当前位置:文档之家› 初中数学二次函数经典综合大题练习卷

初中数学二次函数经典综合大题练习卷

初中数学二次函数经典综合大题练习卷
初中数学二次函数经典综合大题练习卷

>

1、如图9(1),在平面直角坐标系中,抛物线经过A(-1,0)、B(0,3)两点,与x轴交于另一点C,顶点为D.

(1)求该抛物线的解析式及点C、D的坐标;

(2)经过点B、D两点的直线与x轴交于点E,若点F是抛物线上一点,以A、B、E、F为顶点的四边形是平行四边形,求点F的坐标;

(3)如图9(2)P(2,3)是抛物线上的点,Q是直线AP上方的抛物线上一动点,求△APQ的最大面积和此时Q点的坐标.

%

^

2、随着我市近几年城市园林绿

化建设的快速发展,对花木的

需求量逐年提高。某园林专业

户计划投资种植花卉及树木,

根据市场调查与预测,种植树

木的利润y1与投资成本x成正

比例关系,如图①所示;种植

花卉的利润y2与投资成本x成

二次函数关系,如图②所示(注:利润与投资成本的单位:万元)

<

图①图

(1)分别求出利润y1与y2关于投资量x的函数关系式;

(2)如果这位专业户计划以8万元资金投入种植花卉和

树木,请求出他所获得的总利润Z与投入种植花卉的投资量x之间的函数关系式,并回答他至少获得多少利润他能获取的最大利润是多少

3、如图,为正方形的对称中心,,,直线交于,于,点

从原点出发沿轴的正半轴方向以1个单位每秒速度运动,同时,点从出发沿方向以

个单位每秒速度运动,运动时间为.求:

(1)的坐标为;

(2)当为何值时,与相似

(3)求的面积与的函数关系式;并求以为顶点的四边形是梯形时的值及

的最大值.

4、如图①,正方形ABCD的顶点A,B的坐标分别为,顶点C,D在第一象限.点P从点

A出发,沿正方形按逆时针方向匀速运动,同时,点Q从点E(4,0)出发,沿x轴正方向以相同速度运动.当点P到达点C时,P,Q两点同时停止运动,设运动的时间为t秒.

(1)求正方形ABCD的边长.

(2)当点P在AB边上运动时,△OPQ的面积S(平方单位)与时间t(秒)之间的函数图象为抛物线的一部分(如图②所示),求P,Q两点的运动速度.

(3)求(2)中面积S(平方单位)与时间t(秒)的函数关系式及面积取最大值时点的坐标.

(4)若点P,Q保持(2)中的速度不变,则点P沿着AB边运动时,∠OPQ的大小随着时间的增大而增大;沿着BC边运动时,∠OPQ的大小随着时间的增大而减小.当点沿着这两边运动时,使∠OPQ=90°的点有个.

5、如图,在梯形中,厘米,厘米,的坡度

动点从出发以2厘米/秒的速度沿方向向点运动,动点从点出发以3厘米/秒的速度沿方向向点运动,两个动点同时出发,当其中一个动点到达终点时,另一个动点也随之停止.设动点运动的时间为秒.

(1)求边的长;

|

(2)当为何值时,与相互平分;

(3)连结设的面积为探求与的函数关系式,求为何值时,有最大值最大值是多少

6、已知抛物线()与轴相交于点,

顶点为.直线分别与轴,轴相交于

两点,并且与直线相交于点.

(1)填空:试用含的代数式分别表示点与的坐标,则;

(2)如图,将沿轴翻折,若点的对应点′恰好落在抛物线上,′与轴交于点,连结,求的值和四边形的面积;

(3)在抛物线()上是否存在一点,使得以为顶点的四边形是平行四边形若存在,求出点的坐标;若不存在,试说明理由.

7、已知抛物线y=ax2+bx+c的图

象交x轴于点A(x

,0)和点B(2,

0),与y轴的正半轴交于点C,其

对称轴是直线x=-1,tan∠BAC

=2,点A关于y轴的对称点为点D.

(1)确定三点的坐标;

(2)求过三点的抛物线的解析式;

(3)若过点(0,3)且平行于x轴的直线与(2)小题中所求抛物线交于两点,以MN为一边,抛物线上任意一点P(x,y)为顶点作平行四边形,若平行四边形的面积为S,写出S关于P点纵坐标y 的函数解析式.

(4)当<x<4时,(3)小题中平行四边形的面积是否有最大值,若有,请求出,若无,请说明理由.

8、如图,直线AB过点A(m,0),B(0,n)(m>0,n>0)反比例函数的图象与AB交于C ,D两点,P 为双曲线一点,过P作轴于Q,轴于R,请分别按(1)(2)(3)各自的要求解答闷题。

(1)若m+n=10,当n 为何值时的面积最大最大是多少

(2)若,求n 的值:

(3)在(2)的条件下,过O、D、C三点作抛物线,当抛物线的对称轴为x=1时,矩形PROQ的面积是多少

9、已知A

1、A

2

、A

3

是抛物线上的三点,A

1

B

1

、A

2

B

2

、A

3

B

3

分别垂直于x轴,垂足为B

1

、B

2

、B

3

直线A

2B

2

交线段A

1

A

3

于点C。

(1)如图1,若A

1、A

2

、A

3

三点的横坐标依次为1、2、3,求线段CA

2

的长。

(2)如图2,若将抛物线改为抛物线,A

1、A

2

、A

3

三点的横坐标为连续整数,

其他条件不变,求线段CA

2

的长。

(3)若将抛物线改为抛物线,A

1、A

2

、A

3

三点的横坐标为连续整数,其他

条件不变,请猜想线段CA

2

的长(用a、b、c表示,并直接写出答案)。

<

10、如图,现有两块全等的直角三角形纸板Ⅰ,Ⅱ,它们两直角边的长分别为1和2.将它们分别放置于平面直角坐标系中的,处,直角边在轴上.一直尺从上方紧靠两纸板放置,让纸板Ⅰ沿直尺边缘平行移动.当纸板Ⅰ移动至处时,设与分别交于点,与轴分别交于点.

(1)求直线所对应的函数关系式;

(2)当点是线段(端点除外)上的动点时,试探究:

①点到轴的距离与线段的长是否总相等请说明理由;

②两块纸板重叠部分(图中的阴影部分)的面积是否存在最大值若存在,求出这个最大值及取最大值时点的坐标;若不存在,请说明理由.

11、OM是一堵高为米的围墙的截面,小鹏从围墙外的A点向围墙内抛沙包,但沙包抛出后正好打在了横靠在围墙上的竹竿CD的B点处,经过的路线是二次函数图像的一部分,如果沙包不被竹竿挡住,将通过围墙内的E点,现以O为原点,单位长度为1,建立如图所示的平

面直角坐标系,E点的坐标(3,),点B和点E关于此二次函数的对称轴对称,若tan∠OCM=1(围墙厚度忽略不计)。

(1)求CD所在直线的函数表达式;

(2)求B点的坐标;

(3)如果沙包抛出后不被竹竿挡住,会落在围墙内距围墙多远的地方

12、已知:在平面直角坐标系xOy中,一次函数的图象与x轴交于点A,抛物线

经过O、A两点。

(1)试用含a的代数式表示b;

(2)设抛物线的顶点为D,以D为圆心,DA为半径的圆被x轴分为劣弧和优弧两部分。若将劣弧沿x轴翻折,翻折后的劣弧落在⊙D内,它所在的圆恰与OD相切,求⊙D半径的长及抛物线的解析式;

(3)设点B是满足(2)中条件的优弧上的一个动点,抛物线在x轴上方的部分上是否存在这样的点P,使得若存在,求出点P的坐标;若不存在,请说明理由。

13、如图,抛物线交轴于A.B两点,交轴于M点.抛物线向右平移2个单位后得到抛物线,交轴于C.D两点.

(1)求抛物线对应的函数表达式;

(2)抛物线或在轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形.若存在,求出点N的坐标;若不存在,请说明理由;

(3)若点P是抛物线上的一个动点(P不与点A.B重合),那么点P关于原点的对称点Q是否在抛物线上,请说明理由.

14、已知四边形是矩形,,直线分别与交与两点,为对角线

上一动点(不与重合).

(1)当点分别为的中点时,(如图1)问点在上运动时,点、、能否构成直角三角形若能,共有几个,并在图1中画出所有满足条件的三角形.

(2)若,,为的中点,当直线移动时,始终保持,(如图2)求的面积与的长之间的函数关系式.

15、如图1,已知抛物线的顶点为,且经过原点,与轴的另一个交点为.(1)求抛物线的解析式;

(2)若点在抛物线的对称轴上,点在抛物线上,且以四点为顶点的四边形为平行四边形,求点的坐标;

(3)连接,如图2,在轴下方的抛物线上是否存在点,使得与相似若存在,求出点的坐标;若不存在,说明理由.

16、如图,已知抛物线经过原点O

和x轴上另一点A,它的对称轴x=2

与x轴交于点C,直线y=-2x-1经过

抛物线上一点B(-2,m),且与y轴、

直线x=2分别交于点D、E.

$

(1)求m的值及该抛物线对应的函数关系式;

(2)求证:①CB=CE;②D是BE的中点;

(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得PB=PE

,若存在,试求出所

有符合条件的点P的坐标;若不存在,请说明理由.

17、如图,抛物线与轴交于A、B两点(点A在点B左侧),与y轴交

于点C,且当=0和=4时,y的值相等。直线y=4x-16与这条抛物线相交于两点,其中一点的横坐标是3,另一点是这条抛物线的顶点M。

(1)求这条抛物线的解析式;

(2)P为线段OM上一点,过点P作PQ⊥轴于点Q。若点P在线段OM上运动(点P不与点O重合,但可以与点M重合),设OQ的长为t,四边形PQCO的面积为S,求S与t之间的函数关系式及自变量t的取值范围;

(3)随着点P的运动,四边形PQCO的面积S有最大值吗如果S有最大值,请求出S的最大值并指出点Q的具体位置和四边形PQCO的特殊形状;如果S没有最大值,请简要说明理由;

(4)随着点P的运动,是否存在t的某个值,能满足PO=OC如果存在,请求出t的值。

试卷答题纸

]

?] (《、

:

$

参考答案1、解:(1)∵抛物线经过A(-1,0)、B(0,3)两点,

∴解得:

#

抛物线的解析式为:

∵由,解得:

∵由

∴D(1,4)

(2)∵四边形AEBF是平行四边形,∴BF=AE.

设直线BD的解析式为:,则

∵B(0,3),D(1,4)

,

∴解得:

∴直线BD的解析式为:

当y=0时,x=-3 ∴E(-3,0),∴OE=3,

∵A(-1,0)

∴OA=1,∴AE=2 ∴BF=2,

∴F的横坐标为2,∴y=3,∴F(2,3);

(3)如图,设Q,作PS⊥x轴,QR⊥x轴于点S、R,且P(2,3),|

∴AR=+1,QR=,PS=3,RS=2-a,AS=3

∴S△PQA=S四边形PSRQ+S△QRA-S△PSA

=

=

∴S△PQA=

∴当时,S△PQA的最大面积为,

此时Q

2、(1)设y1=kx,由图①所示,函数y1=kx的图象过(1,2),

所以2=k?1,k=2,

故利润y1关于投资量x的函数关系式是y1=2x,

∵该抛物线的顶点是原点,

∴设y2=ax2,

由图②所示,函数y2=ax2的图象过(2,2),

∴2=a?22,,

故利润y2关于投资量x的函数关系式是:y2= x2;

{

(2)设这位专业户投入种植花卉x万元(0≤x≤8),则投入种植树木(8-x)万元,他获得的利润是z万元,根据题意,得z=2(8-x)+ x2= x2-2x+16= (x-2)2+14,

当x=2时,z的最小值是14,

∵0≤x≤8,∴当x=8时,z的最大值是32.

3、(1)C(4,1)...................2分

(2)当∠MDR=450时,t=2,点H(2,0).........................2分

当∠DRM=450时,t=3,点H(3,0)..........................2分

(3)S=-t2+2t(0<t≤4);(1分)S=t2-2t(t>4)(1分)

当CR∥AB时,t=,(1分)S=(1分)

当AR∥BC时,t=,S=(1分)

当BR∥AC时,t=,S=(1分)4、解:(1)作BF⊥y轴于F。

因为A(0,10),B(8,4)

所以FB=8,FA=6

所以

(2)由图2可知,点P从点A运动到点B用了10秒。

又因为AB=10,10÷10=1

所以P、Q两点运动的速度均为每秒1个单位。

(3)方法一:作PG⊥y轴于G

PG

(2)由题意得点与点

′关于轴对称,,

将′的坐标代入得

(不合题意,舍去),.

,点到轴的距离为3.

,,直线的解析式为,

它与轴的交点为点到轴的距离为.

`

.

(3)当点在轴的左侧时,若是平行四边形,则平行且等于,把向上平移个单位得到,坐标为,代入抛物线的解析式,

得:

(不舍题意,舍去),,

.

当点在轴的右侧时,若是平行四边形,则与互相平分,

]

与关于原点对称,,

将点坐标代入抛物线解析式得:,

(不合题意,舍去),,.

存在这样的点或,能使得以为顶点的四边形是平行四边形.7、解:(1)∵点A与点B关于直线x=-1对称,点B的坐标是(2,0)

∴点A的坐标是(-4,0)

由tan∠BAC=2可得OC=8

∴C(0,8)

)

∵点A关于y轴的对称点为D

∴点D的坐标是(4,0)

(2)设过三点的抛物线解析式为y=a(x-2)(x-4)

代入点C(0,8),解得a=1

∴抛物线的解析式是y=x2-6x+8

(3)∵抛物线y=x2-6x+8与过点(0,3)平行于x轴的直线相交于M点和N点

∴M(1,3),N(5,3),=4

而抛物线的顶点为(3,-1)

<

当y>3时

S=4(y-3)=4y-12

当-1≤y<3时

S=4(3-y)=-4y+12

(4)以MN为一边,P(x,y)为顶点,且当<x<4的平行四边形面积最大,只要点P到MN的距离h最大∴当x=3,y=-1时,h=4

S=?h=4×4=16

∴满足条件的平行四边形面积有最大值16

8、解:(1)

所以n=5时,面积最大值是

(2)当时,有AC=CD=DB

过C分别作x轴,y轴的垂线可得c坐标为() 代入得

(3)当时,得

设解析式为得,

%

所以对称轴

因为P(x,y)在上

所以四边形PROQ的面积

9、解:(1)∵A1、A2、A3三点的横坐标依次为1、2、3,

二次函数专项复习经典试题集锦(含答案)

二次函数专项复习经典试题集锦(含答案) 一、选择题: 1. 抛物线3)2(2+-=x y 的对称轴是( ) A. 直线3-=x B. 直线3=x C. 直线2-=x D. 直线2=x 2. 二次函数c bx ax y ++=2的图象如右图,则点 ),(a c b M 在( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限 3. 已知二次函数c bx ax y ++=2,且0+-c b a ,则一定有( ) A. 042>-ac b B. 042=-ac b C. 042<-ac b D. ac b 42-≤0 4. 把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式 是532+-=x x y ,则有( ) A. 3=b ,7=c B. 9-=b ,15-=c C. 3=b ,3=c D. 9-=b ,21=c 5. 下面所示各图是在同一直角坐标系,二次函数c x c a ax y +++=)(2与一次函数 c ax y +=的大致图象,有且只有一个是正确的,正确的是( ) B D 6. 抛物线322+-=x x y 的对称轴是直线( ) A. 2-=x B. 2=x C. 1-=x D. 1=x

7. 二次函数2)1(2+-=x y 的最小值是( ) A. 2- B. 2 C. 1- D. 1 8. 二次函数c bx ax y ++=2的图象如图所示,若 c b a M ++=24c b a N +-=,b a P -=4,则( ) A. 0>M ,0>N ,0>P B. 0N ,0>P C. 0>M ,0P D. 0N ,0

x 时,求使y ≥2的x 的取值围.

二次函数综合应用题(有答案)

解:(1) y=50- x (0≤x ≤160,且 x 是 10 的整数倍)。 2 2(3) W= - x +34x +8000= - (x -170) +10890, ∴当 x=160 时,W 最大=10880,当 x=160 时,y=50- x=34。答:一天订住 34 个房间时, ( ( 函数综合应用题 题目分析及题目对学生的要求 1. 求解析式:要求能够根据题意建立相应坐标系,将实际问题转化成数学问题。 需要注意的是: (1) 不能忘记写自变量的取值范围(需要用的前提下) (2) 在考虑自变量的取值范围时要结合它所代表的实际意义。 2. 求最值:实际生活中的最值能够指导人们进行决策,这一问要求能够熟练地对二次三项 式进行配方,利用解析式探讨实际问题中的最值问题。 一般式化为定点式) 最值的求法: (1) 一次函数和反比例函数中求最值是根据函数在自变量取值范围内的增减性来确定的。 (2) 二次函数求最值是将解析式配方后,结合自变量取值范围来确定的。 3. 求范围,要求学生利用解析式求实际问题中的范围问题,主要是将函数与不等式结合起 来。 推荐思路:画出不等式左右两边的图象,结合函数图象求出 x 的取值范围。 备选思路一:先将不等号看做等号,求出 x 的取值,再结合图象考虑将等号还原为不等号后 x 的取值范围; 备选思路二:通过分类讨论或者其它方法,直接解出这个不等式。这一问里需要注意的是在 注意:最后下结论时一定要结合它的实际意义和前面所求得的自变量取值范围进行判断。 一、求利润的最值 1. (本题满分 10 分) 某宾馆有 50 个房间供游客住宿,当每个房间的房价为每天 180 元时, 房间会全部住满。当每个房间每天的房价每增加 10 元时,就会有一个房间空闲。宾馆需对 游客居住的每个房间每天支出 20 元的各种费用。根据规定,每个房间每天的房价不得高于 340 元。设每个房间的房价每天增加 x 元(x 为 10 的正整数倍)。 (1) 设一天订住的房间数为 y ,直接写出 y 与 x 的函数关系式及自变量 x 的取值范围; (2) 设宾馆一天的利润为 w 元,求 w 与 x 的函数关系式; (3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元? 1 10 1 1 (2) W=(50- x)(180+x -20)= - x 2 +34x +8000; 10 10 1 1 10 10 当 x<170 时,W 随 x 增大而增大,但 0≤x ≤160, 1 10 宾馆每天利润最大,最大利润是 10880 元。 2. 本题满分 10 分)某商品的进价为每件 40 元,售价为每件 50 元,每个月可卖出 210 件; 如果每件商品的售价每上涨 1 元,则每个月少卖 10 件(每件售价不能高于 65 元).设每件 商品的售价上涨 x 元( x 为正整数),每个月的销售利润为 y 元. (1)求 y 与 x 的函数关系式并直接写出自变量 x 的取值范围; (2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元? (3)每件商品的售价定为多少元时,每个月的利润恰为 2200 元?根据以上结论,请你直接 写出售价在什么范围时,每个月的利润不低于 2200 元?

二次函数经典测试题及答案解析

二次函数经典测试题及答案解析 一、选择题 1.如图,ABC ?为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( ) A . B . C . D . 【答案】B 【解析】 【分析】 根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】 根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意; 点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】 本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题. 2.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( ) A .0<t <5 B .﹣4≤t <5 C .﹣4≤t <0 D .t ≥﹣4 【答案】B 【解析】 【分析】 先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函

数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解; 【详解】 解:∵对称轴为直线x =2, ∴b =﹣4, ∴y =x 2﹣4x , 关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4, ∴二次函数y 的取值为﹣4≤y <5, ∴﹣4≤t <5; 故选:B . 【点睛】 本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键. 3.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( ) A .原数与对应新数的差不可能等于零 B .原数与对应新数的差,随着原数的增大而增大 C .当原数与对应新数的差等于21时,原数等于30 D .当原数取50时,原数与对应新数的差最大 【答案】D 【解析】 【分析】 设出原数,表示出新数,利用解方程和函数性质即可求解. 【详解】 解:设原数为m ,则新数为2 1100 m , 设新数与原数的差为y 则22 11100100 y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵1 0100 - < 当1m 50 122100b a ﹣﹣﹣===??? ??? 时,y 有最大值.则B 错误,D 正确. 当y =21时,2 1100 m m - +=21 解得1m =30,2m =70,则C 错误.

二次函数经典例题及答案

二次函数经典例题及答案 1.已知抛物线的顶点为P (- 4,—2),与x轴交于A B两点,与y轴交于点C,其中B点坐标为(1 , 0)。 (1) 求这条抛物线的函数关系式; (2) 若抛物线的对称轴交x轴于点D,则在线段AC上是否存在这样的点Q,使得△ ADQ 1 2 9 . 135 y=2 x +4x - 2;存在点Q (-1 , -4 ) , Q (2^5-9,-%'5 ) , Q (--^, -4) ?析 一2 25 试题分析:(1)根据顶点坐标把抛物线设为顶点式形式y=a ( x+4) - 2,然后把点B的坐 标代入解析式求出a的值,即可得解; (2)先根据顶点坐标求出点D 的坐标,再根据抛物线解析式求出点A、C的坐标,从而得 到OA OC AD的长度,根据勾股定理列式求出AC的长度,然后根据锐角三角形函数求出/ OAC勺正弦值与余弦值,再分① AD=QD时,过Q作QE1丄x轴于点E,根据等腰三角形三线合一的性质求出AQ,再利用/ OAC勺正弦求出QE的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;②AD=AQ时,过Q作QE2丄x轴于点E>,利用/ OAC勺正弦求出QE2的长度,根据/ OAC勺余弦求出AE的长度,然后求出OE,从而得到点Q的坐标;③AQ=DQ时,过Q作QE3丄x轴于点已,根据等腰三角形三线合一的性质求出AE 的长度,然后求出OE,再由相似三角形对应边成比例列式求出QE3的长度,从而得到点Q 的坐标. 试题解析:(1 )???抛物线顶点坐标为( 25 -4 , - 2), ???设抛物线解析式为 2 25 y=a (x+4) - 2 为等腰三角形?若存在,请求出符合条件的点

二次函数的最值问题(典型例题)

二次函数的最值问题 【例题精讲】 题面:当1≤x ≤2时,函数y =2x 24ax +a 2+2a +2有最小值2, 求a 的所有可能取值. 【拓展练习】 如图,在平面直角坐标系xOy 中,二次函数23y x bx c = ++的图象与x 轴交于A (1,0)、B (3,0)两点, 顶点为C . (1)求此二次函数解析式; (2)点D 为点C 关于x 轴的对称点,过点A 作直线l :3333 y x =+交BD 于点E ,过点B 作直线BK AD l K :在四边形ABKD 的内部是否存在点P ,使得它到四边形ABKD 四边的距离都相等,若存在,请求出点P 的坐标;若不存在,请说明理由; (3)在(2)的条件下,若M 、N 分别为直线AD 和直线l 上的两个动点,连结DN 、NM 、MK ,求DN NM MK ++和的最小值.

练习一 【例题精讲】 若函数y=4x24ax+a2+1(0≤x≤2)的最小值为3,求a的值. 【拓展练习】 题面:已知:y关于x的函数y=(k1)x22kx+k+2的图象与x轴有交点. (1)求k的取值范围; (2)若x1,x2是函数图象与x轴两个交点的横坐标,且满足(k1)x12+2kx2+k+2= 4x1x2. ①求k的值;②当k≤x≤k+2时,请结合函数图象确定y的最大值和最小值. 练习二 金题精讲 题面:已知函数y=x2+2ax+a21在0≤x≤3范围内有最大值24,最小值3,求实数a的值. 【拓展练习】 题面:当k分别取1,1,2时,函数y=(k1)x2 4x+5k都有最大值吗请写出你的判断,并说明理由;若有,请求出最大值.

二次函数综合题经典习题(含答案及基本讲解)

二次函数综合题训练题型集合 1、如图1,已知二次函数图象的顶点坐标为C(1,0),直线m x y+ =与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上. (1)求m的值及这个二次函数的关系式; (2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x,求h与x之间 的函数关系式,并写出自变量x的取值范围; (3)D为直线AB与这个二次函数图象对称轴的交点,在线段AB上是否存在一点P,使得四边形DCEP是平行四边形?若存在,请求出此时P点的坐标;若不存在,请说 明理由. 2、如图2,已知二次函数24 y ax x c =-+的图像经过点A和点B.(1)求该二次函数的表达式; (2)写出该抛物线的对称轴及顶点坐标; (3)点P(m,m)与点Q均在该函数图像上(其中m>0),且这两点关于抛物线的对称轴对称,求m的值及点Q 到x轴的距离 E B A C P 图1 O x y D x y O 3 -9 -1 -1 A B 图2

P B A C O x y Q 图3 3、如图3,已知抛物线c x b x a y ++=2经过O(0,0),A(4,0),B(3,3)三点,连结AB ,过点B 作BC ∥x 轴交该抛物线于点C. (1) 求这条抛物线的函数关系式. (2) 两个动点P 、Q 分别从O 、A 两点同时出发,以每秒1个单位长度的速度运动. 其中,点P 沿着线段0A 向A 点运动,点Q 沿着折线A →B →C 的路线向C 点运动. 设这两个动点运动的时间为t (秒) (0<t <4),△PQA 的面积记为S. ① 求S 与t 的函数关系式; ② 当t 为何值时,S 有最大值,最大值是多少?并指出此时△PQA 的形状; ③ 是否存在这样的t 值,使得△PQA 是直角三角形?若存在,请直接写出此时P 、Q 两点的坐标;若不存在,请说明理由. 7、(07海南中考)如图7,直线43 4 +- =x y 与x 轴交于点A ,与y 轴交于点C ,已知二次函数的图象经过点A 、C 和点()0,1-B . (1)求该二次函数的关系式; (2)设该二次函数的图象的顶点为M ,求四边形AOCM 的面积; (3)有两动点D 、E 同时从点O 出发,其中点D 以每秒 2 3 个单位长度的速度沿折线OAC 按O →A →C 的路线运动,点E 以每秒4个单位长度的速度沿折线OCA 按O →C → A 的路线运动, 当D 、E 两点相遇时,它们都停止运动.设D 、E 同时从点O 出发t 秒时,ODE ?的面积为S . ①请问D 、E 两点在运动过程中,是否存在DE ∥OC ,若存在,请求出此时t 的值;若不存在,请说明理由; ②请求出S 关于t 的函数关系式,并写出自变量t 的取值范围; ③设0S 是②中函数S 的最大值,那么0S = . C A M y B O x C A M y B O x C A M y B O x

二次函数最经典综合提高题

周村区城北中学二次函数综合提升寒假作业题 一、顶点、平移 1、抛物线y =-(x +2)2 -3的顶点坐标是( ). (A) (2,-3); (B) (-2,3); (C) (2,3); (D) (-2,-3) 2、若,,,,,123351A y B y C y 444??????- ? ? ??????? 为二次函数2y x 4x 5=+-的图象上的三点,则123y y y 、、的大小关系是 A.123y y y << B. 213y y y << C.312y y y << D.132y y y << 3、二次函数y=﹣(x ﹣1)2+5,当m ≤x ≤n 且mn <0时,y 的最小值为2m ,最大值为2n ,则m +n 的值为( )A . B .2 C . D . 4、下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A .y = (x ? 2)2 + 1 B .y = (x + 2)2 + 1 C .y = (x ? 2)2 ? 3 D .y = (x + 2)2 ? 3 5、将二次函数2 45y x x =-+化为2 ()y x h k =-+的形式,则y = . 6二次函数与y=kx 2﹣8x +8的图象与x 轴有交点,则k 的取值范围是 ( ) A .k <2 B .k <2且k ≠0 C .k ≤2 D .k ≤2且k ≠0 7、由二次函数1)3(22+-=x y ,可知( ) A .其图象的开口向下 B .其图象的对称轴为直线3-=x C .其最小值为1 D .当3

高中数学二次函数分类讨论经典例题

例1(1)关于x 的方程0142)3(22=++++m x m x 有两个实根,且一个大于1,一个小于1,求m 的取值范围; (2)关于x 的方程0142)3(22=++++m x m x 有两实根都在)4,0[内,求m 的取值范围; ⑶关于x 的方程0142)3(22=++++m x m x 有两实根在[]3,1外,求m 的取值范围 (4)关于x 的方程0142)3(22=++++m x m mx 有两实根,且一个大于4,一个小于4,求m 的取值范围. 例3已知函数3)12()(2--+=x a ax x f 在区间]2,2 3[-上的最大值为1,求实数a 的值。

解(1)令142)3(2)(2++++=m x m x x f ,∵对应抛物线开口向上,∴方程有两个实根,且一个大于1,一个小于1等价于0)1(?吗?),即.4 21-++++≥+????? ?????≥+-+<+-<≥≥m m m m m m m m m m f f (3)令142)3(2)(2++++=m x m x x f ,原命题等价于 ???<<0)3(0)1(f f 即? ??<++++<++++0142)3(690142)3(21m m m m 得.421-0)4(0g m 或,0 )4(0???>)(恒成立,求实数a 的取 值范围。 解:(1)0)()(恒成立?.)]([min a x f >又当]1,1[-∈x 时, 5)1()]([min -=-=f x f ,所以).5,(--∞∈a 【评注】“有解”与“恒成立”是很容易搞混的两个概念。一般地,对于“有解”与“恒成立”,有下列常用结论:(1)a x f >)(恒成立?a x f >min )]([;(2)a x f <)(恒成立?a x f )(有解?a x f >max )]([;(4)a x f <)(有解?.)]([min a x f < 分析:这是一个逆向最值问题,若从求最值入手,首先应搞清二次项系数a 是否为零,如果)(,0x f a ≠的最大值与二次函数系数a 的正负有关,也与对称轴

二次函数综合大题压轴题Word版

姓名学生姓名填写时间 学科数学年级初三教材版本人教版 阶段观察期□:第()周维护期□本人课时统计第()课时共( 2)课时 课题名称二次函数综合大题(压轴题) 课时计划 第( 1、2 ) 课时 共( 4 )课时 上课时间 教学目标 同步教学知识内容学校同步学到圆周角,1对1提前学到圆结束 个性化学习问题解决二次函数综合大题(压轴题) 教学过程 教师活动 二次函数综合大题(压轴题) 一、经典例题精讲 面积类 例1.如图,已知抛物线经过点A(﹣1,0)、B(3,0)、C(0,3)三点. (1)求抛物线的解析式. (2)点M是线段BC上的点(不与B,C重合),过M作MN∥y轴交抛物线于N,若点M的横坐标为m,请用m的代数式表示MN的长. (3)在(2)的条件下,连接NB、NC,是否存在m,使△BNC的面积最大?若存在,求m的值;若不存在,说明理由. 考点:二次函数综合题. 专题:压轴题;数形结合. 分析: (1)已知了抛物线上的三个点的坐标,直接利用待定系数法即可求出抛物线的解析式. (2)先利用待定系数法求出直线BC的解析式,已知点M的横坐标,代入直线BC、抛物线的解析式中,可得到M、N点的坐标,N、M纵坐标的差的绝对值即为MN的长.

(3)设MN交x轴于D,那么△BNC的面积可表示为:S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB,MN的表达式在(2)中已求得,OB的长易知,由此列出关于S△BNC、m的函数关系式,根据函数的性质即可判断出△BNC是否具有最大值. 解答: 解:(1)设抛物线的解析式为:y=a(x+1)(x﹣3),则: a(0+1)(0﹣3)=3,a=﹣1; ∴抛物线的解析式:y=﹣(x+1)(x﹣3)=﹣x2+2x+3. (2)设直线BC的解析式为:y=kx+b,则有: , 解得; 故直线BC的解析式:y=﹣x+3. 已知点M的横坐标为m,MN∥y,则M(m,﹣m+3)、N(m,﹣m2+2m+3); ∴故MN=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m(0<m<3). (3)如图; ∵S△BNC=S△MNC+S△MNB=MN(OD+DB)=MN?OB, ∴S△BNC=(﹣m2+3m)?3=﹣(m﹣)2+(0<m<3); ∴当m=时,△BNC的面积最大,最大值为.

二次函数与几何综合(有答案)中考数学压轴题必做(经典)

二次函数与几何综合
题目背景
07 年课改后,最后一题普遍为抛物线和几何结合(主要是与三角形结合)的 代数几何综合题,计算量较大。几何题可能想很久都不能动笔,而代数题则可以 想到哪里写到哪里,这就让很多考生能够拿到一些步骤分。因此,课改之后,武 汉市数学中考最后一题相对来说要比以前简单不少,而这也符合教育部要求给学 生减轻负担的主旨,因此也会继续下去。要做好这最后一题,主要是要在有限的 时间里面找到的简便的计算方法。要做到这一点,一是要加强本身的观察力,二 是需要在平时要多积累一些好的算法,并能够熟练运用,最后就是培养计算的耐 心,做到计算又快又准。
题型分析
题目分析及对考生要求 (1)第一问通常为求点坐标、解析式:本小问要求学生能够熟练地掌握待定系 数法求函数解析式,属于送分题。 (2)第二问为代数几何综合题,题型不固定。解题偏代数,要求学生能够熟练 掌握函数的平移,左加右减,上加下减。要求学生有较好的计算能力,能够把题 目中所给的几何信息进行转化,得到相应的点坐标,再进行相应的代数计算。 (3)第三问为几何代数综合,题型不固定。解题偏几何,要求学生能够对题目 所给条件进行转化,合理设参数,将点坐标转化为相应的线段长,再根据题目条 件合理构造相似、全等,或者利用锐角三角函数,将这些线段与题目构建起联系, 再进行相应计算求解,此处要求学生能够熟练运用韦达定理,本小问综合性较强。
在我们解题时,往往有一些几何条件,我们直接在坐标系中话不是很好用, 这时我们需要对它进行相应的条件转化,变成方便我们使用的条件,以下为两种 常见的条件转化思想。 1、遇到面积条件:a.不规则图形先进行分割,变成规则的图形面积;b.在第一 步变化后仍不是很好使用时,根据同底等高,或者等底同高的三角形面积相等这 一性质,将面积进行转化;c.当面积转化为一边与坐标轴平行时,以这条边为底, 根据面积公式转化为线段条件。 2、遇到角度条件:找到所有与这些角相等的角,以这些角为基础构造相似、全 等或者利用锐角三角函数,转化为线段条件。
二次函数与三角形综合
【例1】. (2012 武汉中考)如图 1,点 A 为抛物线 C1:y= x2﹣2 的顶点,点 B 的坐标为(1,
0)直线 AB 交抛物线 C1 于另一点 C

二次函数经典例题与解答

、中考导航图 顶点 对称轴 1. 二次函数的意义 ; 2. 二次函数的图象 ; 3. 二次函数的性质 开口方向 增减性 顶点式: y=a(x-h) 2+k(a ≠ 0) 4. 二次函数 待定系数法确定函数解析式 一般式: y=ax 2+bx+c(a ≠ 0) 两根式: y=a(x-x 1)(x-x 2)(a ≠0) 5. 二次函数与一元二次方程的关系。 6. 抛物线 y=ax 2+bx+c 的图象与 a 、 b 、 c 之间的关系。 三、中考知识梳理 1. 二次函数的图象 在 画二 次函数 y=ax 2+bx+c(a ≠ 0) 的图象 时通常 先通 过配 方配成 y=a(x+ b ) 2+ 2a 公式来求得顶点坐标 . 2. 理解二次函数的性质 抛物线的开口方向由 a 的符号来确定 , 当 a>0 时, 在对称轴左侧 y 随 x 的增大而减小 b 4ac-b 2 反之当 a0时,抛物线开口向上 ; 当 a<0时,?抛物线开口向 下 ;c 的符号由抛物线与 y 轴交点的纵坐标决定 . 当 c>0 时, 抛物线交 y 轴于正半轴 ; 当 c<0 时,抛物线交 y 轴于负半轴 ;b 的符号由对称轴来决定 .当对称轴在 y?轴左侧时 ,b 的符号与 a 二次函数 4ac-b 的形式 , 先确定顶点 4a (- 2b a 4ac-b 2 ), 然后对称找点列表并画图 ,或直接代用顶点 4a 在对称轴的右侧 ,y 随 x 的增大而增大 简记左减右增 , 这时当 x=- b 时 ,y 2a 最小值= 4ac-b 2 4a

二次函数对称轴经典问题

高中数学二次函数对称轴典型问题练习题 二次函数在闭区间上一定存在最大值和最小值,此类问题与区间和对称轴有关,一般分为三类: ①定区间,定轴; ②定区间,动轴, ③动区间,动轴.要认真分析对称轴与区间的关系,合理地进行分类讨论,特别要注意二次项系数是否为0. 第一类问题 二次函数中的动轴定区间 例一已知函数2 142+-+-=a ax x y 在区间[0,1]上的最大值是2,求实数a 的值。 〖解答〗.3 106,310,2)1(,]1,0[,2,12/;,20,32,2)2 (,20,120;6,2)0(,]1,0[,0,02 ,2,42)2(max max max 22或综上上单调递增函数在即时当故舍去矛盾与或得有即时当得有上单调递减函数在即时当对称轴为-==∴==∴>>≤≤-===≤≤≤≤-===<<=+-+--=a a f y a a a a a f y a a a f y a a a x a a a x y 第二类问题 二次函数中的定轴动区间 例二 函数f (x )=142-+-x x 在区间[t ,t +1](t ∈R)上的最大值记为g (t ). (1)求g (t )的解析式;(2)求g (t )的最大值 (1)对区间[t ,t +1](t ∈R)与对称轴x =2的位置关系进行讨论: ①当t +1<2,即t <1时,函数f (x )在区间[t ,t +1]上递增,

此时g (t )=f (t +1)=-t 2+2t +2; ②当t ≤2≤t +1,即1≤t ≤2时,函数f (x )在区间[t ,t +1]上先增后减, 此时g (t )=f (2)=3; 例三 已知f (x )=)(2)34(2R a a x x a ∈+--a ∈R),求f (x )在[0,1]上的最大 值 ()()()()()()2222[1]4122(1)3(12)241(2) 3. t f x t t g t f t t t t t t g t t t t t g t >?-++? ③当时,函数在区间,+上递减,此时==-+-,综上,=利用图象解得的最大值是()()()[]()()()()[]()()max max 4430342.30,140.34430341()43003430,10.12a a f x x f x f x f a a a a x a f x f x f a ????≠≠ <><-????若-=,则=,所以=-+由于在上是减函数,所以==若-,即,分两种情况讨论:ⅰ若-,即,因为对称轴=,所以在上是减函数,所以=【】=解析()()()()()[]max max 41()4300343112043231221124<<<0.243330,12a a x a a a f x f a a f x f a a f x ><>-<≤≤-????????-?ⅱ若-,即,因为对称轴= ,故又分两种情况讨论: ①当,即时,==-;②当,即时,==综上所述,在上的最大值是关

二次函数典型中考试题解析和训练

二次函数典型中考试题解析及训练 [解读中考要点] 1、二次函数 一般地,形如 2y ax bx c =++(,,a b c 是常数,0a ≠)的函数叫做x 的二次函数。 解读:在函数中注意二次项系数0a ≠,,b c 是任意的实数即可。 2、二次函数 2y ax =(0a ≠)的性质 解读:(1)二次函数2y ax =的图象是抛物线,它的顶点是原点,对称轴是y 轴。 (2)当0a >时, 抛物线2y ax =的开口向上,并且向上无限延伸,顶点是它的最低点;当0a <时,抛物线2 y ax =的开口向下,并且向下无限延伸,顶点是它的最高点。 3、二次函数 2y ax k =+(0a ≠)的图象与性质 解读:(1)二次函数2y ax k =+的图象与2y ax =的图象的形状完全一样,可以通过平移二次函数2y ax =的图 象得到 2y ax k =+的图象。当0k >时,向上平移k 个单位长度;当0k <时,向下平移k 个单位长度。 (2)当0a >时,抛物线的开口向上;当0a <时,抛物线的开口向下。 (3)抛物线的顶点是 ()0,k ,对称轴是y 轴。 4、二次函数 ()2 y a x h k =-+(0a ≠)的图象与性质 解读:(1)它的图象与2y ax =的图象的形状完全一样,可以通过二次函数2 y ax =的图象得到()2 y a x h k =-+的图象。 (2)当0a >时,抛物线的开口向上;当0a <时,抛物线的开口向下。 (3)抛物线的顶点是 (),h k ,对称轴是y 轴。 5、关于二次函数 2y ax bx c =++(0a ≠)的图象 解读:(1)二次函数 2y ax bx c =++(0a ≠)的图象是与2y ax =的图象的形状完全一样的一条抛物线。 (2)抛物线2 y ax bx c =++(0a ≠)的对称轴是直线2b x a =-,顶点是24,24b ac b a a ??-- ???。 (3)当0a >时,抛物线的开口向上,顶点是它的最低点。当2b x a =-时,函数有最小值 244ac b a -;当2b x a <- 时, y 的值随x 值的增大而减小;当2b x a >- 时,y 的值随x 值的增大而增大。

二次函数典型例题解析

二次函数典型例题解析 关于二次函数的概念 例1 如果函数1)3(232++-=+-mx x m y m m 是二次函数,那么m 的值为 。 例2 抛物线422-+=x x y 的开口方向是 ;对称轴是 ;顶点为 。 关于二次函数的性质及图象 例3 函数)0(2≠++=a c bx ax y 的图象如图所示, 则a 、b 、c ,?,c b a ++,c b a +-的符号 为 , 例4 (镇江2001中考题)老师给出一个函数y=f (x ),甲,乙,丙,丁四位同学各指出这个函数的一个性质:甲:函数的图像不经过第三象限。乙:函数的图像经过第一象限。丙:当x <2时,y 随x 的增大而减小。丁:当x <2时,y >0,已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数—————————————————。 例5 (荆州2001)已知二次函数y=x 2+bx +c 的图像过点A (c ,0),且关于直线x=2对称,则这个二次函数的解析式可能是 (只要写出一个可能的解析式) 例6 已知a -b +c=0 9a +3b +c=0,则二次函数y=ax 2+bx +c 的图像的顶点可能在( ) (A ) 第一或第二象限 (B )第三或第四象限 (C )第一或第四象限 (D )第二或第三象限 例7 双曲线x k y = )0(≠k 的两分支多在第二、四象限内,则抛物线222k x kx y +-=的大致图 象是( ) 例8 在同一坐标系中,直线b ax y +=和抛物线c bx ax y ++=2 确定二次函数的解析式 例9 已知:函数c bx ax y ++=2的图象如图:那么函数解析式为((A )322++-=x x y (B )322--=x x y (C )322+--=x x y (D )322---=x x y

二次函数最值知识点总结典型例题及习题

必修一二次函数在闭区间上的最值 一、 知识要点: 一元二次函数的区间最值问题,核心是函数对称轴与给定区间的相对位置关系的讨论。一般分为:对称轴在区间的左边,中间,右边三种情况. 设f x ax bx c a ()()=++≠2 0,求f x ()在x m n ∈[],上的最大值与最小值。 分析:将f x ()配方,得顶点为--?? ???b a ac b a 2442,、对称轴为x b a =-2 当a >0时,它的图象是开口向上的抛物线,数形结合可得在[m ,n]上f x ()的最值: (1)当[] -∈b a m n 2,时,f x ()的最小值是f b a ac b a f x -?? ???=-2442,()的最大值是f m f n ()()、中的较大者。 (2)当[]-?b a m n 2,时 若-

二次函数综合题类型

二次函数综合题常见题型 一、线段最值 1、如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5). (1)求直线BC与抛物线的解析式; (2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值; (3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.

7),且顶点C的横坐标为4,该图象在x 轴上截2、如图,二次函数的图象经过点D(0,3 9 得的线段AB的长为6. ⑴求二次函数的解析式; ⑵在该抛物线的对称轴上找一点P,使PA+PD最小,求出点P的坐标; ⑶在抛物线上是否存在点Q,使△QAB与△ABC相似?如果存在,求出点Q的坐标;如果不存在,请说明理由.

3、如图,已知直线 1 1 2 y x =+与y轴交于点A,与x轴交于点D,抛物线2 1 2 y x bx c =++与直 线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)。 ⑴求该抛物线的解析式; ⑵动点P在轴上移动,当△PAE是直角三角形时,求点P的坐标P。 ⑶在抛物线的对称轴上找一点M,使|| AM MC -的值最大,求出点M的坐标。

4、如图,已知ABC =,点A、C在x轴上,点B坐标 ∠=?,AC BC ACB ?为直角三角形,90 为(3,m)(0 m>),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示); (2)求抛物线的解析式; (3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ Array并延长交AC于点F,试证明:() FC AC EC +为定值.

中考数学二次函数综合经典题附答案解析

一、二次函数真题与模拟题分类汇编(难题易错题) 1.如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(1,0)、C(﹣2,3)两点,与y 轴交于点N,其顶点为D. (1)求抛物线及直线AC的函数关系式; (2)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值及此时点P 的坐标; (3)在对称轴上是否存在一点M,使△ANM的周长最小.若存在,请求出M点的坐标和△ANM周长的最小值;若不存在,请说明理由. 【答案】(1)y=﹣x2﹣2x+3;y=﹣x+1;(2)当x=﹣1 2 时,△APC的面积取最大值, 最大值为27 8 ,此时点P的坐标为(﹣ 1 2 , 15 4 );(3)在对称轴上存在一点M(﹣1, 2),使△ANM的周长最小,△ANM周长的最小值为10 2 【解析】 【分析】 (1)根据点A,C的坐标,利用待定系数法即可求出抛物线及直线AC的函数关系式;(2)过点P作PE∥y轴交x轴于点E,交直线AC于点F,过点C作CQ∥y轴交x轴于点Q,设点P的坐标为(x,﹣x2﹣2x+3)(﹣2<x<1),则点E的坐标为(x,0),点F的坐标为(x,﹣x+1),进而可得出PF的值,由点C的坐标可得出点Q的坐标,进而可得 出AQ的值,利用三角形的面积公式可得出S△APC=﹣3 2 x2﹣ 3 2 x+3,再利用二次函数的性 质,即可解决最值问题;(3)利用二次函数图象上点的坐标特征可得出点N的坐标,利用配方法可找出抛物线的对称轴,由点C,N的坐标可得出点C,N关于抛物线的对称轴对称,令直线AC与抛物线的对称轴的交点为点M,则此时△ANM周长取最小值,再利用一次函数图象上点的坐标特征求出点M的坐标,以及利用两点间的距离公式结合三角形的周长公式求出△ANM周长的最小值即可得出结论. 【详解】 (1)将A(1,0),C(﹣2,3)代入y=﹣x2+bx+c,得:

二次函数典型例题——最大值问题

二次函数典型例题——最大面积 1、如图所示,在平面直角坐标系中,Rt△OBC 的两条直角边分别落在x 轴、y 轴上,且 OB=1,OC=3,将△OBC 绕原点O 顺时针旋转90°得到△OAE ,将△OBC 沿y 轴翻折得到△ODC ,AE 与CD 交于点 F. (1)若抛物线过点 A 、B、C, 求此抛物线的解析式; (2)求△OAE 与△ODC 重叠的部分四边形ODFE 的面积; (3)点M 是第三象限内抛物线上的一动点,点M 在何处时△AMC 的面积最大?最大面积 是多少?求出此时点M 的坐标. 解:(1)∵OB=1 ,OC=3 ∴C(0,-3),B(1,0) ∵△OBC 绕原点顺时针旋转90°得到△ OAE ∴A(-3,0) 所以抛物线过点A(-3 ,0),C(0,-3),B(1,0) 设抛物线的解析式 为 y 2 ax bx c(a 0) ,可得 a+b+c 0a1 c -3解得b2 9a-3b c 0c-3 ∴过点A,B,C 的抛物线的解析式为y x2 2x-3 (2)∵△OBC 绕原点顺时针旋转90°得到△ OAE ,△OBC 沿y 轴翻折得到△COD ∴ E(0,-1),D(-1,0) 1 可求出直线AE 的解析式为y 1x 1 3直线DC 的解析式为y 3x 3 ∵点F为AE、DC 交点 ∴F(-3,-3) 44

3 S 四边形 ODFE =S △AOE -S △ADF = 4 3)连接 OM ,设 M 点的坐标为 (m ,n ) 2 2、在平面直角坐标系 xOy 中,抛物线 y mx 2 (m 2)x 2 过点 (2, 4) ,且与 x 轴交于 A 、 B 两点(点 A 在点 B 左侧),与 y 轴交于点 C.点 D 的坐标为 (2,0) ,连接 CA ,CB ,CD. (1)求证: ACO BCD ; (2) P 是第一象限内抛物线上的一个动点,连接 DP 交 BC 于点 E. ①当 △BDE 是等腰三角形时,直接写出点 E 的坐标; ②连接 CP ,当△ CDP 的面积最大时,求点 E 的坐标. ∵点 M 在抛物线上,∴ n 2 m 2m ∴ S AMC S AMO S OMC S AOC = 12OA m = 32(m 2 11 OC n OA OC 2 2 3m) 3(m 因为 0 m 3 ,所以当 m 所以当点 M 3 的坐标为 ( , 2 3 9 3 (m n) (m n 3) 2 2 2 3 2 27 2) 8 3 时, 2 15 - ) 时, 4 n 15 ,△AMA ' 的面积有最大值 4 △ AMA '的面积有最大值

相关主题
文本预览
相关文档 最新文档