垂直相交圆柱体的相交部分的体积
- 格式:ppt
- 大小:1.28 MB
- 文档页数:5
学科培优 数学 圆柱、圆锥、球体 学生姓名授课日期 教师姓名授课时长 知识定位 立体图形,主要考点集中在不规则形体的表面积与体积计算。
其中有自成一类的“染色问题”,也是经常见到的“几何奥数题”。
小学阶段,我们除了学习平面图形外,还认识了一些简单的立体图形,如长方体、正方体(立方体)、直圆柱体,直圆锥体、球体等,并且知道了它们的体积、表面积的计算公式,本讲重点讲解立体图形中的圆柱、圆锥和球体。
重难点在于:1.圆柱、圆锥和球体的表面积和体积计算。
2.间接利用或逆用公式求解圆柱圆锥球体中的其它量。
3.圆柱圆锥球体等立体图形的组合图形主要的考点是:1.常见较复杂的组合图形计算。
2.灵活运用公式求解体积表面积外的其余量知识梳理一、圆柱、圆锥、球体圆柱体:如右图,圆柱体的底面是圆,其半径为r ;圆柱体的侧面展开图是一个长方形,长方形的宽相当于圆柱体的高,长相当于圆柱体的底面周长。
圆柱体的表面积:S 圆柱=侧面积+2个底面积=2πrh+2πr 2。
圆柱体的体积:2V r h π=圆柱圆锥体:如右图,圆锥体的底面是圆,其半径为r ;圆锥体r的侧面展开图是一个扇形。
圆锥体的体积:213V r h π=圆锥体 球体:343V r π=球体 求圆柱体的表面积.一般的方法是先求出圆柱体的侧面积,然后再加上圆柱的两个底面积。
求圆锥体的表面积需要先求出侧面积(扇形),再求出底面积(圆),两者相加即可。
例题精讲【试题来源】【题目】一个底面半径的是5厘米.高是15厘米的圆柱体,试求出它的表面积。
【试题来源】【题目】一段圆柱体木料,如果截成两段,它的表面积增加25.12平方厘米;如果沿着直径劈成两个半圆柱体,它的表面积将增加100平方厘米。
求圆柱体的表面积。
【试题来源】【题目】一个圆柱体的体积是50.24立方厘米,底面半径是2厘米。
将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米? (π=3.14)【试题来源】【题目】已知圆柱体的高是10厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了40平方厘米,求圆柱体的体积.(3π=)【试题来源】【题目】一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.【试题来源】【题目】兰州来的马师傅擅长做拉面,拉出的面条很细很细,他每次做拉面的步骤是这样的:将一个面团先搓成圆柱形面棍,长1.6米.然后对折,拉长到1.6米;再对折,拉长到1.6米……照此继续进行下去,最后拉出的面条粗细(直径)仅有原先面棍的164.问:最后马师傅拉出的这些细面条的总长有多少米?(假设马师傅拉面的过程中.面条始终保持为粗细均匀的圆柱形,而且没有任何浪费)【试题来源】【题目】一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积是_________。
专题28空间几何体的结构特征、表面积与体积【考点预测】知识点一:构成空间几何体的基本元素—点、线、面(1)空间中,点动成线,线动成面,面动成体.(2)空间中,不重合的两点确定一条直线,不共线的三点确定一个平面,不共面的四点确定一个空间图形或几何体(空间四边形、四面体或三棱锥).知识点二:简单凸多面体—棱柱、棱锥、棱台1.棱柱:两个面互相平面,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.(1)斜棱柱:侧棱不垂直于底面的棱柱;(2)直棱柱:侧棱垂直于底面的棱柱;(3)正棱柱:底面是正多边形的直棱柱;(4)平行六面体:底面是平行四边形的棱柱;(5)直平行六面体:侧棱垂直于底面的平行六面体;(6)长方体:底面是矩形的直平行六面体;(7)正方体:棱长都相等的长方体.2.棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.(1)正棱锥:底面是正多边形,且顶点在底面的射影是底面的中心;(2)正四面体:所有棱长都相等的三棱锥.3.棱台:用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台,由正棱锥截得的棱台叫做正棱台.简单凸多面体的分类及其之间的关系如图所示.知识点三:简单旋转体—圆柱、圆锥、圆台、球1.圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的几何体叫做圆柱.2.圆柱:以直角三角形的一条直角边所在的直线为旋转轴,将其旋转一周形成的面所围成的几何体叫做圆锥.3.圆台:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.4.球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称为球(球面距离:经过两点的大圆在这两点间的劣弧长度).知识点四:组合体由柱体、锥体、台体、球等几何体组成的复杂的几何体叫做组合体.知识点五:表面积与体积计算公式表面积公式体积公式1.斜二测画法斜二测画法的主要步骤如下:(1)建立直角坐标系.在已知水平放置的平面图形中取互相垂直的Ox ,Oy ,建立直角坐标系. (2)画出斜坐标系.在画直观图的纸上(平面上)画出对应图形.在已知图形平行于x 轴的线段,在直观图中画成平行于''O x ,''O y ,使45'''∠=x O y (或135),它们确定的平面表示水平平面.(3)画出对应图形.在已知图形平行于x 轴的线段,在直观图中画成平行于'x 轴的线段,且长度保持不变;在已知图形平行于y 轴的线段,在直观图中画成平行于'y 轴,且长度变为原来的一般.可简化为“横不变,纵减半”.(4)擦去辅助线.图画好后,要擦去'x 轴、'y 轴及为画图添加的辅助线(虚线).被挡住的棱画虚线. 注:4. 2.平行投影与中心投影平行投影的投影线是互相平行的,中心投影的投影线相交于一点.【题型归纳目录】题型一:空间几何体的结构特征 题型二:空间几何体的表面积与体积 题型三:直观图 题型四:最短路径问题 【典例例题】题型一:空间几何体的结构特征例1.(2022·全国·模拟预测)以下结论中错误的是( ) A .经过不共面的四点的球有且仅有一个 B .平行六面体的每个面都是平行四边形 C .正棱柱的每条侧棱均与上下底面垂直 D .棱台的每条侧棱均与上下底面不垂直例2.(2022·全国·高三专题练习(文))下列说法正确的是( ) A .经过三点确定一个平面B .各个面都是三角形的多面体一定是三棱锥C .各侧面都是正方形的棱柱一定是正棱柱D .一个三棱锥的四个面可以都为直角三角形例3.(2022·海南·模拟预测)“三棱锥P ABC -是正三棱锥”的一个必要不充分条件是( ) A .三棱锥P ABC -是正四面体 B .三棱锥P ABC -不是正四面体 C .有一个面是正三角形 D .ABC 是正三角形且PA PB PC ==例4.(2022·全国·高三专题练习)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②有一个面是多边形,其余各面都是三角形的几何体是棱锥;③直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ④棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( ) A .0 B .1C .2D .3例5.(2022·山东省东明县第一中学高三阶段练习)下列说法正确的是( ) A .有两个面平行,其余各面都是平行四边形的几何体叫棱柱 B .过空间内不同的三点,有且只有一个平面 C .棱锥的所有侧面都是三角形D .用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台例6.(2022·全国·高三专题练习)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥; ③棱台的上、下底面可以不相似,但侧棱长一定相等. 其中正确命题的个数是( ) A .0 B .1C .2D .3例7.(2022·全国·高三专题练习)莱昂哈德·欧拉,瑞士数学家和物理学家,近代数学先驱之一,他的研究论著几乎涉及到所有数学分支,有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的.欧拉发现,不论什么形状的凸多面体,其顶点数V 、棱数E 、面数F 之间总满足数量关系2,V F E +-=,此式称为欧拉公式,已知某凸32面体,12个面是五边形,20个面是六边形,则该32面体的棱数为___________;顶点的个数为___________.例8.(2022·安徽·合肥一六八中学模拟预测(理))如图,正方体1AC 上、下底面中心分别为1O ,2O ,将正方体绕直线12O O 旋转360︒,下列四个选项中为线段1AB 旋转所得图形是( )A .B .C .D .例9.(多选题)(2022·全国·高三专题练习)如图所示,观察四个几何体,其中判断正确的是( )(多选)A .①是棱台B .②是圆台C .③是棱锥D .④是棱柱例10.(2022·陕西·西北工业大学附属中学高三阶段练习(理))碳60(60C )是一种非金属单质,它是由60个碳原子构成的分子,形似足球,又称为足球烯,其结构是由五元环(正五边形面)和六元环(正六边形面)组成的封闭的凸多面体,共32个面,且满足:顶点数-棱数+面数=2.则其六元环的个数为__________.【方法技巧与总结】 熟悉几何体的基本概念.题型二:空间几何体的表面积与体积例11.(多选题)(2022·湖北·高三阶段练习)折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧,DE AC 所在圆的半径分别是3和9,且120ABC ∠=,则该圆台的( )A .高为BC .表面积为34πD .上底面积、下底面积和侧面积之比为1:9:22例12.(2022·青海·海东市第一中学模拟预测(理))设一圆锥的侧面积是其底面积的3倍,则该圆锥的高与母线长的比值为( )A .89B C D .23例13.(2022·云南·二模(文))已知长方体1111ABCD A B C D -的表面积为62,所有棱长之和为40,则线段1AC 的长为( )A B C D例14.(2022·福建省福州第一中学三模)已知AB ,CD 分别是圆柱上、下底面圆的直径,且AB CD ⊥,.1O ,O 分别为上、下底面的圆心,若圆柱的底面圆半径与母线长相等,且三棱锥A BCD -的体积为18,则该圆柱的侧面积为( ) A .9π B .12π C .16π D .18π例15.(2022·河南·模拟预测(文))在正四棱锥P ABCD -中,AB =P ABCD -的体积是8,则该四棱锥的侧面积是( )AB .C .D .例16.(2022·全国·高三专题练习)《九章算术》中将正四棱台体(棱台的上下底面均为正方形)称为方亭.如图,现有一方亭ABCD EFHG -,其中上底面与下底面的面积之比为1:4,方亭的高h EF =,BF =,方亭的四个侧面均为全等的等腰梯形,已知方亭四个侧面的面积之和 )A .24B .643C .563D .16例17.(2022·湖南·高三阶段练习)如图,一种棱台形状的无盖容器(无上底面1111D C B A )模型其上、下底面均为正方形,面积分别为24cm ,29cm ,且1111A A B B C C D D ===,若该容器模型的体积为319cm 3,则该容器模型的表面积为( )A .()29cmB .219cmC .()29cmD .()29cm例18.(2022·海南海口·二模)如图是一个圆台的侧面展开图,其面积为3π,两个圆弧所在的圆半径分别为2和4,则该圆台的体积为( )A B C D例19.(2022·全国·高三专题练习)圆台上、下底面的圆周都在一个直径为10的球面上,其上、下底面的半径分别为4和5,则该圆台的侧面积为( )A .B .C .D .例20.(2022·河南安阳·模拟预测(文))已知圆柱12O O 的底面半径为1,高为2,AB ,CD 分别为上、下底面圆的直径,AB CD ⊥,则四面体ABCD 的体积为( ) A .13B .23C .1D .43例21.(2022·山东·烟台市教育科学研究院二模)鲁班锁是我国传统的智力玩具,起源于中国古代建筑中的榫卯结构,其内部的凹凸部分啮合十分精巧.图1是一种鲁班锁玩具,图2是其直观图.它的表面由八个正三角形和六个正八边形构成,其中每条棱长均为2.若该玩具可以在一个正方体内任意转动(忽略摩擦),则此正方体表面积的最小值为________.例22.(2022·湖北省天门中学模拟预测)已知一个圆柱的体积为2 ,底面直径与母线长相等,圆柱内有一个三棱柱,与圆柱等高,底面是顶点在圆周上的正三角形,则三棱柱的侧面积为__________.例23.(2022·上海闵行·二模)已知一个圆柱的高不变,它的体积扩大为原来的4倍,则它的侧面积扩大为原来的___________倍.例24.(2022·浙江绍兴·模拟预测)有书记载等角半正多面体是以边数不全相同的正多边形为面的多面体,如图,将正四面体沿相交于同一个顶点的三条梭上的3个点截去一个正三棱锥,如此共截去4个正三棱锥,若得到的几何体是一个由正三角形与正六边形围成的等角半正多面体,且正六边形的面积为2,则原正四面体的表面积为_________.例25.(2022·上海徐汇·三模)设圆锥底面圆周上两点A、B间的距离为2,圆锥顶点到直线ABAB和圆锥的轴的距离为1,则该圆锥的侧面积为___________.例26.(2022·全国·高三专题练习)中国古代的“牟合方盖”可以看作是两个圆柱垂直相交的公共部分,计算其体积所用的“幂势即同,则积不容异”是中国古代数学的研究成果,根据此原理,取牟合方盖的一半,其体积等于与其同底等高的正四棱柱中,去掉一个同底等高的正四棱锥之后剩余部分的体积(如图1所示).现将三个直径为4的圆柱放于同一水平面上,三个圆柱的轴所在的直线两两成角都相等,三个圆柱的公共部分为如图2,则该几何体的体积为___________.【方法技巧与总结】熟悉几何体的表面积、体积的基本公式,注意直角等特殊角. 题型三:直观图例27.(2022·全国·高三专题练习)如图,已知用斜二测画法画出的ABC 的直观图是边长为a 的正三角形,原ABC 的面积为 __.例28.(2022·浙江·镇海中学模拟预测)如图,梯形ABCD 是水平放置的一个平面图形的直观图,其中45ABC ∠=︒,1AB AD ==,DC BC ⊥,则原图形的面积为( )A .1B .2C .2D .1例29.(2022·全国·高三专题练习)如图,△ABC 是水平放置的△ABC 的斜二测直观图,其中2O C O A O B ''''''==,则以下说法正确的是( )A .△ABC 是钝角三角形B .△ABC 是等边三角形C .△ABC 是等腰直角三角形D .△ABC 是等腰三角形,但不是直角三角形例30.(2022·全国·高三专题练习)如图,水平放置的四边形ABCD 的斜二测直观图为矩形A B C D '''',已知2,2A O O B B C =='''''=',则四边形ABCD 的周长为( )A .20B .12C .8+D .8+例31.(2022·全国·高三专题练习(文))如图,已知等腰直角三角形O A B '''△,O A A B ''''=是一个平面图形的直观图,斜边2O B ''=,则这个平面图形的面积是( )A B .1 C D .例32.(2022·全国·高三专题练习)一个三角形的水平直观图在x O y '''是等腰三角形,底角为30,腰长为2,如图,那么它在原平面图形中,顶点B 到x 轴距离是( )A .1B .2CD .【方法技巧与总结】斜二测法下的直观图与原图面积之间存在固定的比值关系:S 直原. 题型四:最短路径问题例33.(多选题)(2022·广东广州·三模)某班级到一工厂参加社会实践劳动,加工出如图所示的圆台12O O ,在轴截面ABCD 中,2cm AB AD BC ===,且2CD AB =,则( )A .该圆台的高为1cmB .该圆台轴截面面积为2C 3D .一只小虫从点C 沿着该圆台的侧面爬行到AD 的中点,所经过的最短路程为5cm例34.(2022·河南洛阳·三模(理))在棱长为1的正方体1111ABCD A B C D -中,点E 为1CC 上的动点,则1D E EB +的最小值为___________.例35.(2022·黑龙江齐齐哈尔·二模(文))如图,在直三棱柱111ABC A B C -中,12,1,90AA AB BC ABC ===∠=︒,点E 是侧棱1BB 上的一个动点,则下列判断正确的有___________.(填序号)②存在点E ,使得1A EA ∠为钝角③截面1AEC 周长的最小值为例36.(2022·河南·二模(理))在正方体1111ABCD A B C D -中,2AB =,P 是线段1BC 上的一动点,则1A P PC +的最小值为________.例37.(2022·陕西宝鸡·二模(文))如图,在正三棱锥P ABC -中,30APB BPC CPA ∠=∠=∠=,4PA PB PC ===,一只虫子从A 点出发,绕三棱锥的三个侧面爬行一周后,又回到A 点,则虫子爬行的最短距离是___________.例38.(2022·安徽宣城·二模(理))已知正四面体ABCD 的棱长为2,P 为AC 的中点,E 为AB 中点,M 是DP 的动点,N 是平面ECD 内的动点,则||||AM MN +的最小值是_____________.例39.(2022·新疆阿勒泰·三模(理))如图,圆柱的轴截面ABCD 是一个边长为4的正方形.一只蚂蚁从点A 出发绕圆柱表面爬到BC 的中点E ,则蚂蚁爬行的最短距离为( )A .B .C .D例40.(2022·云南·昆明一中高三阶段练习(文))一竖立在水平地面上的圆锥形物体,一只蚂蚁从圆锥底面圆周上一点P 出发,绕圆锥表面爬行一周后回到P 点,已知圆锥底面半径为1,母线长为3,则蚂蚁爬行的最短路径长为( )A .3B .C .πD .2π【方法技巧与总结】此类最大路径问题:大胆展开,把问题变为平面两点间线段最短问题. 【过关测试】一、单选题1.(2022·河北·高三阶段练习)已知圆锥的高为1,则过此圆锥顶点的截面面积的最大值为( )A .2B .52C D .32.(2022·全国·模拟预测(文))若过圆锥的轴SO 的截面为边长为4的等边三角形,正方体1111ABCD A B C D -的顶点A ,B ,C ,D 在圆锥底面上,1A ,1B ,1C ,1D 在圆锥侧面上,则该正方体的棱长为( )A .B .C .(2D .(23.(2022·全国·高三专题练习)已知圆锥的轴截面是等腰直角三角形,且面积为4,则圆锥的体积为( ) A .43 B .43πC .83D .83π4.(2022·广东深圳·高三阶段练习)通用技术老师指导学生制作统一规格的圆台形容器,用如图所示的圆环沿虚线剪开得到的一个半圆环(其中小圆和大圆的半径分别是1cm 和4cm )制作该容器的侧面,则该圆台形容器的高为( )AB .1cmCD 5.(2022·全国·高三专题练习)已知一个直三棱柱的高为2,如图,其底面ABC 水平放置的直观图(斜二测画法)为A B C ''',其中1O A O B O C ''''''===,则此三棱柱的表面积为( )A.4+B .8+C .8+D .8+6.(2022·湖北·天门市教育科学研究院模拟预测)已知某圆锥的侧面积为的半径为( ) A .2B .3C .4D .67.(2022·山西大同·高三阶段练习)正四棱台的上、下底面的边长分别为2、4,侧棱长为2,则其体积为( )A .56B C .D .5638.(2022·江西九江·三模(理))如图,一个四分之一球形状的玩具储物盒,若放入一个玩具小球,合上盒盖,可放小球的最大半径为r .若是放入一个正方体,合上盒盖,可放正方体的最大棱长为a ,则ra=( )A B .34C .2D .)3129.(2022·浙江湖州·模拟预测)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 10.(2022·全国·高三专题练习)南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔1485m .时,相应水面的面积为21400km .;水位为海拔1575m .时,相应水面的面积为21800km .,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔1485m .上升到1575m .2.65≈)( ) A .931.010m ⨯ B .931.210m ⨯C .931.410m ⨯D .931.610m ⨯二、多选题11.(2022·河北·高三阶段练习)如图,正方体1111ABCD A B C D -棱长为1,P 是1A D 上的一个动点,下列结论中正确的是( )A .BPB .PA PC +C .当P 在直线1AD 上运动时,三棱锥1B ACP -的体积不变D .以点B 1AB C 12.(2022·全国·高三专题练习)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =13.(2022·江苏·常州高级中学模拟预测)棱长为1的正方体1111ABCD A B C D -中,点P 为线段1A C 上的动点,点M ,N 分别为线段11A C ,1CC 的中点,则下列说法正确的是( ) A .11A P AB ⊥ B .三棱锥1M B NP -的体积为定值 C .[]160,120APD ∠∈︒︒D .1AP D P +的最小值为2314.(2022·湖北·高三阶段练习)折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧,DE AC 所在圆的半径分别是3和9,且120ABC ∠=,则该圆台的( )A .高为B .体积为3C .表面积为34πD .上底面积、下底面积和侧面积之比为1:9:22三、填空题15.(2022·全国·高三专题练习)已知一三角形ABCA B C '''(如图),则三角形ABC 中边长与正三角形A B C '''的边长相等的边上的高为______.16.(2022·上海·模拟预测)已知圆柱的高为4,底面积为9π,则圆柱的侧面积为___________;17.(2022·新疆·三模(理))已知一个棱长为a 的正方体木块可以在一个圆锥形容器内任意转动,若圆锥的底面半径为1,母线长为2,则a 的最大值为______.18.(2022·吉林长春·高三阶段练习(理))中国古代数学家刘徽在《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的立体为“牟合方盖”,如图(1)(2).刘徽未能求得牟合方盖的体积,直言“欲陋形措意,惧失正理”,不得不说“敢不阙疑,以俟能言者”.约200年后,祖冲之的儿子祖暅提出“幂势既同,则积不容异”,后世称为祖暅原理,即:两等高立体,若在每一等高处的截面积都相等,则两立体体积相等,如图(3)(4).已知八分之一的正方体去掉八分之一的牟合方盖后的剩余几何体与长宽高皆为八分之一正方体棱长的倒四棱锥“等幂等积”,祖暅由此推算出牟合方盖的体积.据此可知,若正方体的棱长为1,则其牟合方盖的体积为______. 四、解答题19.(2022·吉林·长春市第二实验中学高三阶段练习)如图,已知四棱锥P ABCD -中,PD ⊥平面ABCD ,且1,4,5AB DC AB DC PM PC ==∥.(1)求证:PA 平面MDB ;(2)当直线,PC PA 与底面ABCD 所成的角都为4π,且4,DC DA AB =⊥时,求出多面体MPABD 的体积.20.(2022·全国·南宁二中高三期末(文))图1是由矩形ABGF ,Rt ADE △和菱形ABCD 组成的一个平面图形,其中2AB =,1==AE AF ,60BAD ∠=︒,将该图形沿AB ,AD 折起使得AE 与AF 重合,连接CG ,如图2.(1)证明:图2中的C ,D ,E ,G 四点共面; (2)求图2中三棱锥C BDG -的体积.21.(2022·全国·高三专题练习)如图,三棱柱ABC -A 1B 1C 1中,已知AB ⊥侧面BB 1C 1C ,AB =BC =1,BB 1=2,∠BCC 1=60°.(1)求证:BC 1⊥平面ABC ;(2)E 是棱CC 1上的一点,若三棱锥E -ABC CE 的长.22.(2022·青海·海东市第一中学模拟预测(文))如图,在三棱柱111ABC A B C -中,112224AC AA AB AC BC =====,160BAA ∠=︒.(1)证明:平面ABC ⊥平面11AA B B .(2)设P 是棱1CC 上一点,且12CP PC =,求三棱锥111A PB C -体积.。
(名师选题)部编版高中数学必修二第八章立体几何初步知识集锦单选题1、如图所示,在三棱柱ABC−A1B1C1中,侧棱AA1⊥底面A1B1C1,∠BAC=90°,AB=AA1=1,D是棱CC1的中点,P是AD的延长线与A1C1的延长线的交点,若点Q在线段B1P上,则下列结论中正确的是().A.当点Q为线段B1P的中点时,DQ⊥平面A1BDB.当点Q为线段B1P的三等分点时,DQ⊥平面A1BDC.在线段B1P的延长线上,存在一点Q,使得DQ⊥平面A1BDD.不存在DQ与平面A1BD垂直答案:D分析:依据线面垂直性质定理,利用反证法即可否定选项ABC;按照点Q为线段B1P的中点和点Q不为线段B1P的中点两种情况利用反证法证明选项D判断正确.连接AB1,交A1B于H在三棱柱ABC−A1B1C1中,侧棱AA1⊥底面A1B1C1,AB=AA1=1,则四边形A1B1BA为正方形,则AB1⊥A1B又∠BAC=90°,即AB⊥AC,又AA1⊥AC,AB∩AA1=A,AA1⊂面A1B1BA,AB⊂面A1B1BA则AC⊥面A1B1BA,则AC⊥A1B又AB1⊥A1B,AB1∩AC=A,AB1⊂面AB1C,AC⊂面AB1C则A1B⊥面AB1C,选项A:当点Q为线段B1P的中点时,又D是棱CC1的中点,则DQ//AB1若DQ⊥平面A1BD,则AB1⊥平面A1BD又A1B⊥面AB1C,则面AB1C//平面A1BD,这与AB1∩A1B=H矛盾,故假设不成立,即当点Q为线段B1P的中点时,DQ⊥平面A1BD不正确;选项B:当点Q为线段B1P的三等分点时,又D是棱CC1的中点,则DQ//AB1不成立,即DQ与AB1为相交直线,若DQ⊥平面A1BD,则DQ⊥A1B又AB1⊥A1B,DQ与AB1为相交直线,AB1⊂面AB1P,DQ⊂面AB1P则A1B⊥面AB1P,又A1B⊥面AB1C,则面AB1P//面AB1C这与面AB1P∩面AB1C=AB1矛盾,故假设不成立,即当点Q为线段B1P的点三等分时,DQ⊥平面A1BD,不正确;选项C:在线段B1P的延长线上一点Q,又D是棱CC1的中点,则DQ//AB1不成立,即DQ与AB1为相交直线,若DQ⊥平面A1BD,则DQ⊥A1B又AB1⊥A1B,DQ与AB1为相交直线,AB1⊂面AB1P,DQ⊂面AB1P则A1B⊥面AB1P,又A1B⊥面AB1C,则面AB1P//面AB1C这与面AB1P∩面AB1C=AB1矛盾,故假设不成立,即在线段B1P的延长线上,存在一点Q,使得DQ⊥平面A1BD不正确;选项D:由选项A可知,点Q为线段B1P的中点时,DQ⊥平面A1BD不成立;假设点Q在线段B1P上,且不是中点,又D是棱CC1的中点,则DQ//AB1不成立,即DQ与AB1为相交直线,若DQ⊥平面A1BD,则DQ⊥A1B又AB1⊥A1B,DQ与AB1为相交直线,AB1⊂面AB1P,DQ⊂面AB1P则A1B⊥面AB1P,又A1B⊥面AB1C,则面AB1P//面AB1C这与面AB1P∩面AB1C=AB1矛盾,故假设不成立,即点Q在线段B1P上,且不是中点时,DQ⊥平面A1BD不正确;故不存在DQ与平面A1BD垂直.判断正确.故选:D2、下列空间图形画法错误的是()A.B.C.D.答案:D分析:根据空间图形画法:看得见的线画实线,看不见的线画虚线.即可判断出答案.D选项:遮挡部分应画成虚线.故选:D.3、一条直线和两条异面直线中的一条平行,则它和另一条的位置关系是()A.平行B.相交C.异面D.相交或异面答案:D分析:根据空间中两直线的位置关系,即可求解:如图(1)所示,此时直线a与直线b为异面直线,其中l//a,此时直线l与b为相交直线;如图(2)所示,此时直线a与直线b为异面直线,其中l//a,此时直线l与b为异面直线,综上,一条直线与两条异面直线中的一条平行,则它和另一条直线的位置关系是相交或异面. 故选: D.4、已知正四面体P −ABC 内接于球O ,点E 是底面三角形ABC 一边AB 的中点,过点E 作球O 的截面,若存在半径为√3的截面圆,则正四面体P −ABC 棱长的取值范围是( )A .[√2,√3]B .[√3,√6]C .[2√2,2√3]D .[2√3,2√6]答案:C分析:根据条件设正四面体的棱长为a ,用棱长a 表示出其外接球的半径R =√64a ,过E 点作外接球O 的截面,只有当OE ⊥截面圆所在的平面时,截面圆的面积最小,此时此时截面圆的半径为r =12a ,最大截面圆为过球心的大圆,半径为R =√64a ,根据题意则12a ≤√3≤√64a ,从而可得出答案. 如图,在正四面体P −ABC 中,设顶点P 在底面的射影为O 1,则球心O 在PO 1上,O 1在CE 上,且|PO 1|=23|CE |,连接OE 、OC ,设正四面体的棱长为a ,则|CE |=√32a ,|PO 1|=23|CE |=√33a 则正四面体的高PO 1=√PC 2−O 1C 2=a 2−(√33a)2=√63a , 设外接球半径为R , 在Rt △OO 1C 中,OC 2=OO 12+O 1C 2,即R 2=(√63a −R)2+(√33a)2,解得R =√64a , ∴在Rt △OO 1E 中,OE =√OO 12+O 1E 2=(√612a)2+(√36a)2=√24a , 过E 点作外接球O 的截面,只有当OE ⊥截面圆所在的平面时,截面圆的面积最小,此时截面圆的半径为r =√R 2−OE 2=√(√64a)2−(√24a)2=12a ,最大截面圆为过球心的大圆,半径为R=√64a,由题设存在半径为√3的截面圆,∴12a≤√3≤√64a,解得2√2≤a≤2√3,故选:C.小提示:关键点睛:本题考查正四棱锥的外接球的截面圆的半径范围问题,解答本题的关键是用正四棱锥棱长a表示出其外接球的半径R=√64a,得出过E点的球的截面圆的半径的范围,从而得解,属于中档题.5、如图在正三棱锥S−ABC中,M,N分别是棱SC,BC的中点,Q为棱AC上的一点,且AQ=12QC,MN⊥MQ,若AB=2√2,则此正三棱锥S−ABC的外接球的体积为()A.12πB.4√33πC.8√3πD.4√3π答案:D分析:根据题意证明SA,SB,SC两两垂直,将三棱锥放入棱长为2的正方体,两者外接球体积相同,求得正方体外接球体积即可得出答案.因为在△SBC中,M,N分别是棱SC,BC的中点,所以MN//SB,因为MN⊥MQ,所以SB⊥MQ,因为三棱锥S−ABC为正三棱锥,所以SB⊥AC(对棱垂直),又因为MQ,AC⊂面SAC,MQ∩AC=Q,所以SB ⊥面SAC ,因为SA,SC ⊂面SAC ,所以SB ⊥SA,SB ⊥SC ,在Rt △SAB 中,SA 2+SB 2=AB 2,因为三棱锥S −ABC 为正三棱锥,所以△SBC 是等腰三角形,△ABC 是等边三角形,所以SB =SC ,AB =AC ,所以SA 2+SC 2=AC 2,即SA ⊥SC ,所以SA,SB,SC 两两垂直,将此三棱锥放入正方体中,此正方体的面对角线长等于AB 长,为2√2,则该正方体棱长为2,外接球半径R =√(22)2+(2√22)2=√3, 正方体外接球体积V =43πR 3=43π×(√3)3=4√3π, 此正三棱锥S −ABC 的外接球体积和正方体外接球体积相同,为4√3π.故选:D6、如图,在下列四个正方体中,A,B 为正方体的两个顶点,M,N,Q 为所在棱的中点,则直线AB 与平面MNQ 不平行的是( )A .B .C .D .答案:A 分析:利用线面平行的判定定理逐项判断可得出合适的选项.对于A选项,连接CD、BE交于点O,则O为BE的中点,设BE∩MN=F,连接FQ,因为Q、O分别为AE、BE的中点,则OQ//AB,若AB//平面MNQ,AB⊂平面ABE,平面ABE∩平面MNQ=FQ,则FQ//AB,在平面ABE内,过该平面内的点Q作直线AB的平行线,有且只有一条,与题设矛盾,假设不成立,故A选项中的直线AB与平面MNQ不平行.对于B选项,连接CD,如下图所示:因为AC//BD且AC=BD,所以,四边形ABDC为平行四边形,所以AB//CD,因为M、Q分别为CE、DE的中点,所以MQ//CD,所以MQ//AB,因为AB⊄平面MNQ,MQ⊂平面MNQ,所以,AB//平面MNQ;对于C选项,连接CD,如下图所示:因为AC//BD且AC=BD,所以,四边形ABDC为平行四边形,所以AB//CD,因为M、Q分别为CE、DE的中点,所以MQ//CD,所以MQ//AB,因为AB⊄平面MNQ,MQ⊂平面MNQ,所以,AB//平面MNQ;对于D选项,连接CD,如下图所示:因为AC//BD且AC=BD,所以,四边形ABDC为平行四边形,所以CD//AB,因为N、Q分别为CE、DE的中点,则NQ//CD,所以NQ//AB,因为AB⊄平面MNQ,NQ⊂平面MNQ,所以,AB//平面MNQ;故选:A7、阿基米德(Arcℎimedes,公元前287年—公元前212年)是古希腊伟大的数学家、物理学家和天文学家.他推导出的结论“圆柱内切球体的体积是圆柱体积的三分之二,并且球的表面积也是圆柱表面积的三分之二”是其毕生最满意的数学发现,后人按照他生前的要求,在他的墓碑上刻着一个圆柱容器里放了一个球(如图所示),该球与圆柱的两个底面及侧面均相切,圆柱的底面直径与高都等于球的直径,若球的体积为36π,则圆柱的体积为 ( )A .36πB .45πC .54πD .63π答案:C解析:根据球的体积公式求出半径,根据圆柱的体积公式可求得结果.设球的半径为R ,则43πR 3= 36π,所以R =3, 所以圆柱的底面半径为R =3,圆柱的高为2R =6,所以圆柱的体积为πR 2×2R =2πR 3=54π.故选:C8、球面上两点之间的最短连线的长度,就是经过这两个点的大圆在这两点间的一段劣弧的长度(大圆就是经过球心的平面截球面所得的圆),我们把这个弧长叫做两点的球面距离.已知正△ABC 的项点都在半径为2的球面上,球心到△ABC 所在平面距离为2√63,则A 、B 两点间的球面距离为( )A .πB .π2C .2π3D .3π4答案:C分析:设球心为点O ,计算出∠AOB ,利用扇形弧长公式可求得结果.设球心为点O ,平面ABC 截球O 所得截面圆的半径为r =√22−(2√63)2=2√33, 由正弦定理可得4√33=AB sin∠ACB ,∴AB =4√33sin π3=2,又∵OA =OB =2,所以,△AOB 为等边三角形,则∠AOB =π3,因此,A、B两点间的球面距离为2×π3=2π3.故选:C.小提示:思路点睛:求球面距离,关键就是要求出球面上两点与球心所形成的角,结合扇形的弧长公式求解,同时在计算球的截面圆半径时,利用公式r=√R2−d2(其中r为截面圆的半径,R为球的半径,d为球心到截面的距离)来计算.多选题9、如图PA垂直于以AB为直径的圆所在的平面,点C是圆上异于A,B的任一点,则下列结论中正确的是()A.PC⊥BC B.AC⊥平面PCBC.平面PAB⊥平面PBC D.平面PAC⊥平面PBC答案:AD解析:根据线面垂直、面面垂直的判定与性质判断各选项.AB是圆直径,C在圆上,则AC⊥BC,PA⊥平面ABC,BC⊂平面ABC,则PA⊥BC,PA∩AC=A,∴BC⊥平面PAC,又PC⊂平面PAC,∴PC⊥BC,A正确;又BC⊂平面PBC,∴平面PBC⊥平面PAC.D正确;若AC⊥平面PCB,则AC⊥PC,而PA⊥平面ABC,则PA⊥AC,PA,PC重合,矛盾,B错;若平面PAB⊥平面PBC,作CD⊥PB于D,∵平面PAB∩平面PBC=PB,∴CD⊥平面PAB,而PA⊂平面PAB,∴CD⊥PA,CD∩BC=C,∴PA⊥平面PBC,于是平面PBC与平面ABC重合.矛盾,C错.故选:AD.小提示:易错点睛:本题考查空间线面、面面垂直的判定定理和性质定理.由于是多选题,仅仅判断AD正确还不够,必须说明(证明)BC为什么是错误的.否则会出错.10、用一个平面去截正方体,关于截面的形状,下列判断正确的是()A.直角三角形B.正五边形C.正六边形D.梯形答案:CD分析:根据题意,依次作出对应的截面,并判断即可得答案.对于A选项,如图1,作出的截面为三角形,但为锐角三角形,不可能为直角三角形,故A选项错误;对于B选项,如图2,过正方体的一个顶点作截面,可以得到截面为五边形,但该五边形不是正五边形,故B 选项错误;对于C选项,如图3,取各边的中点,连接的截面即为正六边形,故C选项正确;对于D选项,如图4,所做的截面为梯形,故D选项正确.故选:CD11、如图,直三棱柱ABC−A1B1C1中,所有棱长均为1,点E为棱B1C1上任意一点,则下列结论正确的是()]A.直线AA1与直线BE所成角的范围是[0,π4B.在棱B1C1上存在一点E,使AB1⊥平面A1BEC.若E为棱B1C1的中点,则平面ABE截三棱柱ABC−A1B1C1所得截面面积为3√1916D.若F为棱A1B1上的动点,则三棱锥F−ABE体积的最大值为16答案:AC分析:由异面直线夹角求法可判断A;利用反证法结合线面垂直的判定及性质可判断B;利用线线平行得到平面ABE截三棱柱所得截面为等腰梯形ABEG,即可求得面积判断C;由面积公式知S△ABF不变,利用等体积知可求得体积的最大值可判断D.对于A,由直三棱柱ABC−A1B1C1,∴AA1//BB1,∴∠B1BE为直线AA1与直线BE所成角,当E与B1重合时,直线AA1与直线BE所成角为0,当E与C1重合时,直线AA1与直线BE所成角为π4,所以直线AA1与直线BE所成角的范围是[0,π4],故A正确;对于B,假设AB1⊥平面A1BE,又BE⊂平面A1BE,∴AB1⊥BE,设BC中点为H,则AH⊥BC,则AH⊥平面BCC1B1,所以AB1在平面BCC1B1上的射影为B1H,由三垂线定理得B1H⊥BE,又因为BCC1B1为正方形,所以点E为CC1中点,与点E为棱B1C1上一点矛盾,故B 错误.对于C,取A1C1中点G,连结EG,GA,则平面ABE截三棱柱ABC−A1B1C1所得截面为等腰梯形ABEG,AB=1,EG=12,在直角△BB1E中,EB=√52,所以梯形的高为√(√52)2−(14)2=√194,梯形的面积为S=12×(12+1)×√194=3√1916,故C正确.对于D,因为S△ABF=12AB×BB1=12,且V F−ABE=V E−ABF,所以当E与C1重合时,三棱锥F−ABE的体积最大,取A1B1中点M,则C1M⊥平面ABB1A1,得V C1−ABF =13S△ABF×C1M=13×12×√32=√312,故D错误.故选:AC小提示:思路点睛:本题考查求异面直线成角,立体几何截面问题,体积运算,(1)求异面直线所成角的常用方法是平移线段法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决;(2)截面问题:利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.填空题12、如图,点P,Q,R,S分别在正方体的四条棱上,且是所在棱的中点,则直线PQ与RS是平行直线的图是________(填序号).答案:①②分析:根据正方体的结构特征,以及两直线的位置关系的判定方法,即可求解.根据正方体的结构特征,可得①②中RS与PQ均是平行直线,④中RS和PQ是相交直线,③中RS和PQ是是异面直线.所以答案是:①②.。
斜圆柱体积计算液体,倾斜,倾斜)的圆柱形管槽,或在倾斜(倾斜,倾斜。
计算需要直径,气缸倾斜角,长度,深度测量(试纸测量),测量位置和深度。
计算量的液体在汽缸,坦克,或烟斗。
LMNO工程,研究和软件有限公司致:LMNO工程首页汽缸容积部分满锥形,球形,水平LMNO@单位换算注册故障打印?注册启用“计算”按钮。
您的浏览器不支持Java或Java是在您的浏览器禁用。
计算应该在这里。
单位桶= 42加仑(美国),厘米=厘米,英尺=脚,每加仑=每加仑(美国),米=米快速连结到此页:简介讨论方程的变量信息介绍LMNO工程的计算方法计算斜圆柱容器充分圆柱部分液体的体积在1。
计算,有助于计算倾斜量在上限或水管堵塞是倾斜的下坡或坦克是倾斜,倾斜或。
该卷可以乘以液体密度,以确定液体质量。
以下各节介绍的方法,方程和计算公式用于。
讨论气缸底部是平的下坡结束,而汽缸顶部是平坦的上坡结束。
一个坐标系统被分配到汽缸底部,与气缸的来源,其中心。
X轴垂直于,进入网页,平面网页上的Y 轴在运行沿(缸底部),和Z轴的圆柱的轴。
“深度测量方法”该计划允许缸三种方法为深度测量液体的方法。
对于前两项,1试纸(或传感器或其他测量设备)通过插入筒壁的距离在一期从缸底部。
测量可以是垂直于气缸壁或垂直于液体表面。
第三种测量方法是“沿着气缸壁”的方法。
对于这一点,假设底部完全覆盖。
液体水平决定的,无论视觉或通过使用传感器,如墙壁上的交集缸液体表面的。
程序不允许将缸液位确定一个结束的测量从。
“深度测量型”如果试纸(或其他设备)是用于确定液位,测量记录或者是从上部的距离筒壁(干深度)或距离液面的液体表面的低筒壁(湿深度)。
如果测量方法是“沿着筒壁”,然后测量类型是没有必要的。
“最小/最大数量”对于大多数情况下,最小和最大音量将是相同的。
最低和最高将在以下的情况不同。
如果测量液体的深度发现是零,这是有可能的其实是一些液体的气瓶登记,测量设备不能。
测量计算的体积是一个最大值。
空间几何中的平面与圆柱空间几何是研究三维空间中的几何性质和关系的数学分支。
其中,平面和圆柱是空间几何中的两个重要概念。
本文将重点讨论平面和圆柱的定义、性质以及它们在现实生活中的应用。
一、平面的定义与性质平面是指在三维空间中完全由无限多个直线所包围的一个二维空间。
平面可以用一个斜角坐标系或者一个曲面方程来表示。
平面上的点可以用两个坐标来确定,其中一个坐标可以作为自由度,另一个坐标则由该平面的方程决定。
平面具有以下性质:1. 平面上的任意两点可以通过一条直线相连。
2. 平面上的任意三点不共线。
3. 平面上的任意两条直线要么相交于一点,要么平行。
平面的应用广泛,例如建筑物的地板、墙面等都可以看做是平面。
此外,在计算机图形学、物理学等领域,平面也经常用于描述或计算。
二、圆柱的定义与性质圆柱是由两个平行且等半径的圆围成的几何体。
其中,平行的两个圆称为底圆,连接两底圆的侧面称为侧面。
圆柱也可以用一个轴线和半径来定义,其中轴线是连接两个底圆圆心的直线,而半径则是底圆的半径。
圆柱具有以下性质:1. 圆柱的侧面是一个矩形,其边长由底圆的半径和轴线的长度决定。
2. 圆柱的体积等于底圆面积乘以轴线长度。
3. 圆柱的表面积等于两倍的底圆面积加上侧面矩形的面积。
圆柱在现实生活中有许多应用。
例如,水杯、筒形容器等形状都是圆柱体。
此外,火柱、烟柱等现象也可以用圆柱体来描述。
三、平面与圆柱的关系平面和圆柱在空间几何中有一定的联系和相互影响。
下面将介绍平面与圆柱之间的几种关系。
1. 平面与圆柱相切:当一个平面与一个圆柱侧面切线重合时,这个平面与该圆柱相切。
相切的平面与圆柱的切点构成一个线段,该线段垂直于圆柱轴线。
2. 平面截圆柱:当一个平面与一个圆柱相交,且相交部分包含圆柱轴线时,这个平面截断了圆柱。
截面可以是一个圆,一个椭圆或一个多边形,具体形状取决于切割角度和位置。
3. 平面平行于圆柱轴线:当一个平面与一个圆柱平行时,这个平面没有与圆柱相交的部分,称为平行平面。
圆柱的侧面积=底面圆周长×高 字母表示:S 侧=C 底h 2. 底面圆周长=圆周率×直径=圆周率×2×半径 字母表示:C 底=πd=2πr 3. 求圆柱的表面积三步:(1)圆柱的底面积=S 底=πr ²=π(d÷2)²=πd ²÷4 (2)圆柱侧面积=S 侧=h×C 底(底面圆周长)=2πrh=πdh (3)圆柱表面积=S 表=S 侧+2S 底圆柱体积的公式 圆柱的体积=底面积×高 字母表示:V 柱=S 底h 圆锥体积的公式(1) 圆锥的体积等于与它等底等高圆柱体积的1/3 V 锥=V 柱÷3=S 底h÷3 (2) 已知圆锥底面积(S )和高(h ),求体积的公式:V 锥=S 底h÷3 (3) 已知圆锥体积(V )和高(h ),求底面积的公式:S 底=3V 锥÷h (4) 已知圆锥体积(V )和底面积(S ),求高的公式:h=3V 锥÷S 底立体图形 表面积体积圆柱hr222π2πS rh r =+=+圆柱侧面积个底面积2πV r h =圆柱圆锥h r22ππ360nS l r =+=+圆锥侧面积底面积 注:l 是母线,即从顶点到底面圆上的线段长 21π3V r h =圆锥体板块一 圆柱与圆锥【例 1】 如图,用高都是1米,底面半径分别为1.5米、1米和0.5米的3个圆柱组成一个物体.问这个物体的表面积是多少平方米(π取3.14)1110.511.5例题精讲【例 2】有一个圆柱体的零件,高10厘米,底面直径是6厘米,零件的一端有一个圆柱形的圆孔,圆孔的直径是4厘米,孔深5厘米(见右图).如果将这个零件接触空气的部分涂上防锈漆,那么一共要涂多少平方厘米【例 3】(第四届希望杯2试试题)圆柱体的侧面展开,放平,是边长分别为10厘米和12厘米的长方形,那么这个圆柱体的体积是________立方厘米.(结果用π表示)【例 4】如右图,是一个长方形铁皮,利用图中的阴影部分,刚好能做成一个油桶(接头处忽略不计),求这个油桶的容积.(π 3.14=)【巩固】如图,有一张长方形铁皮,剪下图中两个圆及一块长方形,正好可以做成1个圆柱体,这个圆柱体的底面半径为10厘米,那么原来长方形铁皮的面积是多少平方厘米(π 3.14=)【例 5】把一个高是8厘米的圆柱体,沿水平方向锯去2厘米后,剩下的圆柱体的表面积比原来的圆柱体表面积减少12.56平方厘米.原来的圆柱体的体积是多少立方厘米【巩固】一个圆柱体底面周长和高相等.如果高缩短4厘米,表面积就减少50.24平方厘米.求这个圆柱体的表面积是多少4cm【例 6】(2008年第二届两岸四地”华罗庚金杯”少年数学精英邀请赛)一个圆柱体形状的木棒,沿着底面直径竖直切成两部分.已知这两部分的表面积之和比圆柱体的表面积大22008cm,则这个圆柱体木棒的侧面积是________2cm.(π取3.14)第2题【巩固】已知圆柱体的高是10厘米,由底面圆心垂直切开,把圆柱分成相等的两半,表面积增加了40平方厘米,求圆柱体的体积.(π3=)【例 7】一个圆柱体的体积是50.24立方厘米,底面半径是2厘米.将它的底面平均分成若干个扇形后,再截开拼成一个和它等底等高的长方体,表面积增加了多少平方厘米 (π 3.14=)【例 8】右图是一个零件的直观图.下部是一个棱长为40cm的正方体,上部是圆柱体的一半.求这个零件的表面积和体积.【例 9】 输液100毫升,每分钟输2.5毫升.如图,请你观察第12分钟时图中的数据,问:整个吊瓶的容积是多少毫升【例 10】 (2008年”希望杯”五年级第2试)一个拧紧瓶盖的瓶子里面装着一些水(如图),由图中的数据可推知瓶子的容积是_______ 立方厘米.(π取3.14)8(单位:厘米)4106【巩固】一个酒精瓶,它的瓶身呈圆柱形(不包括瓶颈),如图.已知它的容积为26.4π立方厘米.当瓶子正放时,瓶内的酒精的液面高为6厘米;瓶子倒放时,空余部分的高为2厘米.问:瓶内酒精的体积是多少立方厘米合多少升26【巩固】一个酒瓶里面深30cm ,底面内直径是10cm ,瓶里酒深15cm .把酒瓶塞紧后使其瓶口向下倒立这时酒深25cm .酒瓶的容积是多少(π取3)253015【巩固】一个盖着瓶盖的瓶子里面装着一些水,瓶底面积为10平方厘米,(如下图所示),请你根据图中标明的数据,计算瓶子的容积是______.7cm4cm5cm【巩固】一个透明的封闭盛水容器,由一个圆柱体和一个圆锥体组成,圆柱体的底面直径和高都是12厘米.其内有一些水,正放时水面离容器顶11厘米,倒放时水面离顶部5厘米,那么这个容器的容积是多少立方厘米(π3)5cm【例 11】(第四届希望杯2试试题)如图,底面积为50平方厘米的圆柱形容器中装有水,水面上漂浮着一块棱长为5厘米的正方体木块,木块浮出水面的高度是2厘米.若将木块从容器中取出,水面将下降________厘米.【例 12】有两个棱长为8厘米的正方体盒子,A盒中放入直径为8厘米、高为8厘米的圆柱体铁块一个,B盒中放入直径为4厘米、高为8厘米的圆柱体铁块4个,现在A盒注满水,把A盒的水倒入B盒,使B盒也注满水,问A盒余下的水是多少立方厘米【例 13】兰州来的马师傅擅长做拉面,拉出的面条很细很细,他每次做拉面的步骤是这样的:将一个面团先搓成圆柱形面棍,长1.6米.然后对折,拉长到1.6米;再对折,拉长到1.6米……照此继续进行下去,最后拉出的面条粗细(直径)仅有原先面棍的164.问:最后马师傅拉出的这些细面条的总长有多少米(假设马师傅拉面的过程中.面条始终保持为粗细均匀的圆柱形,而且没有任何浪费)【例 14】一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体底面面积与容器底面面积之比.【例 15】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深8厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深10厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米【巩固】一只装有水的圆柱形玻璃杯,底面积是80平方厘米,高是15厘米,水深13厘米.现将一个底面积是16平方厘米,高为12厘米的长方体铁块竖放在水中后.现在水深多少厘米【例 16】一个圆柱形玻璃杯内盛有水,水面高2.5厘米,玻璃杯内侧的底面积是72平方厘米.在这个杯中放进棱长6厘米的正方体铁块后,水面没有淹没铁块.这时水面高多少厘米【例 17】一个盛有水的圆柱形容器,底面内半径为5厘米,深20厘米,水深15厘米.今将一个底面半径为2厘米,高为17厘米的铁圆柱垂直放入容器中.求这时容器的水深是多少厘米【例 18】有甲、乙两只圆柱形玻璃杯,其内直径依次是10厘米、20厘米,杯中盛有适量的水.甲杯中沉没着一铁块,当取出此铁块后,甲杯中的水位下降了2厘米;然后将铁块沉没于乙杯,且乙杯中的水未外溢.问:这时乙杯中的水位上升了多少厘米【巩固】有一只底面半径是20厘米的圆柱形水桶,里面有一段半径是5厘米的圆柱体钢材浸在水中.钢材从水桶里取出后,桶里的水下降了6厘米.这段钢材有多长【例 19】一个圆锥形容器高24厘米,其中装满水,如果把这些水倒入和圆锥底面直径相等的圆柱形容器中,水面高多少厘米【例 20】(2009年”希望杯”一试六年级)如图,圆锥形容器中装有水50升,水面高度是圆锥高度的一半,这个容器最多能装水升.【例 21】如图,甲、乙两容器相同,甲容器中水的高度是锥高的13,乙容器中水的高度是锥高的23,比较甲、乙两容器,哪一只容器中盛的水多多的是少的的几倍甲乙【例 22】(2008年仁华考题)如图,有一卷紧紧缠绕在一起的塑料薄膜,薄膜的直径为20厘米,中间有一直径为8厘米的卷轴,已知薄膜的厚度为0.04厘米,则薄膜展开后的面积是平方米.【巩固】图为一卷紧绕成的牛皮纸,纸卷直径为20厘米,中间有一直径为6厘米的卷轴.已知纸的厚度为0.4毫米,问:这卷纸展开后大约有多长【巩固】如图,厚度为0.25毫米的铜版纸被卷成一个空心圆柱(纸卷得很紧,没有空隙),它的外直径是180厘米,内直径是50厘米.这卷铜版纸的总长是多少米【例 23】(人大附中分班考试题目)如图,在一个正方体的两对侧面的中心各打通一个长方体的洞,在上下底面的中心打通一个圆柱形的洞.已知正方体边长为10厘米,侧面上的洞口是边长为4厘米的正方形,上下底面的洞口是直径为4厘米的圆,求此立体图形的表面积和体积.板块二旋转问题【例 24】如图,ABC是直角三角形,AB、AC的长分别是3和4.将ABC∆∆绕AC旋转一周,求ABC 扫出的立体图形的体积.(π 3.14=)CB A 【例 25】已知直角三角形的三条边长分别为3cm,4cm,5cm,分别以这三边轴,旋转一周,所形成的立体图形中,体积最小的是多少立方厘米(π取3.14)【巩固】如图,直角三角形如果以BC边为轴旋转一周,那么所形成的圆锥的体积为16π,以AC边为轴旋转一周,那么所形成的圆锥的体积为12π,那么如果以AB为轴旋转一周,那么所形成的几何体的体积是多少ABC【例 26】 如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD 相交O .E 、F 分别是AD 与BC 的中点,图中的阴影部分以EF 为轴旋转一周,则白色部分扫出的立体图形的体积是多少立方厘米(π取3)AB【巩固】(2006年第十一届华杯赛决赛试题)如图,ABCD 是矩形,6cm BC =,10cm AB =,对角线AC 、BD相交O .图中的阴影部分以CD 为轴旋转一周,则阴影部分扫出的立体的体积是多少立方厘米BA。
工程制图中两正交圆柱体相贯线的教学探讨【摘要】本文主要探讨工程制图中两正交圆柱体相贯线的教学问题。
在我们会介绍相贯线的重要性以及研究背景。
在正文中,会详细介绍两正交圆柱体的定义与特点,相贯线的求解方法,相关绘图技巧,实际案例分析,以及教学方法与策略。
在会对本文进行总结,并展望未来研究方向。
工程制图中两正交圆柱体相贯线的教学探讨是一个重要课题,通过本文的研究,可以帮助学生更好地掌握相关知识,提高工程绘图能力,为未来工程实践奠定良好基础。
【关键词】工程制图、两正交圆柱体、相贯线、教学探讨、定义、特点、求解方法、绘图技巧、实际案例分析、教学方法、结论、未来展望。
1. 引言1.1 工程制图中两正交圆柱体相贯线的重要性工程制图中,两正交圆柱体相贯线是一个非常重要的概念,它在实际工程设计中具有重要的应用价值。
两正交圆柱体相交线的位置和形状可以直观地反映出两个圆柱体之间的相对位置关系,对于工程设计者来说,能够准确地表示出这种交线是非常关键的。
在工程制图中,准确地绘制出两正交圆柱体相贯线可以有效地避免设计错误和误解。
这对于工程设计的准确性和可靠性尤为重要。
对于学习者来说,掌握两正交圆柱体相贯线的绘制方法也是提高绘图技能的重要一步。
通过学习和探讨两正交圆柱体相贯线的绘制方法,可以帮助学生更好地理解立体几何学的相关知识,并提升他们的设计能力和实践能力。
对工程制图中两正交圆柱体相贯线的重要性进行深入探讨,不仅有助于提高工程设计的质量和效率,也有助于推动绘图教学的进步和发展。
1.2 研究背景研究背景:在工程制图中,两正交圆柱体相贯线的问题是一种常见但具有一定难度的情况。
正交圆柱体在三维空间呈现出特定的空间关系,当它们相互穿过时,相贯线的确定成为制图过程中的一个重要步骤。
相贯线的确定涉及到几何和投影的知识,具有一定的技巧性,因此对于工程制图者来说,掌握这一问题的求解方法和相关技巧是至关重要的。
在工程实践中,正交圆柱体的相贯线往往涉及到设计和制造过程中的精度和准确性问题。
祖暅原理一、单选题1我国南北朝时期的数学家祖暅在计算球的体积时,提出了一个原理(祖暅原理):“幂势既同,则积不容异”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.利用祖暅原理可以将半球的体积转化为与其同底等高的圆柱和圆锥的体积之差.图1是一种“四脚帐篷”的示意图,其中曲线AOC和BOD均是以1为半径的半圆,平面AOC和平面BOD均垂直于平面ABCD,用任意平行于帐篷底面ABCD的平面截帐篷,所得截面四边形均为正方形.模仿上述半球的体积计算方法,可以构造一个与帐篷同底等高的正四棱柱,从中挖去一个倒放的同底等高的正四棱锥(如图2),从而求得该帐篷的体积为()A.23B.43C.π3D.2π32祖暅,又名祖暅之,是我国南北朝时期的数学家、天文学家祖冲之的儿子.他在《级术》中提出“幂势既同,则积不容异”的结论,其中“幂”是面积.“势”是高,意思就是:夹在两个平行平面间的两个几何体,被平行于这两个平行平面的任一平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等(如图①).这一原理主要应用于计算一些复杂几何体的体积,若某艺术品如图②所示,高为40cm,底面为边长20cm的正三角形挖去以底边为直径的圆(如图③),则该艺术品的体积为()A.10003-10003πcm3 B.20003-20003πcm3C.200033-20009πcm3 D.100033-10009πcm33我国南北朝时期的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.这个原理能够帮助人们计算3D打印时的材料耗费问题.3D打印属于快速成形技术的一种,是将粉末状金属或塑料等可粘合材料,通过逐层喷涂,逐渐堆叠累积的方式来构造物体的技术,可以用来制造结构复杂的物件.根据祖暅原理,对于3D打印制造的零件,如果能找到另一个与其高相等,并在所有等高处的水平截面的面积均相等的几何体,就可以通过计算该几何体的体积得到打印的零件的体积.现在要用3D打印技术制造一个零件,其在高为h的水平截面的面积为S h =π4-h2,0≤h≤2,则该零件的体积为()A.4π3B.8π3C.16π3D.32π34图为祖冲之之子祖暅“开立圆术”中设计的立体模型.祖暅提出“祖氏原理”,他将牟合方盖的体积化成立方体与一个相当于四棱锥的体积之差,从而求出牟合方盖的体积等于23d3(d为球的直径),并得到球的体积为V=16πd3,这种算法比外国人早了一千多年,人们还用过一些类似的公式,根据π=3.1415926⋅⋅⋅,判断下列公式中最精确的一个是()A.d≈3169VB.d≈32VC.d≈3300157V D.d≈315 8V5祖暅是我国南北朝时期杰出的数学家和天文学家祖冲之的儿子,他提出了一条原理:“幂势既同幂,则积不容异”.这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.如图所示,某帐篷的造型是两个全等圆柱垂直相交的公共部分的一半(这个公共部分叫做牟合方盖).设两个圆柱底面半径为R,牟合方盖与其内切球的体积比为4:π.则此帐篷距底面R2处平行于底面的截面面积为()A.34πR 2B.3πR 2C.43πR 2D.3R 26中国南北朝时期数学家、天文学家祖冲之、祖暅父子总结了魏晋时期著名数学家刘微的有关工作,提出“幂势既同,则积不容异”.“幂”是截面积,“势”是几何体的高,即:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等,上述原理称为“祖暅原理”.一个上底面边长为1,下底面边长为2,侧棱长为13的正六棱台与一个不规则几何体满足“幂势既同”,则该不规则几何体的体积为()A.7239B.163C.183D.217祖暅(公元5-6世纪,祖冲之之子),是我国齐梁时代的数学家,他提出了一条原理:“幂势既同,则积不容易.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.如图将底面直径皆为2b ,高皆为a 的椭半球体和已被挖去了圆锥体的圆柱体放置于同一平面β上,用平行于平面β且与β距离为d 的平面截两个几何体得到S 圆及S 环两截面,可以证明S 圆=S 环总成立.据此,短轴AB 长为3cm ,长半轴CD 为2cm 的椭半球体的体积是()A.3πcm 3B.6πcm 3C.48πcm 3D.96πcm 38祖暅是南北朝时代伟大的科学家,在数学上有突出贡献.他在五世纪末提出祖暅原理:“密势既同,则积不容异.”其意思是:两个等高的几何体若在所有等高处的水平截面面积相等,则这两个几何体的体积相等.我们称由双曲线x 2a 2-y 2b2=1a >0,b >0 中y ≤m m >0 的部分绕其虚轴旋转形成的几何体为双曲线旋转体.如图,双曲线旋转体的下半部分挖去底面直径为2a ,高为m 的圆柱体后,所得几何体与底面半径为am b,高为m 的圆锥均放置于平面β上(几何体底面在β内).与平面β平行且到平面β距离为h 0≤h ≤m 的平面与两几何体的截面面积分别为S 圆,S 圆环,可以证明S 圆=S 圆环总成立.依据上述原理,x 2-y 24=1y ≤4 的双曲线旋转体的体积为()A.443πB.563πC.283πD.323π9我国南北朝时期的数学家祖暅提出了计算几何体体积的祖暅原理:“幂势既同,则积不容异”.意思是两个同高的几何体,如果在等高处的截面积都相等,那么这两个几何体的体积相等.现有同高的三棱锥和圆锥满足祖暅原理的条件,若圆锥的侧面展开图是半径为3的三分之一圆,由此推算三棱锥的体积为()A.223π B.423π C.42π D.163π10我国南北朝时期的科学家祖暅,提出了计算体积的祖暅原理:“幂势既同,则积不容异.”意思是:如果两个等高的几何体,在等高处的截面积恒等,则这两个几何体的体积相等.利用此原理求以下几何体的体积:曲线y =x 2(0≤y ≤L )绕y 轴旋转一周得几何体Z ,将Z 放在与y 轴垂直的水平面α上,用平行于平面α,且与Z 的顶点O 距离为l 的平面截几何体Z ,得截面圆的面积为π(l )2=πl .由此构造右边的几何体Z 1:其中AC ⊥平面α,AC =L ,AA 1⊂α,AA 1=π,它与Z 在等高处的截面面积都相等,图中EFPQ 为矩形,且PQ =π,FP =l ,则几何体Z 的体积为A.πL 2B.πL 3C.12πL 2D.12πL 311祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子,他提出了一条原原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高.这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等.设由椭圆x2a2+y2b2=1(a>b>0)所围成的平面图形绕y轴旋转一周后,得一橄榄状的几何体(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于A.43πa2b B.43πab2 C.2πa2b D.2πab212祖暅原理:“幂势既同,则积不容异”意思是说两个同高的几何体,若在等高处的截面积恒相等,则体积相等.设A,B为两个同高的几何体,p:A,B在等高处的截面积不恒相等,q:A,B的体积不相等,根据祖暅原理可知,p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件13我国南北朝时期的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:夹在两个平行平面之间的几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.根据祖暅原理,对于3D打印制造的零件,如果能找到另一个与其高相等,并在所有等高处的水平截面的面积均相等的几何体,就可以通过计算几何体的体积得到打印的零件的体积.现在要用3D打印技术制造一个高为2的零件,该零件的水平截面面积为S,随高度h的变化而变化,变化的关系式为S h =π4-h2(0≤h≤2),则该零件的体积为()A.4π3B.8π3C.16π3D.32π314用祖暅原理计算球的体积时,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图1)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图2),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等.现将椭圆x29+y225=1(y≥0)绕y轴旋转一周后得一半橄榄状的几何体(如图3),类比上述方法,运用祖暅原理可求得其体积等于()A.15πB.30πC.45πD.60π15刘徽构造的几何模型“牟合方盖”中说:“取立方棋八枚,皆令立方一寸,积之为立方二寸.规之为圆困,径二寸,高二寸.又复横规之,则其形有似牟合方盖矣.”牟合方盖是一个正方体被两个圆柱从纵横两侧面作内切圆柱体时的两圆柱体的公共部分,计算其体积的方法是将原来的“牟合方益”平均分为八份,取它的八分之一(如图一).记正方形OABC的边长为r,设OP=h,过P点作平面PQRS平行于平面OABC.OS=OO=r,由勾股定理有PS=PQ=r2-h2,故此正方形PQRS面积是r2-h2.如果将图一的几何体放在棱长为r 的正方体内(如图二),不难证明图二中与图一等高处阴影部分的面积等于h 2.(如图三)设此棱锥顶点到平行于底面的截面的高度为h ,不难发现对于任何高度h ,此截面面积必为h 2,根据祖暅原理计算牟合方盖体积()注:祖暅原理:“幂势既同,则积不容异”.意思是两个同高的立体,如在等高处的截面积相等,则体积相等A.83r 3B.83r 3πC.163r 3D.163r 3π16我国南北朝时期的数学家祖暅提出了计算体积的祖暅原理:“幂势既同,则积不容异.”意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.已知曲线C :y =x 2,直线l 为曲线C 在点(1,1)处的切线.如图所示,阴影部分为曲线C 、直线l 以及x 轴所围成的平面图形,记该平面图形绕y 轴旋转一周所得的几何体为T .给出以下四个几何体:图①是底面直径和高均为1的圆锥;图②是将底面直径和高均为1的圆柱挖掉一个与圆柱同底等高的倒置圆锥得到的几何体;图③是底面边长和高均为1的正四棱锥;图④是将上底面直径为2,下底面直径为1,高为1的圆台挖掉一个底面直径为2,高为1的倒置圆锥得到的几何体.根据祖暅原理,以上四个几何体中与T 的体积相等的是A.①B.②C.③D.④17祖原理也称祖氏原理,是我国数学家祖暅提出的一个求积的著名命题:“幂势既同,则积不容异”,“幂”是截面积,“势”是几何体的高,意思是两个同高的立体,如在等高处截面积相等,则体积相等.满足x 2+y 2≤16的点(x ,y )组成的图形绕y 轴旋转一周所得旋转体的体积为V 1,由曲线x 2-y 2=16,y =±x ,y =±4围成的图形绕y 轴旋转一周所得旋转体的体积为V 2,则V 1、V 2满足以下哪个关系式()A.V 1=12V 2B.V 1=23V 2C.V 1=2V 2D.V 1=V 218南北朝时期的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被任一平行于这两个平面的平面所截,如果两个截面的面积总是相等,则这两个立体的体积相等.如图,两个半径均为1的圆柱体垂直相交,则其重叠部分体积为()A.43B.163C.43πD.3π二、多选题19我国古代数学家祖暅求几何体的体积时,提出一个原理:幂势即同,则积不容异.这个定理的推广是夹在两个平行平面间的两个几何体,被平行于这两个平面的平面所截,若截得两个截面面积比为k ,则两个几何体的体积比也为k .如下图所示,已知线段AB 长为4,直线l 过点A 且与AB 垂直,以B 为圆心,以1为半径的圆绕l 旋转一周,得到环体M ;以A ,B 分别为上下底面的圆心,以1为上下底面半径的圆柱体N ;过AB 且与l 垂直的平面为β,平面α⎳β,且距离为h ,若平面α截圆柱体N 所得截面面积为S 1,平面α截环体M 所得截面面积为S 2,则下列结论正确的是()A.圆柱体N 的体积为4πB.S 2=2πS 1C.环体M 的体积为8πD.环体M 的体积为8π220祖暅(公元5-6世纪,祖冲之之子),是我国齐梁时代的数学家,他提出了一条原理:“幂势既同,则积不容异.”这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.如图将底面直径皆为2b ,高皆为a 的椭半球体和已被挖去了圆锥体的圆柱体放置于同一平面β上,用平行于平面β且与β距离为d 的平面截两个几何体得到S 圆及S 环两截面,可以证明S 圆=S 环总成立,若椭半球的短轴AB =6,长半轴CD =5,则下列结论正确的是()A.椭半球体的体积为30πB.椭半球体的体积为15πC.如果CF =4FD ,以F 为球心的球在该椭半球内,那么当球F 体积最大时,该椭半球体挖去球F 后,体积为863πD.如果CF =4FD ,以F 为球心的球在该半球内,那么当球F 体积最大时,该椭半球体挖去球F 后,体积为29π三、填空题21祖暅,祖冲之之子,南北朝时代伟大的科学家,于5世纪末提出下面的体积计算原理:祖暅原理:“幂势既同,则积不容异”.意思是如果两个等高的几何体在同高处截得两几何体的截面面积相等,那么两个几何体的体积相等,现有如图的半椭球体与被挖去圆锥的圆柱等高,且平行于底面的平面在任意高度截两几何体所得截面面积相等,已知圆柱高为h ,底面半径为r ,则半椭球的体积是.22我国南北朝时代的祖暅提出“幂势既同,则积不容异”,即祖暅原理:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总是相等,那么这两个几何体的体积相等(如图1).在xOy平面上,将双曲线的一支x24-y2=1及其渐近线y=12x和直线y=0,y=2围成的封闭图形记为D,如图2中阴影部分.记D绕y轴旋转一周所得的几何体为Ω,利用祖暅原理试求Ω的体积为.23我国南北朝时期的数学家祖暅(杰出数学家祖冲之的儿子),提出了计算体积的祖暅原理:“幂势既同,则积不容异.”意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.已知曲线C:y=x2,直线l为曲线C在点1,1处的切线.如图所示,阴影部分为曲线C、直线l 以及x轴所围成的平面图形,记该平面图形绕y轴旋转一周所得的几何体为Ω.过0,y(0≤y≤1)作Ω的水平截面,所得截面面积S=π4y-12(用y表示),试借助一个圆锥,并利用祖暅原理,得出Ω体积为.24祖暅是我国古代的伟大科学家,他在5世纪末提出:“幂势即同,则积不容异”,意思是:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.这就是著名的祖暅原理,祖暅原理常用来由已知几何体的体积推导未知几何体的体积,例如由圆锥和圆柱的的体积推导半球体的体积,其示意图如图一所示.利用此方法,可以计算如下抛物体的体积:在平面直角坐标系中,设抛物线C的方程为y=1-x2-1≤x≤1,将C围绕y轴旋转,得到的旋转体称为抛物体.利用祖暅原理它可用一个直三棱柱求解,如图二,由此可计算得该抛物体的体积为.25我国古代数学家祖暅求几何体的体积时,提出一个原理:幂势即同,则积不容异.意思是:夹在两个平行平面之间的两个等高的几何体被平行于这两个面的平面去截,若截面积相等,则两个几何体的体积相等,这个定理的推广是:夹在两个平行平面间的几何体,被平行于这两个平面的平面所截,若截得两个截面面积比为k,则两个几何体的体积比也为k.已知线段AB长为4,直线l过点A且与AB垂直,以B为圆心,以1为半径的圆绕l旋转一周,得到环体M;以A,B分别为上下底面的圆心,以1为上下底面半径的圆柱体N;过AB且与l垂直的平面为β,平面α⎳β,且距离为h,若平面α截圆柱体N所得截面面积为S1,平面α截环体M所得截面面积为S2,则S1S2=,环体M体积为.26祖暅,祖冲之之子,是我国南宋时期的数学家.他提出了体积计算原理(祖暅原理):“幂势既同,则积不容异”.意思是:如果两等高的几何体在同高处截得两几何体的截面积总相等,那么这两个几何体的体积相等.已知双曲线C的焦点在y轴上,离心率为233,且过点3,23,则双曲线方程为;若直线x=0,x=1在第一象限内与C及其渐近线围成如图阴影部分所示的图形,则阴影图形绕x轴旋转一周所得几何体的体积为27祖暅是我国南北朝时期伟大的科学家,他于5世纪末提出了“幂势既同,则积不容异”的体积计算原理,即“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果裁得的两个截面的面积总相等,那么这两个几何体的体积相等”.现已知直线y=±2与双曲线x2-y2=1及其渐近线围成的平面图形G如图所示,若将图形G被直线y=t(-2≤t≤2)所截得的两条线段绕y轴旋转一周,则形成的旋转面的面积S=;若将图形G绕y轴旋转一周,则形成的旋转体的体积V=.28美丽的广州塔,以其窈窕的身姿被广州人民亲昵地称为“小蛮腰”,它的整体轮廓可以看成是双曲线的一部分绕虚轴旋转得到的.以下是研究广州塔的一个数学题型:将曲线x24-y2225=10≤y≤60,x>0与x轴、y=60围成的部分绕y轴旋转一周,得到一旋转体,直线y=h绕y轴旋转一周形成的平面截此旋转体所得截面圆的面积为.根据祖暅原理,构造适当的一个或多个几何体,求出此旋转体的体积为.(提示:祖暅原理:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等)29《缀术》是中国南北朝时期的一部算经,汇集了祖冲之和祖暅父子的数学研究成果.《缀术》中提出的“缘幂势既同,则积不容异”被称为祖暅原理,其意思是:如果两等高的几何体在同高处被截得的两截面面积均相等,那么这两个几何体的体积相等,该原理常应用于计算某些几何体的体积.如图,某个西晋越窑卧足杯的上下底为互相平行的圆面,侧面为球面的一部分,上底直径为46cm,下底直径为6cm,上下底面间的距离为3cm,则该卧足杯侧面所在的球面的半径是cm;卧足杯的容积是cm3(杯的厚度忽略不计).30祖暅原理:“幂势既同,则积不容异”.即:夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.如图①是一个椭圆球形瓷凳,其轴截面为图②中的实线图形,两段曲线是椭圆x29+y2a2=1的一部分,若瓷凳底面圆的直径为4,高为6,则a2=;利用祖暅原理可求得该椭圆球形瓷凳的体积为。