人在雨中行走的淋雨量讨论
- 格式:docx
- 大小:41.06 KB
- 文档页数:7
人在雨中行走时的淋雨量问题人在雨中行走时的淋雨量问题一.模型假设 1.把人看做一个长方体;2.雨滴下落的速度,方向保持不变;3.人行走一段距离的速度,方向保持不变。
4.假设主要淋雨量集中在正面,背面和头部,忽略两侧淋雨量。
即考虑总淋雨量时只考虑(正面+头部)或者(背面+头部)二.符号说明1.V 为雨速(m/s ),方向定义为朝着人正面为正。
2.D 为人在雨中行走距离。
3.R 为人在雨中行走速度3.θ为雨滴下落方向与地平面的所成角,0°≤θ≤90°。
4. h1,h2,h3分别为视人体为一个长方体时人的身高(m)、身宽(m)、厚度(m);5.总淋雨量为W (R)单位为m 3。
三.模型建立本模型是在上诉理想条件下分析人在行走时的淋雨量的大小,而淋雨量的大小取决与降雨量的大小,方向,还有人行走的速度,行走的路程。
我们的目标是求出使得人在雨中行走时淋雨量最小的条件。
即最佳行走速度。
以人为Z 轴,人行走的方向为X 轴,左边为y 轴建立空间坐标系。
则雨的降落速度可以按这个坐标系分解到x 轴,y 轴,z 轴。
得到θθθsin ,cos ,cos V Vz V Vy V Vx ===。
进一步得到θcos V R V +=相.人的头部,正面或背面的淋雨面积为h1h2,h2h3,淋雨时间为D/V.则可得到人正面或背面的淋雨量为θcos 21V R h h R D +;人头部淋雨量为θsin 32V h h RD ;进一步得总淋雨量W(R )=()θθsin 33cos 21V h h V R h h RD ++。
分析:1)当雨从人正面降落,即V 方向取正,V>0,由此得到}sin 32)cos (21{)(θθV h h V R h h R D R W ++=;对W (R)进行单调性分析可知,其一阶导数0)(<'R W 。
所以W(V)单调递减。
无最小值。
2)当雨从人后面降落,即V 方向取负,V<0,由此得到()θθsin 33cos 21)(V h h V R h h RD R W ++= =21)cos 21sin 32(h Dh RV h h V h h D --θθ,θcos 0V R -<<----------------① =θθθcos ,21)sin 32cos 21(V R h Dh RV h h V h h D -≥++;------------------② 分别讨论上诉两种情况下的一阶导数可得:2)cos 21sin 32()(R V h h V h h D R W θθ+-=' 下面对其进行极值分析:其 a )当θcos 0R R -<<时,当θθcos 21sin 32V h h V h h +>0时,。
数学建模之雨中行走问题模型摘要:由于降雨方向的变化,在跑步过程中尽力快跑不一定是最好的策略。
就淋雨量与跑步快慢这个问题,我们通过建立数学模型来探讨在雨中如何行走才能使淋雨量最少。
在不考虑雨的方向时,当然是跑的越快淋得越少;考虑雨的方向时,那么再分情况讨论,若雨是迎着你前进的方向落下,这时以最大的速度向前跑可使淋雨量最少;若雨是从你的背后落下,那么你应控制在雨中行走的速度,让它刚好等于落雨速度的水平分量。
关键词:淋雨量,数学模型,降雨的方向。
正文1.问题的提出要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑得越快,淋雨量越少。
将人体简化成一个长方形,高a=1.5(颈部以下),宽b=0.5m,厚c=0.2m,设跑步的距离d=1000m,跑步的最大速度v m=5m/s,雨速u=4m/s,降雨量ω=2cm/h,及跑步速度为v,按以下步骤进行讨论(1)不考虑雨的方向,设降雨淋遍全身,以最大速度跑步估计跑完全程的淋雨量;(2)雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体夹角为 ,问跑步速度v 为多大时可使淋雨量最少。
(3)雨从背面吹来,雨线方向跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v及参数a,b,c,d,u,ω,α之间的关系,问速度v多大,总淋雨量最小。
计算α=30°的总淋雨量.(说明:题目中所涉及的图形为网上提供)2.问题的分析总的淋雨量等于人体的各个面上的淋雨量之和。
每个面上的淋雨量等于单位面积、单位时间的淋雨量与面积以及时间的乘积。
面积由已知各边长乘积得出,时间为总路程与人前行速度的比值。
再由速度分解,合成,相对速度等知识确定各面淋雨量公式,列出总的方程,根据各变量关系,得出最优解。
淋雨量(V )=降雨量(ω)×人体淋雨面积(S )×淋浴时间(t ) ①时间(t )=跑步距离(d )÷人跑步速度(v ) ②由①② 得: 淋雨量(V )=ω×S ×d/v3.合理假设3.1模型的假设(1)人身体的表面非常复杂,为了使问题简单化,假设将人视为一个长方体,并设其高1.5m(颈部以下),宽0.5m,厚0.2m.其前、侧、顶的面积之比为1:b:c, (2)假设降雨量到一定时间时,应为定值; (3)此人在雨中跑步应为直线跑步;(4)、问题中涉及的降雨量应指天空降落到地面的雨,而不是人工,或者流失的水量,因为它可以直观的表示降雨量的多少;(5)设雨速为常速且方向不变,选择适当的空间直角坐标系,使人行走的速度为(u,0,0)设雨的速度为(,,)x y z v v v v =,人行走的距离为d=100米。
雨中行走问题的研究
人们外出行走,途中遇雨,未带雨伞势必淋雨,自然就会想到,走多快才会少淋雨呢?一个简单的情形是只考虑人在雨中沿直线从一处向另一处行进,雨的速度(大小和方向)已知,问行人走的速度多大才能使淋雨量最少。
参与这问题的因素:
降雨的大小;风(降雨)的方向;路程的远近和人跑的快慢。
分析:
淋雨量在数学上如何表示?
假设
1. 人行走的路线为直线,行走距离为L
选择适当的直角坐标系,使人行走速度为:v1=(u,0,0),则行走的时间为L/u.
2. 雨的速度不变,记为:v2=(vx,vy,vz)
相对速度:v= v2- v1 =(vx-u,vy,vz)
3. 人体为长方体,其前、侧、顶的面积之比为1:b:c
单位时间内的淋雨量: | vx -u|+| vy |b+| vz |c
从而总淋雨量:
R(u)=(| vx -u|+| vy |b+| vz |c)T (行走的时间为L/u)
=(| vx -u| +a)L/u (a=| vy |b+| vz |c >0)
于是雨中行走问题抽象成如下数学问题:
已知L,Vx,a,求u为何值时R(u)最小?
1. Vx > 0
vx >a的情形(有最小值)vx a时, u=vx才使取最小值Rmin=La/Vx
当vx a>0时,取u=Vx可使前后不淋雨,其淋雨总量最小,其它情况下,都应使u尽可能大,才能使淋雨量尽可能小,这比较符合人们生活的常识。
雨中行走问题的分析吴珍数学与应用数学二班 A班冯奎艳数学与应用数学二班 A班杨彦云数学与应用数学二班 A班摘要本文讨论了雨线方向、跑步速度与淋雨量关系的问题.针对问题一,将人视为长方体,采用物理学中流体计算的思想方法计算淋雨量,得到速度越大淋雨量越小的结论。
针对问题二,首先引入雨滴降落频率的概念,解决了用雨速来确定降雨量雨滴降落不连续的问题。
然后采用物理学中流体计算的思想方法计算淋雨量,建立跑步速度与淋雨量关系的优化模型,得到速度越大淋雨量越小的结论。
针对问题三,在问题二的基础上,改变雨线方向,采用物理学中流体计算的思想方法,建立与跑步速度与淋雨量关系的优化模型,确定淋雨量最小情况下的跑步速度.针对问题四,综合雨线方向与跑步方向夹角,跑步速度,淋雨量的关系,建立几何模型,采用数形结合的方法建立淋雨量模型。
关键词雨滴降落频率;优化模型;淋雨量一、问题重述一般情况下,行人未带雨具却突降大雨,都会选择加快行走速度以减少淋雨量,但如果考虑风速、雨速,就会发现淋雨量并不光与淋雨时间有关。
那么在雨中以何种速度跑,淋雨量最少。
现假设要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型,讨论是否跑得越快,淋雨量越少。
按以下步骤进行讨论:(1) 不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的总淋雨量。
(2) 雨从迎面吹来,雨线与跑步方向在同一铅直平面内,且与人体的夹角为θ,问速度多大时,总淋雨量最少。
(3) 雨从背面吹来,雨线方向与跑步方向在同一铅直平面内,且与人体的夹角为α,问速度多大时,总淋雨量最少。
(4) 若雨线方向与跑步方向不在同一平面内即异面时,模型会有什么变化。
二、问题分析人在雨中行走时,行走时间即淋雨时间。
把人看成一个长方体,总淋雨量是各个面淋雨量之和。
为解决雨滴不是连续的,引进雨滴频率P (模型建立部分会做具体阐述)的概念。
对于问题一,在不考虑雨速方向的前提下,人的前、后、左、右以及顶部都会被淋到雨,此时淋雨量只与行走时间及单位时间内的降雨量有关。
人在雨中行走时的淋雨量问题邱仰聪【期刊名称】《苏州市职业大学学报》【年(卷),期】2013(000)003【摘要】人在外出行走时被淋雨,应该如何选择行走速度使得淋雨量最小,这个问题一直引起人们的兴趣,也有很多学者通过建立数学模型给予解答。
一些文献给出了直观简单并具有创新性的思维方法,但也分别存在一定的缺点。
通过适当采用并修正、补充参考文献中的方法,糅合这些方法的优点,弥补其不足,利用三维角度和单调性分析对淋雨量问题给出更加严谨的解答,并经过Matlab软件进行更深层次的分析,得出有价值的结论。
%When people walk in rain,the problem of at what speed they have the minimum of rain falling on them arouses people's interest.Many scholars have tried to give the solution by building a mathematic model. Some references offer straightforward and innovative ways,but those ways have some shortcomings respectively. Through adopting,correcting and supplementing the ways in the references,this paper combines the advantages and compensates for the weaknesses.It gives more rigorous solutions to the problem of rain amount through three-dimension and monotonicity analyses,and makes deeper analyses by using Matlab to arrive at valuable conclusions.【总页数】4页(P40-43)【作者】邱仰聪【作者单位】顺德职业技术学院人文教育系,广东佛山 528333【正文语种】中文【中图分类】O13【相关文献】1.人在船上行走时的一对静摩擦力都做正功吗? [J], 陆文明;柏露枝2.人在雨中行走时人身上淋雨量的分析 [J], 李志业;李秋红3.生活中的数学模型——人在匀速行走时步长多大最省劲? [J], 王亭;4.问题引导,分组讨论式的数学建模教学实践--以“在雨中以不同的速度行走的淋雨量问题”为例 [J], 谢明德5.妙用探究式教学培养科学思维——构建物理模型解决雨中行走淋雨量问题 [J], 王春山因版权原因,仅展示原文概要,查看原文内容请购买。
人在雨中奔跑速度与淋雨量的关系1、问题重述淋雨是我们生活中常见的事件,已知要在雨中的一处沿直线跑到另一处,设雨速为常数且保持方向不变,试建立数学模型讨论是否跑得越快淋雨量越少。
可以将人体的模型简化为一个长方体,高a=1.5m (颈部以下),宽b=0.5m ,厚c=0.2m,设跑步距离l =1000m ,跑步最大速度m v =5m/s ,雨速u=4m/s ,降雨量w=2cm/h ,记跑步速度为v 。
问题一,在不考虑雨方向的情况下,设降雨淋遍全身,人体以最大速度跑步,建立模型估计跑完全程的总淋雨量。
问题二,雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体的夹角为θ,如图1,建立总淋雨量与速度v 及参数a,b,c,l,w,θ之间的关系,问速度多大时,总淋雨量最少,计算 0=θ 和 30=θ时的总淋雨量。
问题三,与从背面吹来,雨线方向与跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v 及参数a,b,c,l,u,w 之间的关系,问速度多大,总淋雨量最少,计算α 30=时的总淋雨量。
2、问题分析问题一,将人体简化成长方体,雨以降雨量w 均匀地淋遍全身,求出人接受雨的总 面积,人以最大速度跑步,并计算淋雨时间、单位时间、单位面积上的降雨量,求出人跑完全程的总淋雨量w 。
问题二,雨迎面吹来,雨线方向与跑步方向在同一平面内且与人体夹角为θ,如图1所示。
根据实际情况估计人体淋雨可分为头顶和前后左右几个方向上。
雨迎面吹来时,由于雨相对于人的速度有变化,因此人单位时间内接收雨量变化,且与相对速度成正比。
据此,推算出前后侧上单位时间接受雨量。
同理,头顶部位接雨量与雨速垂直于头顶平面的分速度成正比。
分别计算出头顶侧与前后侧单位时间接雨量,并分别乘以各自面积以及时间d/t,即得到头顶及两侧淋雨的总量。
在人体总的淋雨量.据此可得w 与v 之间关系,并能求出 0=θ和 30=θ时的总淋雨量。
问题三,与从背面吹来,雨线方向与跑步方向在同一平面内,且与人体的夹角为α,如图2.建立总淋雨量与速度v 及参数a,b,c,l,u,w 之间的关系,问速度多大,总淋雨量最少,计算α 30=时的总淋雨量。
下雨的时候跑着淋的雨多还是走着淋的雨多?这是一个古老的问题,经过了国内外的数次讨论,《流言终结者》还做了个实验,最后两次实验居然得到了相反的结果。
原因是影响问题的因素很多,例如雨量、风速、人的速度、人的表面积等等。
我在这里基于简单的物理模型做一个分析。
物理模型1.雨是均匀下落的,单位体积内雨的质量为ρ。
2.没有风,雨滴匀速下落,速度为v3.人运动的速度为u4.人身体前方的面积为S1,头顶的面积为S25.人的目标是从A地到达相距为L的B地基本分析人在雨中,头顶会淋雨;由于人向前运动,人的前面也会有雨滴。
如果相对于地面研究,问题会比较复杂。
我们可以选择人为参考,这样一来,雨滴一方面具有下落的速度v,一方面相对于人具有向后的水平速度u,这样,雨滴相对于人就是斜向下运动的,如图所示:这样一来,人从A地到B地的过程中,人所迎接的雨滴(在忽略人头顶的一个小三角形)几乎是他斜前方一个柱体内的雨滴。
这些雨滴会朝着人奔跑,最终撞到人身上。
这个柱体的底面积是人迎接雨滴的截面积S,如图中AE部分所示。
而柱体的高是L,于是雨滴的总量为:m=ρSL如何淋雨最少显而易见,无路以多大速度奔跑,AB之间的距离L是一定的,当奔跑速度不同时,雨滴相对于人的速度不同,因而柱体的倾斜程度不同,截面积S不同。
如上图所示,如果人的奔跑速度比较大,雨滴相对于人速度更接近水平,这样人迎接雨滴的截面积为AF部分;如果人的奔跑速度比较小,雨滴相对于人速度更加竖直,人迎接雨滴的面积是AE部分。
显然,AF部分面积更小,柱体体积更小。
如果人以无限大的速度奔跑,则雨滴一点也不落到头顶,而是全部落在人的身体前侧面。
结论:人在雨中奔跑速度越快雨滴越少。
还能再给力一点吗?那么,如果人已经达到最大奔跑速度了,还有没有可能继续减少淋雨呢?其实我们还有方法。
因为人的头顶面积小于身体前面的面积,我们可以让身体倾斜过来,迎接雨滴,这样就可以使得人迎接雨滴的面积进一步减小,雨柱体变得更细。
论在雨中行走与跑步哪个方式淋雨更少的研究青岛滨海学院文理基础学院12文科4班刘维(20120500425)刘帅(20120500424)摘要:其实不论人在雨中是行走还是跑步,其实相当于在雨中这个坐标系中的一个斜面横扫面积的问题。
关键词:雨中;跑步;行走;淋雨总量1.问题的实际背景数学融于我们生活当中,我们在面对很多事情都会联想到,这个问题与数学有什么关系,例如下雨中,这个淋雨量与数学之间有联系吗?让我们来讨论下吧身边的数学吧。
2.问题的提出下雨仿佛是件很平常的事,但是很少有人会往这个方面想,但这是一个思维的好奇提问,于是,在雨中,我们是跑步淋雨多还是行走淋雨多的一个问题就被这样提出来了。
2.1数据分析要想要讨论在雨中我们的林雨量,就要认识到这里的常量与变量,先说下常量:如果把人比作一个长方体的容器(上下左右都可以承装的理想容器),那么有常量1、身高h2、身体厚度d3、身体宽度k4、可以得到一个恒常量C h d k=⨯⨯5、一个扫过雨的面积S h k=⨯6、其中常量分别还有人的行走速度11/v m s =7、跑步速度为25/v m s=7、雨的下落速度为重力常量g,这里省略理解为在地面速度约为V8、其中路程假设为l9、到达目的地的时间t ls=从这几个常量中我们可以看到,其实不论人在雨中是行走还是跑步,其实相当于在雨中这个坐标系中的一个斜面横扫面积的问题。
(注:这里由于能力问题,暂时假定风速为0,对任何量无影响,假定人体倾斜角刚好只有头部受到雨水的横扫面积,另对行走的肢体变化忽略,暂不记跑步时身体前与雨水相交的量,忽略雨的密度p 等相关变量)2.2问题重述当行走速度为11/v m s =时,当跑步速度为时25/v m s =,人所受到的淋雨量V 为多少?3.问题的求解3.1构建数学模型如果以下雨场景建立三维直角坐标系(),,x y z O =由xy 面可得水平淋雨面积行走时111S h k v t hkl =⨯⨯⨯=跑步时222S h k v t hkl =⨯⨯⨯=由xz 面可得垂直淋雨行走时面积31S V t Vl =⨯=跑步时面积4215S V t Vl =⨯= 由此可得,行走时淋雨量2113V S S Vhkl =⨯=跑步时淋雨量222415V S S Vhkl =⨯= 由此可得,淋雨量12V V <,跑步时淋雨量小.4.结论:由上述可知,在雨中跑步时,淋雨量较小。
人在雨中奔跑的速度与淋雨量的关系摘要:本文通过分析人在雨中奔跑的速度与淋雨量之间存在的关联,针对不同的降雨方向,将人简化为长方体模型,建立了奔跑速度与总淋雨量的优化模型。
针对问题一,假设雨水淋遍全身且不考虑雨的方向,通过简单的模型分析得到跑完全程的总淋雨量。
针对问题二,考虑雨从迎面打来,雨线方向与奔跑方向在同一铅直平面,通过分析淋雨部位、竖直方向雨速和水平方向雨相对于人的速度,建立了总淋雨量的模型,又对模型进行了函数的单调性分析,得知总淋雨量最少时奔跑速度最大。
针对问题三,考虑雨从后面打来,雨线方向与奔跑方向在同一铅直平面,通过分析淋雨部位、竖直方向速度和水平方向上的相对速度,针对不同情况,建立了总淋雨量的模型,又对模型进行了函数单调性的分析讨论,得出了总淋雨量最少时的奔跑速度。
针对问题五,针对雨线方向与跑步方向不在同一平面内的情况,对雨速进行空间直角坐标分解,结合问题三,分析模型发生的变化。
关键词:跑步速度;总淋雨量;相对速度;单调性分析;矢量分解一、问题重述对于行人来说,下雨天最糟糕的情况莫过于出门在外雨伞没带。
在这种情况下,人们习惯用快跑来摆脱困境。
归根结底,“跑得越快淋雨就越少”的观点只是一种感性认识。
因此,考虑通过建模来科学分析两者之间的关系。
对于下列四个问题,分别给出奔跑速度与淋雨量之间的定性分析。
问题1:在不考虑雨线方向的情况下,计算以最大速度跑完全程的淋雨量。
问题2:考虑雨从迎面打来,且与跑步方向在同一铅直面上,雨线与人体的夹角为α。
建立总淋雨量与奔跑速度的模型,进而求总淋雨量最少时的速度。
问题3:考虑雨从背面打来,且与跑步方向在同一铅直面上,雨线与人体的夹角为β。
建立总淋雨量与奔跑速度的模型,进而求总淋雨量最少时的速度。
问题5:考虑雨线方向与跑步不在同一铅直面上时,模型的变化。
二、问题分析问题1,将人简化为长方体模型,不考虑雨的方向,设降雨淋遍全身,分析人的淋雨面积共五个面分别为前面、背部、顶部、左侧面和右侧面。
论文题目:淋雨量与人在雨中奔跑速度的关系目录一.摘要 ................................................................................二.问题的重述....................................................................三.问题分析 .........................................................................四.建模假设 .........................................................................五.模型的建立......................................................................六.模型的评价......................................................................七.参考文献 .........................................................................一.摘要本模型是研究人的淋雨量与人在雨中奔跑的速度的关系。
由于人在雨中行走的过程比较复杂,我们只能将人体简化为一个长方体建立模型,进行讨论。
本题中采用了优化模型,通过将人分为几个平面,分别求得各个平面所接受的淋雨量,然后求其加和的方法求解。
在问题一中,因为已经假设降雨淋遍全身,且人以最大的速度跑步。
所以根据已知条件,直接列出方程进行求解。
在问题二中,我们利用最优化原理,建立出一个动态规划模型。
雨迎面吹来,雨线方向与跑步方向在同一平面,人淋雨面积为前方和头顶面积之和。
在雨中被淋雨量与行进速度的关系探究鲁妙然提要:本文通过建立模型,简要分析了在雨中被淋雨量与行进速度的关系,希望对生活有所帮助。
关键词:小尺度,雨滴流密度面积分,对时间函数正文:1.引言生活中我们经常遇到这样的情况:外面在下雨,我们没带伞但又必须冒雨经过一段路程,这就让我产生了一个疑问:在雨中究竟是跑步淋到的雨少还是走路淋到的雨少?对于同一段路程,跑步花的时间短,但单位时间内淋的雨量可能更多。
本文试对该问题做一个相对具体的分析。
2.建立流密度场模型首先我们要建立一个模型,实际生活中由于风受地形,温度,气压影响较大,情况很复杂,所以本文只讨论在一块较为平坦的区域,行进路线为直线,且区域内没有剧烈气温、气压变化的情况,并且降雨量同一时刻在所选区域内处处相同。
一般冒雨出行距离不会太远,大约在几百米左右,这个距离小于小尺度天气系统最低尺度,所以可认为在该区域内不同地点同一时刻风向一致(当然若正好处在天气系统边界上就可能会不一致,但所选区域尺度极小,所以恰好处在天气系统边界上概率不大)。
我们定义“雨滴流密度”:即在空间中某点附近单位时间内通过垂直于该处雨滴运动方向的面积微元的某一指定尺寸的雨滴数目与面积的比值,用字母j 表示,有v n v dsnds j ==,其中v 是在该处附近雨滴的速度,n 是该处附近雨滴的数密度。
(这个定义参照电流密度)。
需注意的是同一位置同一时刻的n 是雨滴直径的函数,及不同大小的雨滴数密度是不同的,下面的分析中我们只讨论某一确定大小雨滴(认为尺寸与之差异微小的的雨滴看作尺寸与之相同)的情况,因为不同大小的雨滴对该问题的情况是相同的。
所有尺寸雨滴的总淋雨点数N 乘以每个水滴的含水量求和()(ρV N V ⋅∑)即得总淋雨量。
后面的讨论中主要是对水滴的水平速度做分析,而不同尺寸雨滴水平分速度差异并不大,因为一般的雨滴直径最大不超过5mm ,所以均认为等于水平风速,所以只需讨论一种尺寸的雨滴行为,就可以代表全部了。
人在雨中奔跑速度与淋雨量问题班级:数学(2)班 学号:1107022037 姓名:张柯摘要 在雨速和方向都不变的情形下讨论雨中行走问题,分析人体在雨中行走时淋雨多少与行走速度、降雨方向等因素的关系,建立相应的数学模型,使得被雨水淋湿的程度最低.得出不考虑雨的方向,淋雨总量(22)/Q wd ab ac bc =++v .即人走的越快淋雨量越少.因此在这种情况下应以最大速度行走.考虑风向时[cos (sin )]bpd Q uc a u v vθθ=++.当夹角θ一定,淋雨量Q 随着v 的变大而变小,即人走的越快淋雨量越少. 关键词 淋雨量,数学模型,最优淋雨量正文1 问题的提出1.1 不考虑雨的方向,设降雨淋遍全身,以最大速度跑步,估计跑完全程的淋雨量.1.2 雨从迎面吹来,雨线与跑步方向在同一平面内,且与人体夹角为θ,跑步速度v 为多大时淋雨量最小.2 合理假设2.1 假设人在雨中沿直线的方向奔跑且匀速.2.2 假设雨的速度为常数、雨的方向及降雨量即降雨强度不变.2.3 假设风速和风向保持不变.2.4 假设不考虑人表面不平整和衣服的原因对雨水的吸收量,将人 体简化为一长方体.2.5 假设雨线方向与人跑步方向在同一平面内.2.6 变量的限定表一变量表3 模型的构建3.1 不考虑雨方向淋雨总量模型图 1 雨水与人关系模型图不考虑雨的方向,如图1人以最大的速度奔跑,雨淋遍全身.前后面及两侧面与上面受淋雨面积分别为2ab,2ac,bc.淋雨的总面积22=,在雨中历经的时间w cm hS ab ac bc=++,降雨量2/t=/d v,淋雨总量为=Q Swt故=++v(1)(22)/Q wd ab ac bc3.2 考虑风向淋雨总量模型雨迎面吹来,雨线方向与行走方向在同一平面内且与人体夹角为θ,如图2所示.根据实际情况估计人体淋雨可分为头顶和前左右几个方向上.雨迎面吹来时,由于雨相对于人的速度有变化,因此人单位时间内接收雨量变化,且与相对速度成正比.据此,推算出前后侧上单位时间接受雨量.同理,头顶部位接雨量与雨速垂直于头顶平面的分速度成正比.分别计算出头顶侧与前侧单位时间接雨量,并分别乘以各自面积以及时间d v,从而得到头顶及两侧淋雨的总量.即人体总的淋雨量.据此可得Q 与v 之间关系.图 2 雨水与人关系模型图顶部淋雨量为顶部淋雨面积bc 与降雨强度pu 以及淋雨时间d v的乘积,故1Q =c o s d b c p u v θ (2) 前方淋雨量为前侧淋雨面积ba 与降雨强度(sin )p u v θ+以及淋雨时间d v的乘积,故 2Q =(s i n )d b a p u v vθ+ (3) 因此,淋雨总量c o s (s i n )d d Q bcpu bap u v v v θθ=++ [c o s (s i n )]bpd Q uc a u v vθθ=++ (4)4 模型的求解4.1 不考虑降雨方向的情况下,将100d =米,最大速度为max 5/v m s =,雨速为4/u m s =,降雨量为2/w cm h =带入,则跑完全程的淋雨量为Q 0.002(22)/3ab ac bc =++ (5)4.2 考虑降雨方向即风向,其模型应用了雨滴速度的分解及相对运动速度的概念,得出总的淋雨量为c o s (s i n )d d Q bcpu bap u v v v θθ=++ (6) [cos (sin )]bpd Q uc a u v vθθ=++ (7)其中假设夹角θ一定,淋雨量Q 随着v 的变大而变小,即人走的越快淋雨量越少.5 结果分析5.1 根据不考虑雨的方向,雨淋遍全身即人的前面、后面 、左面、右面和上面淋雨建立了相应的模型.(22)/Q Swt wd ab ac bc v ==++ (8)从模型中可以看出淋雨总量Q 随着v 的变大而变小,即人走越快淋雨量越小.5.2 雨迎面吹来,雨线方向与行走方向在同一平面内且与人体夹角为θ,应用雨滴速度的分解及相对运动速度的概念建立了相应的数学模型.cos (sin )[cos (sin )]d d Q bcpu bap u v v vbpd Q uc a u v v θθθθ=++=++ (9)其中假设夹角 一定,淋雨量Q随着v的变大而变小,即人走的越快淋雨量越少.6 模型的评价通过对题目的分析求解,可知道人在雨中奔跑的淋雨量不仅与跑步速度有关,还与雨线与人跑步方向的夹角,雨速以及人跑步速度等因素有关.文章中并未对雨从背面吹来的情况进行研究,建出相应的模型.,文章还忽略了降雨密度不均匀,风向不稳定等次要因素,以便更好的对问题进行分析和研究.但在实际问题中的限制性因素远远超过这些,因此文章的分析方法仍存在一定的局限性,有待改进和提高.参考文献[1] 刘锋.葛照强.数学建模[M].南京:南京大学出本社,2005.[2]全国大学生数学建模竞赛组委会.全国大学生数学建模竞赛优秀论文汇编[C].北京:中国物价出版社,2002.[3] 党林立.孙晓群.主编数学建模简明教程[M]西安电子科技大学出版社.。
---------------------------------------------------------------最新资料推荐------------------------------------------------------雨中行走问题一雨中行走问题一个雨天,你有件急事需要从家中到学校去,学校离家不远,仅一公里,况且事情紧急,你来不及花时间去翻找雨具,决定碰一下运气,顶着雨去学校。
假设刚刚出发雨就大了,但你不打算再回去了,一路上,你将被大雨淋湿。
一个似乎很简单的事情是你应该在雨中尽可能地快走,以减少雨淋的时间。
但如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。
试建立数学模型来探讨如何在雨中行走才能减少淋雨的程度。
1/ 271 建模准备建模目标:在给定的降雨条件下,设计一个雨中行走的策略,使得你被雨水淋湿的程度最小。
主要因素:淋雨量,降雨的大小,降雨的方向(风),路程的远近,行走的速度2 模型假设及符号说明1)把人体视为长方体,身高 h 米,宽度 w米,厚度 d米。
淋雨总量用 C 升来记。
2)降雨大小用降雨强度 I 厘米/时来描述,降雨强度指单位时间平面上的降下水的厚度。
在这里可视其为一常量。
3)风速保持不变。
4)你一定常的速度 v 米/秒跑完全程 D米。
---------------------------------------------------------------最新资料推荐------------------------------------------------------3 模型建立与计算1)不考虑雨的方向,此时,你的前后左右和上方都将淋雨。
淋雨的面积 S ? 2wh ? 2dh ? wd 雨中行走的时间 t ?(米2 )D (秒) v降雨强度 I (厘米/时) ? 0.01I (米/时) ? (0.01 / 3600 ) I (m / s)C ? t ? ( I / 3600 ) ? 0.01 ? S (米3 ) ? 10( D / v) ? I / 3600 ? S(升)模型中 D, I , S为参数,而v为变量。
对雨中人跑步淋雨量问题的探讨摘要:当人在雨中跑步,要使得在一定的距离内跑步的淋雨量最小,速度需要取到一定的合适值。
该模型属于优化模型。
针对问题1,直接给出了人的跑步速度以及雨的速度和方向,故直接使用公式ωst Q =计算即可。
针对问题2,雨从迎面吹来,与人成一定的角度,我们将雨的速度分解为水平方向和垂直的方向,那么人的淋雨面只有顶部和迎面的那个面,这样,我们分别计算两个面的淋雨量,再利用数学对淋雨量Q 关于v 进行求导,可以得出Q 随着v 的增大而减小,于是当s m v v m /5==时,Q 取到最小值,再代入当︒=0θ时,可得到L Q 15.1≈;当︒=30θ时,可得L Q 55.1≈。
针对问题3,雨从背面吹来,与问题2类似,不同的只是雨从背面吹来,采取同样的方法,将雨的速度分解,而此时人的淋雨面只有顶部和背面的淋雨面,但不同的是需要考虑雨速的水平速度αsin u 与人的跑步速度v 的大小关系,我们可以分别得到当v u ≥αsin 和v u <αsin 时的Q 与v 的关系(见(3.3-6)),再考虑雨线方向α对Q 的影响,利用数学对淋雨量Q 关于v 进行求导可以得出当ac>αtan ,αsin u v =时,总淋雨量Q 最小;当s m v v m /5==,总淋雨量Q 最小。
针对问题4,使用MATLAB 画图工具对式(3.3-6)画图即可。
针对问题5,与问题2和3的本质一样,只是需要对雨速v 分解成3个方向的量,淋雨面积也多求一个面即可。
最后,对模型的建立客观的分析了优点和缺点。
关键词:淋雨量 优化模型 速度分解 数学求导与画图1.问题重述要在雨中从一处沿直线跑到另一处,若雨速为常数且方向不变,试建立数学模型讨论是否跑的越快,淋雨量越少。
将人体简化成一个长方体,高m a 5.1=,宽 1.5m b =,厚0.2m =c 。
设跑步距离1000m =d ,跑步最大速度s m /5v m =,降雨量2cm/h =ω,记跑步速度为v .按以下步骤进行讨论.1.不考虑雨的方向,设降雨量淋遍全身,以最大速度跑步。
在雨中应如何行走才能减少淋雨摘要本文通过对人在雨中行走时雨落的四种方式判定怎么行走才能减少淋雨量:(1) 若雨是垂直落下的,应以最大的速度奔跑(2)若人行走的方向是顺风,应以雨速水平分量的速度行走,以便使雨相对于你是垂直下落(3) 若人行走的方向是逆风方向,应以最大的速度向前跑(4) 若人行走的方向是侧边面对雨,应以最大的速度向前跑【关键字】淋雨量行人速度雨速方向奔跑的速度一、问题重述建一模型说明当你在雨中行走又想少淋雨时,应当如下做:(1) 若你行走的方向是顺风且雨的夹角至少为多少,你应以雨速水平分量的速度行走,以便使雨相对于你是垂直下落的(2)在其他情况下,你都应以最快的速度行走二、问题的分析人在雨中行走时可能出现以下四种情形:1、雨垂直下落,人以速度v前行,此时雨只能淋到头上和前面(如图1所示)2、雨背面吹来,雨线与跑步方向在同一平面内,与人的行走速度夹角为θ,此时正面淋不到雨(如图2所示)3、雨从正面吹来,雨线方向与跑步方向在同一平面内,与人的行走速度夹角为θ,此时背面和侧面淋不到雨(如图3所示)4、雨从侧面吹来,雨与跑步的方向不在同一平面,与人行走速度的夹角为θ,此时背面与另一侧面淋不到雨(如图)因为人在雨中前行的时候,人和雨相对地面都是运动的,故知人与雨是相对运动的。
为此我们选择人作为参考系,再考虑雨的相对速度及其与人体方向(即与人体夹角θ)对总淋雨量的影响。
三、基本假设与符号说明1 将人体看成一个长方体。
2 雨速为常数且方向不变,风向与风速不变。
3 降雨量为一定值。
4 人行走的距离是有限的。
四、符号说明:h: 身高b: 厚度a: 宽度r: 雨速Q: 总淋雨量d: 跑步距离v: 跑步速度: 雨与人的夹角s:有效淋雨面积p:雨滴的密度v: 跑步最大速度mI: (cm/h)降雨强度(指单位时间平面上的降下水的厚度 )五、模型的建立与求解1、雨垂直下落,此时人的头部和前面被淋。
淋湿的面积为s=ab+bh(2m)人在雨中行走的时间 t=d/v(s)则淋雨量Q=vbh ab drp )(+结论:由Q=vIsd 知,此时速度越快,淋雨量越少2、雨背面吹来,雨线与跑步方向在同一平面内,与人的速度夹角为θ,若记雨滴下速度为r (米/秒),雨滴的密度为p ,p<=1,则I=rp ,此时的淋雨量为Q=Q1+Q2 顶部的淋雨量Q1=vsin θdabpr背面的淋雨量Q2=vv r dbhp )cos (-θQ=Q1+Q2=vv r h ar dbp ))cos (sin (-+θθ……….(a)(1) 当v<=rcos θ此时对(a )式关于v 求导可得2)cos sin (vhr ar dbp vQ θθ+-=∂∂,可知v 越大,淋雨量Q 越小,又因为v<=rcos θ,故知当v=rcos θ时,Q 最小; (2)当v>=rcos θ即当行走速度快于雨滴的水平速度,你不断地追赶雨滴,雨水将淋湿你的前胸。
雨中行走问题(数学问题解决)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN科目:数学问题解决摘要:雨天,你有件急事需要从家中到学校去,学校离家不远,仅有一公里,况且事情紧急,你不准备花时间翻找雨具,决定碰一下运气,顶着雨去学校。
假设刚刚出发雨就大了,但你也不打算再回去了。
一路上,你将被大雨淋湿。
一个似乎很简单的事实是你应该在雨中尽可能地快走,以减少雨淋的时间。
但是如果考虑到降雨方向的变化,在全部距离上尽力地快跑不一定是最好的策略。
通过建立数学模型来探讨如何在雨中行走才能减少淋雨的程度,分别从雨与人的方向以及是否在同一平面等情况找出如何在雨中行走才能淋雨最少。
一.问题的提出对于雨中行走这个实际的问题,它的背景是简单的,人人皆知无需进一步讨论。
我们的问题是:要在给定的降雨条件下,设计一个雨中行走的策略,使得你被雨水淋湿的程度最低。
显然它可以按确定性模型处理。
分析参与这一问题的因素,主要有:①降雨的大小;②风(降雨)的方向;③路程的远近与你跑的快慢。
二、模型假设1、降雨的速度(即雨滴下落速度)和降水强度(单位时间平面上降下雨水的厚度)保持不变;2、你以定常的速度跑完全程;3、风速始终保持不变;4、把人体看成一个长方体的物体;三、模型的建立与求解1、不考虑降雨的角度的影响即在你行走的过程中身体的前后左右和上方都将淋到雨水。
参数与变量::d雨中行走的距离;t雨中行走的时间;::v雨中行走的速度;:a你的身高;:b你的宽度;:c你的厚度;:q你身上被淋的雨水的总量;:w降水强度(降雨的大小,即单位时间平面上降下雨水的厚度,厘米/时)行走距离d,身体尺寸不变,从而身体被雨淋的面积22s ba ca bc=++是不变的,可认为是问题的参数。
雨中行走的速度v,从而在雨中行走的时间/t d v=及降雨强度的大小在问题中是可以调节、分析的,是问题中的变量。
考虑到各参数取值单位的一致性,可得在整个雨中行走期间整个身体被淋的雨水的总量是:()3(/3600)0.01()/(/3600)10() q t w S d v w S=⋅⋅⋅=⋅⋅⋅米升模型中的参数可以通过观测和日常的调查资料得到。