第一章 半导体二极管及整流电路
- 格式:ppt
- 大小:1.62 MB
- 文档页数:77
第一章半导体二极管及其电路【教学要求】本章主要介绍了半导体的基础知识及半导体器件的核心环节—PN结。
PN结具有单向导电特性、击穿特性和电容特性。
介绍了半导体二极管的物理结构、工作原理、特性曲线和主要参数。
理想情况下,二极管相当于开关闭合与断开。
介绍了二极管的简单应用电路,包括整流、限幅电路等。
同时还介绍了稳压二极管、发光二极管、光电二极管、变容二极管。
教学内容、要求和重点见如表1.1。
表1.1 教学内容、要求和重点【例题分析与解答】【例题1-1】二极管电路及其输入波形如图1-1所示,设U im>U R,,二极管为理想,试分析电路输出电压,并画出其波形。
解:求解这类电路的基本思路是确定二极管D在信号作用下所处的状态,即根据理想二极管单向导电的特性及具体构成的电路,可获得输出U o的波形。
本电路具体分析如下:当U i增大至U R时,二极管D导通,输出U o被U R嵌位,U o=U R,其他情况下,U o=U i。
这类电路又称为限幅电路。
图1-1【例题1-2】二极管双向限幅电路如图1-2 (a)所示,若输入电压U i=7sinωt (V),试分析并画出电路输出电压的波形。
(设二极管的U on为0.7V,忽略二极管内阻)。
图1-2解:用恒压降等效模型代替实际二极管,等效电路如图1-2(b)所示,当U i<-3.7V时,D2反偏截止,D1正偏导通,输出电压被钳制在-3.7V;当-3.7V<U i <3.7V时,D1、D2均反偏截止,此时R中无电流,所以U o=U i;当3.7V<U i时,D1反偏截止,D2正偏导通,输出电压被钳制在3.7V。
综合上述分析,可画出的波形如图1-20(c)所示,输出电压的幅度被限制在正负3.7V 之间。
【例题1-3】电路如图1-3(a),二极管为理想,当B点输入幅度为±3V、频率为1kH Z的方波,A点输入幅度为3V、频率为100kH Z的正弦波时,如图1-3(b),试画出Uo点波形。
1.半导体二极管及其电路分析【重点】半导体特性、杂质半导体、PN结及其单向导电特性。
【难点】PN结形成及其单向导电特性。
1.1 半导体的基本知识1.1.1 半导体的基本知识(1)导电能力对温度的反应非常灵敏。
(2)导电能力受光照非常敏感。
(3)在纯净的半导体中掺入微量的杂质(指其他元素),它的导电能力会大大增强。
1.1.2 本征半导体纯净的半导体称为本征半导体,常用的本征半导体是硅和锗二晶体。
半导体有两种载流子,自由电子和空穴,如果从本征半导体引出两个电极并接上电源,此时带负电的自由电子指向电源正极作定向运动,形成电子电流,带正电的空穴将向电源负极作定向运动,形成空穴电流,而在外电路中的电流为电子电流和空穴电流之和。
1.1.3 杂质半导体1.N型半导体在硅晶体中掺入微量5价元素,如磷(或者砷、锑等),如图所示。
这种半导体导电主要靠电子,所以称为电子型半导体,简称N型半导本。
在N型半导体中,自由电子是多数载流子,而空穴2.P型半导体如果在硅晶体中,掺入少量的3价元素硼(铟、钾等),如图1-5所示。
这种半导体的导电主要靠空穴,因此称为空穴型半导体,有称P型半导体。
P型半导体的空穴是多数载流子,电子是少数载流子。
结论:N型半导体、P型半导体中的多子都是掺入杂质而造成的,尽管杂质含量很微,但它们对半导体的导电能力却有很大影响。
而它们的少数载流子是热运动产生的,尽管数量很少,但对温度非常敏感,对半导体的性能有很大影响。
1.1.4 PN结及其单向导电特性1.PN结的形成结论:在无外电场或其它因素激发时,PN结处于平衡状态,没有电流通过,空间电荷区是恒定的。
另外,在这个区域内,多子已扩散到对方并复合掉了,好像耗尽了一样,因此,空间电荷区又叫做耗尽层。
2.PN结单向导电性(1)正向特性当PN结外加正向电压(简称正偏),电源正极接P,负极接N,PN结处于导通状态,导电时电阻很小。
(2)反向特性当外加反向电压(简称反偏),电源正极接N,负极接P,PN结处于截止状态结论:PN结正偏时电路中有较大电流流过,呈现低电阻,PN结导通;PN结反偏时电路中电流很小,呈现高电阻,PN结截止,可见PN结具有单向导电性。
模拟电子技术复习资料总结第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4.两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体----在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6.杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若V阳>V阴( 正偏),二极管导通(短路);若V阳<V阴( 反偏),二极管截止(开路)。
*三种模型微变等效电路法三.稳压二极管及其稳压电路*稳压二极管的特性---正常工作时处在PN结的反向击穿区,所以稳压二极管在电路中要反向连接。
模拟电子技术主编第1章半导体二极管及其基本应用1.1.1 半导体的基础知识本证半导体1.定义:纯净的单晶半导体称为本征半导体。
2.本征半导体的原子结构及共价键:共价键内的两个电子由相邻的原子各用一个价电子组成,称为束缚电子。
3.本征激发和两种载流子:——自由电子和空穴受温度的影响,束缚电子脱离共价键成为自由电子,在原来的位置留有一个空位,称此空位为空穴。
在本征半导体中,自由电子和空穴成对出现,数目相同。
复合现象:空穴出现以后,邻近的束缚电子可能获取足够的能量来填补这个空穴,而在这个束缚电子的位置又出现一个新的空位,另一个束缚电子又会填补这个新的空位,这样就形成束缚电子填补空穴的运动。
为了区别自由电子的运动,称此束缚电子填补空穴的运动为空穴运动。
4. 结论(1)半导体中存在两种载流子,一种是带负电的自由电子,另一种是带正电的空穴,它们都可以运载电荷形成电流。
(2)本征半导体中,自由电子和空穴相伴产生,数目相同。
(3)一定温度下,本征半导体中电子空穴对的产生与复合相对平衡,电子空穴对的数目相对稳定。
(4)温度升高,激发的电子空穴对数目增加,半导体的导电能力增强。
这是半导体和导体在导电机制的本质差异。
另一方面,空穴的出现是半导体导电区别导体导电的一个主要特征。
杂质半导体1.定义:为了提高半导体的导电能力可在本征半导体中掺入微量杂质元素,该半导体称为杂质半导体。
2.半导体分类在本征半导体中有意识加入微量的三价元素或五价元素等杂质原子,可使其导电性能显著改变。
根据掺入杂质的性质不同,杂质半导体分为两类:电子型(N 型)半导体和空穴型(P 型)半导体。
(1)N 型半导体在硅(或锗)半导体晶体中,掺入微量的五价元素,如磷(P)、砷(As)等,则构成N 型半导体。
五价的元素具有五个价电子,它们进入由硅(或锗)组成的半导体晶体中,五价的原子取代四价的硅(或锗)原子,在与相邻的硅(或锗)原子组成共价键时,因为多一个价电子不受共价键的束缚,很容易成为自由电子,于是半导体中自由电子的数目大量增加。