式++ax lnx xe x1恒成立,等价于−−xa xe lnx x 1在+∞(0,)恒成立.先证明当>t 0时,+t lnt 1, 令=−−g t t lnt ()1,g (1)=0.'=−=−t tg t t ()111,可知:=t 1时函数g t ()取得极小值,因此g t g ()(1)=0,即+t lnt 1, 则当>x 0时,+=++xe ln xe x lnx xx()11,即−−−−xxe lnx xxe lnx xx 111(当且仅当=xe x 1时取等号), 所以a 1.∴f (x )的最大值为f (1)=0.变式2.已知函数=++f x ax lnx ()1. (1)讨论函数f x ()零点的个数;(2)对任意的>x 0,f x xe x ()2恒成立,求实数a 的取值范围. 【答案】【解答】解:(1)函数=++f x ax lnx ()1, 由=f x ()0,可得−=+xa lnx1,>x 0, 设=+xg x lnx()1,>x 0, '=−xg x lnx(), 当>x 1时,'<g x ()0,g x ()递减;当<<x 01时,'>g x ()0,g x ()递增, 可得=x 1处g x ()取得最大值1,如图所示:当−a 0或−=a 1,即a 0或=−a 1时,直线=−y a 与=y g x ()有一个交点, 当<−<a 01即−<<a 10时,直线=−y a 与=y g x ()有两个交点, 当−>a 1即<−a 1时,直线=−y a 与=y g x ()没有交点, 综上可得,<−a 1,函数f x ()零点的个数为0; −<<a 10,函数f x ()零点的个数为2;a 0或=−a 1时,函数f x ()零点的个数为1;(2)任意的>x 0,f x xe x ()2恒成立, 即为−+xa e lnx x 12恒成立, 设=−−=+−−−x xh x e lnx xe lnx xxx ()211222, 设=−−−m x xe lnx x x ()122,>x 0, '=+−−=+−x xm x e xe x e x x x ()22(12)()11222, 设−=xe x 012的根为a ,即有>x a ,m x ()递增;<<x a 0时,m x ()递减, 可得=x a 处m x ()取得最小值m (a ),由m (a )=−−−=−−−=−ae lna a lne a a a 12112022, 可得h x ()0恒成立,即有−+xe lnx x 212, 则a 2,即a 的范围是−∞(,2].另解:任意的>x 0,f x xe x ()2恒成立, 即为−+xa e lnx x 12恒成立, 由+e x x 1,=x (0取得等号),>x 0时,==+++xe e e e lnx x x lnx x lnx x 21222,即有++xe lnx x 212, 可得−+xe lnx x 212,(当+=lnx x 20取得等号), 则a 2.例2.已知函数=f x lnx (),=−+>x g x a a 2()(0)3(1)当=a 1时,若曲线=y f x ()在点M x (0,f x ())0处的切线与曲线=y g x ()在点P x (0,g x ())0处的切线平行,求实数x 0的值;(2)若∀∈x (0,e ],都有f x g x ()(),求实数a 的取值范围. 【答案】【解答】解:(1)把=a 1代入得,=−+x g x 2()13,则'=x f x ()1,'=xg x ()12, f x ()在点M x (0,f x ())0处的切线与 g x ()在点P x (0,g x ())0处的切线平行, ∴=x x 11002,解得=x 10, ∴=x 10,(2)由题意设=−=+−x F x f x g x lnx a 2()()()3, ∀∈x (0,e ],都有f x g x ()(),∴只要F x ()在(0,e ]上的最小值大于等于0即可,则'=−=−x x xF x a x a ()122,由'=F x ()0得,=x a , F x ()、'F x ()随x 的变化情况如下表:当a e 时,函数'F x ()在e (0,)上单调递减,F (e )为最小值, ∴F (e )=+−e a 2103,得ae2,∴a e 当<a e 时,函数F x ()在a (0,)上单调递减,在a e (,)上单调递增, 则F (a )为最小值,所以F (a )=+−a lna a 23,得a e∴<e a e ,综上所述,a e .变式1.已知函数=−+f x e x a x ()2的图象在点=x 0处的切线为=y bx e (为自然对数的底数). (1)求函数f x ()的解析式;(2)当∈x R 时,求证:−+f x x x ()2;(3)若>f x kx ()对任意的∈+∞x (0,)恒成立,求实数k 的取值范围. 【答案】【解答】(1)解:函数=−+f x e x a x ()2的导数为'=−f x e x x ()2, 在点=x 0处的切线为=y bx ,即有'=f b (0),即为=b 1, 即切线为=y x ,又切点为+a (0,1),即+=a 10,解得=−a 1, 即有=−−f x e x x ()12;(2)证明:令=−−=−−ϕx f x x x e x x ()()()12, 则'=−ϕx e x ()1,'=ϕx ()0,则=x 0,当<x 0时,'<ϕx ()0,ϕx ()递减,当>x 0时,'>ϕx ()0,ϕx ()递增,则==ϕϕx min ()(0)0,则有−f x x x ()2;(3)解:若>f x kx ()对任意的∈+∞x (0,)恒成立, 即为<xk f x ()对∀>x 0恒成立, 令=x g x f x ()(),>x 0,则'='−x g x xf x f x ()()()2, ==−−−−−−−x x x e x e x x e x x x x (2)(1)(1)(1)222, 由(2)知,当>x 0时,−−>e x x 10恒成立,则当<<x 01时,'<g x ()0,g x ()递减, 当>x 1时,'>g x ()0,g x ()递增,即有=g x g min ()(1)=−e 2,则<=−k g x e min ()2, 即k 的取值范围是−∞−e (,2). 变式2.已知函数=f x alnx (),∈a R .(1)若曲线=y f x ()与曲线=g x ()a 的值; (2)若对任意∈x [1,e ],都有−++f x x a x ()(2)2恒成立,求a 的取值范围. 【答案】【解答】解:()已知函数=g x (),=f x alnx (),∈a R . 则:'=g x ()'=>xf x x a()(0), 由已知曲线=y f x ()与曲线=y g x ()在交点处有相同的切线,=alnx 且=xa , 解得=a e 2; (2)由−++f x x a x ()(2)2,得−−x lnx a x x ()22.∈x [1,e ],∴lnx x 1,且等号不能同时取, ∴<lnx x ,即−>x lnx 0,−∴−x lnx a x x 22恒成立,即−−x lnxa x x min ()22. 令−=−x lnxt x x x ()22,∈x [1,e ],求导得,−'=−+−x lnx t x x x lnx ()()(1)(2)2,当∈x [1,e ]时,−x 10,lnx 1,+−>x lnx 20,从而't x ()0,∴t x ()在[1,e ]上为增函数,=t x t min ()(1)=−1,∴−a 1.变式3.已知函数=++f x e ax b a x ()(,∈b R ,e 是自然对数的底数)在点(0,1)处的切线与x 轴平行.(Ⅰ)求a ,b 的值;(Ⅱ)若对一切∈x R ,关于x 的不等式−+f x m x n ()(1)恒成立,求+m n 的最大值. 【答案】【解答】解:(Ⅰ)函数的导数'=+f x e a x (), 函数f x ()在点(0,1)处的切线与x 轴平行,∴'=f (0)0,即'=+=+=f e a a (0)100,则=−a 1, 又=+=f b (0)11,则=b 0; (Ⅱ)由(Ⅰ)知,=−f x e x x (),则不等式−+f x m x n ()(1)恒成立等价为+e mx n x , 即−−e mx n x 0,设=−−g x e mx n x (),则'=−g x e m x (),当m 0时,'>g x ()0恒成立,则g x ()在R 上递增,没有最小值,故不成立, 当>m 0时,由'=g x ()0得=x lnm ,当'<g x ()0时,得<x lnm ,当'>g x ()0时,得>x lnm ,即当=x lnm 时,函数取得最小值=−−=−−g lnm e mlnm n m mlnm n lnm ()0, 即−m mlnm n ,−+m mlnm m n 2, 令=−h m m mlnm ()2,则'=−h m lnm ()1, 令'=h m ()0得=m e ,当<<m e 0时,h m ()单调递增,当>m e 时,h m ()单调递减, 故当=m e 时,h m ()取得最大值h (e )=e , ∴+e m n ,故+m n 的最大值为e .例3.已知函数=−f x x a lnax ()(),=−++∈ag x x a x a R ()()1(12,>a 1).(Ⅰ)若函数f x ()在=x a 处的切线l 斜率为2,求l 的方程;(Ⅱ)是否存在实数a ,使得当∈ax (1,a )时,>f x g x ()()恒成立.若存在,求a 的值;若不存在,说明理由. 【答案】【解答】解:(Ⅰ)因为=−+'xf x ln ax a()()1,'f (a )=2, 所以=lna 22,解得=a e 或=−a e (舍去). 因为=−f x x e lnex ()(), 所以f (e )=0,切点为e (,0), 所以l 的方程为=−y x e 22.(Ⅱ)由>f x g x ()()得,−>−++a x a lnax x a x ()()112,−>−−ax a lnax x a x ()()()1,又∈a x a (,)1,所以<−a lnax x 1,−+<a lnax x 01.令=−+∈a a h x lnax x x a ()((,))11,则=−='−x xh x x()111,所以,当<<ax 11时,>'h x ()0,h x ()单调递增; 当<<x a 1时,'<h x ()0,h x ()单调递减, 所以当=x 1时,函数h x ()取得最大值h (1)=+−alna 11. 故只需+−<alna 10(*)1. 令=+−ϕx x lnx ()11,>x (1),则'=−=−ϕx x xx x ()11122, 所以当>x 1时,'>ϕx ()0,ϕx ()单调递增,所以>ϕϕx ()(1)=0. 故不等式(*)无解.综上述,不存在实数a ,使得当∈−ax (1,a )时,>f x g x ()()恒成立.变式1.已知+=−e f x e e x x 1()(1为自然对数的底数). (1)求曲线=y f x ()在点(0,f (0))处的切线方程;(2)求证:当>x 0时,+>x f x x2()恒成立; (3)已知>k 0,如果当>x 0时,+>e f x kxx1()恒成立,求k 的最大值. 【答案】【解答】解:(1)+++===−−+−e e e f x e e x x xx x 111()11122, ++∴'=−=−e e f x e e x x x x(1)(1)()2222, +∴'==f (11)2(0)212,且+==−f 11(0)011, ∴曲线=y f x ()在点(0,f (0))处的切线方程为−=−y x 20(0)1, 即=y x 21; (2)证明:当>x 0时,+++>==−+−x x x f x x x 222()1222, ++∴−>−e x x121122, ∴++<e x x 1211, ∴+>+e x x 12, 即>+e x x 1;设=−−h x e x x ()1,>x 0, 则'=−>−=h x e e x ()1100,∴h x ()在区间+∞(0,)上单调递增,∴>=−−=h x h e ()(0)0100,即−−>e x x 10,∴>+e x x 1; 即>x 0时,+>x f x x2()恒成立; (3)当>x 0时,+>e f x kxx1(),∴++>−e e e kxxx x 111, 即−>e kx x 1,∴>−xk e x 1; 设=−xp x e x ()1,>x 0,则'==−−−+x x p x xe e xe e x x x x ()(1)122; 令'=p x ()0,解得=x 0, ∴>x 0时,'>p x ()0恒成立,∴>p x p ()(0); 又>x 0时,>+e x x 1,∴−>+−=e x x x 111,∴>−xe x 11, ∴k 的最大值是1.2.双变量2.1双变量不等式的翻译例1.已知函数=++f x x ax a ()2,=+g x ax x 2()21.(1)讨论函数f x ()的奇偶性(不必给出证明); (2)当x 01时,求f x ()的最小值;(3)若>a 0,对任意的x 1,∈x [02,1],都有f x g x ()()12成立,求实数a 的取值范围. 【答案】【解答】解:(1)当=a 0时,f x ()为偶函数;当≠a 0时,f x ()为非奇非偶函数; (2)=++f x x ax a ()2的对称轴为=−x a 2,当−a20,即a 0时,区间[0,1]为增区间,即有f (0)取得最小值a ; 当−a21,即−a 2时,区间[0,1]为减区间,即有f (1)取得最小值+a 12: 当<−<a201,即−<<a 20时,f x ()取得最小值−=−f a a a 24()2.综上可得,f x ()的最小值h (a )⎩⎪⎪⎨=−−<<⎪⎪⎧+−a a a a a a a ,04,2012,22;(3)若>a 0,对任意的x 1,∈x [02,1],都有f x g x ()()12成立, 即有f x g x min max ()()12,由f x ()在>a 0,∈x [0,1]的最小值为a ;=+g x ax x 2()21在>a 0,∈x [0,1]递增,可得g (1)取得最大值,且为+a 221.即有+a a 221,解得a 4.则实数a 的取值范围是[4,+∞).变式1.已知函数f =+−x x x k ()22,=+++≠g x ax bx cx d a ()(0)32是R 上的奇函数,当=x 1时,g x ()取得极值−2.(1)求函数g x ()的单调区间和极大值;(2)若对任意∈−x [1,3],都有f x g x ()()成立,求实数k 的取值范围;(3)若对任意∈−x [11,3],∈−x [12,3],都有f x g x ()()12成立,求实数k 的取值范围.【答案】 【解答】解:(1)=+++≠g x ax bx cx d a ()(0)32是R 上的奇函数,∴−=g x g x ()(),可得==b d 0,即=+≠g x ax cx a ()(0)3, 又当=x 1时,g x ()取得极值−2,∴⎩=−⎨⎧'=g g (1)2(1)0,即⎩+=−⎨⎧+=a c a c 230,解得⎩=−⎨⎧=c a 31,故函数=−g x x x ()33,导函数'=−g x x ()332,令−=x 3302解得=±x 1,当∈−∞−x (,1)时,'>g x ()0,g x ()单调递增, 当∈−x (1,1)时,'<g x ()0,g x ()单调递减,当∈+∞x (1,)时,'>g x ()0,g x ()单调递增, 故当=−x 1时,g x ()取到极大值−=g (1)2(2)−=+−−f x g x x x k x ()()2423,对任意∈−x [1,3],都有f x g x ()()成立,只需+−k x x x 2423,构造函数=+−F x x x x ()2423,∈−x [1,3],'=−++F x x x ()3442, 令],'=F x ()0可得=x 2或=−x 32,当∈−−x 3(1,)2时,'<F x ()0,F x ()单调递减当∈−x 3(2,2)时,'>F x ()0,F x ()单调递增,当∈x (2,3)时,'<F x ()0,F x ()单调递减,当=x 2时,F x ()取到极大值F (2)=8,−=−F (1)1,故F x ()的最大值为8, 故实数k 的取值范围为:k 8;(3)若对任意∈−x [11,3],∈−x [12,3],都有f x g x ()()12成立, 即f x ()在区间−[1,3]上的最大值都小于或等于g x ()的最小值, 由(1)可知:当∈−x [1,1)时,'<g x ()0,g x ()单调递减,当∈x (1,3]时,'>g x ()0,g x ()单调递增,故当=x 1时,函数g x ()取到极小值, 也是该区间的最小值g (1)=−2,而f =+−x x x k ()22为开口向上的抛物线,对称轴为=−x 41,故当=x 3时取最大值f (3)=−k 21,由−−k 212,解得k 23 变式2.已知+=x f x x4()22. (1)若关于x 的不等式>f x k ()的解集是<−x x {|4,或>−x 1},求实数k 的值; (2)设=−+g x x mx ()232,∈x [1,3],若对任意的>x 01,总存在∈x [12,3]使得<f x g x ()()12成立,求实数m 的取值范围.【答案】 【解答】解:(1)+>x 402,∴不等式>f x k ()可化为>+x k x 2(4)2,即−+<kx x k 2402;又该不等式的解集是<−x x {|4,或>−x 1},∴⎩⎪−−=⎨⎪⎧<k k 4120,解得=−k 52;(2)对任意>x 01,总存在∈x [12,3],使得<f x g x ()()12成立, 等价于<f x g x max max ()();而f x ()在>x 0时的最大值为f (2)=21, 且=−+g x x mx ()232,∈x [1,3],∴<m 2时,g x ()在[1,3]上的最大值是g (3)=−m 126,令−>m 21261,解得<m 1223, ∴应取<m 1223; m 2时,g x ()在[1,3]上的最大值是g (1)=−m 42,令−>m 2421,解得<m 47; 不合题意,舍去;综上,实数m 的取值范围是<m m 12{|}23. 变式3.已知函数=lnxg x x(),=−>f x g x ax a ()()(0). (1)求函数g x ()的单调递增区间;(2)若函数f x ()在+∞(1,)上是减函数,求实数a 的最小值;(3)在第(2)题的条件下,又∃x 1,∈x e [2,e ]2,使'+f x f x a ()()12成立,求实数a 的取值范围. 【答案】【解答】解:(1)函数=='−−lnx lnx g x x lnx lnx x()()()1122, 当>x e 时,>'g x ()0,所以函数g x ()的单调增区间是+∞e (,); (2)因为f x ()在+∞(1,)上为减函数,故=−'−lnx f x a lnx ()()012在+∞(1,)上恒成立, 所以当∈+∞x (1,)时,'f x max ()0, 又因为故=−'−lnx f x a lnx ()()012, 故当=lnx 211,即=x e 2时,'=−f x a max 4()1, 所以−a 401,于是a41, 故a 的最小值为41; (3)命题“若存在x 1,∈x e [2,e ]2,使'+f x f x a ()()12成立”等价于 “当∈x e [,e ]2时,有'+f x f x a min max ()()”, 由(1)得,当∈x e [,e ]2时,'=−f x a max 4()1, 则'+=f x a max 4()1, 故问题等价于:“当∈x e [,e ]2时,有f x min 4()1, 当a41时,f x ()在e [,e ]2上为减函数, 则==−f x f e ae e min 24()()1222,所以−ea 24112,a 0,'f x ()0在e [,e ]2恒成立,故f x ()在e [,e ]2上为增函数,于是,=f x f min ()(e )=−>e ae e 41,不合题意, <<a 401时,由'f x ()的单调性和值域知,存在唯一∈x e e (,)02,使'=f x ()00, 当∈x e x (,)0时,'<f x ()0,f x ()为减函数; 当∈x x (0,e )2时,'<f x ()0,f x ()为增函数; ∴=f x f x min ()()0,∴−>−>lnx x lne e a44411111002,与<<a 401矛盾,综上,−ea24112.2.1双变量等式的翻译 例1.已知函数+=+x f x x 3(3)()5(1)2,∈x [0,2].(1)求使方程−+=∈f x m R m2()10()存在两个实数解时,m 的取值范围; (2)设≠a 0,函数=−g x ax a x 3()132,∈x [0,2],若对任意∈x [01,2],总存在∈x [00,2],使得−=f x g x ()()010,求实数a 的取值范围. 【解答】解:(1)+=+x f x x 3(3)()5(1)2,∈x [0,2].++∴'=−=−+−−+x x f x x x x x 3(3)3(3)()5235(1)(3)22222, ∴当∈x [0,1]时,'f x ()0,f x ()单调递增;当∈x [1,2]时,'f x ()0,f x ()单调递减; ∴当=x 1时,=f x f max ()(1)=65,又=f 9(0)5,f (2)=75,故=f x min 9()5, ∴要使方程−+=∈f x m R m 2()10()存在两个实数解时,−<m 726155, 则有∈m 7[24,3)11; (2)由(1)可得f x ()的值域为9[5,6]5,设g x ()的值域为A ,对任意∈x [01,2],总存在∈x [00,2],使得−=f x g x ()()010,可得9[5,⊆A 6]5,当<a 0时,'=−<g x ax a ()022,函数=−∈g x ax a x x 3()([0,2])132为减函数,且=g (0)0,所以此种情况不成立;当>a 0时,令=−='g x ax a ()022,得=x a 2,=x<2,即<<a 04时,g x ()在递减,在,2)递增,可得==−g x g a min 3()225,=g (0)0,g (2)=−a a 3282,要使9[5,⊆A 6]5,可得−a a 362852, 化简可得−+a a 1216502,解得a 2615,由<<a 04,可得a2615; 当a 2,即a 4时,g x ()在[0,2]递减,不可能满足9[5,⊆A 6]5,综上可得a 的范围是2[1,6]5.变式1.已知函数=−−f x x x 442()1373.∈x [0,2]. I ()求f x ()的单调区间与最值;II ()设>a 0,函数=−−g x x a x a ()3232,∈x [0,1],若对任意的∈x [01,2]总存在∈x [00,1]使得=g x f x ()()01成立,求实数a 的取值范围. 【解答】解:(Ⅰ)'=−=+−f x x x x 444()(1)(1)3332, 令'=f x ()0,解得=x 1,当'>f x ()0时,即<x 12,函数单调递增, 当'<f x ()0时,即<<x 01,函数单调递减, ∴=f x f min ()(1)=−−=−4424137, =−f 2(0)7,f (2)=−−−4423867, ∴=f x f max ()(2)=−3.(Ⅱ)由(Ⅰ)知∈−f x ()[4,−3],对任意的∈x [01,2]总存在∈x [00,1]使得=g x f x ()()01成立, 则f x ()的值域为g x ()的值域的子集'=−=+−g x x a x a x a ()333()()22,令'=g x ()0,解得=x a 或−a ,①当<<a 01时,∈x [0,a )时,'<g x ()0,函数g x ()单调递减,∈x a (,1]时,'>g x ()0,函数g x ()单调递增, ∴=g x g min ()(a )=−−a a 223,令h (a )=−−a a 223, ∴'h (a )=−−<a 6202, ∴h (a )在(0,1)上单调递减,h (a )>h (1)=−4,h (a )<=h (0)0,∴=g x g min ()(a )=−−a a 2243,不满足题意②当a 1时,∈x [0,1],'g x ()0恒成立,∴g x ()在[0,1]上为减函数;∴∈−−g x a a ()[1322,−a 2],由(Ⅰ)知∈−f x ()[4,−3],对任意的∈x [01,2]总存在∈x [00,1]使得=g x f x ()()01成立, ∴⎩−−⎨−−−⎧a a a 2313242, 解得a213, 故a 的取值范围为[1,2]3变式2.已知函数=e f x exx(),=−∈g x ax lnx a R ()(). (1)当∈x [0,+∞)时,求函数f x ()的值域;(2)若对任意∈x [0,+∞),都存在∈ex [10,e ],使得=f x g x ()()0成立,求实数a 的取值范围. 【答案】【解答】解:(1)=e f x ex x (),'=−e f x e x x()(1), 令'>f x ()0,解得:<x 01,令'<f x ()0,解得:>x 1,∴f x ()在[0,1)递增,在+∞(1,)递减, ∴=f x f max ()(1)=1,∴f x ()的值域是[0,1];(2)若对任意∈x [0,+∞),都存在∈ex [10,e ],使得=f x g x ()()0成立,则f x ()的值域是g x ()值域的子集, 由(1)f x ()的值域是[0,1],=−g x ax lnx (),>x (0),'=−xg x ax ()1, ①a 0时,'<g x ()0,g x ()在e [1,e ]递减,=g x g min ()(e )=−ae 1,==+e eg x g amax ()()11,故g x ()的值域是−ae [1,+⊇ea1][0,1], ∴⎩⎪+⎨⎪⎧−eaae 1110,解得:e a 01, 故=a 0符合题意,②>a 0时,令'>g x ()0,解得:>a x 1,令'<g x ()0,解得:<ax 1, ∴g x ()在a (0,)1递减,在a (1,+∞)递增,<ei a()01时,g x ()在e [1,e ]递减,∴g x ()的值域是−ae [1,+⊇ea1][0,1], ∴⎩⎪+⎨⎪⎧−eaae 1110,解得:e a 01, 故<ea01符合题意, <<e ii a e ()1时,g x ()在e [1,a )1递减,在a(1,e ]递增,∴g x ()的值域是+lna [1,−ae 1]或+lna [1,+ea1], ∴⎩−⎨⎧+ae lna 1110或⎩⎪+⎨⎪⎧+e a lna 1110,无解, iii a e ()时,g x ()在e [1,e ]递增,∴g x ()的值域是+ea[1,−ae 1],∴⎩−⎪⎨⎪+⎧ae ea1110,无解, 综上:∈a [0,e]1.三、 课后练习1.已知函数=−f x x ax e x ()()2,函数图象在=x 1处的切线与x 轴平行. (1)讨论方程=f x m ()根的个数; (2)设=+xg x b lnx()(1),若对于任意的∈x (0,2)1,总存在∈x [12,e ],使得f x g x ()()12成立,求实数b 的取值范围. 【答案】【解答】解:(1)=−+−=+−−'f x x a e x ax e x a x a e x x x ()(2)()[(2)]22, 由题意知,'f (1)=0,即−=a e (32)0,解得=a 23,故=−f x x x e x 2()()32,此时=+−=+−'f x x x e x x e x x 22()(23)(23)(1)112, 则有:且当→−∞x 时,→f x ()0,当→+∞x 时,→+∞f x ().所以,当<−m e 2时,方程无根,当=−m e2或>e m 22时,方程有一根,当−<m e20或=m <<m 0时,方程有三个根;(2)由题意可知,只需f x g x min min ()(), 由(1)知,当∈x (0,2)时,=−f x emin 2(),而='−xg x b lnx()()12,当∈x [1,e ]时,−<lnx 10,当>b 0时,<'g x ()0,g x ()在[1,e ]单调递减,==+eg x g e b min ()()(1)1,所以−+eb e 2(1)1,因为>b 0,无解, =b 0,=g x ()0,无解,<b 0,>'g x ()0,g x ()在[1,e ]单调递增,=g x g min ()(1)=b ,此时,−b e2, 综上所述,实数b 的取值范围为−b e2. 2.设函数=−++f x x ax a ()32,=−g x ax a ()2.(1)对于任意∈−a [2,2]都有>f x g x ()() 成立,求x 的取值范围;(2)当>a 0 时对任意x 1,∈−x [32,−1]恒有>−f x ag x ()()12,求实数a 的取值范围; (3)若存在∈x R 0,使得<f x ()00与<g x ()00同时成立,求实数a 的取值范围. 【答案】【解答】解:(1)因为对于任意∈−a [2,2]都有>f x g x ()() 成立,都有−++>−x ax a ax a 322,即−+++>x a x (23)302 对于任意∈−a [2,2]恒成立.设h (a )=−+++x a x (23)32,则有⎩=+−>⎨−=−+>⎧h x x h x x (2)430(2)49022,解不等式组可得>−x 2,或<−x 2.(2)由题意可知在区间−[3,−1]上,>−f x ag x min max [()][()]. 因为=−++f x x ax a ()32 的图象的对称轴=>x a20,所以=−++f x x ax a ()32 在−[3,−1]上单调递减,可得=−=+f x f a min ()(1)24.因为−=−+ag x a x a ()222 在−[3,−1]上单调递减,可得−=ag x a max [()]52,所以+>a a 2452,可得<<a 501. (3)若=a 0,则=g x ()0,不合题意,舍去.若<a 0,由<g x ()0 可得>x 2.原题可转化为在区间+∞(2,) 上存在x 0,使得<f x ()00. 因为=−++f x x ax a ()32 在+∞a2[,) 上单调递增,所以f (2)<0,可得>a 7,又因为<a 0,不合题意.若>a 0,由<g x ()0 可得<x 2,原题可转化为在区间−∞(,2)上若存在x 0,使得<f x ()00. 当>a 22 时,即>a 4 时,f (2)=−<a 70,可得>a 7;当<a22 时,即<<a 04 时,<f a2()0,可得>a 6 或<−a 2. 综上可知>a 7.3.设函数=f x alnx (),=g x x 2()12. (1)记'g x ()为g x ()的导函数,若不等式+'+−f x g x a x g x ()2()(3)()在∈x [1,e ]上有解,求实数a 的取值范围;(2)若=a 1,对任意的>>x x 012,不等式−>−m g x g x x f x x f x [()()]()()121122恒成立.求∈m m Z m (,1)的值. 【答案】【解答】解:(1)不等式+'+−f x g x a x g x ()2()(3)(),即为++−alnx x a x x 22(3)12,化简得:−−a x lnx x x 2()12, 由∈x [1,e ]知−>x lnx 0,因而−−x lnx a x x 212,设−=−x lnxy x x 212, 由−−'==−+−−−−−−x lnx x lnx y x x x lnx x x lnx x x ()()22(1)(1)(1)()(1)()111222, 当∈x e (1,)时,−>x 10,+−>x lnx 2101,∴'>y 0在∈x [1,e ]时成立,则−=−x lnxy x x212递增,=−y min 21. 由不等式有解,可得知=−a y min 21,即实数a 的取值范围是−2[1,+∞).(2)当=a 1,=f x lnx ().由−>−m g x g x x f x x f x [()()]()()121122恒成立,得 −>−mg x x f x mg x x f x ()()()()111222恒成立,设=−>t x x xlnx x m 2()(0)2. 由题意知>>x x 012,故当∈+∞x (0,)时函数t x ()单调递增,∴'=−−t x mx lnx ()10恒成立,即+xm lnx 1恒成立, 因此,记=+x y lnx 1,得'=−xy lnx2, 函数在(0,1)上单调递增,在+∞(1,)上单调递减,∴函数h x ()在=x 1时取得极大值,并且这个极大值就是函数h x ()的最大值.由此可得=h x h max ()(1)=1,故m 1,结合已知条件∈m Z ,m 1,可得=m 1.4.已知函数=−∈−f x e ax x R x ()(),=+++g x ln x m ax ()()1.(Ⅰ)当=−a 1时,求函数f x ()的最小值;(Ⅱ)若对任意∈−+∞x m (,),恒有−f x g x ()()成立,求实数m 的取值范围.【答案】【解答】解:(Ⅰ)解:当=−a 1时,=+−f x e x x (),则=−+'ef x x ()11.⋯(1分) 令='f x ()0,得=x 0,当<x 0时,<'f x ()0; 当>x 0时,>'f x ()0.⋯(2分)∴函数f x ()在区间−∞(,0)上单调递减,在区间+∞(0,)上单调递增.⋯(3分) ∴当=x 0时,函数f x ()取得最小值,其值为=f (0)1.⋯(4分)(Ⅱ)由(Ⅰ)得:+e x x 1恒成立.⋯(5分),−⇒++++⇒++f x g x e ax ln x m ax e ln x m x x ()()()1()1①当+++x ln x m 1()1恒成立时,即−m e x x 恒成立时,条件必然满足.⋯(6分) 设=−G x e x x (),则=−'G x e x ()1,在区间−∞(,0)上,<'G x ()0,G x ()是减函数,在区间+∞(0,)上,>'G x ()0,G x ()是增函数, 即G x ()最小值为=G (0)1.于是当m 1时,条件满足.⋯(9分)②当>m 1时,=f (0)1,=+>g lnm (0)11,即<f g (0)(0),条件不满足.⋯(11分) 综上所述,m 的取值范围为−∞(,1].⋯(12分)5.函数=f x e x (),=++g x ln x m ()()1,e (是自然对数的底数,≈e 2.71828). (Ⅰ)求函数=y f x ()的图象在点P (0,f (0))的切线l 的方程;(Ⅱ)若对任意∈−+∞x m (,),恒有f x g x ()()成立,求实数m 的取值范围. 【答案】【解答】解(Ⅰ)='f x e x (),='f (0)1,即直线l 斜率为=k 1,=f (0)1,即点P (0,1). 所以直线l 的方程为=+y x 1. (Ⅱ)容易证明:+e x x 1恒成立. 设=−−F x e x x ()1,则=−'F x e x ()1, 在区间−∞(,1)上,<'F x ()0,F x ()是减函数; 在区间+∞(0,)上,>'F x ()0,F x ()是增函数. 故F x ()的最小值为=F (0)0, 即+e x x 1恒成立.i ()当=+++g x ln x m x ()()11恒成立时,即−m e x x 恒成立时,条件必然满足. 设=−G x e x x (),则=−'G x e x ()1,在区间−∞(,1)上,<'G x ()0,G x ()是减函数, 在区间+∞(0,)上,>'G x ()0,G x ()是增函数, 即G x ()最小值为=G (0)1. 于是当m 1时,条件满足.ii ()当>m 1时,=f (0)1,=+>g lnm (0)11即<f g (0)(0),条件不满足. 综上所述,m 的取值范围为−∞(,1].6.已知函数=−+f x x a ln ()(1) −∈x x a R a (),=+−g x x e xe x x 2()12.(1)当∈x [1,e ]2时,求f x ()的最小值;(2)当<a 1时,若存在∈x e [1,e ]2,使得对任意的∈−x [12,0],<f x g x ()()12恒成立,求a 的取值范围.【答案】【解答】解:(1)f x ()的定义域为+∞(0,),'=∈−−x f x a R x x a ()()(1)()2,当a 1时,∈x [1,e ]2,'f x ()0,f x ()为增函数, 所以=f x f min ()(1)=−a 1;当<<a e 12时,∈x [1,a ],'f x ()0,f x ()为减函数,∈x a [,e ]2,'f x ()0,f x ()为增函数,所以=f x f min ()(a )=−+−a a lna (1)1;当a e 2时,∈x [1,e ]2,'f x ()0,f x ()为减函数, 所以==−+−e f x min f e e a a ()()2(1)222; 综上,当a 1时,=−f x a min ()1; 当<<a e 12时,=−+−f x a a lna min ()(1)1; 当a e 2时,=−+−e f x min e a a ()2(1)22; (2)存在∈x e [1,e ]2,使得对任意的∈−x [12,0],<f x g x ()()12恒成立,即<f x g x min min ()(),当<a 1时,由(1)可知,∈x e [,e ]2,f x ()为增函数, ∴=f x min f ()1(e )=−+−ee a a (1) '=+−−=−g x x e xe e x e x x x x ()(1),当∈−x [1,0]时'g x ()0,g x ()为减函数,==g x g min ()(0)1,∴−+−<e e a a(1)1,+>−e a e e 122, +∴∈−e a e e1(22,1). 7.设函数,=+xf x lnx k(),∈k R . (1)若曲线=y f x ()在点e (,f (e ))处的切线与直线−=x 20垂直,求f x ()的单调递减区间和极小值(其中e 为自然对数的底数);(2)若对任意>>x x 012,−<−f x f x x x ()()1212恒成立,求k 的取值范围. 【答案】【解答】解:(1)由已知得'=−>x x f x x k()(0)12. 曲线=y f x ()在点e (,f (e ))处的切线与直线−=x 20垂直,∴此切线的斜率为0. 即'f (e )=0,有−=e e k012,解得=k e .∴'=−=>−x x xf x x e x e()(0)122,由'<f x ()0得<<x e 0,由'>f x ()0得>x e . ∴f x ()在e (0,)上单调递减,在+∞e (,)上单调递增,当=x e 时f x ()取得极小值=+=ef e lne e()2. 故f x ()的单调递减区间为e (0,),极小值为2.(2)条件等价于对任意>>x x 012,−<−f x x f x x ()()(*)1122恒成立. 设=−=+−>xh x f x x lnx x x k()()(0). ∴(*)等价于h x ()在+∞(0,)上单调递减. 由'=−−x x h x k ()1012在+∞(0,)上恒成立, 得−+=−−+>k x x x x 24()(0)1122恒成立.所以k41 ( 对=k 41,'=h x ()0仅在=x 21时成立),故k 的取值范围是4[1,+∞).8.已知函数f x ()满足:①=+f x f x ()2(2),∈x R ;②=+f x lnx ax (),∈x (0,2);③f x ()在−−(4,2)内能取得最大值−4. (Ⅰ)求实数a 的值;(Ⅱ)设函数=−g x bx bx 3()13,若对任意的∈x (1,2)1总存在∈x (1,2)2使得=f x g x ()()12,求实数b 的取值范围. 【答案】【解答】解:(Ⅰ)当∈−−x (4,2)时,有+∈x 4(0,2), 由条件②得:+=+++f x ln x a x (4)(4)(4),再由条件①得:=+=+=+++f x f x f x ln x a x ()2(2)4(4)4(4)4(4), 故+'=+x f x a 4()44,∈−−x (4,2), 由③,f x ()在−−(4,2)内有最大值, 方程'=f x ()0,即++=x a 4404在−−(4,2)内必有解, 故≠a 0,且解为=−−a x 41,又最大值为−4,∴=−−=−+−=−a af x f ln a max 4()(4)4()4()4111, 即−=aln ()01,∴=−a 1;(Ⅱ)设f x ()在(1,2)的值域是A ,g x ()在(1,2)内的值域是B , 由条件可得:⊆A B ,由(1)得:当∈x (1,2)时,=−f x lnx x (),'=<−xf x x()01, 故f x ()在(1,2)内为减函数,∴=A f ((2),f (1)=−ln )(22,−1), 对g x ()求导得:'=−+g x b x x ()(1)(1),若<b 0,则当∈x (1,2)时,'<g x ()0,g x ()递减, ∴=B g ((2),g (1)=b 3)(2,−b 3)2, 由⊆A B ,得:−b ln 3222,−−b 312,故必有−bln 2233,若>b 0时,则当∈x (1,2)时,'>g x ()0,g x ()递增, ∴=B g ((1),g (2)=−b 3)(2,b 3)2, 由⊆A B ,得:−−b ln 3222,−b 312,故必有−b ln 2323,若=b 0,则=B {0},此时,⊆A B 不成立, 综上,b 的范围是−∞(,−−ln ln 2223][3233,+∞)。
2019年高考数学专题:导数中恒成立与存在性问题(解析版)1.设函数.(1)若函数是R上的单调增函数,求实数a的取值范围;(2)设,是的导函数.①若对任意的,求证:存在使;②若求证:.【答案】(1) ;(2)①.证明见解析;②证明见解析.【解析】试题分析:(1)由题意,对恒成立,对恒成立;(2)①,由题中条件得到令,则,代入表达式得到,得证;②,,即,,只需证,换元研究函数最值即可.∴,从而.(2)①,则.若,则存在,使,不合题意.∴.取,则.此时.∴存在,使.②依题意,不妨设,令,则.∴.下面证明,即证明,只要证明.设,则在恒成立.∴在单调递减,故,从而得证.∴,即.2.已知函数.(1)若在处取得极值,求的值;(2)若在上恒成立,求的取值范围.【答案】(1);(2)【解析】试题分析:(1),由在处取到极值,可得,.经检验,时,在处取到极小值;(2),令,讨论三种情况,分别利用导数研究函数的单调性,求出函数的最值,可得当时,不满足在上恒成立,时再分两种情况讨论可得时,在上恒成立,当时,根据二次函数的性质可得不满足题意,进而可得结果.学试题解析:(1),∵在处取到极值, ∴,即,∴. 经检验,时,在处取到极小值. (2),令,①当时,,在上单调递减.又∵,∴时,,不满足在上恒成立.②当时,二次函数开口向上,对称轴为,过.a.当,即时,在上恒成立, ∴,从而在上单调递增. 又∵,∴时,成立,满足在上恒成立.b.当,即时,存在,使时,,单调递减;时,,单调递增,∴.又∵,∴,故不满足题意.③当时,二次函数开口向下,对称轴为,在上单调递减,,∴,在上单调递减.又∵,∴时,,故不满足题意.综上所述,.3.设函数()ln mf x x x =+, m R ∈.(1)当m e =时,求函数()f x 的极小值;(2)讨论函数()()3xg x f x -'=零点的个数;(3)若对任意的0b a >>,()()1f b f a b a-<-恒成立,求实数m 的取值范围.【答案】(1)极小值2;(2)1,4⎡⎫+∞⎪⎢⎣⎭(Ⅲ)由题意原命题等价于()()f b b f a a-<-恒成立,设()ln (0)mh x x x x x =+->,进而转化为()h x 在()0,+∞上单调递减,利用导数,即可求得实数m 的取值范围.试题解析:(1)因为()2'(0)x ef x x x -=>,所以当()0,x e ∈时, ()0f x '<, ()f x 在()0,e 上单调递减;当(),x e ∈+∞时,()0f x '>,()f x 在(),e +∞上单调递增;所以当x e =时,()f x 取得极小值()ln 2ef e e e =+=.(2)()()3x g x f x -'== 213m xx x -- (0)x >,令()0g x =,得31(0)3m x x x =-+>.设()31(0)3x x x x ϕ=-+>,则()21x x φ-'=+=()()11x x --+.所以当()0,1x ∈时,()0x φ'>,()x φ在()0,1上单调递增;当()1,x ∈+∞时,()0x φ'<,()x φ在()1,+∞上单调递减;所以()x φ的最大值为()121133φ=-+=,又()00φ=,可知:①当23m >时,函数()g x 没有零点;②当23m =或0m ≤时,函数()g x 有且仅有1个零点;③当203m <<时,函数()g x 有2个零.所以2m x x ≥-+= 21124x ⎛⎫--+ ⎪⎝⎭ (0)x >恒成立,所以14m ≥. 即m 的取值范围是1,4⎡⎫+∞⎪⎢⎣⎭.4.已知函数()f x 是偶函数,且满足()()220f x f x +--=,当(]0,2x ∈时,()(1)x f x e ax a =+>,当(]4,2x ∈--时,()f x 的最大值为2416e +.(1)求实数a 的值;(2)函数()()344203g x bx bx b =-+≠,若对任意的()11,2x ∈,总存在()21,2x ∈,使不等式()()12f x g x <恒成立,求实数b 的取值范围.【答案】(1)2;(2)23384b e ≥+或23384b e ≤--使不等式()()12f x g x <恒成立”等价于“()()max maxf xg x <”,故可将问题转化为求函数()(),f x g x 的最大值或其值域.试题解析: (1)∵()()220f x f x +-=,即()()22f x f x +=,∴()()224f x f x +=+,∴()()44f x f x =+,当(]0,2x ∈时,()(1)x f x e ax a =+>,∴当(]4,2x ∈--时,(]40,2x +∈,∴()()()444444x f x f x e a x +=+=++.又1a >, ∴()4440x f x e a ++'=>恒成立,∴()f x 在(]4,2--上单调递增,∴()()2max 248f x f e a=-=+,令2248416e a e +=+,解得2a =. ∴实数a 的值为2. (2)当()1,2x ∈时,()2x f x e x=+,∴()20x f x e ='+>,∴函数()f x 在()1,2单调递增,∴当()1,2x ∈时,()()224f x f e <=+.又当()1,2x ∈时, ()344203g x bx bx b =-+≠(),∴()()2244410g x bx b b x b =-='-≠().①当0b >时,()0g x '>,函数()g x 在区间()1,2x ∈单调递增,∴()()8223g x g b <=+.∵对任意的()11,2x ∈,总存在()21,2x ∈,使不等式()()12f x g x <恒成立,∴28423e b +≤+解得23384b e ≥+;解得23384b e ≤--; 综上23384b e ≥+或23384b e ≤--. ∴实数b 的取值范围][223333,,8484e e ⎛⎫-∞--⋃++∞ ⎪⎝⎭. 5.设a R ∈,函数()()2x af x x a -=+.(Ⅰ)若函数()f x 在()()0,0f 处的切线与直线32y x =-平行,求a 的值;(Ⅱ)若对于定义域内的任意1x ,总存在2x 使得()()21f x f x <,求a 的取值范围.【答案】(1)1a =±(2)[)0,+∞【解析】试题分析:(1)先求导数,再根据导数几何意义得切线斜率为()0f ',解得a 的值;(2)先根据任意存在性含义转化不等式为对应函数最值关系: ()f x 在定义域内不存在最小值,再求导数,根据a 正负讨论导函数符号变化规律,进而确定单调性以及最小值取法,最后根据最小值情况确定a 的取值范围.学 .试题解析:解:(Ⅰ)函数()()2x af x x a -=+的导函数为()()()33a xf x x a x a +'-=≠-,则函数()f x 在()()0,0f 处的切线斜率为()230f a '=,依题意有233a=,解得1a =±.可得()f x 在(),a -∞-单调递增,在(),3a a -单调递增,在()3,a +∞单调递减,即有()f x 在3x a =取得极大值,当x a >时, ()0f x >;当x a <时,()0f x <.取12,x a x a <≠-即可,当1x a <-时, ()f x 在(),a -∞-单调递减,且11112x x x a a <++<-,()11112f x f x x a ⎛⎫>++ ⎪⎝⎭, 故存在21112x x x a =++,使得()()21f x f x <,同理当1a x a -<<时,令21112x x x a =-+使得()()21f x f x <,则有当0a >时, ()()21f x f x <成立;③当0a <时, ()f x 在(),3a -∞单调递减,在()3,a a -单调递增,在(),a -+∞单调递增,即有()f x 在3x a =处取得极小值,当x a >时, ()0f x >;当x a <时()0f x <,所以()()min 3f x f a =,当13x a =时,不存在2x 使得()()21f x f x <成立,综上可得, a 的取值范围是[)0,+∞.6.已知函数()sinf x a x bx=+的图像在点ππ,33f⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭处的切线方程为π203x y+=.(Ⅰ)求实数,a b的值;(Ⅱ)当π2x<<时,()()1f x m x>-恒成立,求实数m的取值范围.【答案】(1)1a=, 1b=-;(2)2,π⎛⎤-∞⎥⎝⎦【解析】试题分析:()1求出()f x acosx b='+,根据题意可得1322{3323af bbf aπππ⎛⎫=+=-⎪⎝⎭⎛⎫=+⎪'⎝⎭,解出即可得到所以π1322{π3π323af bbf a⎛⎫=+=-⎪⎝⎭⎛⎫=+⎪⎝⎭',解得1a=, 1b=-;(Ⅱ)由(Ⅰ)知()sinf x x x=-,当π2x<<,()()1f x m x>-恒成立等价于sin xmx<恒成立,设()sinπ,0,2xg x xx⎛⎫=∈ ⎪⎝⎭,则()2cos sinx x xg xx-'=,记()cos sinh x x x x=-,()sin0h x x x'=-<,所以()h x在区间π0,2⎛⎫⎪⎝⎭上单调递减,()()00h x h<=,故()0 g x'<,所以()g x在区间π0,2⎛⎫⎪⎝⎭上单调递减,()π22πg x g⎛⎫>=⎪⎝⎭,所以2πm≤,实数m的取值范围为2,π⎛⎤-∞⎥⎝⎦.。