交流异步电动机调速设计与应用
- 格式:doc
- 大小:137.00 KB
- 文档页数:18
第七章异步电动机动态模型调速系统内容提要:异步电动机具有非线性、强耦合、多变量的性质,要获得良好的调速性能,必须从动态模型出发,分析异步电动机的转矩和磁链控制规律,研究高性能异步电动机的调速方案。
矢量控制和直接转矩控制是两种基于动态模型的高性能的交流电动机调速系统,矢量控制系统通过矢量变换和按转子磁链定向,得到等效直流电动机模型,然后按照直流电动机模型设计控制系统;直接转矩控制系统利用转矩偏差和定子磁链幅值偏差的符号,根据当前定子磁链矢量所在的位置,直接选取合适的定子电压矢量,实施电磁转矩和定子磁链的控制。
两种交流电动机调速系统都能实现优良的静、动态性能,各有所长,也各有不足之处。
本章第8.1节首先导出异步电动机三相动态数学模型,并讨论其非线性、强耦合、多变量性质,然后利用坐标变换加以简化,得到两相旋转坐标系和两相静止坐标系上的数学模型。
第8.2节讨论按转子磁链定向的基本原理,定子电流励磁分量和转矩分量的解耦作用,讨论矢量控制系统的多种实现方案。
第8.3节介绍无速度传感器矢量控制系统及基于磁通观测的矢量控制系统。
第8.4节讨论定子电压矢量对转矩和定子磁链的控制作用,介绍基于定子磁链控制的直接转矩控制系统。
第8.5节对上述两类高性能的异步电动机调速系统进行比较,分析了各自的优、缺点。
第8.6节介绍直接转矩控制系统的应用实例。
8.1交流异步电动机动态数学模型和坐标变换基于稳态数学模型的异步电动机调速系统虽然能够在一定范围内实现平滑调速,但对于轧钢机、数控机床、机器人、载客电梯等动态性能高的对象,就不能完全适用了。
要实现高动态性能的调速系统和伺服系统,必须依据异步电动机的动态数学模型来设计系统。
8.1.1三相异步电动机数学模型在研究异步电动机数学模型时,常作如下的假设:(1)忽略空间谐波,设三相绕组对称,在空间中互差120°电角度,所产生的磁动势沿气隙按正弦规律分布;(2)忽略磁路饱和,各绕组的自感和互感都是恒定的;(3)忽略铁心损耗;(4)不考虑频率变化和温度变化对绕组电阻的影响。
三相异步电动机双速可逆变频调速PLC控制异步电动机变频调速所要求的变频电源几乎都采用静止式变频器。
利用变频器进行调速控制时,只需改变变频器内部逆变电路换流器件的开关顺序,即可以达到对输出进行换相的目的,很容易实现电动机的正、反转切换。
本文介绍了PLC在三相交流异步电动机变频调速系统方面的设计,说明了系统的控制策略和工作原理,探讨三相异步电动机双速可逆变频调速PLC控制。
1、PLC在三相交流异步电动机变频调速系统设计三相交流异步电动机变频调速系统,以可编程序控制器PLC 作为核心控制部件,通过速度传感器将电动机的转速信号传给PLC, PLC经过控制规律的运算后,给出控制信号,改变电动机输入电压的频率,来调节电动机的转速,从而构成了一个闭环的速度控制系统。
如图1 所示。
2、三相异步电动变频器电路连接的要点2.1变频器前面一定要加接触器输入侧接触器的作用。
一般说来,在断路器和变频器之间,应该有接触器。
a. 可通过按钮开关方便地控制变频器的通电与断电。
b. 发生故障时可自动切断变频器电源,如:变频器自身发生故障,报警输出端子动作时,可使接触器KM迅速断电,从而使变频器立即脱离电源。
另外,当控制系统中有其他故障信号时,也可迅速切断变频器电源。
2.2变频器与电动机之间是否接输出接触器并不要求和工频进行切换时,变频器与电动机接触器,则有可能在变频器的输出频率较高的致变频器跳闸。
a. 当一台变频器只控制一台电动机,且并不要求和工频进行切换时,变频器与电动机之间不要接输出接触器。
因为如果接入了输出接触器,则有可能在变频器的输出频率较高的情况下启动电动机,产生较大的启动电流,导致变频器跳闸。
b. 必须接输出接触器的情况有两种:当一台变频器接多台电动机时,每台电动机必须要有单独控制的接触器。
另外,在变频和工频需要切换的情况下,当电动机接至工频电源时,必须切断和变频器之间的联系。
通用变频器,一般都是采用交、直、交的方式组成,利用普通的电网电源运行的交流拖动系统,为了实现电动机的正、反转切换,必须利用触器等装置对电源进行换相切换。
交流异步电机调速方法交流异步电机调速方法对于工业生产具有重要意义,它能够提高生产效率、节约能源并且减少设备的维护成本。
下面我们将详细介绍交流异步电机调速的方法,包括电压调节、频率调节、转子电阻调节和变频调速等。
我们来看电压调节方法。
一、电压调节电压调节是一种简单而有效的交流异步电机调速方法。
通过调节电源的电压来改变电机的输出转矩和转速。
在低电压状态下,电机的输出转矩和转速会降低,而在高电压状态下则会增加。
这种方法简单易行,但是效果有限,且可能影响电机的寿命。
二、频率调节频率调节是另一种常见的交流异步电机调速方法。
通过改变电源的输出频率来改变电机的转速,实现调速的效果。
在工业生产中,通常采用变频器来实现频率调节,它能够准确地控制电机的输出频率,实现精确的调速效果。
频率调节方法精度高,但需要专门的变频器设备,成本也相对较高。
三、转子电阻调节转子电阻调节是一种早期的交流异步电机调速方法。
通过改变电机转子上的外接电阻,来改变电机的转速。
这种方法已经日渐淘汰,因为它存在电器损耗大、调速精度低等缺点。
四、变频调速变频调速是目前应用最广泛的一种交流异步电机调速方法。
通过变频器来改变电源的频率和电压,从而控制电机的输出转速。
变频调速具有调速范围广、响应速度快、能耗低等优点,已经成为许多工业生产中的标配调速方法。
除了以上介绍的几种方法外,还有一些基于磁阻变化原理的电磁式调速、基于转子电流控制的矢量调速等高级调速方法。
随着科技的发展,交流异步电机调速技术也在不断演进,相信未来会有更多更先进的调速方法出现,为工业生产带来更多便利和效益。
异步电动机SPWM变频调速原理与仿真分析摘要在分析SPWM原理的基础上,利用MATLAB/SIMULINK软件构造了SPWM调速系统的仿真模型并说明了规则采样法的可行性。
该模型主要利用S-函数模拟自然采样法和规则采样法的控制规则并应用电力系统工具箱构建逆变桥和电机,能够比较好的模拟真实的系统并实现变频调速的功能。
通过对仿真结果的分析,对比自然采样法和规则采样法控制性能的差异,得出了规则采样法在工程实际中应用的可行性。
关键词:SPWM,异步电机,MATLAB,仿真,规则采样法,自然采样法The Simulation and Analysis of the Fundmental Principle of Asynchronous Motor SPWM Speed AdjustingABSTRACTBase on analizing SPWM principle, the SPWM velocity modulation system's simulation model has been constructed by using the MATLAB/SIMULINK software.After analizing the results of simulation,the feasibility of the regular sample law is given out. This model mainly uses the S- function analogue natural sampling law and the regular sampling method control rule and construct inverter and machine ,this model can simulate the real system and realize the frequency conversion velocity modulation function. The simulation results is given out in this paper, though analizing the simulation results and constrasting the difference of the control performance of natural sampling law and regular sampling,the application feasibility of the regular sampling law in the project has been obtained.KEYWORDS: SPWM ,aynchronous motor,MATLAB,simulation, regular sampling law, ntural sampling law目录摘要 (I)ABSTRACT .................................................................................................................................................... I I 1 绪论 (1)1.1交流调速系统的发展 (1)1.2交流调速系统的基本类型 (2)1.2.1 异步电动机调速系统的基本类型 (2)1.2.2 同步电动机调速的基本类型 (4)2 Siulink 仿真基础 (5)2.1 Simulink简介 (5)2.1.1 Simulink 启动 (5)2.1.2 Simulink 组成 (5)2.1.3 仿真过程 (6)2.2 Simulink 模块库简介 (6)2.3电力系统工具箱简介 (6)2.4 S-函数简介 (6)2.4.1 S-函数的基本概念 (6)2.4.2 S-函数的使用 (7)2.4.3 与S-函数相关的一些术语 (7)2.4.4 S-函数的工作原理 (8)2.4.5 编写M文件S-函数 (9)3 异步电动机变压变频调速系统 (11)3.1概述 (11)3.2变压变频调速的基本控制方式 (11)3.2.1 基频以下调速 (11)3.2.2 基频以上调速 (12)3.3异步电动机电压-频率协调控制时的机械特性 (12)4 PWM控制技术 (15)4.1 正弦脉宽调制原理及其优点 (15)4.1.1 SPWM原理 (15)4.1.2 SPWM的优点 (18)4.1.3关于SPWM的开关频率 (19)4.2 同步调制和异步调制 (19)4.2.1 异步调制 (19)4.2.2 同步调制 (19)4.2.3 分段同步调制 (20)4.3 SPWM波形的生成 (20)4.3.1 自然采样法 (20)4.3.2 规则采样法 (21)5 异步电动机SPWM变频调速仿真系统的设计 (23)5.1自然采样法系统的设计 (23)5.1.1 三角波的生成 (23)5.1.2 自然采样法SPWM 脉冲的生成 (25)5.1.3 直流电源 (25)5.1.4 逆变器的设计 (25)5.1.5 系统总框图的设计 (26)5.2 规则采样法系统的设计 (26)5.2.1 规则采样法脉冲的生成 (26)5.2.2 规则采样法系统总框图的设计 (28)5.3仿真分析 (28)5.3.1 额定转速(50HZ)的波形 (29)5.3.2 性能对比分析 (30)致谢 (36)参考文献 (37)1 绪论1.1 交流调速系统的发展[1]直流电气传动和交流电气传动在19世纪先后诞生。
论述绕线式交流异步电动机转子回路串电阻调速原理兰州理工大学操纵理论与操纵工程谯自健 1220811010150 引言绕线式交流异步电动机转子回路串电阻调速是传统调速方式之一,其结构简单,易于实现。
本文通过对绕线式交流异步电动机转子回路串电阻调速的原理、效率和缺点方面作出分析。
1 绕线式交流异步电动机转子回路串电阻调速原理转子串电阻调速的线路图和机械特性如图(a)和(b)所示,拖动恒转矩负载时,能够取得几级不同的速度。
图(a)转子回路串电阻调速线路图图(b)机械特性曲线依照电机学原理知:60-S f n p =极对数(1) 其中n 为电动机转速,f 为电源频率,S 为转差率(1)Pm S Pe =-(2) *Pa S Pe = (3)其中Pe 为异步电动机电磁功率,Pm 为异步电动机机械功率,Pa 为转子铜耗即转差功率因此得::1:(1):Pe Pm Pa S S =- 由式(4)能够看出SPm 减小,相反转差功率Pa 在增大,而转速n 随S 的增大而减小。
因此所绕线式异步交流电动机转子回路串电阻调速的实质是通过改变转差功率或转差率的大小来调剂转速n 的。
当串入的电阻阻值越大那么转差功率增大,随之转差率S 变大,从而使转速n 下降。
2 绕线式异步交流电动机转子回路串电阻调速的优缺点 绕线式转子异步电动机,通过转子回路串入不同数值的电阻R ,改变转差率S 调速的传统方式,能够取得不同斜率的机械特性,从而实现速度的调剂。
这种调速方式简单方便,但存在如下缺点:(1)调速是有级的,不滑腻。
(2)在深度调速机会械特性很软,致使负载有较小转变,即可引发转速的专门大的波动,降低了静态调速精度。
(3)转差功率Pa 消耗在电阻发烧上,效率低。
由于是通过增大转子回路的电阻值来降低电动机转速的,当拖动恒转矩负载时,转速n 越低,转差率S 就越大,从而使得转差功率也愈大,电能消耗大,效率更低。
当转差功率S=0.5时,效率η<0.5。
单片机控制的交流异步电机变频调速摘要:单片机控制的变频调速系统设计思想是用转差频率进行控制。
通过改变程序来达到控制转速的目的。
本文用MCS-51系列的8051单片微型计算机和SA4828三相SPWM 产生器及少量的扩展外围芯片构成,充分发挥其控制电路简单、控制方式灵活、输出波形优点多的特点,实现三相异步电机变频调速的目的。
关键词:单片机;三相异步电机;变频调速1、交流三相异步电动机和变频调速技术介绍1.1 三相异步电动机 交流电动机,尤其是感应异步电动机,具有结构简单、价格低廉、坚固耐用、维护方便,可工作在恶劣的环境中等优点,在伺服驱动系统中越来越受到人们的关注。
1.2 变频调速技术 三相异步电动机的调速方法有三种:变极调速、改变转差率调速、变频调速。
其中变频调速具有很大优势,效率最高、性能最好、应用最广泛的是变频调速,它可以构成高动态性能的交流调速系统来取代直流调速系统,并且是交流调速的主要发展方向。
它的调速性能与可靠性不断完善,价格不断降低,特别是变频调速节能效果明显,而且易于实现自动化控制,所以交流电动机的变频调速刚反应用于工业行业。
目前变频器不但在传统的电力拖动系统中得到了广泛的应用,而且已扩展到了工业生产的所有领域,以及空调器、洗衣机、电冰箱等家电中。
2、三相异步电机的变频调速原理异步电动机的转速是取决于同步转速的:)1(0s n n -=式中: n ——电动机的转速,m/min0n ——电动机的同步转速,r/mins ——电动机的转差率 s=(n 1-n/)=△n/ n 1而同步转速则主要取决于频率p fn 60=式中:f——输入频率,Hzp——电动机的磁极对数由以上两式可知变频调速技术的基本原理是根据电机转速与工作电源输入频率成正比的关系:p sf n) 1(60-=由上式可知,在电动机磁极对数不变的情况下,通过改变电动机工作电源频率达到改变电机转速的目的。
当改变电动机定子电源的频率时,电动机的同步转速将随频率正比变化,于是转子转速将随之而变化,这种通过改变电源频率实现的速度调节称为变频调速。
三相异步电机交流变频调速系统设计实验指导书仇国庆编写重庆邮电大学自动化学院测控技术实验中心2010/11/2三相异步电机交流变频调速系统设计实验指导书一、实验目的:1. 了解三相异步电机调速的方法;2. 熟悉交流变频器的使用;3. 掌握三相异步电机交流变频调速系统设计。
4. 交流异步电动机机械特性及变频调速特性测试二、控制系统设计要求系统设计要求能够实现三相异步电动机的如下状态的控制:正转;反转;停止;点动;加速;减速。
图1 控制系统硬件结构图三、基本知识:1.异步电动机调速系统种类很多,常见的有:(1)降电压调速;(2)电磁转差离合器调速(3)绕线转子异步电机转子串电阻调速(4)绕线转子异步电机串级调速(5)变极对数调速(6)变频调速等等。
2.三相交流异步电动机2.1 异步电动机旋转原理异步电动机的电磁转矩是由定子主磁通和转子电流相互作用产生的。
n转速顺时针旋转,转子绕组切割磁力线,产生转子电流⑴磁场以⑵通电的转子绕组相对磁场运动,产生电磁力⑶ 电磁力使转子绕组以转速n 旋转,方向与磁场旋转方向相同2.2 旋转磁场的产生旋转磁场实际上是三个交变磁场合成的结果。
这三个交变磁场应满足:⑴ 空间位置上互差rad 3/2π电度角。
由定子三相绕组的布置来保证⑵ 在时间上互差rad 3/2π相位角(或1/3周期)。
由通入的三相交变电流来保证。
2.3 电动机转速产生转子电流的必要条件:是转子绕组切割定子磁场的磁力线。
因此,转子的转速n 必须低于定子磁场的转速0n 。
两者之差称为转差:n n n -=∆0转差与定子磁场转速(常称为同步转速)之比,称为转差率:0/n n s ∆=同步转速0n 由下式决定:p f n /600=上式中,f 为输入电流的频率,p 为旋转磁场的极对数。
由此可得转子的转速:p s f n /)1(60-=3.异步电动机调速由转速p s f n /)1(60-=可知异步电动机调速有以下几方法:(1) 改变磁极对数p (变极调速)定子磁场的极对数取决于定子绕组的结构。
完整版《三相异步电动机变频调速系统设计》三相异步电动机变频调速系统是一种应用广泛的电机控制系统,通过对电机的供电频率和电压进行调整,实现电机的调速功能。
本文将对三相异步电动机变频调速系统进行详细的设计。
1.系统结构三相异步电动机变频调速系统主要由电机、变频器和控制系统三部分组成。
电机作为执行元件,接受变频器输出的电压和频率进行运行;变频器则负责将输入的电网电压和频率转换为适合电机运行的电压和频率;控制系统则完成对变频器的控制和监测,实现对电机的精确调速。
2.硬件设计在硬件设计方面,需要选择适合电机的变频器和控制器,并完成相应的接线和连接。
变频器通常需要选择带有电压和频率调节功能的型号,以满足不同工作条件下的电机要求。
控制器则需要选择具备快速响应和稳定性能的型号,以确保系统的准确调速。
3.变频器参数设置变频器的参数设置对于电机的工作性能影响较大。
在设置参数时,首先需要根据电机的额定功率和工作特性确定变频器的额定输出功率。
同时,还需要根据电机的额定电压和额定转速设置变频器的额定输出电压和额定输出频率。
此外,还需要根据电机的负载特性设置变频器的过载保护和反馈调节参数。
4.控制系统设计控制系统的设计主要包括速度信号检测、计算和反馈控制三个步骤。
速度信号检测可以通过安装编码器或霍尔传感器等装置实现。
根据检测到的速度信号,控制系统可以计算出电机的当前转速,并与设定的目标转速进行比较,得到误差信号。
通过对误差信号进行PID控制,控制系统可以调整变频器的输出频率和电压,以实现对电机转速的控制。
5.保护措施设计三相异步电动机变频调速系统在运行过程中需要考虑到一些保护措施,以防止电机过载、短路等故障。
常见的保护措施包括过载保护、过流保护、过热保护和失速保护等。
通过在控制系统中添加相应的保护逻辑和监测装置,可以及时发现并处理电机故障,保证系统的安全运行。
总之,三相异步电动机变频调速系统设计涉及到硬件设计、变频器参数设置、控制系统设计和保护措施设计等方面。
绪论第1章系统总方案确定1.1变频器的选定根据直流部分电流、电压的不同形式,又可分为电压型和电流型两种:(1)电流型变频器电流型变频器的特点是中间直流环节采用大电感器作为储能环节来缓冲无功功率,即扼制电流的变化,使电压波形接近正弦波,由于该直流环节内阻较大,故称电流源型变频器。
(2)电压型变频器电压型变频器的特点是中间直流环节的储能元件采用大电容器作为储能环节来缓冲无功功率,直流环节电压比较平稳,直流环节内阻较小,相当于电压源,故称电压型变频器。
由于电压型变频器是作为电压源向交流电动机提供交流电功率,所以其主要优点是运行几乎不受负载的功率因数或换流的影响,它主要适用于中、小容量的交流传动系统。
与之相比,电流型变频器施加于负载上的电流值稳定不变,其特性类似于电流源,它主要应用在大容量的电机传动系统以及大容量风机、泵类节能调速中。
本次设计中选用交-直-交变频器,采用电压型变频器。
第2章主电路的设计与分析2.1主电路工作原理变频调速实际上是向交流异步电动机提供一个频率可控的电源。
能实现这个功能的装置称为变频器。
变频器由两部分组成:主电路和控制电路,其中主电路通常采用交-直-交方式,先将交流电转变为直流电(整流,滤波),再将直流电转变为频率可调的交流电(逆变)。
在本设计中采用图2.1的主电路,这也是变频器常用的格式。
图2.1 电压型交直交变频调速主电路2.2整流电路整流电路是把交流电变换为直流电的电路。
目前在各种整流电路中,应用最广泛的是三相桥式全控整流电路,三相桥式全控整流电路每个时刻均需2个晶闸管导通,而且这两个晶闸管一个是共阴极组,一个是共阳极组,只有它们能同时导通,才能形成导电回路。
由于整流电路原理比较简单,设计中不再做详细的介绍,其原理如图2.2所示。
图2.2 三相桥式全控整流电路2.4 IGBT 简介及驱动要求IGBT 是压控器件,栅极输入阻抗高,所需要驱动功率小,驱动较为容易。
但必须注意,IGBT 的特性与栅极驱动条件密切相关,随驱动条件的变化而变化。
异步电动机调速方法
异步电动机是最常见的电动机械,广泛应用于各种工业和商业应用中。
由于其工作原理的特点,异步电动机需要调节转速才能获得所需的性能。
以下是几种异步电动机调速方法:
1. 调幅法:通过改变异步电动机的电压或频率,使电动机转速增加或减少。
这种方法适用于电动机的负载较小,且不需要高速响应的场合。
2. 调速法:通过改变异步电动机的转速来调节其输出电压或频率,使电动机转速达到所需的目标值。
这种方法适用于需要高速响应或需要高效率的场合。
3. 电容调速法:在异步电动机的两端加上电容,当电动机转速发生变化时,电容充放电,从而调节电动机的输出功率。
这种方法适用于需要高频响应和低噪声的场合。
4. 电枢调速法:在异步电动机的两端加上电枢,通过改变电枢的旋转速度来调节电动机的输出功率。
这种方法适用于需要高效率和低噪声的场合。
除了以上几种方法外,还有许多其他的异步电动机调速方法,例如电阻调速法、转子电阻调速法、转子磁敏电阻调速法等。
这些方法的选择取决于具体的应用场景和所需的性能指标。
在实际应用中,调速方法的选择需要考虑多方面的因素,例如电动机的负载、功率、转矩、噪声、可靠性等。
因此,在设计和制造异步电动机时,需要根据具体情况选择合适的调速方法。
基于matlab的交流异步电机变频调速运行设计
交流异步电机是一种常见的电动机,它可以通过变频调速运行来实现转速控制。
在MATLAB中,我们可以使用Simulink来
进行交流异步电机的变频调速运行设计。
以下是一个基于MATLAB的交流异步电机变频调速运行设计
的简单步骤:
1. 创建模型:在MATLAB/Simulink中创建一个新的模型。
2. 添加组件:通过拖拽、双击等方式添加交流异步电机模型、PID控制器、变频器等组件到模型中。
3. 连接组件:使用连线工具将组件连接起来,包括将PID控
制器的输出连接到变频器的输入,将变频器的输出连接到交流异步电机模型的输入等。
4. 参数设置:根据实际需求,设置各个组件的参数,包括PID
控制器的比例、积分、微分系数,变频器的输出频率等。
5. 仿真运行:在Simulink中点击运行按钮,进行仿真运行。
通过观察仿真结果,可以评估交流异步电机的转速控制性能。
6. 优化调试:根据仿真结果,对PID控制器参数、变频器输
出频率等进行优化调试,以达到所需的转速控制效果。
需要注意的是,具体的设计步骤和方法可能因实际情况而有所不同。
在实际应用中,还需要考虑电机的额定功率、转矩特性、电压、电流等因素,并结合电机的特性曲线进行调试和优化设计。
XXXX大学毕业设计题目:交流异步电动机调速设计与应用姓名:学院:专业:(专业必须为全称)班级:(用阿拉伯数字填写)学号:(用阿拉伯数字填写)指导教师:年月日目录目录 (1)摘要 (2)第1章绪论 (3)1.1电气传动技术的发展概况 (3)1.2 定子调压调速 (3)1.3 串级调速 (3)1.4 变极调速 (4)1.5 变频调速 (4)1.6普通交流异步电动机变频调速调速范围的问题 (4)第2章变频调速技术及其应用 (5)2.1变频调速技术的意义与应用 (5)2.2异步电动机的变频变压调速(VVVF) (5)2.3变频器的基本结构 (5)2.4 SPWM变频器的原理 (6)第3章普通交流异步电动机变频调速性能 (9)3.1普通交流异步电动机的T形等效电路 (9)3.2交流异步电动机起动频率范围的确定 (9)3.3交流异步电动机起动原理 (10)第4章普通交流异步电动机变频调速最佳调速范围 (12)4.1变频调速对普通交流异步电动机的影响 (12)4.2 电动机性能的测试方法及设备 (14)结论与展望 (15)参考文献 (16)致谢 (17)摘要普通交流异步电动机变频调速系统被广泛应用,但是,普通交流异步电动机都是按恒频、恒压设计的,在频率改变时,电动机的参数和性能都将发生改变。
由于异步电动机本身的非线性性,加上工作频率的改变,使其建模非常困难,因此,长期以来,在设计普通交流异步电动机变频调速系统时,只是凭借经验确定一些重要参数。
本论文计算分析了在基频以下、以恒压频比方式供电下,变频调速时普通交流异步电动机启动电流、转矩的变化规律,并提出了根据电动机负载确定其最佳启动频率范围的方法。
然后,以具体的普通交流异步电机变频调速系统为研究对象,重点测试了变频调速时异步电动机的各项性能数据,并据此提出了普通交流异步电动机变频调速的最佳调速范围,从而为普通交流异步电动机变频调速系统的设计提供了重要的理论依据。
[关键词]:普通交流异步电动机(TM)变频调速系统(TP) 最佳启动频率(TM) 最佳调速范围(TM) 、第1章绪论1.1电气传动技术的发展概况电气传动是指以各类电动机为动力的传动装置与系统。
电气传动系统通常由电动机、控制装置和信息装置几部分组成。
电气传动关系到合理地使用电动机以节约电能和控制机械的运转状态(位置、速度、加速度等),实现电能、机械能的转换,达到优质、高产、低耗的目的。
电气传动按照电动机的种类划分,有直流电动机传动、交流电动机传动、步进电动机传动、伺服电动机传动等。
电气传动又可分为不调速和调速两大类,调速又分为交流调速和直流调速。
直流电气传动和交流电气传动在19世纪后期先后诞生。
但在20世纪的大部分年代里,已形成公认的格局:约占电气传动的80%不变速传动系统都采用交流传动,20%调速系统一般采用直流调速。
虽然直流电机中励磁电流和电枢电流相互独立,比交流电机具有更好的控制性能,容易得到满意的动静态性能。
而与此相反,交流电机虽然机械结构简单,但它是一个非线性、强耦合、多变量的控制对象,调速控制复杂,实现高精度控制较为困难。
但是随着生产技术的不断发展,直流电机传动的薄弱环节逐步显露出来:直流电机由于换向器的存在降低了功率/重量的比值,限制了电机的容量和速度,而且直流电机的大部分功率都是通过换向器流入电枢的,转予发热多,效率低,磨损大,可靠性差。
随着20世纪70年代计算机和微处理器技术的迅速发展,电力电子技术的日新月异,现代控制理论和智能控制理论的成熟,交流电气传动逐渐占据了主导地位。
采用半导体变流技术、大规模集成电路和高速处理器等实现的交流调速控制系统,加之矢量控制、直接转矩控制及智能控制等先进控制方法的应用,交流调速控制系统逐步实现了宽的调速范围、高的稳速精度、快的动态响应等良好性能,在调速性能方面可与直流调速系统相媲美目前,从几百瓦的家用电器到几兆瓦的工业调速装置,都可以采用交流调速方案。
交流调速系统由最初的只用于风机、水泵的软启动和开环变频调速等一般应用场合,扩展到各种高精度、快速响应的高性能指标的电气传动控制领域。
目前,电气传动系统中新的格局已经形成:交流调速系统上升到主导地位,并将逐步取代直流调速系统。
1.2 定子调压调速异步电动机的转矩在一定转差率下,与定子电压平方成正比,改变定子电压将改变电动机的机械特性,从而实现电动机的调速。
定子调压调速是一种比较简便的调速方式,可以在异步电动机的定子回路中串入饱和电抗器降压、串入电阻降压或在定子侧加调压变压器等方式来实现调压调速。
在电力电子技术高速发展的今天,可以使用“交流开关”状态的双向晶闸管来实现交流调压调速。
定子调压调速的主要优点是:方法简单,调速平滑,加上闭环控制时能达到理想的调速精度。
其主要缺点是调整范围窄,一般不能低于电动机同步转速的80~85%”。
,电动机转子的损耗比较大等。
1.3 串级调速在绕线式异步电动机转子回路引入一附加电势,使得电动机转子侧通过交流装置向电网反馈或从电网吸收转差功率,从而实现电动机转速调节。
串级调速可分为两类:一类是直接使用变频电源;另一类是将不同频率的转子电压经过整流器整流,变换为与转差成正比的直流,在其直流回路中串入一个极性相反的逆变器来实现调速。
串级调速的主要优点是:可以将滑差能量以电能的形式回馈至电网,在整个调速范围内系统总效率较高,可达90%。
调速平滑;装置容量与速度调节范围成正比,当要求调速范围不大时,所需外加电源容量小,设备费用较低;可靠性较高,即使附加电源出了问题,系统可甩掉附加电源,切换至转子短接状态下运行。
串极调速的主要缺点是:功率因数低,可能要低于0.6;晶体管串级调速装置有谐波危害:当电网电压瞬时大幅度降低时,串级调速装置有可能停止运行:最大力矩降低约17%左右。
电气制动的特性不够理想,线路相对较复杂等。
1.4 变极调速变极调速方式就是电动机的同一套绕组经控制设备把各线圈的接法进行变换,改变电动机的极对数来改变电动机同步转速的调速方式。
这是一种不连续的调速方式,适用于极对数可以改变的多速鼠笼型异步电动机。
从电机构造上看,定子绕组有单绕组和多绕组两种,一半多为单绕组,单绕组变极电机不仅出线少,用铜省,而且可以实现双速、三倍及倍极比、非倍极比的变极调速。
变极调速是一种传统的调速方式,广泛应用于机床等机械的调速,变极调速的主要优点是:无跗加转差损耗,电气传动效率高,控制线路简单,设备费用低。
其主要缺点是:不能连续调节转速。
1.5 变频调速改变异步电动机定子的电源频率,就可以改变同步转速,从而改变电动机的转速,这种调速方式能达到无级调速,主要用于鼠笼型异步电动机,如风机、水泵、压风机及空调等。
变频调速的主要优点:起动电流小,在异步电动机的各种调速装置中变频调速效率最高。
特别是半导体变频装置更具有设备体积小、可靠性高、调速精度高、特性硬、省电的特点在交流电动机的以上调速方式中,变频调速因其突出的性能,应用最为广泛,同时也是电动机调速技术最为活跃的研究领域。
随着电力电子技术和控制理论的不断发展和完善,变频调速的技术性能不断提升,变频调速技术已成为我国企业节约能源、提高生产过程自动化、提高产品质量和改造传统产业的主要技术手段之一。
1.6普通交流异步电动机变频调速调速范围的问题当频率改变时,会对交流异步电动机产生~系列的影响:损耗增加,效率下降:在工频以下,以恒转矩方式调速时,交流异步电动机的过载能力将会下降;在低频时交流异步电动机的散热能力变坏,交流异步电动机温度会过高等。
由于交流异步电动机本身就是一个非线性、强耦合、多变量的对象,且更为严重的是,由于工作频率、温度和饱和效应的影响,定转子电阻、电感等参数在不同工况下变化明显。
例如在某些情况下,转子的电阻值会比其标称值增加一倍以上因而其建模非常困难,要从理论上准确的计算出交流异步电动机在不同频率和负载下的效率、温升,功率因数和临界转矩是十分困难的。
所以,长期以来,在设计变频调速系统时,人们只是凭借经验来确定普通交流异步电动机变频调速的调速范围,而没有充分的理论依据。
第2章变频调速技术及其应用2.1变频调速技术的意义与应用根据资料显示,各类电动机所耗电能占全部工业用电的60%以上,其中美国、法国等发达国家的比重超过三分之二,在我国的几个主要电网中电动机所耗电能的比重也在65%左右。
在一般的中小型工厂中,工作运行的三相异步电动机大约在数十台到数百台之间,而在大型工厂中往往有数千台电动机在运行。
所以提高电机的工作效率,采用节能技术是其经济运行的有效途径。
因此世界各国都在研制并推广各类节能技术与设备以促进电动机的经济运行。
.相关数据表明,我国各类工矿企业中风机、水泵类机械设备每年的耗电量约占全国总发电量的三分之一左右,而变负荷运行的又占了其中的70%。
又有实际资料显示,家用空调、楼房供水系统、企业的各类电机在大多数情况下只有60%负载”,因此,若采用变频调速技术,风机、水泵类电机的节能调速的潜力将非常大,每年可以节电几百亿度。
在众多调速技术中,交流变频调速技术是各类工业设各高效率运行,节能降耗的有效手段。
2.2异步电动机的变频变压调速(VVVF)在异步电动机的调速系统中,变压变频调速系统(Variable Voltage Variable Frequency System)是控制性能最好,效率最高的系统。
异步电动机中,转子转速低于气隙旋转磁场的旋转速度即同步转速,故在转子回路中,将产生转差电动势,该电动势产生转子电流,转子电流与旋转磁场相互作用产生电磁转矩。
异步电动机定子每相绕组感应电动势有效值公式,具体如图1。
图1 调速方式相应的特性曲线2.3变频器的基本结构变频器的主要任务就是把恒压恒频(Constant Voltage Constant Frequency,CVCF)的交流电转换成变压变频(Variable Voltage Variable Frequency,VWF) 的交流电,以满足交流电动机变频调速的需要。
从结构上分,变频器可以分为交交变频器(直接变频器)和交一直一交变频器(间接变频器)。
交一交变频器是将恒压恒频的交流电一次变换成调压调频的交流电,它由三组可逆整流器组成,当输入信号是一组频率和幅值均可调的三相正弦信号时,则变频器输出三相交流电,在这种变频器供电下,电动机的输出转矩脉动小、损耗小,但是其最高输出频率有限。
交一直一交变频器是将恒压恒频的交流电通过整流电路变换成直流,然后再经逆变器将直流变换成调压调频的交流电。
这种变频器虽然多了一个中间直流环节,但输出交流电的频率可高于电网频率。
这种控制方式中,调压与调频分别在两个环节上进行,现在普遍采用不可控整流器整流,用PWM逆变器同时调压调频的交一直一交变频器“”。